See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/298430103

Post-Combustion CO2 Capture from Exhaust Gas by Amines and Membranes

Article · March 2016

DOI: 10.4028/www.scientific.net/AMM.830.19

CITATIONS		READS
0		4
3 authoi	rs , including:	
136	José Célio Silveira Andrade	
	Universidade Federal da Bahia	
	83 PUBLICATIONS 172 CITATIONS	
	SEE PROFILE	

Some of the authors of this publication are also working on these related projects:

Project

Carbon Market View project

Inventário de emissões de gases de efeito estufa do estado da Bahia View project

All content following this page was uploaded by José Célio Silveira Andrade on 13 December 2017.

Post-Combustion CO₂ Capture from Exhaust Gas by Chemical Absorption and Membrane: Review

Tachy E. Diego ^{1, a*}, Andrade C. S. José ^{2,b} and Neves B. Sérgio ^{3,c}

¹Escola Politécnica, Universidade Federal da Bahia, Salvador, Brazil.

²Departamento de Engenharia Química, Universidade Salvador, Salvador, Brazil

³Escola de Administração, Universidade Federal da Bahia, Salvador, Brazil

^adiegotachy@yahoo.com.br, ^b jcelio.andrade@gmail.com, ^c bello@techbios.net

Keywords: CO₂ capture, membrane, absorption with amines, economic evaluation.

Abstract. There is a necessity to reduce GHG emission because climate change may have critical consequences in many places the world. The main gas which causes climate change is CO_2 which is released into atmosphere by industries and vehicles. This research aims to compare two technologies for CO_2 capture: absorption with amines and membrane, and to present hybrid processes using these. A review of the state of art for CO_2 capture is used in this research. The capture by absorption with amines is the state of the art for post-combustion because it produces CO_2 with higher purity and is cheaper. However, the energy and installation cost is high which does not encourage its applicability. Membrane for CO_2 capture from natural gas is promissory because of this. Thus, researchers have studied other technologies for CO_2 to replace or add through hybrid processes. Capture by membrane is a promising technology for this, provided that it presents appropriate selectivity and permeability. This paper presents a comparison between CO_2 capture by absorption with amines and by membranes. The goal is to discuss hybrid processes with these two technologies in series.

Introduction

 CO_2 capture from exhaust gas is studied because of society's uneasiness about climate change and its environmental impact on future generations. Climate changes have occurred on Earth since geological eras because of the increase in the Earth's temperature. However, researchers have found evidence that human activity has caused global warming because some gases have the capacity to absorb ultraviolet rays. Consequently, the emission of such gases causes a phenomenon that retains heat in the air, increasing the global temperature. This phenomenon is called the greenhouse effect [11].

There are four main gases which cause the increase in temperature. These gases are CH_4 , N_2 , CO_2 and freons. Freons are compounds consisting of fluor, chlorine and carbon. CO_2 is the most impactful gas in global warming because it is produced by many reactions, though mainly fossil fuel combustion. Table 1 shows data regarding greenhouse gases. The freon CHF_3 is included in this Table because it is the Freon with the most warming potential.

There are three options for capturing CO_2 from exhaust gas: post-combustion, pre-combustion, and oxy-combustion. Fig. 1 shows how post-combustion occurs; Fig. 2 shows how pre-combustion occurs; Fig. 3 shows how oxy-combustion occurs. The technologies studied for capture of CO_2 are in Tables 2 and 3 [10].

Compound	Concentration before industry [ppmv]	Concentration in 2011 [ppmv]	Lifetime in the atmosphere [years]	Main Human Activity	Global Warming Potential
CO_2	280	388.5	~100	Fossil fuel burning.	1
CH ₄	0.715	1.87 / 1.784	12	Fossil fuel, Rice agriculture, landfill, livestock.	25
NO ₂	0.27	0.323	114	Fertilizers and industrial combustion processes.	298
CHF ₃	0	0.000018	279	Electronics and refrigerators	11 700

Table 1. Greenhouse gases data [21].

Table 2. CO_2 capture from gas natural and exhaust gas by post-combustion process [10].

Separation Test	Proces	ss Stream	Post-G	Post-Combustion		
Separation Task	CC	O_2/CH_4	CO_2/N_2			
Capture Technologies	Current	Emerging	Current	Emerging		
	Physical Solvents	Improved Solvents		Improved Solvents		
Absorption	Chemical	Novel Contacting Equipment	Chemical Solvents	Novel Contacting Equipment		
	Solvents	Improved Design of Processes		Improved design of processes		
Membrane	Polymeric	Ceramic Facilitated Transport Carbon	Polymeric	Ceramic Facilitated Transport Carbon		
	Zeolite	Contactor	Zeolite	Contactor Carbonate		
Solid Sorbents	Activated Carbon	-	Activated Carbon	Carbon Based Sorbents		
Cryogenic	Ryan- Homes Processo	-	Liquefaction	Hybrid Processes		

Semanation Tests	Oxy-Combustion		Pre-Co	mbustion	
Separation Task		O_2/N_2	CO_2/H_2		
Capture Technologies	Current	Emerging	Current	Emerging	
			Physical Solvents	Improved Solvents	
Absorption	-	Biomimetic Solvents, e.g. Hemoglobinederivatives	Chemical Solvents	Novel Contacting Equipment Improved Design of Processes	
		Ion Transport Membranes	D 1	Ceramic Palladium	
Membrane	Polymeric	Facilitated Transport	Polymeric	Reactors Contactors	
	Zeolite	Adsorbents for O ₂ /N ₂	Zeolite	Carbonates	
Solid Sorbents	Activated	58		Hydrotalcites	
	Carbon	Looping	Alumina	Silicates	
Cryogenic	Distillation	Improved distillation	Liquefaction	Hybrid Processes	

Table 3. CO₂ capture from exhaust gas by oxy-combustion and pre-combustion processes [10].

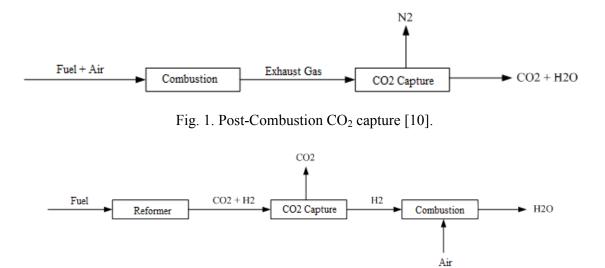


Fig. 2. Pre-Combustion CO₂ capture [10].

This paper shows the state of art for the post-combustion CO_2 capture by membrane and absorption with amines, and compares these processes. Our aim is to further study post-combustion CO_2 capture. According to the IPCC in 2005 it is commercially applicable in the chemical and petrochemical industry. One example of applicability is CO_2 injection for recovery of oil from wells [23].

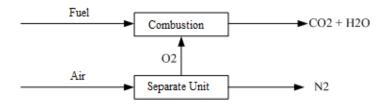


Fig. 3. Oxy-Combustion CO₂ capture [10].

Chemical Absorption

Chemical absorption is the oldest CO_2 capture processes from exhaust gas. Three companies have already evaluated the cost of this technology: Lummus; Fluor Daniel, and Mitsubishi. Lummus has used monoethanolamine 15 to 20% wt aqueous; Fluor Daniel has used monoethanolamine 30% wt aqueous; and Mitsubishi has used three solvents aqueous with monoethanolamine [10]. Table 4 shows Fluor Daniel consumes less energy. Eq. 1 describes the neutralization reaction between CO_2 and MEA. CO_2 reacts with all other amines by the same equation; however, they change the cation [1]. Fig. 4 shows this process flowchart. Below, amines except for monoethanolamine studied for CO_2 capture are shown [13].

- N, N-Dimethylethanolamine, DMAE
- N-Methylethanolamine, MDEA
- N-Methylethanolamine, MAE
- Diethanolamine, DEA
- 2-Amino-2-Methylpropan-1-ol, AMP
- N-(2-Hydroxymethyl) Ethylenediamine, HEEDA
- N, N-Dimethylpiperazine, DMF
- N, N, N ', N'-Tetramethylethylenediamine, TMEDA
- N, N, N'-Trimethylethylenediamine, N, N, N'-triMEDA
- N, N, Dimethylethylenediamine, N, N-Dimeda
- Dimeletilenodiamina N-N'-N, N'-Dimeda.

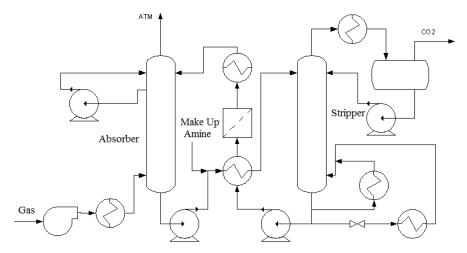


Fig. 4. CO₂ Capture by Absorption flowchart [10].

Because of corrosion problems caused by amines, there are studies using amino acids or ammonia for this technology. Amino acids do not volatilize, have high surface tension and are more chemically resistant than amines, however, their performance decreases in the presence of oxygen. Ammonia does not degrade in the presence of oxygen, it does not corrode, it requires less energy in the stripper than amines, and it is also cheaper. However, a reaction between CO_2 and ammonia is explosive in a high CO_2 concentration and it can cause operational problems [21].

	Unit	Lummus	Fluor Daniel	Mitsubish
CO_2 mole fraction in exhaust gas	%	13.3	13.2	15
Electricity consumption per CO ₂ captured	kWh/tCO2	119	91.5	118.84
Heat consumption per CO ₂ captured	GJ/tCO ₂	2.76	3.95	

Table 4. CO₂ capture by absorption with amines, plant data [18].

 $2HO(CH_2)_2 NH_2 + CO_2 \leftrightarrow HO(CH_2)_2 NHCOO^-H_3 N^+(CH_2)_2 OH$ (1)

Absorption is a separation process by liquid-vapour equilibrium whose compounds in gas form are absorbed by a liquid solvent. There are two kinds of absorption: physical absorption and chemical absorption. The difference between these is the presence of a chemical reaction in chemical absorption. However, physical absorption modeling can be used for chemical absorption modeling if reaction equilibrium constants are considered. The hydraulic calc for Column absorption and stripping can be simulated using the distillation simulator. Furthermore, distillation, absorption and stripping column can be plated or packaged [16].

In the flowchart of equipment shown in Fig. 4, the two columns function in the specific temperature range because of chemical and physical properties. If MEA is used, the temperature range absorption is 40 to 60°C, and temperature range stripping is 100 to 140°C. The pressure is near 1 atm for both columns [10]. The energy consumed in the CO₂ capture process stripper is 3.88 GJ/tCO₂ if the exhaust gas is from natural gas [5].

Because of the high energy consumption for capture using this process, the percentage of CO_2 capture used in one of the economic studies is 65%. An example of this is exhaust gas from natural gas. One research aimed to produce 690 tonnes of CO_2 [18]. The cost of this process was \notin 60.58/tCO₂, considering 3.58x10⁶ tonnes CO_2 by year. This cost corresponds to US\$ 80.80 according to data in *Portal do Brazil* web [17].

Membrane

Membrane is a promising technology studied to decrease the cost of CO_2 capture using absorption with amines [10]. The advantages are simpler installation. This is leads to lower maintenance costs [3]. The membrane is studied for hybrid technologies. Cellulose acetate is the state of art for membrane material in this process because it is cheaper. Rather than capturing CO_2 only using membrane, researchers have been studied hybrid technology using absorption with amine [10].

Because of the high energy consumption and high cost of installing absorption plants, there are other CO₂ capture processes studies. The use of membranes is one of these. They operate by partial pressure difference, according to eq. 2 [15]. In this equation, Ji is the component i flow (kmol/s), Pi is the component i permeability [kmol.m/(s.m².bar)], δ is the membrane thickness (m), Am is the membrane mass transfer area (m²), xi and yi are tube stream and permeate stream component i mole fraction respectively, and Pf and Pp are tube stream and permeate stream pressure respectively [9]. Membrane technology is more appropriate for CO₂ capture from natural gas because the pressure is high, 20 bar [20].

$$J_{i} = \frac{P_{i}}{\delta} \operatorname{Am}(x_{i}P_{f} - y_{i}P_{p}) = \frac{P_{i}}{\delta} \operatorname{Am}\Delta P$$
(2)

The pressure difference can be created in two ways: compression system in upstream or in a vacuum system downstream [3], [9] and [8]. Both are shown in Fig. 5. Studies have shown that a membrane to separate CO₂ capture from exhaust gas by vacuum system is cheaper than a compression system, in spite of bigger membrane separation equipment. This is because the energy consumption defines the cheaper technology [9]. Studies have shown that it is impossible to capture CO_2 90% from exhaust gas with CO_2 mole fraction less than 10% using only one membrane stage specifying CO_2 for injection for recovery of oil [4]. This information is in Fig. 6 where xin is CO_2 mole fraction in exhaust gas, and α is membrane selectivity [2]. The recommended materials to make membrane separating equipment are polymers, as shown in Table 5 below.

	H_2	N_2	O_2	CH ₄	CO_2
Polymer	Permeabilit	Permeability	Permeability	Permeability	Permeability
	y [Barrer]	[Barrer]	[Barrer]	[Barrer]	[Barrer]
Cellulose Acetate	2.63	0.21	0.59	0.21	6.3
Ethyl Cellulose	87	8.4	26.5	19	26.5
Polycarbonate.		0.18	1.36	0.13	4.23
Brominated		0.18	1.50	0.15	4.23
Polidimetilsiloxane	550	250	500	800	2700
Polyamide	28.1	0.32	2.13	0.25	10.7
Polidimetilpenteno	125	6.7	27	14.9	84.7
Polyphenyl oxide	113	3.81	16.8	11	75.8
Polisulfone	14	0.25	1.4	0.25	5.6

Table 5. Polymeric membranes data [15].

 $Barrer = 10^{-10}.cm^{3}.cm/(cm^{2}.s.cmHg).$

In spite of polymeric membranes in Table 5 being state of art for current process and postcombustion, zeolite ZSM-5 offers better conditions for CO_2 capture because of its higher permeability and selectivity. The CO_2 permeability is 1 140 Barrer and the CO_2/N_2 selectivity is 54.5 in zeolite ZSM-5 at 25°C. These properties will be obtained if this material is supported with polymeric silica to avoid aluminum ions leaching. These properties can decrease without this support because the gas can pass by empty surface between crystals. Another advantage is its hydrophobic characteristic [19]. However, the material with the greatest selectivity is PVBTAF. Polyvinyl benzyl trimethyl [7] and [21].

The most promise CO_2 capture technology for hybrid process is membrane [10]. The absorption with membrane modules is the hybrid process whose it studies is the most forward. In this process, the solvent should go in the absorption column in higher pressure than gas for avoid bubble. The fig. 7 shows how liquid and vapour interact them in the column [14]. Other process has membrane module using vacuum in the stripper. This aims decreasing energy consumption in the reboiler. The material used for membrane in it study was polypropylene because it is hydrophobic [24]. The other possibility for hybrid technology is membrane before the other separation. The fig. 8 shows the flowchart using absorption after membrane.

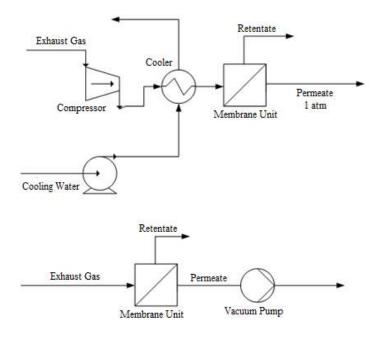


Fig. 5. Membrane Separate Processes Flowchart [8].

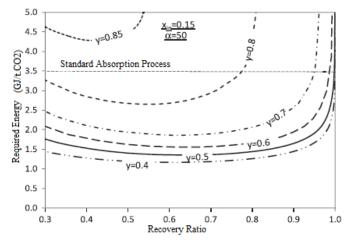


Fig 6. Post-Combustion CO₂ capture by membrane simulation graph [2].

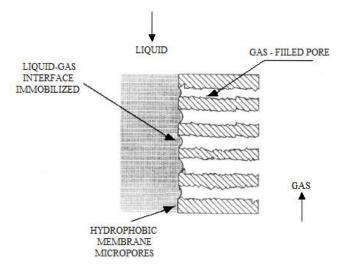


Fig. 7. Absorption with membrane module [14].

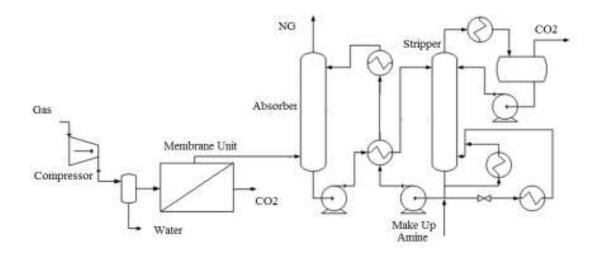


Fig. 8. Hybrid technology in serie using membrane flowchart [20].

Comparing between CO₂ Capture by Chemical Absorption and Membranes

In spite of difficult for specify CO_2 by membrane, it is promissory for hybrid processes. The advantage is less installation cost and less energy consumption. These occur if it produces CO_2 not specified [10] and [6]. Economic studies shown in this paper indicate these advantages using membrane. It is because the absorption with MEA cost was US\$ 80.88 / t [18]. CO_2 while membrane vacuum cost was US\$ 54 / t CO_2 [9]. However, CO_2 captured by membrane does not attend specifying condition for industrial applicable.

Table 6. Quantitative comparing between membrane and absorption from exhaust gas.

Paper	[18]	[9]	[9]
Process	Absorption with	Membrane	Membrane with
	MEA		Vacuum
Knowing level	Advanced	Novelty	Novelty
CO ₂ Specifying [%]	97	43	45
Energy Penalty [%]	37	52	28
Annual Total Cost [US\$/tCO ₂]	81	82	54

Table 7. Quantitative comparing between membrane and absorption from natural gas [20].

CO. Remayal Technology		С	Chemical Absorption			Hybrid
CO_2 Kelliova	CO ₂ Removal Technology		MDEA	MEA+MDEA	Membrane	MEA
Recovery	CH_4	98,76	98,51	98,50	96,21	94,73
(%)	CO_2	99,28	91,57	95,77	90,68	99,01
CAPEX [mi	lhões de US\$]	26	43	31	50	27
OPEX [mill	hões de US\$]	58	69	116	6,7	19

In order to join both processes advantages, it was developed hybrid technologies. However, hybrid process in series using vacuum membrane is not promissory because the absorption column pressure is 1 atm. One date that it shows difficult capturing CO_2 by membrane without vacuum

pump is cost US\$ 82 / t. CO₂ [9]. In spite of this, it cost refers polyphenyl membrane, which cost US\$ 10 / m^2 , while cellulose acetate, the most indicated material, cost US\$ 0.1/ft² or US\$ 1.0 m^2 [22]. The tables 6 to 8 show comparatives information about membrane and absorption with amine.

Process	Advantages	Disadvantages
Absorption with Amines	1 – Fast reaction 2 – Higher Selectivity 3 – More flesible	1 – Equipments corrosion 2 – Higher instaliings
Membrane	Simper and cleaner	Higher energy for exhaust gas in compression system

Table 8. Qualitative comparing between membrane and absorption [21].

Discussion and Conclusion

The table 6 shows it is possible reducing cost increasing energy plants efficiencies by hybrid processes for post-combustion if it will use vacuum system in membrane. One example used vacuum system in membrane module [24]. The table 7 shows that CO_2 capture from natural gas by hybrid process investment is cheapest of the plant studied. Other papers proposed different hybrid processes using vacuum system in membrane. There is study hybrid process using membrane with adsorption, too [12]. In this table too, there are dates which it causes study CO_2 capture by hybrid process using fig. 8 changing adsorption to absorption are the less energy penalty and less CO_2 capture cost if it will use vacuum system.

It is noted, too that CO_2 capture by absorption as membrane studies have many compounds developed to improve energy efficiencies. There are many amines for absorption however MEA has been more indicated yet because of it price. MDEA and DEA are other amines in advanced stage of study, too. About membrane, although cellulose acetate is more indicated because of it price, many materials offering better conditions have already studied. Zeolite ZSM-5and polyvinyl benzyl trimethyl are examples [21].

In this paper, the conclusions are: Elevated installing cost for building CO_2 capture process plant by absorption arouses necessity to find other developing other technologies for it substitutes or builds hybrid processes [21]. It is not possible producing CO_2 specified more 90% mole capture more 90% CO_2 mole from exhaust gas with only one membrane stage. This is if the exhaust has less CO_2 10% mole. This fact does not preclude specifying CO_2 in these conditions with too many stages [2].

Acknowledgment

Acknowledgments to UFBA and Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES).

Reference

[1] J. E. Bara, D. E. Camper, D. L. Gin, R. D. Noble, Room-Temperature Ionic Liquids and Composite Materials: Platform Technologies for CO₂ Capture, Accounts of Chemical Research, 43 (2010) 152-159.

[2] B. Belaissaoui, D. Willson, E. Favre, Membrane gas separations and post-combustion carbon dioxide capture: Parametric sensitivity and process integration strategies, Chemical Engineering Journal, 211 (2012) 122-132.

[3] R. Bounaceur, D. Wilson, E. Favre, Membrane processes for post-combustion carbon dioxide capture: A parametric study, Energy, 31 (2006) 2556-2570.

[4] A. Brunetti, E. Drioli, Y. M. Lee, G. Gabieri, Engineering evaluation of CO_2 separation by membrane gas separation systems, Journal of Membrane Science, 454 (2014) 305-315.

[5] U. Desideri, A. Paolucci, Performance modelling of a carbon dioxide removal system for power plants, Energy Conversion and Management, 40 (1999) 1899-1915.

[6] D. Dortmund, K. Doshi, Recent Developments in CO₂ Removal Membrane Technology, UOP LLC. 1999.

[7] L. A. El-Azzami, E. A. Grulke, Carbon Dioxide Separation from Hydrogen and Nitrogen by Falicitated Transport Swollen Chitosan Membranes, Journal of Membrane Science, 323 (2008) 225-234.

[8] X. Z. He, M. B. Hagg, Hollow fiber carbon membranes: Investigations for CO₂ capture, Journal of Membrane Science, 378 (2011) 1-9.

[9] Minh T. Ho, Guy W. Allinson, Dianne E. Wiley, Reducing the cost of CO₂ capture from flue gases using membrane technology, Industrial & Engineering Chemistry Research, 47 (2008) 1562-1568.

[10] International Panel on Climate Change (IPCC), Special Report on Carbon Dioxide Capture and Storage, Cambridge University, 2005, pp. 114-122.

[11] International Panel on Climate Change (IPCC), Working Group 1 Contribution to the IPCC fifth Assessment Report (AR5), Climate Change 2013: The Physical Science Basis, 2013, pp. 3-23.

[12] J. K. Jeon, S. H. Ihm, Y. K. Park, J. S. Kim, J. I. Dong, S. Kim, J. M. Kim, S. S. Kim, K. S. Yoo, Membrane/PSA hybrid process for carbon dioxide recovery at low concentration, Studies in Surface Science and Catalysis, 153 (2004) 543-546.

[13] N. Lepaumier, D. Picq, P. L. Carrette, New Amines for CO₂ Capture. I. Mechanisms of Amine Degradation in the Presence of CO₂, Indusrial & Engineering Chemistry Research, 48 (2009) 9061–9067.

[14] S. Karoor, K. K. Sirkar, Gas Absorption Studies in Microporous Hollow Fiber Membrane Modules, Industrial and Engineering Chemistry Research, 32 (1993) 674-681.

[15] S. P. Nunes, K. V. Peineman, Membrane Technology in the Chemical Industry, 2001, pp. 44, pp. 54-55.

[16] R. Perry, Perry's Chemical Engineers' Handbook, 1999, pp. 14-17.

[17] Information on http://www.portalbrasil.net/indices euro dolar.htm.

[18] L. M. Romeo, I. Bolea, J. M. Escosa, Integration of power plant and amine scrubbing to reduce CO₂ capture costs, Applied Thermal Engineering, 28 (2008) 1039-1046.

[19] D. W. Shin, S. H. Hyun, C. H. Cho, M. H. Han, Synthesis and CO₂/N₂ Gas Permeation Characteristics of ZSM-5 Zeolite Membranes, Microporus and Misoporus Materials, 85 (2005) 313-323.

[20] D. S. Silva, J. L. Medeiros, J. F. Nascimento, W. M. Grava, O. Q. F. Araújo, Technical and Economic Analysis of CO₂ Capture from Natural Gas: Chemical Absorption Versus Membranes Permeation, Rio Oil & Gas Expo and Conference. 2014.

[21] M. Songolzadeh, M. Solemane, M. T. Ravanchi, R. Songolzadeh, Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions, submitted to Scientific World Journal (2014).

[22] SRI Consulting Pep Report, Membranes Gas Separation Processes, Report 190 A. Menlo Park, California, 1990.

[23] E. Visser, C. Hendrik, M. Barri, M. J. Molvinik, G. Koeijer, S. Liljemark, W. L. Gallo, Dynamis CO₂ quality recommendations, International Journal of Greenhouse Gas Control, 2 (2008) 478-484.

[24] Z. Wang, M. Fang, Y. Pan, S. Yan, Z. Luo, Amine-based absorbents selection for CO₂ membrane vacuum regeneration technology by combined absorption-desorption analysis, Chemical Engineering Science, 93 (2013) 238-249.