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Abstract. Record linkage (RL) is the process of identifying and linking
data that relates to the same physical entity across multiple heteroge-
neous data sources. Deterministic linkage methods rely on the presence
of common uniquely identifying attributes across all sources while prob-
abilistic approaches use non-unique attributes and calculates similarity
indexes for pair wise comparisons. A key component of record linkage is
accuracy assessment — the process of manually verifying and validat-
ing matched pairs to further refine linkage parameters and increase its
overall effectiveness. This process however is time-consuming and imprac-
tical when applied to large administrative data sources where millions
of records must be linked. Additionally, it is potentially biased as the
gold standard used is often the reviewer’s intuition. In this paper, we
present an approach for assessing and refining the accuracy of proba-
bilistic linkage based on different supervised machine learning methods
(decision trees, näıve Bayes, logistic regression, random forest, linear
support vector machines and gradient boosted trees). We used data sets
extracted from huge Brazilian socioeconomic and public health care data
sources. These models were evaluated using receiver operating character-
istic plots, sensitivity, specificity and positive predictive values collected
from a 10-fold cross-validation method. Results show that logistic regres-
sion outperforms other classifiers and enables the creation of a general-
ized, very accurate model to validate linkage results.

1 Introduction

Record linkage (RL) is a methodology to aggregate data from disparate data
sources believed to pertain to the same entity [21]. It can be implemented using
deterministic and probabilistic approaches, depending on the existence (first
case) or the absence (second case) of a common set of identifier attributes in
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all data sources. In both cases, these attributes are compared through some
similarity function that decides if they match or not.

Literature has a wide range of sequence- and set-based similarity check func-
tions providing very accurate results. On the other hand, there are no gold
standards widely assumed to assess the accuracy of probabilistic linkage, as the
resulting data marts are specific to each domain and influenced by different
factors, such as data quality and choice of attributes. So, manual review is fre-
quently used in these cases, being dependent of common sense or the reviewer
experience and, as such, prone to misunderstanding and subjectivity [9].

Our proposal is to use a set of supervised machine learning techniques to
build a trainable model to assess the accuracy of probabilistic linkage. We aim
at to eliminate manual review as it is limited by the amount of data to be
revised, as well we believe it is less reliable than a computer-based solution.
In order to choose the most appropriate techniques, we made experiments with
decision trees, näıve Bayes, logistic regression, random forest, linear support
vector machine (SVM), and gradient boosted trees.

Training data came from an ongoing Brazil-UK project in which we built
a huge population-based cohort comprised by 114 million individuals receiving
cash transfer support from the government. This database is probabilistically
linked with several databases from the Public Health System to generate “data
marts” (domain-specific data) for various epidemiological studies. Accuracy is
assessed through established statistical metrics (sensitivity, specificity and posi-
tive predictive value) calculated during the manual review phase. So, these data
marts together with their accuracy results were used to train our models. Our
results show that SVM presents better sensitivity but logistic regression outper-
forms the remaining methods presenting better overall results.

The main contribution of our proposal is a workflow to preprocess data marts
obtained from probabilistic linkages and use them as training data sets for dif-
ferent machine learning classifiers. Scenarios comprising fuzzy, approximate and
probabilistic decisions on matching can benefit from this workflow to reduce or
even eliminate manual review specially in big data applications.

This paper is structured as follows: Sect. 2 presents some related work focus-
ing on accuracy assessment and different approaches to improve it. Section 3
presents some basic concepts related to accuracy assessment and details on our
data linkage scenario. Section 4 describes the machine learning techniques used in
this work. Section 5 presents the proposed trainable model targeted to eliminate
manual review during the probabilistic linkage of huge data sets. Our experi-
mental results are discussed in Sect. 6 and some concluding remarks and future
work are given in Sect. 7.

2 Related Work

Record linkage is a research field with significant contributions present in the
literature, covering from data acquisition and quality analysis to accuracy assess-
ment and disclosure methods (including a vast discussion on privacy). In this
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section, we emphasize some works presenting different approaches to validate
the accuracy of probabilistic data linkage as well as the use of machine learning
techniques on linkage applications.

The authors in [28] have proposed a generalizable method to validate prob-
abilistic record linkage consisting of three phases (sample selection, data collec-
tion and data analysis) performed by different teams on a double-bind manner.
They used more than 30.000 records from a newborn registry database linked
against 408 records produced by pediatricians based on external data sources.
The results obtained showed a high accuracy rate with less than 1% of errors.

Some approaches have applied machine learning to improve pairwise classifi-
cation [12,32,33], presenting accuracy, precision and recall measures above 90%
using synthetic and real-world data. The work described in [26] explores the
use of machine learning techniques in linking epidemiological cancer registries.
The authors have used neural networks, support vector machines, decision trees
and ensemble of trees to classify records. Ensemble techniques outperformed the
other approaches by achieving 95% of classification rate.

Learned models were also used to scale up record linkage by using block-
ing schemes [6,20]. In [30], neural networks were applied to record linkage and
the results compared to a näıve Bayes classifier, measuring the accuracy and
concluding they outperform Bayesian classifiers in this task.

The need of using data mining techniques for ease or eliminate manual review
was pointed by [10]. An unsupervised learning approach has been adopted to
analyze record linkage results [17]. The author established a gold standard by
running a deterministic merge over the involved databases before the record
linkage procedure. Transformed attributes (first name, last name, gender, date
of birth and a common primary key between the bases) were submitted to sev-
eral iterations of the Expectation Maximization algorithm in order to improve
the agreement of true positive pairs. The estimated review showed results very
similar to manual observed verification.

We have been involved with probabilistic data linkage and subsequent accu-
racy assessment for more than four years. We have discussed the implementation
of our first probabilistic linkage tool in [23], followed by a deeper discussion on
different ways to implement probabilistic linkage routines and their accuracy
assessment in controlled (databases with known relationships) and uncontrolled
scenarios [22]. These works used socioeconomic and public health data from
Brazilian governmental databases.

The dataset used to train our models in this work is derived from the results
reported on these previous works. Our proposal comprises a workflow which can
be used to assess accuracy of either record linkage or deduplication procedures
in a way to reduce or eliminate the manual effort of this validation process, as
well the subjectivity often associated to this verification phase.

3 Assessing the Accuracy of Record Linkage

Since Fellegi and Sunter [13] provided a formal foundation for record linkage,
several ways to estimate match probabilities raised [31]. One way to do matching
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estimation is using similarity indices capable of dealing with different kinds of
data (e.g. nominal, categorical, numerical). These indices provide a measure,
which can be probability-based [11] or cost-based [16], between attributes from
two or more data sets.

Attributes are assumed to be a “true match” if their measure pertains to a
given interval or a “true unmatch” if their measure pertains to another interval.
These intervals are delimited by upper and lower cut-off points: a similarity
index above the upper cut-off point means a true positive (matched) pair, while
an index below the lower cut-off point means a true negative (unmatched) pair.
All pairs of records classified in between these cut-off points (the “gray area”)
are subject to manual review for reclassification.

Sensitivity, specificity and positive predictive values (PPV) are summary
measures commonly used to evaluate record linkage results [27]. These measures
take into consideration the number of pairs classified as true positive (TP),
true negatives (TN), false positives (FP), and false negatives (FN). Thus, the
accuracy function is usually defined as (true pairs)/(all pairs).

The PPV measure, calculated by the equation TP/(TP + FP ), brings the
proportion of true positive matches against all positive predictions, representing
the ability of a given method to raise positive predictions [3]. Sensitivity repre-
sents the proportion of pairs correctly identified as true positives, as depicted by
the equation TP/(TP + FN). In contrast, specificity represents the proportion
of pairs correctly identified as true negatives [1], defined by TN/(TN + FP ).

Validation of accuracy in deterministic scenarios is relatively easy due to exis-
tence of common key attributes and well-known relationships between the data
sources being linked. This favors the definition of gold standards or other forms
of validation even if some uncertainty is present. Probabilistic data linkage faces
two major challenges regarding accuracy ascertainment: the first is to establish a
gold standard, which may use external data to validate linked pairs, whereas the
second refers to defining cut-off points in order to enhance the ability of finding
true positive and true negative pairs.

Given a cut-off point, all linked pairs are separated as matched or unmatched.
The expected behavior of probabilistic linkage results is to contain a signifi-
cant number of matched pairs with higher similarity indices, as well a set of
unmatched pairs undoubtedly classified as such. The gray area (dubious records)
appears in situations where two or more cut-off points are used, leading to the
need of manual review or other form of reclassification over these dubious records.

Probabilistic record linkage, specially in big data scenarios, lacks of gold stan-
dards as they are hard to set up considering the idiosyncrasies of each application
and its data. Common scenarios do not provide additional data to reviewers do
their verification work, which makes this process based on common sense, intu-
ition and personal expertise [9]. Manual (or clerical) review is also limited by
the amount of data to be revised.

In our experimental scenario, we assess the accuracy of our data linkage tool
through the use of data marts generated by linking individuals from a huge
socioeconomic database to their health outcomes. These data marts are used in
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several epidemiological studies assessing the impact of public policies, so their
accuracy is really a huge concern.

4 Machine Learning Algorithms

Usually, machine learning algorithms can be divided in three categories: super-
vised learning, where a training data set is used to train the classification algo-
rithm; unsupervised learning (or clustering), where the algorithm does not have
a prior knowledge (labeled data) about the data and relies on similar character-
istics to perform classification; and semi-supervised learning, where some parts
of data are labeled and some are not, being a mixture of the two previous meth-
ods. Our trainable model was developed using some supervised classification
methods, which are described in this section.

4.1 Decision Trees

Decision trees are used to classify instances by splitting their attributes from the
root to some leaf node. They use some if-then learned rules to provide disjunc-
tions of conjunctions on the attribute values [19].

Let C be a number of classes and fi be a frequency of some class in a given
node. The Gini impurity, given by

Gini =
C∑

i=1

fi(1 − fi), (1)

refers to the probability of some sample be correctly classified. The entropy,
given by

Entropy =
C∑

i=1

−fi log2(fi), (2)

measures the impurity within a set of examples. The most popular implementa-
tions of decision trees use either Gini or entropy impurity measures to calculate
the data information gain, mostly getting similar results [25].

The information gain determines the effectiveness of some attribute to classify
the training data [19]. Splitting data using this measure may reduce impurity
of samples. The information gain calculation considers some attribute A in a
sample S, where Imp can be either the Gini or entropy impurity measure of S,
V alues(A) represents all possible values of A, and Sv is the subset of S in which
the attribute A has the value v [19]. So, the information gain can be obtained by

IG(S, A) = Imp(S) −
∑

v∈V alues(A)

|Sv|
|S| Imp(Sv). (3)
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4.2 Gradient Boosted Trees

Gradient boosted trees (GBT) refers to iteratively train different random subsets
of training data in order to build an ensemble of decision trees and minimize some
loss function [14]. Lets N be the number of instances in some subsample, yi the
label of an instance i, xi keeps the features of an instance and F (xi) brings a
predicted label, for instance, i by the model. So, the equation

logloss = 2 −
N∑

i=1

log(1 + exp(−2yiF (xi))) (4)

illustrates the log loss function used by GBT on classification problems

4.3 Random Forests

Random forests combine a number of tree-structured classifiers to vote for the
most popular class of an instance [7]. The training of each classifier takes an
independent, identically distributed random subset of the training data to decide
about the vote. This randomness often reduce over-fitting and produce compet-
itive results on classification in comparison to other methods [7].

4.4 Näıve Bayes

The näıve Bayes assumes that a target value is the product of the probabilities of
the individual attributes because their values are conditionally independent [19].
It is calculated as shown in Eq. 5.

vNB = arg max
vj∈V

P (vj)
∏

i

P (ai|vj). (5)

4.5 Linear Support Vector Machine

Given a training data set with n points (−→x1, y1), ..., (−→xn, yn), where y1 may assume
1 or −1 values to indicate which class the point −→x1 belongs to, and −→x1 is a p-
dimensional vector ∈ R, the linear support vector machine (LSVM) aims to find
a hyperplane that divides these points with different values of y [8].

4.6 Logistic Regression

The logistic regression classifier aims to model the probability of the occurrence
of an event E depending on the values of independent variables x [24]. The Eq. 6

p(x) = Pr{E|x} = 1/[1 + exp{−α − β′x}] (6)

can be used to classify a new data point x with a vector of independent variables
w, being (α, β) estimated from the training data. Let z be the odds ratio of
positive or negative outcome class given x and w. If z > 0.5, the outcome class
is positive; otherwise is negative.

f(z) =
1

1 + e−z
(7)
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4.7 Comparative Analysis

All these methods have different advantages and disadvantages when applied to
different scenarios. By using decision trees, the user do not need to worry with
data normalization as it does not highly affect tree construction. Also, decision
trees are easier to visualise, explain and manipulate, and do not require a large
data set for training.

Gradient boosted trees usually have a good performance, but require a bigger
time to learn because the trees are built sequentially. Usually, they are more
prone to overfitting, so it is important to be careful in the pre-processing stage.

Random forests have a good performance and are more robust than single
decision trees, giving more accurate results. Also, they suffer less from overfit-
ting and can handle thousands of input variables without variable deletion. For
categorical data with more than one level, random forests could be biased to the
attributes with a bigger number of levels.

Näıve Bayes classifiers are fast and highly scalable. The classifier provides
good results and is simple to implement, well fit with real and discrete data and is
not sensitive to irrelevant features. As main disadvantage, this classifier assumes
independence of features on training data, being unable to learn interactions
between features.

Linear support vector machine (SVM) has a regularization parameter that
helps the developer to reduce the impact of overfitting and get good results.
SVMs use kernels, so it is possible to build expert knowledge by adjusting these
kernels. SVM is defined by a convex optimization problem and there are dif-
ferent efficient methods to deal with this, for example, the Sequential Minimal
Optimization (SMO).

Logistic regression is a simple method and is very fast. Usually, ot requires
a large data set than other methods to achieve stability and works better with
a single decision boundary. Also, logistic regression is less prone to overfitting.

5 Proposed Trainable Model

The input data of our trainable model must contain features that can simulate
what a statistician often use to evaluate linkage results. Our methodology con-
sists of construct a data set to show (i) how different are the nominals, and (ii)
the equality of either categorical and numerical attributes used by the linkage
algorithm. A categorization based on medians is made in order to assure some
data balance.

Figure 1 shows the proposed pipeline to build a trainable model to accuracy
assessment of probabilistic record linkage. This pipeline submits a data mart
produced by the linkage tool to data cleansing, generation of a training data
set to build models, evaluation and use. There is a possibility to rearrange some
pre-processing, transformation and model selection settings by re-executing these
steps.
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Fig. 1. Workflow for the proposed trainable model.

5.1 Pre-processing

The pre-processing step consists of (i) providing a descriptive analysis of data to
select eligible common attributes within pairs and discard their missing values;
(ii) select attributes to be used to build the model, usually the same attributes
used by the linkage algorithm; and (iii) data cleansing and harmonization to
guarantee that those selected attributes will have the same format.

The eligible common attributes to be used are: name, mother’s name, date
of birth, gender and municipality of residence. Attributes are chosen by their
capacity of identifying an individual and their potential use by statisticians to
manually verification about pairwise matching. Nominal attributes usually have
a more discriminative power to determine how different two records are, followed
by date of birth, gender and municipality code. Converging all different formats
of date of birth, gender and municipality code into an unique one is an important
task due to the diversity and heterogeneity of Brazilian information systems. The
approach applied to nominal attributes is to deal with special characters, double
spaces, capitalization, accentuation and typos (imputation errors).

5.2 Transformation

Statisticians verify the differences between attribute values in each pair during
the accuracy assessment step despite the use of the similarity values provided
by the linkage algorithms. In order to simulate this verification, a data set must
reflect either equality, dissimilarity or cost between linked records. Both categor-
ical and numerical attribute types output a binary value that represents their
equality. A different approach is taken with nominal values which the degree of
the dissimilarity may be useful.

A Levenshtein distance metric [16] is used to calculate how much deletions
and insertions need to be done to equalize two strings. In the transformation
step, this metric calculates the distance between the first, the last and the whole
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names in linked pairs. The approach of splitting the name attribute in given
name and surname is to observe the influence of each part of the name on pair
verification.

As an evidence of the common sense applied on accuracy assessment, a
reviewer usually tolerates less errors on common names than on less popular
names. To map this reviewer’s empirical behavior, we use two new attributes to
associate with each first name a given probability of occurence. These probabil-
ities come from a greater data repository containing socioeconomic and census
data.

A categorization using medians of distances (from the attribute name) and
probabilities is made to promote data balance and prevent bias. Therefore, the
transformation step is responsible for making a shallow descriptive analysis of
data before categorization. The transformation step results on 12 features com-
prising: the similarity index, the distance among full, given name and surname
(the same approach for mother’s name), the probability of first names, equality
of date of birth (day, month and year) and gender.

5.3 Model Selection

The model selection phase refers to find the best classifier to our data set. One
of the best methods to evaluate and select classifiers is cross-validation [15]. The
general idea of this method is to split the data set into n-folds and make n
iterations setting a different fold as the test model. The remaining folds are set
as training data to be used by different models and their several parameters.
Accuracy measures are collected to evaluate the model at each iteration.

In addition to general accuracy, the capacity of correctly classify true pos-
itive pairs is the most important part to this work. Thus, accuracy, PPV and
sensitivity become the main measures to be collected from each iteration of a
cross-validation process. Furthermore, the balance between specificity and sen-
sitivity and their interpretation by ROC curve plots [2] may be useful to model
selection.

5.4 Model Execution

The model execution phase allows the reuse of some evaluated method with a
new input data mart. This step outputs the classification as true or false based
on the selected learned model. Also, the results from this step could increase the
training data after some verification effort.

A high performance processing approach can be required due to the size
of the databases involved. To meet this requirement, we use the distributed
implementation of classification algorithms available in the Spark MLlib [18]
tool.

6 Experimental Results

To train and evaluate supervised learning models, we used a data sample
containing 13.300 pairs resulting from the linkage of a Brazilian longitudinal
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Fig. 2. Figures a and b refer to the similarity index distribution before and after the
establishment of the cut-off point, respectively. As well, Figures c and d illustrate the
difference with labels distribution after cut-off.

socioeconomic database with more than 100 million records (CadastroÚnico or
CADU) with records from hospitalization, disease notification and mortality
databases. For each pair, there is a similarity index calculated by the linkage
algorithm and a label to determine if the pair is a true or false match. This label
also indicates this pair already passed by a statistician evaluation [5] and can be
used to train the models.

After discarding pairs with missing values and defining a cut-off point
(Sorensen-Dice similarity index) [11] of 9100 (0.91%), the data sample was
reduced to 7.880 pairs. This value was chosen based on several previous works
and analyzes we done during these four years working on probabilistic linkage
and taking into account the characteristics of our Brazilian databases.

Figures 2b and d show the data balancing of similarity index and labels.
Experiments with different cut-off points obtained lower accuracy results than
those showed in Figs. 3 and 4.

Several executions of machine learning algorithms with different settings are
necessary to select the best model. Accuracy estimation and ROC curves may
be used to choose the best model with available training data [4,15]. Figure 3
shows the accuracy, PPV, sensibility and specificity results of tested models.
These measures are described in Sect. 3 and their interpretation may serve to
assess the performance of these models.

Boxplots are used to allow the study of results variation for each fold in cross-
validation. These plots can summarize and make comparisons between groups of
data by using medians, quartiles and extremes data points [29]. A good model
must get uppermost boxplots with closest quartiles, which means either a low
variation of results on each fold or satisfactory model generalization.



224 R. Pita et al.

Fig. 3. Boxplots of 10-fold accuracy, PPV, sensibility and specificity measures in dif-
ferent machine learning algorithms: a = decision trees, b = näıve Bayes, c = logistic
regression, d = random forest, e = linear support vector machine, f = gradient boosted
trees.

Figure 3 shows the best results of each model. The use of entropy to split data
and set the maximum depth of trees as 3 achieves the best results, showed in
Fig. 3a. Results of näıve Bayes classifier are showed in Fig. 3b. Figure 3c presents
logistic regression results with 1.000 iterations. Random forest achieved best
results by setting 1.000 trees for voting, Gini impurity to split data and the
maximum depth of tree as 5, as shown in Fig. 3d. LSVM results with 50 iterations
to well fit the hyperplane are illustrated in Fig. 3e. Figure 3f brings the results for
gradient boosted trees with a depth of at most 3 and 100 iterations to minimize
the log loss function.

Figure 3c shows that logistic regression outperforms the other models by com-
paring accuracy, PPV and specificity medians. Despite the better sensibility per-
formance of LSVM, the best specificity result is achieved by logistic regression.
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Fig. 4. ROC curves depicting the average true and false positive rates of 10-fold cross-
validation. Different curve color represents an algorithm: dark green for decision trees,
blue for naive Bayes, black for logistic regression, gray for random forests, orange for
linear support vector machine and purple gradient boosted trees (best viewed in color).
(Color figure online)

ROC curves allow the accuracy study by drawing the relation between true
and false positive rates. Figure 4a shows the average true and false positive rates
of each fold in cross-validation. The unbroken black line in Fig. 4a brings the
average ROC curve to the 10-fold cross-validation. This curve shows the logistic
regression superiority in comparison to other curves in terms of sensibility and
sensitivity. The performance variation of all logistic regression curves on folds
are showed in Fig. 3b.

7 Conclusions and Future Work

Accuracy assessment of record linkage refers to a time-consuming process that
becomes impractical when huge databases are involved. This manual review may
be reduced or even eliminated by using trainable models since this validation
process can be assumed as a binary classification problem [9]. The proposed
pipeline has initial steps capable of establishing a dataset with features used
to build and evaluate models. The final steps allow building models by using
different machine learning classifiers and their settings in order to evaluate and
use them to validate new data marts.

The logistic regression outperformed others classifiers using the available
dataset under a 10-fold cross-validation approach. Other models may achieve
better results due to new preprocessing, transformation and categorization
approaches. Different results may also occur depending on the increase or
decrease of data size.

The proposed workflow is suitable to be used either in record linkage or dedu-
plication scenarios where fuzzy, approximate and probabilistic decisions about
pairs of record matching should be made. However, a trainable model could not
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always eliminate the manual review, mainly in situations with tiny train data
sets or with lower accuracy results from cross-validation. It is possible to adopt a
feedback behavior of the proposed workflow, where newly submitted data marts
can increase the training data set since this new result becomes labeled.

The use of deep learning classification algorithms such as artificial neural
networks with several hidden layers may achieve better model accuracy results.
Increasing iterations of gradient boosted trees, random forest and SVM can also
provide better results. New classical and novel classifiers may be used to verify
their performance within the proposed pipeline. New attributes and dissimilarity
metrics may be proposed in order to get more accurate results.
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