
Universidade Federal da Bahia
Universidade Salvador

Universidade Estadual de Feira de Santana

TESE DE DOUTORADO

Understanding Software Cohesion Metrics: Experimental
Assessment of Conceptual Cohesion

Bruno Carreiro da Silva

Programa Multiinstitucional de
Pós-Graduação em Ciência da Computação – PMCC

Salvador
2015

PMCC-Dsc-0021





BRUNO CARREIRO DA SILVA

UNDERSTANDING SOFTWARE COHESION METRICS:
EXPERIMENTAL ASSESSMENT OF CONCEPTUAL COHESION

Tese apresentada ao Programa Mul-
tiinstitucional de Pós-Graduação em
Ciência da Computação da Univer-
sidade Federal da Bahia, Universi-
dade Estadual de Feira de Santana
e Universidade Salvador, como requi-
sito parcial para obtenção do grau de
Doutor em Ciência da Computação.

Orientador: Cláudio Nogueira Sant’Anna
Co-orientadora: Christina von Flach Garcia Chavez

Salvador
2015



 

Silva, Bruno Carreiro da 

 

Understanding Software Cohesion Metrics: Experimental Assessment of Conceptual 

Cohesion / Bruno Carreiro da Silva. – 2015. 

 

184p.: il. 

 

Inclui apêndices. 

Orientador: Prof. Dr. Cláudio Nogueira Sant’Anna. 

Co-orientadora: Profa. Dra. Christina von Flach Garcia Chavez. 

Tese (doutorado) – Universidade Federal da Bahia, Instituto de Matemática, Universidade 

Salvador, Universidade Estadual de Feira de Santana, 2015. 

 

1. Engenharia de Software. 2. Coesão de Software. 3. Métricas de Software. 

4. Evolução de Software. 

I. Sant’Anna, Cláudio. II. Chavez, Christina. III. Universidade Federal da Bahia, Instituto de 

Matemática. IV. Universidade Salvador. V. Universidade Estadual de Feira de Santana. VI. 

Título. 

 

CDD – 005.1 

CDU – 004.41 

ii



iii





RESUMO

Coesão tem sido reconhecida como um importante atributo de qualidade em design de
software ao longo de décadas. Coesão é definida como o grau em que um módulo está
focado em um único interesse do software. Entretanto, medir coesão não é trivial, pois
é dif́ıcil capturar os interesses realizados por módulos de software. Diversas métricas de
coesão tem sido propostas nas últimas décadas e incorporadas em ferramentas de medição
de software em escala industrial. Métricas de coesão estrutural centram-se no grau em que
elementos internos de um módulo são estruturalmente relacionados uns com os outros.
Coesão, entretanto, nem sempre é bem representada pela estrutura interna do módulo.
Por exemplo, em programas orientados a objetos, é posśıvel encontrar classes que imple-
mentam apenas um interesse, mas possuem métodos que raramente chamam uns aos out-
ros ou que não acessam atributos em comum. Conhecendo esta limitação, pesquisadores
têm proposto uma forma alternativa de medir coesão: as chamadas métricas conceituais
de coesão. Tais métricas baseiam-se na identificação expĺıcita de interesses realizados por
cada módulo. Entretanto, há uma falta de entendimento sobre como métricas conceituais
de coesão se encaixam entre diversas métricas tradicionais de coesão estrutural.

Neste contexto, nós realizamos uma série de estudos emṕıricos a fim de avaliar como
e em que extensão métricas de coesão conceitual diferenciam-se das métricas tradicionais
de coesão estrutural. De modo geral, nossa pesquisa envolveu: (i) um web-survey com
oitenta desenvolvedores de software de nove páıses; e (ii) o repositório de seis sistemas
de médio a grande porte, com código aberto e amplamente utilizados na indústria por
diversos anos, incluindo um conjunto de aproximadamente trinta mil revisões no código
fonte.

Como resultado, nós pudemos explicar que coesão conceitual é ortogonal a coesão
estrutural e representa uma dimensão adicional na medição de coesão. Nós encontramos
também que tal dimensão adicional é mais próxima de como desenvolvedores racioci-
nam sobre coesão de módulos. Adicionalmente, encontramos que coesão conceitual é
um potencial indicador de propensão a mudança. Por fim, nós analisamos em que grau
diferentes estratégias de mapeamento de interesses em código fonte impactam nos re-
sultados de medição de coesão conceitual. Resultados mostraram que, quando viável,
o mapeamento manual deve ser escolhido. Entretanto, como ele requer esforço elevado,
uma das estratégias automáticas investigadas pode também ser considerada quando o
mapeamento manual não for viável.

Nós disponibilizamos na web todos os nossos dados e materiais de estudo, incluindo
o mapeamento manual de interesses que nós produzimos para um sistema real, e três ex-
tensões de ferramenta para computar uma métrica de coesão conceitual. Esses materiais
podem ser utilizados ou estendidos por pesquisadores em estudos futuros. Por fim, nossos
resultados podem ser diretamente usados por engenheiros de software quando estiverem

v



vi RESUMO

planejando ou executando medição de coesão em suas tarefas e quando estiverem con-
struindo ferramentas de medição para ambientes de desenvolvimento. De forma geral,
isto justifica esforço adicional para continuar melhorando as tecnologias e o corpo de
conhecimento sobre medição de coesão.

Palavras-chave: Coesão de software; Métricas de coesão conceitual; Métricas de coesão
estrutural; Propensão à mudança; Engenharia de software experimental



ABSTRACT

Cohesion has been recognized as an important quality attribute of software design across
decades. It is defined as the degree to which a module is focused on a single concern.
However, measuring cohesion is not trivial as it is difficult to capture the concerns ad-
dressed by software modules. Several structural cohesion metrics have been proposed in
the last decades and incorporated in industry-scale software measurement tools. Struc-
tural cohesion metrics rely on the degree to which the internal elements of a module are
structurally related to each other. Cohesion, however, is not always well represented by
module internal structure. For instance, in object-oriented programs, we can found classes
that implement just one concern but have methods that seldom call each other or do not
access attributes in common. Knowing this limitation, researchers have recently proposed
an alternative way of measuring cohesion: the so-called conceptual cohesion metrics. Con-
ceptual cohesion metrics are based on the explicit identification of the concerns realized
by each module. However, there is a lack of understanding on how conceptual cohesion
metrics fit among a number of conventional structural cohesion metrics.

In this context, we performed a series of empirical studies in order to evaluate how and
in which degree conceptual cohesion metrics differ from conventional structural cohesion
metrics. Overall, our research was based on data obtained from: (i) a web-survey with
eighty software developers from nine countries and (ii) the repository of six open source,
long-lived, industry-scale, medium to large-sized systems with a change set of around
thirty thousand source code revisions.

As a result, we could explain that conceptual cohesion is orthogonal to structural
cohesion and represents an additional dimension of cohesion measurement. We also found
that such additional dimension is closer to how developers reason about module cohesion.
In addition, we found that conceptual cohesion is a potential indicator of module change-
proneness. Finally, we analyzed in which degree different strategies for mapping concerns
to source code impact on conceptual cohesion measurement results. The results showed
that, when feasible, manual mapping should be chosen. However, as it requires much
effort, one of the investigated automatic mapping strategies can be also considered when
the manual strategy is not feasible.

We made all of our study datasets and materials public available on the web, includ-
ing the concern mapping that we manually produced for a real system, and three tool
extensions for computing a conceptual cohesion metric. These materials can be used
or extended by researchers in future studies. In summary, our results can be directly
used by software engineers when planning and executing cohesion measurement in their
tasks and when building metric tools for development environments. Overall, this jus-
tifies additional effort to keep improving cohesion measurement body of knowledge and
technology.

vii



viii ABSTRACT

Keywords: Software cohesion; Conceptual cohesion metrics; Structural cohesion met-
rics; Change-proneness; Empirical software engineering



CONTENTS

Chapter 1—Introduction 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Main Goal and Research Questions . . . . . . . . . . . . . . . . . . . . . 6

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 2—Different Flavors of Cohesion Metrics 13

2.1 Structural Cohesion Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Explaining the Main Structural Cohesion Metrics . . . . . . . . . 14

2.1.2 Metrics Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Conceptual Cohesion Metrics . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Text Mining-based Cohesion Metrics . . . . . . . . . . . . . . . . 19

2.2.2 The Lack of Concern-based Cohesion Metric . . . . . . . . . . . . 22

2.2.3 Software Concerns and Concern Mapping . . . . . . . . . . . . . . 23

2.2.4 Summarizing Conceptual Cohesion Metrics . . . . . . . . . . . . . 26

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Chapter 3—Unveiling a Hidden Dimension of Cohesion Measurement 29

3.1 Study Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Selected Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.2 Conceptual Cohesion Measurement Procedure . . . . . . . . . . . 31

3.1.2.1 Measuring LCbC using XScan . . . . . . . . . . . . . . . 31

3.1.2.2 Measuring MWE using TopicXP . . . . . . . . . . . . . 32

3.1.3 Structural Cohesion Measurement . . . . . . . . . . . . . . . . . . 34

3.1.4 Method of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Study Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Unveiling Conceptual Cohesion Dimensions . . . . . . . . . . . . . 35

3.3 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

ix



x CONTENTS

Chapter 4—How Developers reason about Module Cohesion 43

4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Survey Overall Structure . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.2 Comparing and Rating Cohesion between two Classes . . . . . . . 46

4.2.2.1 Class Selection Criteria for Cohesion Comparison . . . . 47
4.2.2.2 Cohesion Metrics . . . . . . . . . . . . . . . . . . . . . . 48
4.2.2.3 Selected Pairs of Classes . . . . . . . . . . . . . . . . . . 49

4.2.3 Collecting Participant’s Profile . . . . . . . . . . . . . . . . . . . . 50
4.2.4 Survey Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.5 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.1 Participants’ Profile . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.2 How do developers perceive module cohesion? How do they reason

about it? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.2.1 “Are you familiar with the concept of cohesion in the con-

text of software development?” . . . . . . . . . . . . . . 54
4.3.2.2 “How would you explain to someone else what a highly

cohesive class is?” . . . . . . . . . . . . . . . . . . . . . 55
4.3.2.3 Rationale for Rating and Comparing Cohesion . . . . . . 57

4.3.3 To what extent do structural cohesion and conceptual cohesion re-
late with how developers rate cohesion? . . . . . . . . . . . . . . . 58
4.3.3.1 Cohesion Ratings and Respective Rationale . . . . . . . 58
4.3.3.2 Cohesion Ratings vs. Cohesion Familiarity . . . . . . . . 62
4.3.3.3 Cohesion Ratings vs. Participants’ Experience . . . . . . 63

4.4 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Chapter 5—Conceptual Cohesion and Change-Proneness 69

5.1 Study Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.1.1 Change Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1.2 Method of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Chapter 6—The Impact of Different Concern Mapping Strategies on Conceptual
Cohesion 79

6.1 Study Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.1.1 Analyzed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.1.2 Automatic Mapping Strategies . . . . . . . . . . . . . . . . . . . . 82



CONTENTS xi

6.1.3 Manual Mapping Strategy . . . . . . . . . . . . . . . . . . . . . . 83
6.1.4 Change Count Measurement . . . . . . . . . . . . . . . . . . . . . 86

6.2 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2.1 Concern Mappings and LCbC Distributions . . . . . . . . . . . . 87

6.2.1.1 Auxiliary Artifacts Drive the Accuracy of Manual Mappings 87
6.2.1.2 Less Coverage of XScan Mappings . . . . . . . . . . . . 90
6.2.1.3 Low LCbC Variance of Topic-based Mappings . . . . . . 90
6.2.1.4 Statistical Tests . . . . . . . . . . . . . . . . . . . . . . . 91
6.2.1.5 Characterizing XScan Mapping Results . . . . . . . . . . 92
6.2.1.6 Characterizing Topic-based Mapping Results . . . . . . . 92
6.2.1.7 XScan Requires less Effort . . . . . . . . . . . . . . . . . 93
6.2.1.8 They are different but are they correlated with each other? 93

6.2.2 Correlation between LCbC and Change-Proneness . . . . . . . . . 95
6.2.2.1 Mapping Size Does not Matter . . . . . . . . . . . . . . 95
6.2.2.2 XScan Mapping when Manual Mapping is not Possible . 96

6.3 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Chapter 7—Conclusion 101

7.1 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Appendices 115

Appendix A—R Script for PCA 115

Appendix B—Survey Questionnaire 119

Appendix C—Survey Classes 125

Appendix D—Data Transformation and Application of Fleiss Kappa Test 149

Appendix E—Application of Fisher Exact Test 153

Appendix F—R Scripts for Correlation Tests and Regression Trees 163

Appendix G—Regression Trees 167

Appendix H—Application of Friedman Test 175



xii CONTENTS

Appendix I—jEdit Set of Concerns 179



LIST OF FIGURES

1.1 A sample class and its internal related elements . . . . . . . . . . . . . . 3
1.2 A sample class and its additional behaviors exposed . . . . . . . . . . . . 4
1.3 A sample class and its internal related elements . . . . . . . . . . . . . . 5

2.1 A sample class with mapped concerns . . . . . . . . . . . . . . . . . . . . 23
2.2 Illustrative concern mapping relationship . . . . . . . . . . . . . . . . . . 24

3.1 Principal components of each system . . . . . . . . . . . . . . . . . . . . 36

4.1 Questions flow overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Classes for comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Participants’ occupation and academic degree. . . . . . . . . . . . . . . . 53
4.4 Participants’ self estimation on programming experience. . . . . . . . . . 54
4.5 Participants’ self estimation on Java and OOP. . . . . . . . . . . . . . . . 54
4.6 Participants’ programming experience in years. . . . . . . . . . . . . . . . 55
4.7 Coded topics from how participants explain highly cohesive classes (survey

first question). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.8 Cohesion ratings for the three scenarios. . . . . . . . . . . . . . . . . . . 59

5.1 An example of a regression tree having CC as response variable . . . . . 73
5.2 Correlation between each cohesion metric and change count . . . . . . . 74

6.1 LCbC distributions using manual mapping strategy . . . . . . . . . . . . 89
6.2 LCbC distributions using XScan and Topic-based mapping strategies . . 91

B.1 Cohesion familiarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
B.2 Cohesion explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
B.3 Information about cohesion definition . . . . . . . . . . . . . . . . . . . . 121
B.4 First scenario about cohesion comparison and rating . . . . . . . . . . . . 121
B.5 Second scenario about cohesion comparison and rating . . . . . . . . . . 122
B.6 Third scenario about cohesion comparison and rating . . . . . . . . . . . 123
B.7 Participant profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

G.1 Tomcat regression tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
G.2 Findbugs regression tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
G.3 Freecol regression tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
G.4 JFreeChart regression tree. . . . . . . . . . . . . . . . . . . . . . . . . . . 171
G.5 Rhino regression tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

xiii



xiv LIST OF FIGURES

G.6 JEdit regression tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173



LIST OF TABLES

2.1 Conceptual cohesion metrics . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Summary of the systems under study . . . . . . . . . . . . . . . . . . . . 30
3.2 Summary of XScan applied and corresponding LCbC distributions . . . . 32
3.3 LDA parameters applied and a summary of MWE distributions . . . . . 33

4.1 Programming experience and coded topics for cohesion ratings explanation 64

5.1 Systems and analyzed change-set . . . . . . . . . . . . . . . . . . . . . . 71

6.1 Systems and change-set analyzed . . . . . . . . . . . . . . . . . . . . . . 82
6.2 A sample of jEdit set of concerns . . . . . . . . . . . . . . . . . . . . . . 84
6.3 Summary of Concern Mapping Strategies Applied . . . . . . . . . . . . . 88
6.4 Correlation among LCbC variations for Rhino and jEdit . . . . . . . . . 94
6.5 Correlation among LCbC variations for JFreeChart, Findbugs, Tomcat

and Freecol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.6 Correlation between Change Count and LCbC measurements . . . . . . . 95

xv





Chapter

1
INTRODUCTION

The term module cohesion was first introduced by Stevens, Myers and Constantine (1974)
in the context of structured design and defined as a measure of the degree to which the
internal elements of a module belong together. Accordingly, in a highly cohesive module
all the elements are related to the performance of a single concern of the software. A
concern is generally interpreted as any property of interest for software project stake-
holders. It is normally considered as a conceptual unit to be treated in a modular way
(Tarr et al., 1999), (Robillard; Murphy, 2007), (Sant’Anna, 2008), (Figueiredo, 2009).
Concerns can range from high-level properties such as quality of service and distributed
communication to low-level properties such as data sorting and buffering. They can also
represent functional properties like business rules and features, or non-functional such as
transaction management and synchronization.

Since Stevens, Myers and Constantine’s work, other authors have studied the property
of module cohesion and gave similar definitions. For instance, Yourdon and Constantine
(1979) stated that cohesion is “the degree of functional relatedness of processing elements
within a single module”. Bieman and Kang (1995) add to the classical definitions stating
that a highly cohesive module should be difficult to split since its internal elements are
closely related to each other.

Martin (2003) defined cohesion as the Single Responsibility Principle1 - “There should
never be more than one reason for a class to change”. Generally, the more concerns a
class addresses the more reasons to undergo changes. According to Martin’s view, a
highly cohesive class should realize a single concern, and that concern should be entirely
encapsulated by the class. All its services should be narrowly aligned with that concern.

Regardless the several ways of defining module cohesion, different authors pointed
cohesion as a desired quality attribute in software engineering (Myers, 1978; Yourdon;
Constantine, 1979; Bieman; Kang, 1995; Fenton; Pfleeger, 1998; Martin, 2003; Marcus;
Poshyvanyk; Ferenc, 2008). For example, some authors argue that during the devel-
opment process developers may apply the concept of cohesion to reason on whether or

1In this text, responsibility is a synonym of concern. Martin’s principle can also be read as Single
Concern Principle.

1



2 INTRODUCTION

not, and at what extent, they are designing and coding modular components. Managers
may also use the concept of cohesion in order to assess the quality of the design and
code artifacts and to support them in making decisions about effort investment, cost
reduction, task planning and so on. Across decades researchers have claimed that highly
cohesive modules are easier to understand and evolve than less cohesive modules (Briand;
Bunse; Daly, 2001; Chen et al., 2002; Marcus; Poshyvanyk; Ferenc, 2008; Dallal; Briand,
2012). Therefore, the applicability of cohesion measurement may play an important role
in software engineering activities.

1.1 PROBLEM STATEMENT

Measuring cohesion is not straightforward. Indeed, several researchers have attempted to
provide an objective and effective way to measure cohesion (Chapter 2). Defined metrics
rely on structural information extracted from object-oriented source code, for example,
pairs of methods of a class that access the same attributes.

Figure 1.1 shows a sample Java class with two attributes and nine methods, which
is part of a system that builds and represents family relationships as trees. Particularly,
this class represents the spouse relationship between two people – the husband and wife
attributes. The methods involve: getting access to the private attributes, getting the
relation type or the partner object given a person as parameter, objects comparison,
and export information of the relationship to a given file. The thin arrow indicates the
methods that access the husband attribute, while the thick arrow indicates the methods
that access the wife attribute.

The underlying idea of most of the structural cohesion metrics is to quantify the
degree to which methods belong together by considering if they share attributes or not.
The more a class has methods using the same attributes, the more cohesive the class is.
If a class has more methods using distinct attributes than methods sharing attributes, it
is interpreted as a class with more than one focus, that is, its methods are not related
to the performance of a single concern of the software. Then, the class is said to lack
cohesion. That is the exact reasoning behind the well-know cohesion metric called Lack
of Cohesion in Methods (LCOM) (Chidamber; Kemerer, 1994). LCOM is an inverse
metric, as it measures the lack of cohesion. Thus, the higher the LCOM value, the lower
is the cohesion degree. In the example of Figure 1.1, LCOM yields zero (high cohesion),
because there are more pair of methods sharing attributes than pair of methods not
sharing attributes. Similarly, other two structural cohesion metrics indicate that this
class is highly cohesive: TCC (Tight Class Cohesion) (Bieman; Kang, 1995) and LCOM4
a variation of LCOM by (Hitz; Montazeri, 1995). According to LCOM4 that class yields
0.2 in a range of 0 (low lack of cohesion) to 1 (high lack of cohesion), thus also indicating
a highly cohesive class. According to TCC, that class yields 0.8 in a range of 0 (low
cohesion) to 1 (high cohesion). A more detailed explanation about the main structural
cohesion metrics available in literature and tools is presented in Chapter 2.

Such structural point of view is a reasonable way for measuring cohesion. In theory,
when a problem is decomposed into modules – in our case, classes – it is expected to
have classes encapsulating attributes and methods which are supposed to be related to



1.1 PROBLEM STATEMENT 3

Figure 1.1 A sample class and its internal related elements

each other in order to perform a well-defined cohesive behavior, i.e. focusing on a single
concern. Inversely, when a class is focused on more than one concern, it is expected to
have different groups of methods and attributes related to their respective concerns. And
in this latter configuration the class is likely to be split. Additionally, this type of metrics
is inexpensive to compute. Once the source code is available, nothing else is needed to
measure the cohesion degree.

However, this notion of cohesion is too dependent on the source code structure and
does not consider any abstract information regarding the concerns implemented by the
classes. Most of the cohesion metrics are not capable to capture the actual concerns of
a module regardless of its internal syntactic structure. No matter whether or not the
methods and attributes of a class are structurally related to each other, it should be
considered highly cohesive if it represents a crisp abstraction of a software concern. For
instance, in the example of Figure 1.1, although the class is considered to be cohesive
according to its structure, it has different concerns contributing to the implementation
of more than one software behavior. Figure 1.2 shows the same class but now highlight-
ing with gray boxes the three code fragments implementing two secondary concerns in
addition to the primary one. Therefore, besides what the class is supposed to implement
(i.e. representing spouse relationship), the first two boxes indicate the invocation of a
window to output a message in the user interface. The third box indicates a method
dedicated to export the relationship represented by the class to a given file. Therefore,
from that perspective, this class is not as cohesive as it seems to be according to struc-



4 INTRODUCTION

tural cohesion way of measurement. This class implements software concerns which could
be encapsulated in other modules, and according to Martin’s view (Martin, 2003) it has
more than one reason to change. Depending on the software size, the presence of such
lack of cohesion may negatively impact on understandability and maintainability.

Figure 1.2 A sample class and its additional behaviors exposed

Figure 1.3 shows another example where a structural cohesion metric does not succeed
on indicating the degree to which a class is focused on a single or few concerns. In this
example we took a Java class from a hotel management system available at SourceForge
repository . This class is designed to handle database connections. It is entirely focused on
opening and closing connections to a given database instance, and managing a connection
pool. Therefore, this class is highly cohesive as it is focused on the concern of handling
database connections. However, according to LCOM definition by (Henderson-sellers,
1996) (also known as LCOM5) this class lacks cohesion. Its LCOM5 value is 0.8 from

1http://sourceforge.net/projects/fgmp-hm/



1.1 PROBLEM STATEMENT 5

a range of 0 (low lack of cohesion) to 1 (high lack of cohesion). The arrows in Figure
1.3 indicate methods accessing class attributes. Details about how LCOM5 computes
cohesion can be found in Chapter 2. In summary, LCOM5 yields a high value because this
class has distinct groups of methods not accessing attributes in common. For instance,
the attributes Host, Port, Database, User, and Password are used by only one half of the
methods; while con pool is used by the other half; Also, the concount attribute is used
only by one method.

Figure 1.3 A sample class and its internal related elements

The examples illustrated in Figures 1.1, 1.2 and 1.3 show that there might be situa-
tions where structural cohesion metrics fail to apply the cohesion concept as the internal
structure of a module not always represents well the amount of concerns the module
implements. More recently, researchers have proposed alternative ways of measuring
cohesion which try to capture information about what concerns a module internally ad-
dresses (Marcus; Poshyvanyk, 2005), (Liu et al., 2009), (Ujhazi et al., 2010), (Silva et al.,
2012). For this purpose, it is necessary to build a concern mapping for computing this
kind of cohesion metrics. A concern mapping is the assignment of software concerns to
source code elements (e.g. attributes, methods, classes).

For example, the MWE (Maximal Weighted Entropy) metric (Liu et al., 2009) uses a
concern mapping automatically generated from a text-mining technique. It extracts the
concerns involved in a system by processing all the comments and identifiers as words.
The distribution of words across the system modules gives information of what concerns
each module implements. For instance, the words [host, port, database, user, password,
connection] could represent the database connection handling concern mapped to the
class of Figure 1.3. It could be identified by mining these words from the entire system



6 INTRODUCTION

and evaluating that they are concentrated in DB Backend class.

Another example is the Lack of Concern-based Cohesion (LCbC) metric (Silva et al.,
2012), which considers the lack of cohesion as the number of concerns a module addresses.
This metric does not define a specific concern mapping technique to be applied. Thus,
it can be used with a text mining-based concern mapping, like MWE, or with any other
chosen technique. For instance, we could manually build a concern mapping assigning
the database handling concern to the entire DB Backend class. Then, LCbC value would
be 1. In the example of Figure 1.2, we manually mapped three concerns for that class,
so LCbC yields 3. Therefore, with respect to LCbC, RelationSpouse is less cohesive than
DB Backend.

These metrics form the group of conceptual cohesion metrics. They are called con-
ceptual as the first metrics of this kind were described based on the term concept, which
has the same meaning of concern. Here, we prefer to use the term concern instead of
concept. In Chapter 2 we explain conceptual cohesion metrics in more details.

Nevertheless, there is a lack of empirical evidence about the applicability of concep-
tual cohesion measurement in software product assessment. In theory, the consideration
of module concerns may put conceptual cohesion closer to the human-oriented view of
cohesion. Presumably, it is easier for developers, when decomposing a problem into mod-
ules, to find different concerns implemented by a module than to calculate the degree
of structural relatedness amongst the methods and attributes of the module. However,
there is no empirical evidence to support this argument. Also, we do not know whether
or not the approach of measuring cohesion through concern mappings adds to or overlaps
conventional structural cohesion measurement.

1.2 MAIN GOAL AND RESEARCH QUESTIONS

The main goal of this research is to understand conceptual cohesion by investigating
through empirical studies how it performs as an alternative way of cohesion measure-
ment when compared with conventional structural cohesion. Therefore, our overarching
research question is:

What does explain conceptual cohesion as a different way of cohesion
measurement in contrast to conventional structural cohesion?

Accordingly, we defined a set of more specific research questions that guided the
empirical studies we present in this research. In this section we define specific research
questions as well as the reasoning and assumptions that motivate them.

There are several cohesion metrics available in the literature (Chapter 2). Most of
them are conventional structural cohesion metrics. They have been target of most of the
studies in the last decades. Also, they have been implemented in several open source
and commercial metric tools. So a substantial knowledge about cohesion measurement
and its applicability was built from investigations on structural cohesion measurement.
However, conceptual cohesion is based on a different source of information and counting
mechanism. Therefore, it is necessary to understand through empirical evidence if that
difference leads to significantly different results on cohesion measurement. In other words
we should assess whether conceptual cohesion confirms itself as a distinct approach of



1.2 MAIN GOAL AND RESEARCH QUESTIONS 7

measuring cohesion not only in terms of counting mechanism but also in terms of gen-
erated results. This should give us scientific evidence that it can be further investigated
as opposite of being another metric that measures cohesion and generate results in the
same way others already do. In that context, our first research question is:

RQ1. Does the conceptual nature of conceptual cohesion metrics make them signifi-
cantly different from structural cohesion metrics?

Furthermore, we hypothesize that conceptual cohesion is closer to the human-oriented
view of cohesion. Software engineers would prefer cohesion metrics that allow them to
reason about a module as a set of concerns related to the software instead of a set of
code segments that are syntactically associated to each other (Etzkorn; Delugach, 2000).
However, empirical evidence must be drawn from this hypothesis. Basically, we need first
to understand what the developers’ opinion about module cohesion are and how they
reason about it. Then, we can evaluate whether or not conceptual cohesion is closer to
the human view of cohesion when compared with conventional structural cohesion. That
leads us to the following research questions:

RQ2. How do developers perceive module cohesion? And how do they reason about
it?

RQ3. To what extent do structural cohesion and conceptual cohesion measurements
relate with how developers rate cohesion of modules?

In RQ2 we aim at understanding first what developers know about cohesion and how
they perceive that concept when: (i) asked to define what cohesive modules are; and (ii)
when they have the task to compare the cohesion degree between two modules. To the
best of our knowledge, there is no available studies in literature investigating what the
actual developers concept about module cohesion is and how they use that concept when
comparing the cohesion of modules.

In RQ3, the intention is to analyze and compare the relation between structural and
conceptual ways of cohesion measurement with how developers rate module cohesion. We
have the hypothesis that, in general, conceptual cohesion is closer to developers rating
of cohesion than structural cohesion, because it focus on the abstraction of modules
concerns. In theory, such raising of abstraction level (from code structure to concerns
implementation) for measuring cohesion leads to a cohesion measurement closer to how
developers work. Development tasks are usually related to the implementation of new
features, fixing faults, adapting modules to receive new requirements and so on. This
discussion was already raised in the literature (Etzkorn; Delugach, 2000), but, again,
there is no evidence to support this hypothesis.

After addressing those initial questions we could gather empirical evidence that con-
ceptual cohesion is worth to be further investigated. We could empirically validate that
conceptual cohesion is orthogonal to structural cohesion in a way that it captures ad-
ditional dimension of cohesion measurement. Also, we found that conceptual cohesion



8 INTRODUCTION

is closer to how developers reason about module cohesion even for unexperienced de-
velopers. However, those partial results do not point out whether or not conceptual
cohesion may associate to software quality attributes. Software product metrics such
as coupling, size and cohesion are often empirically assessed in terms of their impact
on quality attributes such as fault-proneness, comprehension or maintenance effort, and
change-proneness (Basili; Briand; Melo, 1996). The intention is to understand whether
and to what extent a metric has the potential to be an indicator of a software quality
attribute. There is a lack of evidence about whether conceptual cohesion could possibly
complement or replace conventional structural cohesion metrics in the role of indicating
different degrees of a given quality attribute.

In this context, we aim at investigating the well known Martin’s view (2003) of module
cohesion. He claims that a class addressing several concerns lacks cohesion and therefore
it is more likely to undergo changes. Whereas a highly cohesive class should focus on a
single concern decreasing its likelihood to undergo changes. Accordingly, as conceptual
cohesion metrics rely on classes’ concerns, we hypothesize that this way of measuring
cohesion has a potential association to class change-proneness. Change-proneness is a
software quality attribute (Madhavji; Fernandez-ramil; Perry, 2006) that refers to the
degree to which a software module is likely to change along its evolution history. Knowing
which modules are more likely to change over time can improve the process of developing
and evolving new or existing software modules in a given project by focusing attention
on them. For instance, managers can drive resources on the least cohesive modules in
order to improve their cohesion and then reduce effort on future changes. Developers can
have the cohesion degree of modules in mind when design new modules or maintaining
existing ones, which may also reduce effort on future changes. Therefore, this led us to
the fourth research question:

RQ4. Whether and to what extent does conceptual cohesion associate to change-
proneness?

When addressing RQ4 we could find that conceptual cohesion is a potential change-
proneness indicator in place of or complementing structural cohesion in this role. How-
ever, with the empirical studies we carried out for answering the four initial questions
we could observe that conceptual cohesion metrics are very sensitive to how software
concerns are mapped to source code elements. There are several different strategies for
that purpose that can be used to support conceptual cohesion measurement. According
to our research, there is not any study that has explored the impact of varying strategies
for concern mapping on conceptual cohesion measurement. For those reasons we stated
the following questions:

RQ5. Do different strategies for mapping module concerns in source code impact
on conceptual cohesion measurement?

RQ6. If such impact is significant, can we explain how different is conceptual
cohesion over different strategies?

RQ7. Does it influence on the association between conceptual cohesion and module



1.3 CONTRIBUTIONS 9

change proneness?

Therefore, we could provide empirical results to better explain the influence of different
concerns mapping strategies on conceptual cohesion measurement and on the role of
conceptual cohesion as a change-proneness indicator.

1.3 CONTRIBUTIONS

We present the following research contributions as result of a series of empirical studies
guided by the research questions previously described:

1. Empirical validation through statistical assessment that conceptual cohesion is or-
thogonal to structural cohesion. We could demonstrate that conceptual cohesion
measurement captures an additional dimension of module cohesion which is not
captured by well-known conventional structural cohesion metrics.

2. Qualitative assessment with statistical support to explain how developers reason
about module cohesion. We could provide empirical evidence that developers usu-
ally perceive cohesion based on what concerns a given module addresses. Also, we
demonstrated that developers’ ratings about module cohesion are closer to concep-
tual cohesion than structural cohesion.

3. Empirical validation of conceptual cohesion metrics as potential change-proneness
indicators. We also explained typical situations when conceptual cohesion succeeds
or fails in playing the role of change-proneness indicator in comparison to structural
cohesion.

4. A thorough analysis with statistical support to better understand and explain the
impact of different concern mapping strategies on conceptual cohesion measurement
and their influence on how conceptual cohesion associates to change-proneness.

5. A new manual concern mapping over jEdit source code made available and open for
research community, as explained in Chapter 6. There is a lack of large-scale long-
lived software projects with a rich change set having a manual concern mapping
made by developers or researchers with the intent to find as many concerns as
possible. This outcome has a potential to evolve and become a benchmark like the
concerns of Rhino project (Eaddy et al., 2008b), which is the only one available
with this setting.

6. Aggregate results from four empirical studies that indicate that conceptual cohe-
sion is worth considering further effort for new empirical investigations and for
technology improvement on software measurement tools.

7. Improved body of knowledge on cohesion measurement, specially regarding concep-
tual cohesion metrics applicability.

8. All material from the empirical studies were made publicly available on the web, so
that they can be replicated or extended in further investigations.



10 INTRODUCTION

9. Three tool extensions (ConcernTagger, XScan and TopicXP) for computing a con-
ceptual cohesion metric called LCbC (explained in Chapter 2). These extensions
were also made publicly available on the web.

1.4 PUBLICATIONS

Excerpts of this thesis have been published or submitted in journal, conference and work-
shop papers listed below in chronological order.

� Silva, B.; Sant’Anna, C.; Chavez, C. Concern-based Cohesion as Change-proneness
Indicator: An Initial Empirical Study. In: Proceedings of the 2nd International
Workshop on Emerging Trends in Software Metrics. Honolulu, Hawaii, USA. ACM,
2011, p. 52-58.

� Silva, B.; Sant’Anna, C.; Chavez, C.; Garcia, A. Concern-based Cohesion: Unveiling
a Hidden Dimension of Cohesion Measurement. In: Proceedings of the 20th IEEE
International Conference on Program Comprehension. Passau, Germany. IEEE
Computer Society, 2012, p. 103-112.

� Silva, B.; Sant’Anna, C.; Chavez, C. An Empirical Study on How Developers Reason
About Module Cohesion. In: Proceedings of the 13th International Conference on
Modularity. Lugano, Switzerland. ACM, 2014, p. 121-132.

� Silva, B.; Sant’Anna, C.; Rocha, N.; Chavez, C. The Impact of Different Con-
cern Mapping Strategies on Conceptual Cohesion. In: Journal of Information and
Software Technology. Elsevier Science Inc., New York, 2015. (under review).

1.5 THESIS OUTLINE

In the rest of this document we elaborate on the issues outlined in the introduction.
In Chapter 2, we present a review on the main structural cohesion metrics as well as
all conceptual cohesion metrics we found in literature. It is followed by a comparative
analysis between the metrics mentioned in that chapter.

In Chapter 3 we present an empirical study to quantitatively assess whether concep-
tual cohesion metrics are different from conventional structural cohesion metrics. This
includes an explanation about how we measured conceptual cohesion by using two dis-
tinct metrics and structural cohesion through a representative set of five metrics. We also
elaborate discussion over some classes to exemplify what we found from the quantitative
analysis.

In Chapter 4 we describe our work on a survey to understand and explain how
developers perceive module cohesion and how they rate cohesion between pairs of classes.
We present all the survey structure and results as well as a discussion about our findings.

In Chapter 5 we present an empirical assessment to analyze the association of co-
hesion metrics (conceptual and structural) with module change-proneness. This involves
six long-lived, industry-scale, medium to large-sized systems. They had a rich change
set scenario analyzed with a total of 30.248 revisions processed. In this chapter we also



1.5 THESIS OUTLINE 11

discuss typical situations when conceptual cohesion succeeds or fails in indicating module
change-proneness.

In Chapter 6 we explore the impact of different concern mapping strategies on con-
ceptual cohesion measurement. This includes two automatic strategies besides the manual
one. Also, this chapter presents how we built a manual concern mapping over the jEdit
system.

In Chapter 7 we summarize our work by briefly describing what we have done in
the context of this research as well as achieved contributions. In addition, we point out
perspectives on future research directions.





Chapter

2
DIFFERENT FLAVORS OF COHESION METRICS

This chapter explains a variety of cohesion metrics divided in two main sections. The first
section focuses on presenting the main structural cohesion metrics available in literature
and in software tools, whereas second section explains the conceptual cohesion metrics
we found during our research. Overall, this chapter aims at giving an overview of a
representative set of structural and conceptual cohesion metrics from which we selected
the metrics applied in our empirical studies.

2.1 STRUCTURAL COHESION METRICS

The authors who first introduced the concept of module cohesion also described a qual-
itative scale for classifying the cohesion degree of software modules (Stevens; Myers;
Constantine, 1974). That scale is defined from the lowest to the highest cohesion as:
coincidental, logical, temporal, communicational, sequential and functional. This scale is
not supposed to be linear and it neither gives a quantitative measure for cohesion, but it
states different cohesion levels based on how the internal elements of a software module
are related to each other. Further details can be found in (Stevens; Myers; Constantine,
1974). Although defined in the context of structured design it certainly influenced later
approaches for measuring cohesion.

Years later, after the initial work by Stevens, Myers and Constantine, and with the
emergence of Object-Oriented (OO) programming, analysis and design, several other
authors have undertaken research on cohesion measurement for OO software modules.
Several studies available in literature have provided comprehensive reviews about module
cohesion for OO software (Briand; Daly; Wüst, 1998; Etzkorn; Delugach, 2000; Badri;
Badri; Gueye, 2008; Marcus; Poshyvanyk; Ferenc, 2008; Dallal; Briand, 2012). Amongst
them, the unified framework for cohesion measurement by Briand et al. (1998) is the
most complete analysis over the main cohesion metrics that had appeared until the end
of the 90 decade. In the 1990s most of the well-known cohesion metrics for OO software
have emerged.

13



14 DIFFERENT FLAVORS OF COHESION METRICS

In this section, we give an overview of the most traditional and most cited structural
cohesion metrics presented in literature. It is not the purpose of this section covering
all existing cohesion metrics which is certainly a long list. Rather, we aim at showing
their main characteristics and understanding their underlying interpretation and counting
mechanisms for measuring cohesion. It is also important to understand these structural
cohesion metrics as some of them are used on empirical studies that are part of this
research.

In Section 2.1.1 we explain ten structural cohesion metrics based on Briand et al.(1998)
framework, as their work gives a comprehensive and critical review over the most well-
known cohesion metrics based on a unified analysis and on pre-defined criteria. Some
of the structural cohesion metrics presented here is also available in open-source and
commercial tools for software measurement. In Section 2.1.2 we present a comparison
among the ten metrics also based on Briand’s framework.

2.1.1 Explaining the Main Structural Cohesion Metrics

The first attempt for measuring cohesion in OO systems was the well-known Lack of
Cohesion in Methods (LCOM) (Chidamber; Kemerer, 1991), hereafter called LCOM11.
Chibamber and Kemerer defined cohesion of a class based on the degree of relatedness
of its methods. For them, two methods are related to each other if they use at least one
class attribute in common. Therefore, a class is formed by groups of methods, where each
group has methods which are related to at least one other method of the group. The
LCOM1 value for cohesion is the number of such groups.

Formally, consider a Class C1 with methods M1,M2, ...,Mn. Let {Ii} be the set of
attributes used by method Mi, there are n such sets {I1}, ..., {In}. Then, LCOM1 is the
number of disjoint sets formed by the intersection of the n sets.

LCOM1 is an inverse measure, which means that a high value of LCOM1 indicates low
cohesion and vice versa. This interpretation fits most of the cohesion metrics presented
in this chapter.

After Chidamber and Kemerer’s seminal work (Chidamber; Kemerer, 1991), they and
other authors presented other ways for measuring cohesion, basically extending or refining
the LCOM1 definition.

The LCOM2 metric refers to the second work of Chibamber and Kemerer where
they refined their original definition (Chidamber; Kemerer, 1994). LCOM2 is calculated
by the difference of two numbers: the number of pairs of methods in a class having no
common attribute references and the number of pairs of methods that have at least one
attribute reference in common. If such difference is negative, LCOM2 is set to zero. The
following definition formalizes the metric.

Consider a Class C1 with methods M1,M2, ...,Mn. Let {Ii} be the set of attributes
used by method Mi, there are n such sets {I1}, ..., {In}. Let P = {(Ii, Ij) | Ii ∩ Ij = ∅}
and Q = {(Ii, Ij) | Ii ∩ Ij 6= ∅} . If all n sets {I1}, ..., {In} are ∅ then let P = ∅.

1For the LCOM variations as well other cohesion metrics presented here we kept the same acronyms
used in (Briand; Daly; Wüst, 1998).



2.1 STRUCTURAL COHESION METRICS 15

LCOM2 =

{
|P | − |Q|, if |P | > |Q|
0, otherwise

Hitz and Montazeri (1995) used graph theory to define a new cohesion metric, called
here as LCOM3. They take methods as vertices and edges linking two vertices if the
corresponding methods have at least one attribute reference in common. Formally, let
X denote a class, IX the set of its attributes, and MX the set of its methods. Consider
a simple, undirected graph GX(V,E) with V = MX and E = {(m,n) ∈ V × V | ∃i ∈
IX : (m accesses i)∧ (n accesses i)}. LCOM3 is then defined as the number of connected
components of GX .

LCOM3 is very similar to LCOM1, except that the former is more precisely defined
by means of graph theory. Also, Hitz and Montazeri identified a problem with accessor
methods for LCOM3. An accessor method provides read or write access to an attribute
of the class. And by convention they typically reference only one attribute (the one
they provide access to). The presence of accessor methods artificially decreases the class
cohesion as measured by LCOM3.

To eliminate the problem with accessor methods, Hitz and Montazeri propose a second
version of their LCOM metric - called here as LCOM4. This metric is actually an
expansion of LCOM3 to include an edge between vertices representing methods m1 and
m2, if m1 calls m2 or vice versa. So, LCOM4 expands LCOM3 definition of the E set as
follows: E = {(m,n) ∈ V × V | (∃i ∈ IX : (m accesses i)∧ (n accesses i))∨ (m calls n)∨
(n calls m)}. According to LCOM4 any two methods are related if they access the same
attribute and if at least one of them calls the other. As a consequence, whenever a class
has methods indirectly accessing internal attributes by calling accessors its cohesion is
not artificially decreased, as LCOM4 recognizes method relations by means of method
calls.

Besides LCOM3 and LCOM4, Hitz and Montazeri defined the Co (“Connectivity”)2

metric to discriminate different levels of cohesion when there is only one connected com-
ponent in the graph (LCOM4=1). The graph will have one connected component when
there exists at least one path linking any two vertices in the graph. However, the single
connected component representing a cohesive class may have different levels of connectiv-
ity varying from: (i) the minimum component that could be formed by the set of vertices
- the number of edges would be |v| − 1 - reflecting the minimum cohesion for a single
component in the graph; (ii) to the maximum connectivity having all the methods (ver-
tices) directly linked by an edge, and the number of edges is |V | · (|V | − 1)/2 (maximum
cohesion), forming a complete graph. The authors normalized the connectivity degree in
the following expression:

Co(x) = 2 · |Ex| − (|Vx| − 1)

(|Vx| − 1) · (|Vx| − 2)

So, we always have Co(x) ∈ [0, 1]. Values 0 and 1 are taken for |Ex| = |Vx| − 1 and
Ex = |Vx| · (|Vx| − 1)/2, respectively.

2Originally defined as C, but used in Briand’s framework as Co to avoid name conflict.



16 DIFFERENT FLAVORS OF COHESION METRICS

This is an important refinement to distinguish different situations where the cohesion
degree of a cohesive module varies. For classes with more than two methods, Co can be
used as a discriminatory measure among the cases where LCOM4=1 but present different
levels of cohesion.

Bieman and Kang (1995) also followed Chibamber and Kemerer, however they extend
the notion of attribute usage. In their definition, two methods are called “connected”,
if they directly or indirectly use a common attribute. A method m1 indirectly use an
attribute a if m1 calls m2 and m2 uses attribute a. Given that observation, they proposed
TCC (Tight Class Cohesion) and LCC (Loose Class Cohesion) metrics as follows:

Let NDC(C) be the number of direct connections between public methods in a class
C. Two methods are directly connected if there exists one or more common attribute
between them.

Let NP (C) be the maximum number of public method pairs. NP (C) = [N × (N −
1)]/2, where N = number of public methods. Then TCC of a class C is the relative
number of directly connected methods. TCC(C) = NDC(C)/NP (C).

LCC is similar to TCC except that it considers the definition of indirect usage. Let
NIC(C) be the number of direct or indirect connections between public methods in a
class C. LCC(C) = NIC(C)/NP (C)

For TCC and LCC, the authors identified a problem with constructor methods as
they may indirectly connect any two methods which use at least one attribute. It artifi-
cially increases cohesion as measured by TCC and LCC. So they recommend to exclude
constructors and destructors from the analysis of cohesion.

Henderson-Sellers (1996) formulated a new cohesion measure ranging from 0 to 1,
called as LCOM5. Consider a set of methods {Mi} (i = 1, ...,m) accessing a set of
attributes {Aj} (j = 1, ..., a). Let the number of methods which access each attribute
be µ(Aj). Then he normalized the sum of µ(Aj) for all the attributes in a class in the
following expression.

LCOM5 =
1
a

∑a
j=1 µ(Aj)−m

1−m
This yields 0 when each method of the class references every class attribute, meaning

the perfect cohesion. When the measure yields 1, each method of the class references
only a single attribute. Values between 0 and 1 are to be interpreted as percentages of
the perfect value.

Lee and Liang (1995) defined the Information-Flow-based Cohesion (ICH) metric.
The idea behind ICH is that the cohesion of a method depends on the number of invoca-
tions to other methods and also the number of parameters used. The more parameters
an invoked method has, the more information is passed, the stronger the link between
the invoking and invoked method. The cohesion of a class is the sum of the cohesion of
its methods. The cohesion of a set of classes is then the sum of the cohesion of the classes
in the set. Thus, ICH can be applied to method, class and any set of classes.

Let MOV R(c) be the set of overridden methods in class c. It is applied if c is part of
a class hierarchy, so being able to override inherited methods. And let MNEW (c) be the
methods defined only in class c, not considering the overridden methods.



2.1 STRUCTURAL COHESION METRICS 17

Consider Par(m′) be the set of parameters of method m′ and NPI(m,m′) be number
of polymorphic method invocations from m to m′. It is worth noting here that this
definition considers not only static method calls but also all possible dynamic method
calls which can be derived by object polymorphism.

ICHc(m) is then defined as the cohesion of method m in class c:

ICHc(m) =
∑

m′∈MNEW (c)∪MOV R(c)

(1 + |Par(m′)|) ·NPI(m,m′)

While ICH(c) is the cohesion of a class as a sum of of all the information-flow-based
cohesion of its methods.

ICH(c) =
∑

m∈MI(c)

ICHc(m)

Finally, Briand et al. (1998) defined the Ratio of Cohesive Interactions (RCI) metric.
RCI considers different kinds of interactions among data (attributes and local variables)
and methods when counting the number of connections between two methods or a method
and an attribute.

There is a data-to-data interaction between attributes a and b if a change in a’s
declaration or use may cause the need for a change in b’s declaration or use. For instance,
if a public attribute a in a given class c is an array and its definition uses public constant
b, there is a data-to-data interaction between b and a.

There is a data-to-method interaction between data declaration a and method m, if a
interacts with at least one data declaration of m. Data declarations of methods include
their parameters, return type and local variables. For instance, if a method m of class
c takes a parameter of type class c, there is a data-to-method interaction between m
and the implicit type declaration of class c. A thorough and more precise explanation
about the different types of interactions can be found in (Briand; Daly; Wüst, 1998) and
(Briand; Morasca; Basili, 1999).

RCI yields a value for the ratio between the existing interactions in a given class c (the
CI(c) set) and all possible interactions within that class (the Max(c) set). The following
expression represents this calculation:

RCI(c) =
|CI(c)|
|Max(c)|

RCI=1 indicates that all the possible interactions within a class already exists (max-
imum cohesion), while RCI=0 means the minimum cohesion, i.e., no interactions among
the class internal elements.

2.1.2 Metrics Comparison

All of the cohesion metrics presented in previous section are structural, which means that
all of them calculate cohesion degree in terms of how the module internal elements are syn-
tactically related to each other. However, it is worth noting that they present differences



18 DIFFERENT FLAVORS OF COHESION METRICS

in the manner in which cohesion is structurally addressed. This section summarizes the
varying characteristics of the structural cohesion metrics which were previously discussed
in literature (Briand; Daly; Wüst, 1998).

Domain of measure . The metrics may vary the domain of measure. Most of
them were defined to measure the cohesion of a class, except the ICH measure which was
explicitly defined to measure cohesion of a method, a class, or a set of classes.

Type of connection . Some of the metrics vary the type of connection considered to
link elements (methods and attributes) within a class. For instance, LCOM1, LCOM2,
LCOM3, LCOM4, TCC and LCC count pair of methods that use or do not use attributes
in common. Besides that, LCOM4 and LCC also include method invocations as a mecha-
nism to link methods within a class. Differently, instead of considering methods in pairs,
other metrics capture the extent to which individual methods use attributes or locally
defined types (LCOM5 and RCI), or invoke other methods (ICH). In addition and in
contrast to the most of the metrics, ICH are focused only on method invocations. Class
attributes are not considered at all.

Direct or indirect connections . Besides considering how the internal elements
are directly related to each other, some metrics also consider indirectly connected ele-
ments. Such variation totally affects the counting mechanism for cohesion measurement.
LCOM3, LCOM4, LCC and RCI are the ones that consider indirect connections.

Inheritance . In OO systems the use of inheritance is crucial for the design. However,
most of the cohesion metrics do not discriminate whether to include inherited attributes
and methods in the analysis. This lack of definition gives room for different interpretation
and may drive distinct implementation by tool developers. Only for TCC, LCC and ICH,
the authors explicitly address this situation. For TCC and LCC metrics, although the
authors had not formalized the use of inheritance in their definitions, they discussed
three alternatives for considering inheritance when applying their metrics: (i) include,
or (ii) exclude inherited methods and attributes; or (iii) include inherited attributes but
exclude inherited methods. For ICH metric, the authors exclude inherited methods in
the analysis.

Accessor methods and constructors . This is another peculiarity of OO systems.
It is common to have methods solely to provide read and write operations to a class
attribute. Thus, a class may have several pairs of accessor methods which do not use
any attributes in common. This constitutes a problem for metrics which count such pairs
(i.e., LCOM1, LCOM2, and LCOM3). Another similar point is regarding the construc-
tor and destructor methods. In this case is common to have classes with constructors
accessing several attributes (e.g. attributes initialization), what directly influences the
calculation of cohesion. Most of the metrics definitions do not give discriminatory treat-
ment for those special kind of methods, also giving room for different interpretation and
implementation. Only Co, TCC, ICH and RCI are free of problems regarding accessor
methods and constructors due to the way they were defined.



2.2 CONCEPTUAL COHESION METRICS 19

2.2 CONCEPTUAL COHESION METRICS

There is a growing body of relevant work focusing on conceptual cohesion measurement
(Etzkorn; Delugach, 2000; Marcus; Poshyvanyk, 2005; Liu et al., 2009; Ujhazi et al.,
2010). They are called conceptual as the first metrics of this kind were described based
on the term concept, which has the same meaning of concern. Here, we prefer to use the
term concern instead of concept.

Most of the conceptual cohesion metrics rely on text mining-based techniques for au-
tomatically capturing what concerns each module addresses and then compute cohesion.
We explain these approaches in next section. Also, in Section 2.2.2 we describe a recent
conceptual cohesion metric proposed by our group which we have studied in this research
scope. Then, in Section 2.2.3 we describe the concept of concern mapping which provides
a fundamental mechanism for measuring conceptual cohesion.

2.2.1 Text Mining-based Cohesion Metrics

This section explains five conceptual cohesion metrics we found in literature that use
text mining techniques for extracting information about concerns addressed by software
modules.

The Logical Relatedness of Methods (LORM) (Etzkorn; Delugach, 2000) was
the first attempt in this field. The counting mechanism for this metric relies on processing
the source code text of each class for identifying concerns, and then mapping the identified
concerns to a semantic network. For this computation, it is necessary to have in advance a
semantic network which is formed by a graph of concerns. As the source code is processed
links between source code elements and concerns of the semantic network are created.
The resulting mapping is then used to calculate how the methods of a given class is
semantically interconnected.

LORM is defined as:

LORM = the total number of (semantical) relations in the class / total number of
possible (semantical) relations in the class.

A graph theoretically formalization can be found in (Etzkorn; Delugach, 2000). That
notion of semantical interconnection differs from the structural interconnection as it is
calculated based on concerns mined from the source code rather than evaluating the
structural relations among the methods of a class.

Cox, Etzkorn and Hughes (2006) later extended the previous metric to calculate the
semantic closeness among concerns by considering the indirect relations between pairs of
concerns, as well as the direct relations. It is founded on the idea that the direct and
indirect linkages between two concerns and other concerns in a domain-specific knowledge
base reduce the ambiguity of those concerns. For example, consider a situation in which
the terms in a GUI code class map onto a set of concerns like “toolbar”, “cursor” and
“text size”. A knowledge base of GUI code concerns might not include direct relations
between any of these three concerns. However, it would be quite likely that all three



20 DIFFERENT FLAVORS OF COHESION METRICS

concerns would be related to a fourth concern: “window”. This indirect relation shows
that the three concerns are actually reasonably closely related, indicating that the class
has good cohesion, which is a judgment that would be expected to be matched by human
evaluators who would recognize all three concerns as relating to window control.

Therefore, they defined the metric Semantic Closeness for Disambiguity (SCFD),
which calculates conceptual cohesion considering indirect relations in a semantic network
of concerns. Each link in a chain between two concerns generally serves to reduce the
ambiguity of the concerns’ relationship. Two concerns in the knowledge base (assuming
they are connected at all) are connected by a “chain” of one or more relations. The
number of items in the chain is an indication of the level of definition of that concern
within the knowledge base. The SCFD metric aggregates the distances between all the
concerns from a given class. The following definition calculates the number of relations
between all pairs of concerns and then the mean:

SCFD =
1

n(n− 1)

n∑
i=1

n∑
j=1

L(i, j)

where n is the number of concerns and L(i, j) is the number of relations in the shortest
path between concern i and concern j.

The LORM and SCFD metrics lack empirical evidence showing the suitability of that
approach. Also, their implementation are not available and the documentation on how
to build the knowledge base of concerns is not sufficient. Therefore, it is difficult to apply
those two metrics in recent empirical studies. However, they were the beginning of a
series of related work on the search for improving cohesion measurement.

Marcus and Poshyvanyk (2005) proposed the application of Latent Semantic Indexing
(LSI) (Deerwester et al., 1990). LSI works converting the source code under analysis into
a text corpus, such that from each method only identifiers and comments are extracted.
Each method of a class is considered as a document in this corpus and LSI is used to map
each document to a vector in a multidimensional space determined by the terms that
occur in the vocabulary of the software. A similarity measure between any two methods
can be defined by calculating the similarity between their corresponding vectors. This
similarity measure will express how much relevant semantic information is shared among
the two methods, in the context of the entire system.

The computation of the similarity degree between methods of a class determines
whether a class represents a single semantic abstraction, that is, whether a class is fo-
cused on a single concern. This is how the authors defined the Conceptual Cohesion
of Class (C3) metric. C3 is the average conceptual similarity of the methods in a given
class. Therefore, the more the methods of a class are written with comments and iden-
tifiers sharing similar terms the more conceptual related (i.e. cohesive) the class is. If
the methods inside the class have low textual similarity, then the methods most likely
participate in the implementation of different concerns and C3 will indicate low cohesion.

Later, Ujhazi et al. (2010) proposed a variation of the C3 metric called Conceptual
Lack of Cohesion of Methods (CLCOM5). It combines the counting mechanism
of LCOM5, a graph-based structural cohesion metric explained in Section 2.1, with the



2.2 CONCEPTUAL COHESION METRICS 21

computation of the textual similarity of C3. As in LCOM5, CLCOM5 builds a graph
linking the methods that have relations to each other. However, the graph relations
between two methods are created if they hold textual similarity as defined in the C3
metric. Thereby, CLCOM5 of a given class is the number of connected components of a
graph formed by the class methods as vertices and edges as conceptual relations between
pairs of methods in the class.

Liu et al. (2009) proposed a conceptual cohesion metric called Maximal Weighted
Entropy (MWE), which uses the Latent Dirichlet Allocation (LDA) technique (Blei;
Ng; Jordan, 2003). LDA is a more recent text mining approach than LSI, applied in
C3 and CLCOM5. It is claimed to be better than LSI for many text corpora including
software source code.

LDA is a statistical model, originally used in the area of natural language processing
applied for text documents. The basic idea behind LDA is that text documents are
represented as random mixtures over latent topics, where each topic is characterized
by a distribution over words. For MWE computation, first it is necessary to run LDA
assuming words as comments and identifiers declared in the source code of methods.
Then methods are treated as documents, while classes are sets of documents comprising
all the system which is the text corpus. As a result of LDA execution, a set of topics is
identified, where each topic is a set of words. LDA associates topics to documents. Thus,
the interpretation is that topics are concerns realized by the methods of each class in the
system.

Once the distribution of topics (i.e. concerns) over the methods is computed, the
next stage for MWE is to apply information theory to calculate the degree of which the
methods of a given class is focused on a main topic. The class cohesion is measured by
taking into account values of occupancy and distribution for the dominating topic, which
is addressed in the class. If the maximum value for such a topic is low, this means that
the class does not have a distinctive topic or a theme, which can be attributed to reduced
class cohesion. Conversely, if the MWE value of a given class is high, this means that the
class has a dominant topic, thus having high cohesion. MWE is formalized as:

MWE(C) = max
1≤i≤|t|

(O(ti)×D(ti))

Where O(ti) and D(ti) are respectively the occupancy and the distribution of topic i,
having i representing each topic of the LDA execution. Further details on mathematical
definition can be found in (Liu et al., 2009).

Authors of C3, CLCOM5 and MWE compared their metrics against other structural
cohesion metrics with respect to fault-proneness. Their results pointed C3, CLCOM5 and
MWE as complimentary fault-proneness indicators. However, they depend on reasonable
naming conventions for identifiers and relevant comments contained in the source code.
When these elements are missing, they suggest to rest only on structural metrics.



22 DIFFERENT FLAVORS OF COHESION METRICS

2.2.2 The Lack of Concern-based Cohesion Metric

In previous section we explained a set of conceptual cohesion metrics which use text
mining-based techniques for computing cohesion. This current section defines the Lack of
Concern-based Cohesion (LCbC) metric which was originally proposed by (Sant’Anna
et al., 2007) with a different name. It is described here in a separate section as LCbC
has different characteristics and does not depend on specific text-mining techniques as
the other conceptual cohesion metrics in previous section.

The purpose of LCbC is to quantify cohesion of a given module in terms of the
quantity of concerns addressed by it. A module can be a class, an interface, or whatever
abstraction representing a module as a unit of implementation. Thus, it counts the
number of concerns mapped to each module.

To unambiguously express the metric and facilitate the replication of our empirical
studies, we present the formal definition of LCbC based on set theory. First, we present
the terminology used on the formal definition. Let S be a system and M(S) be the set
of modules of S. Each module m consists of a set of attributes, denoted as A(m), and
a set of operations, represented as O(m). The set of all attributes and all operations in
system S are represented as A(S) and O(S), respectively. For each m ∈ M(S), the set
of concerns assigned to m is denoted by Con(m). Let o ∈ O(m) be an operation of m,
and Con(o) be the set of concerns assigned to o. Let a ∈ A(m) be an attribute of m, and
Con(a) be the set of concerns assigned to a. For each concern con realized in the design
of system S, the sets of modules, operations and attributes to which con is assigned are,
respectively, denoted as:

M(con) = {m | m ∈M(S) ∧ con ∈ Con(m)},
O(con) = {o | o ∈ O(S) ∧ con ∈ Con(o)}, and
A(con) = {a | a ∈ A(S) ∧ con ∈ Con(a)}.

The LCbC metric for a module m can now be defined as the number of elements in the
set formed by the union of: the concerns assigned to the entire module m, the concerns
assigned to each operation of m, and the concerns assigned to each attribute of m.

LCbC(m) = |Con(m) ∪
⋃

o∈O(m)

Con(o) ∪
⋃

a∈A(m)

Con(a)|

In Figure 2.1 we show a concrete example for LCbC measurement. It is the same
example we present in Chapter 1. This figure illustrates a Java class with two attributes
and nine methods, which is part of a system that builds and represents family relation-
ships as trees. Particularly, this class represents the spouse relationship between two
people: the husband and wife attributes. The methods involve: getting access to private
attributes, getting the relation type, getting the partner object, objects comparison, and
the relationship exporting to a given File. The light pink background highlights the class
main concern, which is what the class is supposed to implement (i.e. representing spouse
relationship). The blue background highlights the code fragments calling a window box
to output a message in the user interface, and the green background highlights a method



2.2 CONCEPTUAL COHESION METRICS 23

to export the relationship represented by the class to a given file. Therefore, the value of
LCbC for that class is three, as it addresses three concerns.

Figure 2.1 A sample class with mapped concerns

2.2.3 Software Concerns and Concern Mapping

Eaddy (2008) compiled a list of definitions for the term “concern” and its synonyms
found in literature. In general, it has a broad definition as follows. A concern is generally
interpreted as any property of interest for software project stakeholders. It is normally
considered as a conceptual unit to be treated in a modular way (Tarr et al., 1999), (Ro-
billard; Murphy, 2007), (Sant’Anna, 2008), (Figueiredo, 2009). Concerns can range from
high-level properties such as quality of service and distributed communication to low-level
properties such as data sorting and buffering. They can also represent functional prop-
erties like business rules and features, or non-functional such as transaction management
and synchronization. Overall, typical concerns that have been reported in literature from
real software systems are:

� functional and non-functional requirements from a requirements specification doc-



24 DIFFERENT FLAVORS OF COHESION METRICS

ument;

� use cases from a use cases specification document;

� roles from architectural or design patterns;

� implementation mechanisms (e.g. caching, buffering); and

� features from software product lines.

Concerns can be defined in the light of requirements engineering as well as emerge
from implementation-level issues. Regardless what motivates the existence of concerns,
conceptual cohesion measurement is focused on concerns that can be expressed in the
source-code level, that is, concerns that can be explicitly represented by one or more lines
of source code in terms of statements, methods and attribute declarations. For instance,
“persistence” is an example of a concern which is usually realized by several modules in
a typical information system. Another example of concern that is usually found in many
systems is “login”. The conceptual cohesion metrics applied in this current research does
not rely on concerns that influence how the system is built but do not trace to any specific
code fragment. In particular, we do not focus on concerns that are not observable when
the system executes, such as maintainability or readability.

Generally, conceptual cohesion metrics are supposed to rely on a concern mapping.
Concern mapping is the assignment of software concerns to source code elements (e.g.
attributes, methods, classes). Therefore, it involves two domains related to each other
through a mapping relationship. The source domain is a set of concerns and the target
domain is a set of code elements, as depicted in Figure 2.2. The arrows illustrate the
assignment of distinct concerns to the corresponding source code elements that realize
it. Thus, before computing conceptual cohesion metrics, it is expected to have a con-
cern mapping to provide information about what concerns are addressed by source code
elements of system modules. In OO source code, each concern is assigned to a set of
statements, methods, attributes or entire classes that implement them.

Figure 2.2 Illustrative concern mapping relationship



2.2 CONCEPTUAL COHESION METRICS 25

According to the example in Figure 2.1 the concern mapping source domain is formed
by the three concerns identified in that class: spouse relationship object-oriented repre-
sentation (light pink background), window-based message output as user interface mech-
anism (blue background), and file export (green background). The concern mapping
target domain is formed by the code elements that are under the colored backgrounds
corresponding to each concern identified.

The task of assigning concerns to source code fragments may vary depending on who
are interested on the concern mapping and also on what artifacts are available. For exam-
ple, from the requirements to code traceability perspective, a requirements specification
document would be a good source of information to map concerns to source code (Eaddy
et al., 2008b). From a product line engineering perspective, the feature model would
be recommended as the source of information for concern mapping (Figueiredo et al.,
2008). Also, when there is no high-level artifacts such as feature models or requirements
specification documents, the developers knowledge can be used to assign concerns to code
fragments (Eaddy et al., 2008b).

Moreover, there are some emergent technologies to automatically or semi-automatically
identify concerns in source code, thus supporting the concern mapping task. They mainly
vary on the level of automation (manual, semi-automatic or fully automatic). They may
consider the kind of data, such as static information (e.g. source code text and struc-
ture), or dynamic information (e.g. execution traces). There are comprehensive reviews
available in literature that address the different aspects of concern mapping techniques
(Kellens; Mens; Tonella, 2007) (Dit et al., 2011). We summarize some of the approaches
as follows.

Information retrieval techniques. Approaches that take the source code text as
input and applies well-known information retrieval techniques for mining concerns that
can be expressed by means of source code comments and identifiers (Marcus et al., 2004)
(Poshyvanyk; Marcus, 2007), (Liu et al., 2009). Most of the approaches in this category
are fully automatic. The main drawback of such information retrieval techniques is that
mined source code text fragments may not be meaningful enough to represent software
concerns.

Static analysis techniques. This category comprises approaches that process the
source code syntactic structure to identify implemented concerns (Robillard; Murphy,
2007) (Trifu, 2009). They normally are semi-automatic techniques which need initial
information as start point to find concerns. That initial information may be, for example,
a method (called seed), manually defined by developers according to the concern they
want to identify. After that, an automatic step is executed to identify the structural
dependencies taking the seed method as input and then generating a set of methods and
attributes as the suggested code elements to be assigned for the desired concern. The
main drawback of this category is that the structural information undertaken may not be
enough to represent some software concerns which are at higher abstraction levels. The
syntactic structure may not be sufficiently expressive. Also, static analysis becomes too
time-consuming when carried out semi-automatically.

Dynamic analysis techniques. This group relies on collecting information from a
system during runtime (Eisenberg; Volder, 2005) (Bohnet; Voigt; Dollner, 2008) (Sartipi;



26 DIFFERENT FLAVORS OF COHESION METRICS

Safyallah, 2010). Most techniques in this category are semi-automatic. They usually
require execution scenarios previously defined (e.g. test cases). As long as an execution
scenario is executed, the execution traces are automatically collected and suggested as
code fragments to be assigned as a concern implementation. This kind of technique may
be too time-consuming for large systems where hundreds of executions scenarios may
have to be executed to cover the distinct concerns the system implements. Moreover,
execution scenario specifications are not always available.

History-based techniques. Approaches in this category rely on an evolutionary
search for concerns in source code (Breu; Zimmermann, 2006) (Adams; Jiang; Hassan,
2010) (Hashimoto; Mori, 2012). They basically collect information from source code
version control repositories and try to associate code fragments that had correlated evo-
lution. These techniques strongly depend upon a rich change set to work as source of
information. They are very sensitive to code changes. However, they may not be able to
capture software concerns which are expressed in code fragments that rarely change or
do not change at all.

Hybrid techniques. Several researchers have advocated hybrid approaches for con-
cern mapping in order to take the benefits of different techniques and minimize the
intrinsic limitations of individual approaches. For instance, Nguyen et a. (Nguyen et al.,
2011) combined static analysis with clone detection techniques and code similarity algo-
rithms. Antoniol and Gueheneuc (2006) put together static and dynamic analysis, while
Eaddy et al. (2008a) applied in combination three distinct techniques - static analysis,
information retrieval and dynamic analysis.

There is no consensus about the best approaches for concern mapping. The research
community lacks benchmarks and empirical studies for comparing the list of techniques
that have been proposed. In addition, it is still very difficult to find available tools, even
in prototype versions, ready to be used either in real software projects or in research
works. In the scope of our research, we used three different strategies for concern map-
ping: manual mappings made by developers; and two different tools – XScan (Nguyen
et al., 2011) and TopicXP (Savage et al., 2010). XScan applies an automatic hybrid
approach mixing their own information retrieval technique and static analysis, whereas
TopicXP applies LDA, a well-known information retrieval technique. These tools and
corresponding techniques consist of fully automatic mapping strategies for Java systems.
As we studied only software projects written in Java, this is the main reason we used
them. We are not aware of any other available fully automatic concern mapping tool for
Java code. More details on how we used these tools are found in following chapters.

2.2.4 Summarizing Conceptual Cohesion Metrics

The first column in Table 2.1 lists all the conceptual cohesion metrics found in literature.
This table also summarizes what we discuss in Section 2.2.

In terms of underlying mechanism for concern mapping, all of them except LCbC
rely on information retrieval techniques such as text mining. Actually, LCbC is flexible
by definition in the sense that it can be applied with any concern mapping technique,
including text mining. It is different for example from C3 and CLCOM5 which use LSI by



2.3 SUMMARY 27

definition, or MWE which relies on LDA. Conversely, LCbC has been used with different
concern mapping strategies, as shown in next chapters. In addition, whereas technology
on concern mapping improves its accuracy level over time, LCbC can take advantage
over the other metrics by allowing the utilization of any new underlying concern mapping
technique according to the purpose of who are using it.

Regarding the metrics implementation availability, only MWE and LCbC were made
available. MWE is implemented in the original release of TopicXP tool, whereas LCbC
was made available by us as we extended XScan and TopicXP to compute LCbC based
on the underlying concern mapping techniques already implemented in those tools.

In terms of empirical assessment, LORM is the only metric that we did not find any
application on empirical studies. The other ones were involved in empirical studies with
mostly quantitative analysis. PCA (Principal Component Analysis), statistical corre-
lation and regression analysis techniques were found in most of them. In addition to
quantitative analysis, we also involved LCbC in a qualitative study, which is presented
in Chapter 4.

Table 2.1 Conceptual cohesion metrics
Metric Concern Mapping Approach Availability Empirical Assessment

LORM
Text mining with semantic net-
work.

Implementation not
available.

-

SCFD
Text mining with semantic net-
work.

Implemented for C++
code, but not available
for download.

Statistical correlation.

C3
Text mining with Latent Seman-
tic Indexing (LSI).

Implemented for C++
code, but not available
for download.

PCA, Correlation and Lo-
gistic regression to predict
faults.

CLCOM5
Text mining with LSI combined
with graph-based structural co-
hesion (LCOM5).

Implemented for C++
code, but not available
for download.

Machine learning algo-
rithms to predict faults.

MWE
Text mining with Latent Dirich-
let Allocation (LDA).

TopicXP tool. PCA and Logistic regres-
sion to predict faults.

LCbC Any concern mapping technique. XScan and TopicXP
extensions imple-
mented and made
available by us.

PCA, Statistical cor-
relation, Regression
Trees, and qualitative
assessment.

2.3 SUMMARY

This chapter summarized a set of conventional structural cohesion metrics which have
been present in empirical studies along the years. Some of these metrics are also available
in a number of tools for supporting software design and programming. The metrics
original publications and also the Briand’s framework (Briand; Daly; Wüst, 1998) served
as the main source of information for the structural cohesion metrics presented in this



28 DIFFERENT FLAVORS OF COHESION METRICS

chapter. Also, we described all the five conceptual cohesion metrics available in literature
so far. As a result, this chapter gives an overview about a representative set of cohesion
metrics, which are important to understand their underlying interpretation and counting
mechanisms for measuring cohesion. In addition, we applied some of the metrics explained
here as part of the studies presented in chapters 3 to 6. In next chapter we present
an empirical study showing evidence that conceptual cohesion metrics is orthogonal to
structural cohesion ones.



Chapter

3
UNVEILING A HIDDEN DIMENSION OF COHESION

MEASUREMENT

Cohesion metrics may capture different dimensions of cohesion, meaning that they may
be based on different information and counting mechanism and may reflect different
interpretation of cohesion. In Chapter 2 we give an overview of several cohesion metrics
divided in two categories: structural cohesion and conceptual cohesion. Those metrics
have been target of most of the studies regarding module cohesion in the last decades.

The existence of conceptual cohesion metrics must firstly show scientific evidence
that it measures cohesion in a different way most of the structural and conventional
cohesion metrics already do. The conceptual nature of such alternative cohesion metrics
is represented by other counting mechanisms than computing structural relatedness of
module internal elements. Therefore, it is expected that conceptual cohesion metrics
reflect a different interpretation of cohesion in comparison with the well-known structural
cohesion metrics not only in terms of counting mechanism but also in terms of generated
results. This is what we call as an additional dimension of cohesion measurement. This
leads to the first research question presented in Chapter 1:

Q1. Does the conceptual nature of conceptual cohesion metrics make
them significantly different from structural cohesion metrics?

We hypothesize that conceptual metrics significantly differ from structural metrics
with respect to the information they use to quantify cohesion and, as a consequence,
they unveil an additional dimension of cohesion measurement which is not captured by
structural cohesion metrics. Therefore, the main goal of the study presented in this
chapter is to provide evidence about whether this hypothesis is not rejected. We carried
out an empirical assessment where we statistically analyzed whether or not conceptual
metrics capture at least a new dimension of module cohesion that is not captured by
a representative set of structural cohesion metrics. This work represents a first investi-
gation focused on the role of conceptual cohesion metrics proposed by different authors
in the context of industry-scale long-lived systems. As a consequence, this study could
justify further investigations on understanding the performance of conceptual cohesion

29



30 UNVEILING A HIDDEN DIMENSION OF COHESION MEASUREMENT

in contrast to structural cohesion metrics. Section 3.1 explains study settings, and Sec-
tion 3.2 presents and discuss the results. In Section 3.3 the study threats to validity are
then described. Section 3.4 summarizes related work, and finally Section 3.5 presents the
study conclusion.

3.1 STUDY SETTINGS

The study design is presented in the following sections. First, we explain the selection
of six open-source systems which were analyzed in this study. Second, we present how
we measured conceptual cohesion. Third, we explain the set of five structural cohesion
metrics we used and how we applied them. Finally, in the last two sections we discuss
the method of analysis and the study results, respectively.

3.1.1 Selected Systems

We selected six open-source software systems with different sizes and from distinct do-
mains: chart library, language interpreter, text editor, web container, program analysis
tool and game. Table 3.1 summarizes the systems under study. Together they have
581,308 lines of source code (excluding comments and blank lines) and 3,733 Java files.
All of them are long-lived projects. Most exist for more than 10 years, such as Tomcat,
Rhino, JFreeChart, Freecol and jEdit. Also, these systems have been in widespread use.
For example, Tomcat is one of the most traditional and reliable Java web containers avail-
able. Rhino is the default Java scripting engine embedded in the official Oracle’s Java
Development kit. JFreeChart is the most widely used chart library for Java with millions
downloads from the repository. Findbugs has been used by many major companies such
as Google. In addition, we intentionally selected these systems from different domains to
avoid domain-related bias.

Table 3.1 Summary of the systems under study
JFreeChart Rhino jEdit Tomcat Findbugs Freecol

Release 1.0.6
(June/2007)

1.6R5
(Nov/2006)

4.3.2
(May/2010)

6.0.26
(Mar/2010)

1.3.5
(Sep/2008)

0.84
(Aug/2009)

Description Chart li-
brary for
the Java
platform

Mozilla’s
Javascript
interpreter

Text editor
for pro-
grammers

web server
container
for the
Java plat-
form

Static anal-
ysis tool to
find bugs in
programs

A
civilization-
like game

LOC 76,059 59,182 109,516 161,735 98,914 75,902
# of Java
files

514 156 531 1060 1041 431

Table 3.1 also indicates the selected releases of each system. They represent stable
versions of each system which had been downloaded and used world-wide.



3.1 STUDY SETTINGS 31

3.1.2 Conceptual Cohesion Measurement Procedure

As presented in Chapter 2, there are six conceptual cohesion metrics available in litera-
ture, according to our research: LORM, SCFD, C3, CLCOM5, MWE and LCbC. SCFD
and CLCOM5 were proposed as evolution of LORM and C3, respectively. However,
LORM, SCFD, C3 and CLCOM5 do not have available implementations for download.
Therefore, we use LCbC and MWE as the representative set of conceptual cohesion met-
rics for this study. These metrics rely on different counting mechanisms than computing
structural relation among internal class members.

3.1.2.1 Measuring LCbC using XScan LCbC depends on a concern mapping,
which is a time-consuming task when performed manually. The selected systems under
study are large enough to become unfeasible the manual concern mapping for all of
them. Therefore we chose a concern mapping tool called XScan (Nguyen et al., 2011)
in order to perform the study in a reasonable time. XScan automatically generates
the concern mapping by collecting groups of methods that participate together in the
realization of a concern. First, XScan searches for pairs of methods as candidates to
be part of a concern. Two methods will be part of a concern if they satisfy at least
one of the following conditions: (i) they have similar portions of code in their body; (ii)
they override or implement the same ancestor method; or (iii) they have similar names.
Then, after all possible pair of methods are detected, XScan builds a graph in which
nodes represent the methods and edges represent methods relations. Each connected
component of that graph might be reported as a concern. Actually, this is an approach
that puts together different techniques which can heuristically suggest groups of methods
as concerns realizations mined from the source code.

This tool has been proposed recently and the authors reported results indicating more
than 90% of accuracy for finding concerns which are spread over several files (Nguyen
et al., 2011). The complete XScan output with the concern mappings for our study is
available at the companion website (Silva, 2015a). This output shows a list of method
groups each one realizing a concern.

Table 3.2 shows a summary of XScan applied over the systems under study. Tomcat,
which is the biggest system we analyzed, had the highest number of concerns identified by
XScan, while Freecol had the highest file coverage, i.e. 56% of Java files with at least one
concern mapped. For this study and hereafter in this dissertation, we consider a module
as a Java file representing a class, an interface or whatever abstraction representing a
module as a unit of implementation. For Java files with nested classes the predominant
class was defined as the module and the concerns of its nested classes were summed up
to concerns of the predominant class.

Originally XScan does not computes any metric. Thus, we enhanced XScan to com-
pute LCbC over the concerns mapped by the tool and then to output this computation
as a csv1 file. Our extended version of XScan is available at (Silva, 2015a). The last four
columns 3.2 show information about LCbC distributions of all systems under study using

1Comma separated values



32 UNVEILING A HIDDEN DIMENSION OF COHESION MEASUREMENT

Table 3.2 Summary of XScan applied and corresponding LCbC distributions

Systems
# of concerns % of java files LCbC XScan

mapped with concerns Min Max Median Std Dev.

JFreeChart 208 46% 0 37 0 3.5
Rhino 26 32% 0 11 0 2.46
jEdit 99 36% 0 9 0 1.35

Tomcat 315 35% 0 20 0 2.48
Findbugs 151 32% 0 10 0 1.62
Freecol 91 56% 0 13 1 2.13

XScan. We hereafter call LCbC XScan for explicitly referring to LCbC computed using
XScan as the underlying concern mapping strategy.

3.1.2.2 Measuring MWE using TopicXP For measuring MWE it is necessary
to execute LDA (Latent Dirichlet Allocation) (Blei; Ng; Jordan, 2003) topic modeling
and then compute the entropy of identified topics in each class. LDA is a generative
probabilistic model for collections of discrete data such as text corpora. LDA is used
to automatically discover a set of topics within a corpus. A corpus is formed by a set
of documents. Each document is expressed as a probability distribution of topics. Each
topic is itself a probability distribution of words that co-occur frequently in a corpus of
text. Words can belong to multiple topics, while documents can contain multiple topics.

LDA has been used as a machine learning technique in a growing number of software
engineering problems (Thomas et al., 2010) (Grant; Cordy; Skillicorn, 2012) (Binkley et
al., 2014) including the identification of concerns in source code (Linstead et al., 2007)
(Baldi et al., 2008) (Maskeri; Sarkar; Heafield, 2008). Due to the nature of language
usage, the words that constitute a topic are often semantically related (Thomas et al.,
2010). An example topic is “patient clinic therapy medicine diagnostic”, which describes
the healthcare industry. Therefore, there is a strong conceptual similarity between latent
topics and the concept of software concerns (Baldi et al., 2008).

To apply LDA for source code analysis, topic extraction and MWE computation we
used TopicXP (Savage et al., 2010). TopicXP calculates MWE by taking a Java project as
the document corpus, methods as documents, and source code comments and identifiers
as words. This tool automatically pre-processes documents for splitting words, removing
stop words, and word stemming. In addition, we extended TopicXP to remove license
comments typically present at the header of each open source java file in order to avoid
noise in the document corpus. Our extended version of TopicXP can be found at our
companion web site (Silva, 2015a).

Table 3.3 shows the LDA parameters we set up for this study. First, LDA requires
the desired number of topics as input to run the algorithm. Then, we applied the fol-
lowing equation to find the number of topics t given a number of documents d (Java files):

t(d) = 7.25 ∗ d0.365



3.1 STUDY SETTINGS 33

This equation was proposed by (Grant; Cordy; Skillicorn, 2012) (Grant; Cordy, 2010)
after empirical assessment of LDA application over source code analysis. The optimal
number of topics to build the LDA model for a source code corpus is an open question in
source code analysis. Grant and colleagues’ work is the first initiative to determine the
appropriate number of topics needed to accurately represent source code in LDA models.
Defining the proper number of topics is not a trivial task and requires a reasonable effort,
thus becoming itself an open research topic for specific investigation. Therefore, it is out
of our research scope investigate a method to find the best number of topics for our target
systems. These are the main reasons we decided to follow Grant’s findings and proposed
equation.

α and β (third and fourth columns respectively in table 3.3) are also important pa-
rameters for LDA execution. According to (Binkley et al., 2014) a small value of β
favors fewer words per topic. When α is small the LDA model emphasizes fewer topics
per document. Conversely, when α increases the LDA model moves toward encourag-
ing more topics per document. So the combination of small β and high α enables (but
does not require) documents associated to more topics which are simpler topics with a
smaller number of dominant words. We followed this reasoning because, in theory, this
may lead to more comprehensive topics while supporting the increase of document-topic
probability.

Therefore, the β parameter is at low level (0.1) for all the systems, which is also the
default β of TopicXP tool. For α, TopicXP has the default value as 50/K (where K
is number of topics). However, in order to combine low β with high α, we decided to
increase α to 100/K.

The last parameter is the threshold value, which is used to filter out the topics which
are not associated to a document, that is, topics with a low probability to be in the doc-
ument. We defined this threshold as 0.1 for all the systems. Therefore, we parameterized
TopicXP to consider a topic within a document if the topic has a probability greater than
0.1 to appear in the document. This low threshold also favors more topics associated to
a document.

Table 3.3 also shows some descriptive statistics information of MWE measurement
(min, max and median values and standard deviation). MWE varies from 0 to 1 and
different from other metrics in this study the higher the MWE of a class the higher is the
class cohesion.

Table 3.3 LDA parameters applied and a summary of MWE distributions

Systems # Topics α β Threshold
MWE

Min Max Median Std Dev.

JFreeChart 70 1.4 0.1 0.1 0 0.19 0.01 0.35
Rhino 40 2.5 0.1 0.1 0 0.4 0.02 0.07
jEdit 69 1.4 0.1 0.1 0 0.19 0.01 0.21

Tomcat 92 1.08 0.1 0.1 0 0.27 0.01 0.43
Findbugs 91 1.09 0.1 0.1 0 0.3 0.01 0.35
Freecol 66 1.5 0.1 0.1 0 0.69 0.01 0.1



34 UNVEILING A HIDDEN DIMENSION OF COHESION MEASUREMENT

The MWE measurement can be reproduced by executing TopicXP with the same
parameters we describe in this section, whereas LCbC can be reproduced by executing
XScan over the analyzed systems without any given parameter.

3.1.3 Structural Cohesion Measurement

We chose a set of five structural cohesion metrics. They represent four variations of the
well-known Lack of Cohesion in Methods (LCOM): (i) LCOM2 (Chidamber; Kemerer,
1994), which is the adjusted version of LCOM1 proposed by Chidamber and Kemerer
in 1991; (ii) LCOM3 (Hitz; Montazeri, 1995), a graph-based version of LCOM1; (iii)
LCOM4 (Hitz; Montazeri, 1995), which is an expanded version of LCOM3; and (iv)
LCOM5 defined by Henderson-Sellers (1996) in his book of software metrics. Besides
those versions of LCOM, we also included the Tight Class Cohesion (TCC) proposed
by Bieman and Kang (1995). We recognize that there are other variations of structural
cohesion metrics available in the literature as described in Chapter 2. However, we believe
that this set of five metrics is representative of available measures for structural cohesion
since: (i) they were object of several studies in the last years (Briand; Daly; Wüst, 1998),
(Marcus; Poshyvanyk; Ferenc, 2008), (Etzkorn et al., 2004), (Dallal; Briand, 2012); (ii)
each metric reflects distinct choices for calculating structural cohesion; (iii) such choices
were originated from a group of authors who have conducted studies about well-known
cohesion metrics in the lastest years; and (iv) these metrics are supported by several
tools.

The last step was to apply the five structural cohesion metrics on the modules of the
selected release of each system. The Together environment (Together, 2011) was used to
compute LCOM2, LCOM3, LCOM5 and TCC, and the Analizo metrics tool (Terceiro
et al., 2010) was used to compute LCOM4. Two different tools were used because no
available single tool supports all the five metrics for Java systems. Measurement results
for all systems are available at the companion website (Silva, 2015a).

In summary, we gathered values for seven metrics: five from structural cohesion met-
rics, and two from conceptual cohesion. All these metrics were computed per module.
Given the 3,733 Java files, this totaled about 22,000 data points. We developed a program
to merge all the metrics computation output of each system in one single file to be used
as input to the R statistical tool. All the cohesion measurement results are available at
(Silva, 2015a).

3.1.4 Method of Analysis

The study research question is concerned with investigating whether conceptual cohesion
metrics (LCbC and MWE) captures at least an additional dimension of cohesion mea-
surement in comparison with existing structural cohesion metrics. Targeting the research
question, we applied Principal Component Analysis (PCA) (Jolliffe, 2002) in order to
help us understand the different dimensions captured by the cohesion measures. The
application of PCA was previously suggested by Briand et al. (2000) in his methodology
for analyzing software engineering data through the use of metrics and it has been ap-
plied in several other studies involving cohesion measurement (Chae; Kwon; Bae, 2000)



3.2 STUDY RESULTS AND DISCUSSION 35

(Marcus; Poshyvanyk; Ferenc, 2008) (Liu et al., 2009). The overall purpose of PCA is to
identify groups of variables — in our case groups of cohesion metrics — that explain as
much of the variation with as few variables as possible. Each group of variable, called as
principal component, is likely to measure the same underlying dimension of the object
to be measured. In our case, the object to be measured is the cohesion of a class. Any-
one can reproduce our PCA assessment by executing the R scripts we made available in
Appendix A and in our companion website (Silva, 2015a).

3.2 STUDY RESULTS AND DISCUSSION

Figure 3.1 shows the principal components (PCs) that resulted from executing PCA on
the cohesion measurements for each system. Those resulting components were generated
by using the R tool and the varimax rotation technique (Jolliffe, 2002). Results in Figure
3.1 are grouped by system, having each group including five principal components. Those
five components encompass weighted combinations of metrics which account for as much
sample variance as possible. For example, in JFreeChart, LCOM3, LCOM5 and TCC are
the main contributors of the first principal component (PC1) variance. Their coefficients
are highlighted in the corresponding column. This means that LCOM3, LCOM5 and
TCC define one dimension of cohesion measurement for this system, and this dimension
accounts for 33% of sample variance. For each component, we provide the corresponding
proportion (third row) in terms of the variance of the data set, which is explained by that
component, and also the cumulative variance (fourth row). Following the JFreeChart ex-
ample, besides the PC1 dimension, PC2 is formed solely by LCbC XScan, which accounts
for 14% of variance. The last column (PC5) of each system shows the cumulative variance
which is the sum of proportional variance of principal components. Overall, each column
of Table 3.1 represents a principal component which may explain a dimension of cohe-
sion measurement. Therefore, when looking at a column, each highlighted cell in that
column represents the main metrics that contribute for the variance of the corresponding
component.

3.2.1 Unveiling Conceptual Cohesion Dimensions

The study research question explores whether or not conceptual cohesion metrics cap-
ture a dimension of module cohesion that is not captured by structural cohesion metrics.
LCbC XScan row in Figure 3.1 shows that this metric was the major metric of a prin-
cipal component in all systems. Also, in all systems LCbC XScan contributed almost
exclusively for a principal component. In JFreeChart, Tomcat and Findbugs, LCbC was
the main metric of PC2; in Rhino and jEdit, LCbC was the main metric responsible for
PC5; and in Freecol it was the main metric of PC4.

Turning to MWE, results also indicates that it defines an additional dimension of
cohesion measurement. The last row shows that MWE was the major metric of: PC1
in Freecol, together with LCOM4; PC3 in JFreeChart, Tomcat and Findbugs; PC4 in
Rhino and jEdit.

Besides executing PCA for five principal components, we also executed with different



36 UNVEILING A HIDDEN DIMENSION OF COHESION MEASUREMENT

Figure 3.1 Principal components of each system

number of components (3, 4 and 6). We found five components the best choice as they
could account in all systems with 90% or more of sample variance (see Cumulative row
for each PC5). This is one of the suggested criterion to define the number of components
parameter when executing PCA (Jolliffe, 2002).

In summary, both conceptual cohesion metrics defined a principal component in this
analysis. LCbC XScan was the only major metric of a component in all systems. MWE
performed almost in the same way, except in Freecol that MWE mainly formed PC1 with
a structural cohesion metric (LCOM4).

It is understandable that LCbC XScan and MWE define different dimensions of cohe-
sion measurement. In fact, they use distinct counting mechanism for computing cohesion.
In this study, we used XScan as a tool for generating the underlying concern mapping and
then computing LCbC. As explained in Section 3.1.2.1, XScan analyzes method identi-
fiers combined with their calling context in order to identify groups of correlated methods,
where each group we considered as a concern. For MWE, there is the LDA topic mod-
eling technique as an underlying text mining mechanism to identify topics, interpreted
as concerns, through processing source code comments and identifiers. MWE uses LDA
topic modeling output to compute topics distribution and entropy within classes as a



3.2 STUDY RESULTS AND DISCUSSION 37

measure of cohesion.

Therefore, we can conclude that conceptual cohesion defines an additional dimension
of class cohesion, at least when represented by LCbC XScan or MWE. Such additional
dimension demonstrated by PCA is explained by: (i) the underlying concern mapping
mechanism used by a conceptual cohesion metric; (ii) how a metric uses concern mapping
results to compute cohesion; and (iii) by generating cohesion distributions with different
variance. The study conclusion scientifically supports our hypothesis that the underlying
mechanism of conceptual cohesion is different from the structural metrics by reflecting
different information about module cohesion.

Besides the quantitative analysis of PCA, we also discuss some examples that illustrate
the differences on the dimensions of cohesion captured by LCbC, MWE and structural
cohesion metrics. We found some modules in different systems that match the following
pattern: low conceptual cohesion and high structural cohesion. For instance, in Tomcat
the StandardManager class, which is used for managing the pool of sessions in the web
container, had 8 concerns assigned to it. It is the 31st in the LCbC rank out of 1060
Java files analyzed in Tomcat, which means this is in the top 3% least cohesive classes
according to LCbC. We analyzed the class source code and found that the 8 concerns
are related to: start/stop operations for session loading/unloading; session creation; and
the roles of the Observer design pattern. On the other hand, the LCOM2 value for this
class was 158, which can be considered a low value as it represents the 145th in LCOM2
rank, placing in the top 13% least cohesive classes according to LCOM2. Therefore, in
such case the conceptual dimension, measured by LCbC, captured better the information
about cohesion as we observed that the class indeed has low cohesion as it addresses
several concerns of the software.

Another example is the DefaultPlotEditor class in the JFreeChart system. According
to MWE it is in 13% least cohesive classes. However, its LCOM4 value is 1, placing it
as in 64% least cohesive classes. This low LCOM4 value does not reflect the number of
distinct concerns in the class, such as drawing, zooming, axis space, click handling and
plotting.

There is a similar example in the Freecol game system. The class ReportColonyPanel
is a panel for displaying the colony report. According to LCbC, it is in top 10% least
cohesive classes (LCbC XScan = 4), whereas according to LCOM2, it is in top 31% least
cohesive classes (LCOM2 = 15). This is another example where a conceptual cohesion
metric reflected a dimension of cohesion different to the one reflected by a structural
metric.

However, the opposite was also observed. As conceptual cohesion strongly depends on
the underlying mechanism to find concerns associated to the modules of a project, it may
fail whenever such task generates incomplete results by not succeeding on identifying some
important concerns the modules realize. Regarding LCbC XScan, we found some modules
without concerns mapped to them (LCbC = 0) while they actually realized at least one
important concern. We observed similar cases with MWE. These are modules whose
measurement matched the following pattern: high conceptual cohesion, low structural
cohesion.

In the jEdit system, we found that the jEdit class has the 3rd highest value in the



38 UNVEILING A HIDDEN DIMENSION OF COHESION MEASUREMENT

LCOM2 rank. Although we observed several concerns realized by this large and central
class, which has 4,373 lines of code, the LCbC value for it was zero. In fact, XScan was
not able to assign concerns to any of the members of this class. Turning to MWE, jEdit
class stayed in the median of MWE distribution for this system. We analyzed the topics
identified for such class by LDA execution and found that they did not reflect well the
responsibilities addressed by jEdit class.

In the same system, we can also highlight the JEditBuffer class, which represents the
contents of an open text file as it is maintained in the computer’s memory. This class
has the 4th highest LCOM2 value. However LCbC was zero for it. Again, this is an
important class for a text editor and should have had concerns mapped to it, at least
one concern about text editing. This is another case where the concern mapping strategy
used by a conceptual cohesion metric did not perform well and, consequently, hinder
the performance of conceptual cohesion when representing the actual responsibilities a
module addresses.

Switching to the Findbugs system, there are situations worth mentioning as well - the
SortedBugCollection and OpcodeStack classes. Both classes have no concerns mapped to
them. However, they were on the top 10 highest values for LCOM2.

Besides statistically finding an additional dimension of cohesion measurement, these
results also points out the need to investigate the use of different concern mapping strate-
gies in order to understand their impact on conceptual cohesion measurement. We address
this issue in Chapter 6.

3.3 THREATS TO VALIDITY

We identified threats related to internal and external validity which are discussed in this
section.

Internal validity. The quality of the concern mapping is certainly an issue that
affected conceptual cohesion measurement. For LCbC, we used XScan for producing
the concern mapping. As we discussed in previous section, XScan does not detect some
concerns in the system, because they are not expressed through methods with similar
names or similar code and also do not participate in the same calling context. However,
we decided to use this tool because it provides a fully automated step for mapping con-
cerns, and their authors reported more than 90% of accuracy on identifying crosscutting
concerns (Nguyen et al., 2011) in some systems they analyzed. We did not find in the
literature an available tool ready to be used in real projects with better accuracy which
could generate concern mappings fully automatic for Java systems.

Another threat regarding the XScan tool is that part of its heuristics relies on struc-
tural information in source code. It checks whether methods override or implement the
same ancestor method. To some extent, the use of structural information for generating
a concern mapping should be avoided, as we claim that LCbC is a conceptual cohesion
metric. However, XScan heuristics are also based on more complex information, such
as similarity of method names and detection of similar portions of code. In Method
names and similar portions of code may represent semantic information reflecting the
implementation of a concern or part of it.



3.4 RELATED WORK 39

For MWE, we used TopicXP tool for producing the LDA topic distribution. Two
possible threats in this case are: whether TopicXP implements well the LDA technique;
and whether we had the best choices for LDA parameters. We used TopicXP mainly
because in a single tool it computes LDA algorithm and also calculates MWE. In order
to improve TopicXP, we extended the tool to eliminate license comments within classes
to provide textual noisy reduction. Regarding the chosen LDA parameters, it is empirical
and still an open research question. To mitigate this threat we followed recommendations
from recent studies focusing on LDA execution for software engineering artifacts such as
source code (Grant; Cordy; Skillicorn, 2012; Binkley et al., 2014).

External validity. Our analysis focused on five structural and two conceptual cohe-
sion metrics, involving six systems. The small sample size in terms of number of systems
and metrics may be a threat to external validity. To minimize this, we selected industry-
scale, long-lived, medium to large-sized systems from distinct application domains such
as game, chart library, text editor, web container and programming language interpreter.
In terms of programming language, all the systems are written in Java. However, it might
not be a threat to external validity as the metrics can also be applied to other object-
oriented languages and our analysis did not observe any specific Java characteristic.

Regarding the chosen metrics, the set of five structural cohesion metrics are well-
known metrics in literature proposed by different authors and available in programming
environments and tools. The set of available conceptual cohesion metrics in literature
is small. According to our research, besides LCbC, there are five conceptual cohesion
metrics proposed in literature (see Chapter 2). They are text mining-based cohesion
metrics, from which only MWE has an implementation available for download. Also,
MWE uses a more recent text-mining technique (LDA). Therefore, we did not find worth
implementing C3 or CLCOM5 for our study settings. Ultimately, LCbC has been studied
in our research group for years and it is flexible to be applied with any concern mapping
strategy. Therefore, the conceptual cohesion metrics we used, MWE and LCbC, are the
best set we could have for representing conceptual cohesion metrics. Also, we do not
claim that our conclusions can be generalized outside this scope. However, with this
scope of analyzed systems and metrics, we could show enough evidence to support us
answering the research questions and giving us clues to further investigations.

3.4 RELATED WORK

In Chapter 2 we presented all the conceptual cohesion metrics we identified in the litera-
ture in the course of our research activities. Some of them also applied PCA in a similar
way we did in the scope of this study.

Marcus, Poshyvanyk and Ferenc 2008 applied PCA in order to understand the under-
lying orthogonal dimensions captured by C3 and other structural cohesion metrics. The
difference to our approach is that we did not have the goal of analyzing a specific con-
ceptual cohesion metric contrasting with structural cohesion metrics, like they did with
C3. We had a broader scope as we applied PCA to provide evidence that conceptual
cohesion metrics measure cohesion in a different way. Such different way is explained by
a different counting mechanism and source information focusing on computing cohesion



40 UNVEILING A HIDDEN DIMENSION OF COHESION MEASUREMENT

by capturing concerns each class addresses. Also, for that purpose, we used two concep-
tual cohesion metrics which rely on distinct concern mapping strategies (refer to Section
3.1.2 for a complete explanation about the concern mapping strategies used for LCbC
and MWE).

Liu et al. (2009) also applied PCA to investigate whether MWE captures aspects
of class cohesion that are not captured by other cohesion metrics. In this study they
went a little further compared to C3 study, as they used two conceptual cohesion met-
rics, MWE and C3, besides conventional structural cohesion representatives. However,
although C3 and MWE are different conceptual cohesion metrics, they both use text
mining techniques for retrieving information about concerns each class addresses. In our
study, the conceptual cohesion metrics used distinct concern mapping techniques: LCbC
used XScan strategy, whereas MWE used LDA topic modeling.

Additionally, PCA in C3 study involved three systems, whereas in MWE work it
involved only one system. In our study we applied PCA for six systems which were
presented in Section 3.1.1.

In terms of results, the findings from the quantitative assessment of PCA are similar
among all the three studies. However, in addition to the quantitative assessment, we also
discussed with examples some cases that illustrate the differences on the dimensions of
cohesion captured by LCbC, MWE and structural cohesion metrics.

3.5 SUMMARY

This study is a first-step for providing empirical evidence about the uniqueness of con-
ceptual cohesion when compared to conventional structural cohesion metrics. Our initial
assumptions pointed to the fact that the most well-known cohesion metrics fail to capture
the actual notion of module cohesion as it is defined. This has motivated our investigation
about whether the conceptual nature of conceptual cohesion metrics really makes them
different from structural cohesion metrics not only in terms of counting mechanism but
also in terms of generated results.

In this context, we carried out an empirical assessment with the support of statistical
methods involving six open-source, industry-scale, long-lived, medium to large-sized sys-
tems. We found that conceptual cohesion is orthogonal to structural cohesion, meaning
that a different dimension of cohesion measurement is captured by conceptual cohesion
metrics due to different source of information and counting mechanism for computing
cohesion. Additionally, we highlighted and discussed typical situations where the con-
ceptual cohesion metrics worked well or not for quantifying cohesion. This gives us insight
for further investigation presented in Chapter 6.

The overall standpoint is that our findings showed that conceptual cohesion metrics
are promising and worth investigating further as an alternative way of cohesion measure-
ment. Besides evidence that conceptual cohesion metrics measure cohesion differently, we
do not know whether such difference reflects how developers reason about module cohe-
sion. This issue is explored in the next chapter. In theory, when decomposing a problem
into modules it is easier to reason on what concerns each module should address. In other
words, it is supposed to be more natural for developers to achieve high cohesion when



3.5 SUMMARY 41

it is perceived by using abstract information such as concerns like conceptual cohesion
metrics do. This thinking also applies when developers have to maintain existing modules
by addressing new concerns or changing existing ones.





Chapter

4
HOW DEVELOPERS REASON ABOUT MODULE

COHESION

According to Etzkorn et al. (2000), “the cohesion metric that would be preferred by soft-
ware engineers would be a metric that best reflected a human-oriented view of cohesion”.
For them, highly cohesive modules should have logically related code no matter if they
are syntactically related or not. This raises the abstraction level for measuring cohesion
as it depends on what each module implements rather then on how interrelated are the
internal elements of each module. This view of cohesion is also shared by other authors
(Marcus; Poshyvanyk, 2005), (Marcus; Poshyvanyk; Ferenc, 2008), (Liu et al., 2009).

In the last chapter we showed empirical evidence that conceptual cohesion represents
an additional dimension of module cohesion when compared to other conventional struc-
tural cohesion metrics. However, it is still unaddressed to what extent such structural and
conceptual cohesion metrics reflect developer’s perception of module cohesion. Presum-
ably, it is easier for humans, when decomposing a problem into modules, to find distinct
concerns implemented by a module than to mentally calculate the degree of structural
relatedness amongst methods and attributes. However, there is no empirical evidence to
support this argument. Moreover, there is no evidence whether or not developers know
the concept of module cohesion as it is in software engineering theory. Therefore, the
main goal of this study is to provide empirical evidence about how developers perceive
module cohesion and assess to what extent such perception associates with structural
and conceptual cohesion measurement.

To achieve this goal, we performed an empirical study where we investigated: (i) what
rationale developers used to rate cohesion of different modules and (ii) to what extent
the ratings they gave were related to structural and conceptual cohesion measurements.
The study included a web-based closed-access survey involving 80 participants from nine
countries and different levels of experience and academic degrees. The survey comprised
questions related to: general perception of module cohesion; module cohesion comparison
and rating; cohesion reasoning; and participant profile.

43



44 HOW DEVELOPERS REASON ABOUT MODULE COHESION

The contribution of this study is threefold. First, we built up empirical evidence about
how developers perceive cohesion and which cohesion measurement associates with their
opinion. It represents a stepping stone towards understanding the applicability of struc-
tural and conceptual cohesion measurement. Second, we found that, in the context of our
study, conceptual cohesion metrics were better representative of developers’ perception
of cohesion than structural metrics. Finally, the study design, the survey details, the ma-
terials, coded topics, and the statistics were all made publicly available in the companion
website (Silva, 2013) and in Appendices B to E.

The remainder of this chapter is organized as follows: Section 4.1 discusses related
work; Section 4.2 describes in detail the study design; Section 4.3 presents and provides
discussion about the study results; Section 4.4 points out threats to validity; and Section
4.5 presents the conclusion.

4.1 RELATED WORK

Etzkorn et al. (Etzkorn; Delugach, 2000) compared various cohesion metrics with rat-
ings of two separate teams of developers over two software packages. Their goal was
to determine which of these metrics best match human-oriented view of cohesion. The
developers rated class cohesion on a scale from 0 to 1. The ratings were then statistically
correlated with a set of well-known structural cohesion metrics. Their study differs from
ours in many ways. First, one of our goals is to better understand through a qualitative
approach how developers perceive module cohesion. Second, we do not aim at comparing
developers’ ratings with an exhausted list of similar cohesion metrics. Rather, we ana-
lyzed two metrics representative of two distinct ways of measuring cohesion (structural
and conceptual cohesion). Third, instead of rating cohesion through a numerical scale,
we asked participants to rate which class was more cohesive in a given pair of classes.
Also we asked them to explain their reasoning by means of open questions.

Similarly, Counsell et al. 2006 presented a study involving twenty-four subjects drawn
from IT experienced and novice groups of developers. Subjects were asked to rate, in
scale from 1 to 10, cohesion of ten classes sampled from two systems on a controlled
classroom environment. Three research hypotheses guided their study, which involved
quantitative analysis. Two hypotheses addressed whether or not cohesion as perceived by
developers associates with class size and comment lines. The third hypothesis evaluated
whether there is a noticeable difference between the ratings of experienced developers
and novice ones. Besides the research methodology, their study differs from ours as they
compared cohesion ratings with two other class features: size and amount of comments.
Interestingly, one of their findings stated that cohesion is a subjective concept involving
a combination of class factors and raters experience rather than any single, individual
class feature per se. In our study we address the investigation of what would be the
developers perception of such subjective concept, without having in advance any specific
module feature as candidate to be associated with cohesion.

There are other related studies which applied web-based surveys to explore how pro-
grammers rate different software quality attributes like readability (Buse; Weimer, 2010),
complexity (Katzmarski; Koschke, 2012) and coupling (Bavota et al., 2013). These stud-



4.2 STUDY DESIGN 45

ies applied mainly quantitative analysis. However, qualitative inquiry provides an inter-
esting way of building knowledge on how human subjects reason about software quality
attributes. In our case, besides doing quantitative analysis, we mainly focused on a
qualitative investigation of how developers reason about cohesion by coding participants’
responses.

4.2 STUDY DESIGN

The research questions two and three also presented in the introduction guided this study:

RQ2. How do developers perceive module cohesion? How do they reason about it?

RQ3. To what extent do structural cohesion and conceptual cohesion measurements
relate with how developers rate cohesion of modules?

In order to address these research questions we collected developers’ opinion to under-
stand their perception and analyze how they react when having to reason about module
cohesion. At first glance, interviewing would fit well as a research instrument for col-
lecting developers’ opinion. However, this would constrain some important requirements
for our study. Such kind of study needs to provide classes’ source code to participants’
analysis and give them reasonable time to express their opinion. Interviewing would
intimidate them by the presence of researchers or by the pressure of time. Also, inter-
viewing is not an effective choice for collecting a reasonable amount of data without large
cost. Therefore, we decided to conduct a survey as a web-based questionnaire. This
technique has become one of the primary instruments in software engineering research
(Shull; Singer; Sjberg, 2010), and it can be used for both qualitative and quantitative
inquiry. Combining both types of research methods are the best way to find answers and
to build a convincing body of evidence to support or reject research hypotheses (Seaman,
1999).

The following sections present in detail how the survey was structured and applied.

4.2.1 Survey Overall Structure

The survey was divided in three groups of questions according to three categories of
information: (i) information about participant familiarity with the class cohesion concept;
(ii) information about how participants rate cohesion by analyzing classes; and lastly, (iii)
information about participants’ profile. Figure 4.1 illustrates the flow of questions divided
into these three groups. For simplicity, questions from the second and third groups were
abstracted away in the figure as they are explained in detail in the following sections.

We found reasonable to define questions in this order as it is recommended to approach
“the most important stuff first” (Seaman, 1999). Thus, we left participants’ profile ques-
tions at the end, which is probably the less motivating part to answer. We started with
approaching the participants’ knowledge about cohesion. For this, we applied the “fun-
nel shape” (Seaman, 1999). First we asked broader questions about cohesion definition.
Then, we narrowed down to questions that forced participants to concretely apply their
perceived concept of cohesion by comparing and rating classes.

It is important to note the decision point between first and third questions in the



46 HOW DEVELOPERS REASON ABOUT MODULE COHESION

Figure 4.1 Questions flow overview.

first group (Figure 4.1). We only ask participants to explain what a highly cohesive
class is if he or she declares him/herself familiar with such concept. Otherwise, we skip
question 1.2 and jump to the cohesion definition (item 1.3). Item 1.3 is not a question.
Instead, it is a set of statements defining what cohesion means. In this part of the survey,
we were concerned about having a single page summarizing different flavors of cohesion
definition extracted from different well-known authors in this field. We show this page on
Appendix B. This would not bias the participant by presenting a partial view of cohesion.
Moreover, for the sake of consistency, we showed this page to all the participants, even
to whom declared him/herself familiar with the concept of cohesion.

4.2.2 Comparing and Rating Cohesion between two Classes

The second group of questions (see Figure 4.1) plays a central role in this survey. With
them we aim at inducing participants to compare cohesion between two given classes and
extract information about how they rate cohesion and how they explain their decisions.
Given a pair of classes to be analyzed by participants we asked them to choose which class
in the pair was more cohesive. Then we asked them to explain the rationale behind their



4.2 STUDY DESIGN 47

choice. All participants were asked to compare three pair of classes during the survey.
In the following subsection, we explain why this number of pairs of classes and how we
selected the classes. The companion website (Silva, 2013) presents a demonstration of
the entire survey as it was applied. Also, Appendix B reproduces the survey questions
as presented to participants.

4.2.2.1 Class Selection Criteria for Cohesion Comparison To address the sec-
ond research question we carefully selected pairs of classes to be compared by the par-
ticipants. We aimed to strategically define measurement scenarios that would allow
participants to compare classes with high and low values of conceptual and structural co-
hesion. Moreover, we were concerned with avoiding confounding factors such as, classes
with different sizes, naming conventions and comment density.

We ended up with three measurement scenarios, which guided us to select three pairs
of classes.

Measurement scenario 1: Both classes with similar conceptual cohesion measure-
ment and distinct structural cohesion measurement. The goal here is to analyze if par-
ticipants’ ratings match the difference of structural cohesion. This requires a pair of
classes with the following characteristics: (i) classes equally cohesive in terms of concep-
tual cohesion, and (ii) one class much more cohesive than the other in terms of structural
cohesion.

Measurement scenario 2: Classes with opposite structural and conceptual cohesion
measurements. For example, if class A is more conceptually cohesive than class B, then
B must be more structurally cohesive than A. This scenario exposes situations where the
two different ways of measuring cohesion are contradictory. Thus we can analyze whether
and to what extent participants’ interpretation follow the structural or the conceptual
measurement.

Measurement scenario 3: Both classes with similar structural cohesion measure-
ment and distinct conceptual cohesion measurement. This scenario is similar to the first
one but now what varies between the classes is the degree of conceptual cohesion. The
goal here is, therefore, to analyze if participants’ ratings match the difference of concep-
tual cohesion when structural cohesion is the same for both of the classes.

It is worth highlighting that participants did not have access to the classes’ measure-
ments in any part of the survey. Besides, we tried to minimize confounding factors that
could affect participant’s interpretation of class cohesion, as described as follows.

Size. It is a well-known confounding factor when analyzing module properties (Koru;
Tian, 2005). So, we selected classes with similar LOC (Lines of Code). In addition, we
filtered out too large classes that could be tiring and less motivating for participants to
read and understand.

Context. We selected classes within a relatively simple context, which could be easily
and shortly explained in a single survey page. Simple contexts do not require previous
reading about the system the classes are related to.

Naming conventions. Participants might have more difficulty to understand classes
whose source code is poorly named, without following any convention for naming iden-



48 HOW DEVELOPERS REASON ABOUT MODULE COHESION

tifiers. Thus, we selected classes with similar naming conventions. In very few cases, it
was necessary to refactor some identifiers’ names in order to balance the readability of
the selected classes.

Source code comments. Finally, the presence of comments in the source code is
another factor that may affect class comprehension. So, we selected pairs of classes with
a balanced amount of comments.

Finding pairs of classes that match that set of requirements and measurement scenar-
ios is not a trivial activity. We had to be very cautious as class comparison is a key part
of the survey. Additionally, due to the subjectivity of some criteria we had to carry out
this activity manually. That was challenging and took a reasonable effort when designing
the study.

4.2.2.2 Cohesion Metrics In order to measure structural and conceptual cohesion
we chose two metrics described in Chapter 2 – LCOM (Lack of Cohesion in Methods)
by (Henderson-sellers, 1996) (also known as LCOM5) and LCbC (Lack of Concern-based
Cohesion) (Silva et al., 2012), representing structural and conceptual cohesion measure-
ments, respectively.

We selected LCOM5 for three main reasons: (i) it is available in an open source
plugin for Eclipse IDE called Metrics1; (ii) it is one of the variations of LCOM (the
most known structural cohesion metrics family); and (iii) according to previous study
(Chapter 3) it was present in a dimension of cohesion measurement together with other
structural cohesion metrics such as LCOM3 and TCC, in most of the systems. Therefore,
we consider LCOM5 as a good representative of structural cohesion metrics to be used
in this study.

Regarding LCbC, we have been working with and studying this metric as well as
other conceptual cohesion metrics in our research group for some years. LCbC is part
of a concern-driven metrics suite which has been used in recent works (Garcia et al.,
2005) (Figueiredo et al., 2008) (Figueiredo et al., 2012). Also, we are not aware of any
other simpler and flexible metric for conceptual cohesion measurement. As explained in
Chapter 2, the other conceptual cohesion metrics rely on text mining-based techniques
for capturing information about concerns implementation. LCbC just counts the number
of concerns a module addresses by using any desired strategy for concern mapping. As
we worked with six classes (three pairs) in this study, it did not take long to manually
identify and map concerns to classes’ source code.

For practical reasons, we could not include more than one representative metric for
structural and conceptual cohesion. As explained in Section 4.2.2.1, most of the study
design effort was to strictly balance five confounding factors combined with two cohesion
metrics and three measurement scenarios in order to select classes for the study. The
addition of more cohesion metrics would make it very difficult to manually fulfill all the
class selection criteria in reasonable time.

1The Metrics Eclipse plugin is available at http://metrics.sourceforge.net/



4.2 STUDY DESIGN 49

4.2.2.3 Selected Pairs of Classes After analyzing classes from several open source
projects in well-known repositories such as SourceForge and Github, we ended up with
three pairs of classes from two software systems written in Java. The first system is for
managing hotels2. It has features for controlling bookings, billings and guest data. From
this system, we selected four classes for the first and second measurement scenarios,
as detailed in Figure 4.2. We obtained the pair of classes for the third measurement
scenario from the FamilyTree project3. This is an open source academic system used by
other empirical studies (Mäntylä; Lassenius, 2006). The source code of all selected classes
is available in Appendix C as well as at the companion website (Silva, 2013).

Figure 4.2 also shows the corresponding structural cohesion (LCOM5) and conceptual
cohesion (LCbC) measurements for each class. In addition, to facilitate interpretation,
Figure 4.2 indicates the corresponding measurement scenario for each pair of classes. For
example, in the first comparison, “>LCOM5” indicates that the class in the left-hand side
has a higher LCOM5 value and “=LCbC” indicates that both classes have the same LCbC
value, which matches with the first measurement scenario. In the third comparison, both
classes have quite similar LCOM5 measurement4, whereas the left-hand side class has a
higher LCbC value, thus the corresponding signals for this comparison are “=LCOM5”
and “>LCbC”. Participants did not have access to this information.

Figure 4.2 Classes for comparison.

2FGMP - Hotel Management, available at http://sourceforge.net/projects/fgmp-hm/
3FamilyTree project available at

http://www.soberit.tkk.fi/ mmantyla/ISESE2006/
4We considered a difference of 0.1 in LCOM5 as not sufficient to say both classes have different

cohesion degrees according to this metric



50 HOW DEVELOPERS REASON ABOUT MODULE COHESION

4.2.3 Collecting Participant’s Profile

Software engineers experience may influence on how they reason about software proper-
ties like cohesion. Thus participant’s academic and professional background should be
considered in this kind of study. However, there is no agreed way to collect programming
experience data in empirical software engineering. Researchers have used distinct, some-
times not reported, ways of collecting and quantifying it. Some other researchers do not
collect it at all (Feigenspan et al., 2012).

To build the third (and last) part of the survey questionnaire (see Figure 4.1 for the
overview structure) we followed the results of a recent study on programming experience
measurement (Feigenspan et al., 2012). It suggests a set of questions to measure partici-
pants’ experience in software engineering empirical studies (Feigenspan et al., 2012). In
Appendix B and in the companion website (Silva, 2013) we show all the questions we
used for collecting participant’s profile regarding professional and academic background.

4.2.4 Survey Sampling

The population for this study refers to software developers around the world with any
experience on object-oriented programming and acting on any position in the software
engineering field.

Any survey-based empirical study faces the problem of gathering participants, espe-
cially when dealing with such a broad population. That is why most of the survey-based
software engineering studies use a non-probabilistic sampling (Seaman, 1999). This kind
of sampling gathers participants who are easily accessible or the researchers have some
justification for believing that they are representative of the population. Within non-
probabilistic sampling, we referred to Convenience and Snowball sampling methods. The
former consists of obtaining responses from people who are available and willing to take
part. The latter involves asking people who have participated in the survey to nominate
other people they believe would be willing to take part. We used snowball sampling only
with some participants who showed interest in the study results, as we found they would
be more willing to indicate other potential participants to be invited.

Some works have reported a low rate of participation, what has motivated recent
investigation on this topic (Smith et al., 2013). We report the following factors and
procedures we used to invite developers. They helped us to achieve a reasonable number
of participants and improve our response rate. We apply here the same terminology used
in (Seaman, 1999) (Punter et al., 2003) (Smith et al., 2013).

Personalized vs. Self-recruited survey. In self-recruited surveys, participants get
to known somehow of the survey and decide to participate, while in personalized surveys
each member of the sample is known and is personally invited to participate. The former
can be easily spread by means of e-mail lists or social networks. However, researchers
have no control of who participates in. We opted for a personalized survey to have control
of who would be invited to participate. Thus, we were able to assure one response for
each person and customize e-mail messages for invitations and reminders.

Reciprocity and Liking. People tend to comply with a request if they feel they
owe the requester a favor (reciprocity) or if they have positive affect towards (liking). We



4.3 RESULTS AND ANALYSIS 51

addressed reciprocity by inviting people who had invited us to participate in previous
studies; and by inviting people who had some previous connection with us either by
academic or by professional purposes. To address liking, in every invitation e-mail we
tried to make a connection by using the person’s name and first asking how they were
feeling. We could confirm that people who had prior and stronger connection with the
authors respond more than people who had subtle or no connection.

Authority and Credibility. Response rates may rise with the authority and cred-
ibility of the survey invitor. We approached this factor by emphasizing our affiliation
as researchers/professors. The response rate might have risen as some respondents were
former students of the authors or they had previously known our research laboratory.

Brevity. In general, the longer the survey takes to be completed the lower is the
response rate. However, to keep empirical soundness, researchers have to carefully eval-
uate whether important questions can be removed. Thus, every time we prepared a new
version of the questionnaire we made inspections to discuss and decide what could be
removed or shorten in order to improve brevity. This is the main reason why we used
just three pairs of classes to be compared by respondents.

Compensation Value and Likelihood. One of the strongest motivators is when
the respondents feel that they get something back for their invested time. The return can
come in many forms including monetary incentives, prizes, and gift cards. We provided a
fifty dollars Amazon gift card for a drawing to participants who completed the survey. We
highlighted this offer in every survey message such as invitations, reminders and welcome
message.

Reminders. People easily forget to accomplish tasks they are not required to do.
Therefore, we sent reminders to potential participants who had not answered the survey
within a week. In addition, instead of programming automatic reminders, we decided to
customize reminders messages according to whom we would send.

4.2.5 Data Collection

The data collection was preceded by a pilot study involving three participants with ex-
perience in software engineering industry and academia. We carried out the pilot study
including all the expected steps for the survey execution (from invitation messages to
data analysis). After analyzing their feedback and responses we made some adjustments
on survey questions and presentation of the classes.

Afterwards, we executed the survey data collection. It lasted forty days, from February
23rd, 2013 to April 8th, 2013. We sent invitations in batches almost every day until March
03rd, 2013 by means of personalized e-mail messages. During data collection we monitored
survey responses in order to have a crisp notion about how the web-based system were
performing and how the respondents were acting in terms of their answers.

4.3 RESULTS AND ANALYSIS

In this section, we firstly describe the participants’ profile and general statistics about
who responded the survey. Then we present and discuss the results in the light of the



52 HOW DEVELOPERS REASON ABOUT MODULE COHESION

two research questions.

4.3.1 Participants’ Profile

From 228 invitations sent to software developers around the world we had 34 incomplete
responses (15%) and 80 full responses, representing a 35% of response rate. This number
of participants is at least equivalent or superior to some recent studies in software engi-
neering which used closed access survey (Bavota et al., 2013) (Smith et al., 2013). All
the survey messages and the questionnaire were provided in English and Portuguese. We
used the Portuguese version for Brazilian and Portuguese potential participants, although
they were able to switch from the Portuguese to the English version. As expected, most
of the participants were from Brazil and used the Portuguese version. In the end we had:
47 responses in Portuguese (58%), comprising one from Portugal and the others from
Brazil; and 33 responses in English (42%) from 9 different countries (Canada, Germany,
Chile, Japan, USA, Iran, Poland, Spain, and Brazil). The reminders played an important
role as 33 responses (42%) were completed after we sent customized reminder messages.

Figures 4.3-4.6 summarize the participants profile in terms of occupation, academic
degree and self-estimation on programming experience. Most of them declared themselves
as software developers, system analysts, researchers and students. Some of them were
software architects/designers and lecturers/professors. Few of them were testers, business
analysts and project managers. Just one answered as unemployed or retired and other
two answered as system administrator and software engineer. It is important to note
that job position was a multiple choice question, so it was possible to have participants
choosing more than one position (e.g., student and software developer). For this reason,
we cannot know exactly how many participants were exclusively from software industry,
but we can note that many of them have occupation in several different positions from
software industry. In terms of academic degree, which was approached as a single choice
question, two participants checked as undergraduate (2%), whereas nearly 31% checked
as graduate (without post-graduate degrees). About 66% of the participants held some
post-graduate degree.

We asked them to self-estimate their programming experience in two different ways
as depicted in Figure 4.4. As explained in Section 4.2.3, we followed a set of questions to
measure programming experience suggested by previous work on this topic (Feigenspan
et al., 2012). First, we asked them to rate their experience on a scale from 1 to 10 (1 -
very inexperienced and 10 - very experienced). Nearly 81% marked 7 or higher. Second,
we asked them to compare their experience to colleagues’ in a scale from 1 to 5. 65%
declared themselves more experienced than colleagues by checking 4 or 5.

Regarding their experience with Java programming language (Figure 4.5), 12% checked
1 and 2, which means little experience, whereas 57% declared themselves well experienced
(4 and 5 rates). With respect to object-oriented programming (OOP) (second chart of
Figure 4.5), the ratings follow similar trend, with the difference that all participants
declared themselves average experienced to very well experienced.

The boxplot charts in Figure 4.6 show, respectively, the overall number of years of
programming experience and the number of years of programming experience in large



4.3 RESULTS AND ANALYSIS 53

Figure 4.3 Participants’ occupation and academic degree.

software projects. The plots are very similar, except that in the first one, experience
varies from 1 to 29 years, whereas in the second one, experience varies between 0 and 15
years.

In summary, our set of participants includes developers with varied degrees of pro-
gramming experience. We consider this result as positive for two reasons. First, it allowed
us to make cross analysis between degrees of programming experience and the perception
of cohesion. Second, the group of participants includes a representative set of developers
with sufficient experience to answer the survey without difficulty.

4.3.2 How do developers perceive module cohesion? How do they reason about
it?

To answer this research question (RQ2) we need to analyze answers of three parts of the
survey, as presented in the following subsections.



54 HOW DEVELOPERS REASON ABOUT MODULE COHESION

Figure 4.4 Participants’ self estimation on programming experience.

Figure 4.5 Participants’ self estimation on Java and OOP.

4.3.2.1 “Are you familiar with the concept of cohesion in the context of
software development?” This is the first question of the survey (see Section 4.2.1 for
the overall survey structure). From 80 respondents, 71 (89%) answered YES (familiar
with cohesion) and 9 (11%) answered NO (not familiar with cohesion) for this question.
Interestingly, most of the participants declared themselves as familiar with cohesion.
Note that, at this point of the survey, no definition about cohesion was presented to the
participants yet.

Having this result in mind, it is important to investigate whether cohesion familiarity



4.3 RESULTS AND ANALYSIS 55

Figure 4.6 Participants’ programming experience in years.

is related with participant experience. To address this point, we cross-checked the survey
first question responses with two other questions about participant’s profile as follows.

Cohesion Familiarity vs. Years of Programming Experience. As explained in
4.3.1, participants’ programming experience varies from 1 to 29 years. Additionally, we
found that 35 participants declared having 10 years or more of programming experience.
We consider these ones as the most experienced participants. They represent 44% of our
sample. When analyzing their first question responses, we found that only two of them
checked as not familiar with cohesion. The other seven not familiar with cohesion are
spread over the participants with less than 10 years of programming experience.

Cohesion Familiarity vs. Academic Degree. We found that the distribution
over academic degree considering only the 71 participants familiar with cohesion is very
similar to this distribution considering all participants (see the second chart in Figure
4.3, which shows the distribution of academic degree for the entire sample). However,
from the nine participants not familiar with cohesion, six are undergraduate or graduate
programmers without post-graduate degree, whereas just three have Masters or PhD. Of
these three, one has more than 10 years of programming experience but no experience in
large software projects.

On the developers familiarity with cohesion. We can conclude that most
of the participants of our sample are familiar with cohesion. Those who are not
familiar with cohesion are most likely the least experienced ones.

4.3.2.2 “How would you explain to someone else what a highly cohesive class
is?” To analyze answers for this question we coded responses from the 71 participants
who declared themselves familiar with cohesion. Two members of our research group
conducted the open coding process separately. One of them is co-author of this paper.
Then, they had a meeting to cross-check, discuss and resolve conflicts in order to obtain
the resulting coded responses.

As a result, we obtained 11 topics related to how participants explain what a highly
cohesive class is. The distribution of these topics is shown in Figure 4.7. Each response
may touch one or more topics as it is plausible to describe high cohesion by using a
combination of correlated concepts. The top two topics are class responsibilities and
coupling. Most of the participants (56) explain a highly cohesive class by using the



56 HOW DEVELOPERS REASON ABOUT MODULE COHESION

concept of cohesion in terms of class responsibility, for example: “it is a class with a
well defined scope of responsibilities”; “(...) It should not take responsibility for functions
other than its own”; “(...) When it performs a well-defined role”; “Singular in purpose.
It does one thing, and only one thing”; “All the included functionalities are conceptually
highly related”. This represents 78% of the 71 participants. We grouped in this topic
similar terms like features, concerns, functionality, role, etc. Participants who touched
this topic had a rationale and perception aligned with conceptual cohesion.

Thirteen participants mentioned the property of coupling in their explanation. This
represents 18% of the 71 participants. Although high coupling does not necessarily mean
low cohesion (and vice-versa), this is somewhat acceptable as we know that coupling and
cohesion may be related to each other in many situations. Thus, some people prefer to
explain cohesion by mentioning other concepts they might know better such as coupling.

Figure 4.7 Coded topics from how participants explain highly cohesive classes (survey first
question).

The maintainability topic, which we grouped with readability and comprehension, was
mentioned by five participants (7%). Interestingly, some participants explained cohesion
by mentioning external quality attributes such as maintainability, reusability and change-
proneness. The presence of such topics is somehow understandable as cohesion may affect
these properties.

In five responses (7%), participants explained high cohesion based on class internal



4.3 RESULTS AND ANALYSIS 57

structure. They mentioned the relationship between methods and attributes within a
class. For example: “Attributes and methods of this class have a strong logical relation-
ship. I would say data-flow should be equally distributed within this class. If you think of
a Def-Use-Graph almost all nodes should be connected to achieve high cohesion”; “Meth-
ods of this class implement features by calling each other”; “Its members are concerned
mostly with themselves and other members of the same class”. This kind of responses
reveals rationale and perception more aligned with structural cohesion.

Some not expected topics had few occurrences, such as Correctness. Curiously, four
participants (5%) mentioned that cohesion is related to whether a class correctly fulfills
its requirements. For them, cohesion degree depends on whether a class is correct or not
with respect to what it is supposed to do. We made available all the coded responses in
the companion website (Silva, 2013), including the ones from the other questions.

4.3.2.3 Rationale for Rating and Comparing Cohesion Additionally, we ana-
lyzed how participants reason about cohesion by investigating their rationale when rating
and comparing cohesion between classes. As explained in Section 4.2.2, for each one of
the three pairs of classes, we asked the participants to selected the most cohesive class.
Then, we asked them to explain the reasoning behind their choice. This was done in the
second group of questions of the survey. To analyze their answers, we carried out an open
coding process for their responses.

Regardless of the participants choice on which class was more cohesive, the most
coded topic for all the three scenarios was class responsibilities. Again, most of the
participants used the notion of class responsibilities to justify their choice when comparing
cohesion between classes. From the 80 responses, for the first comparison scenario, class
responsibilities was coded in 60 responses. Class suitability to split was the second most
coded topic. It appeared in 15 responses. It was followed by coupling and class internal
structure with 8 occurrences each. Turning to the second comparison scenario, conceptual
cohesion perception (by means of class responsibilities topic) was found in 67 responses,
class suitability to split in 17, class internal structure in 7, and coupling in 5 responses.
Finally, for the third comparison, class responsibilities had 71 occurrences, coupling had
4, class internal structure had 2, and class suitability to split had just 1 occurrence.

Interestingly, we found the topic Suitability to split in the second group of questions
to explain cohesion ratings but not in the first question – the one about highly cohesive
class explanation (see Figure 4.1 for the questions overall structure). This is probably
due to the set of statements defining the concept of cohesion we provided the participants
after the first question. One of the statements say that a highly cohesive class should be
difficult to split, according to Bieman and Kang (Bieman; Kang, 1995).



58 HOW DEVELOPERS REASON ABOUT MODULE COHESION

On the developers’ perception about module cohesion. By analyzing how
the participants explained class cohesion and how they reasoned when comparing
cohesion between classes, we confirmed hypothesis that developers perceive co-
hesion in a conceptual manner, i.e., based on class responsibilities. Even though
structural cohesion measurement has been mostly considered in academia and
industry-scale tools, developers generally have a different perception about co-
hesion. We identified other ways of thinking about cohesion, which were coded
during our analysis, such as coupling and structural cohesion. However none of
them were as intensively used as conceptual cohesion perception was.

4.3.3 To what extent do structural cohesion and conceptual cohesion relate with
how developers rate cohesion?

In order to answer this question (RQ3), we quantitatively analyzed the cohesion ratings
for the three comparison scenarios. Also we qualitatively analyzed participants’ expla-
nation about their respective ratings. In addition, we cross-analyzed these data with
cohesion familiarity and participant’s experience to verify whether such factors associate
with the results.

4.3.3.1 Cohesion Ratings and Respective Rationale Figure 4.8 shows the rat-
ings distribution for the three scenarios of comparison. We applied the Fleiss Kappa
statistical test (Fleiss, 1971) to quantitatively assess the degree of inter-rater agreement
for each scenario, by using the R tool. This test is applicable as we had a fixed number of
raters assigning nominal-scale ratings to a number of items. The Kappa coefficient κ lies
in [0,1] and indicates the level of agreement among raters: 1 indicates total agreement
among all raters and 0 no agreement. As a result, for the first and third scenarios we
found a slight agreement, with coefficients 0.193 and 0.155, respectively. For the second
one we found fair agreement, with coefficient 0.234. This means that in first and third
scenarios of comparison, the respondents slightly agreed to each other by means of rat-
ing in the same way, whereas in the second question their ratings fairly agreed. These
categories (slight and fair agreement) were suggested by (Landis; Koch, 1977). Although
it is used by some related works, for instance (Katzmarski; Koschke, 2012), they are
not universally accepted. Literature recommends further analysis of the results to give
support to any conclusions (Gwet, 2012), as we do in the following.

To better interpret the results of Figure 4.8 it is important to refer to Figure 4.2 to
recall the measurement set corresponding to each scenario.

First scenario. In the first scenario, the second class (DB InsertUpdate) is more
cohesive than the first one (DB Backend) in terms of structural cohesion, measured by
means of the LCOM5 metric. On the other hand, they are equally cohesive in terms of
conceptual cohesion, measured by means of the LCbC metric. Turning to participants’
ratings, only 5% (4 participants) rated the second class as more cohesive. On the other
hand, 37% (30 participants) rated both classes with quite similar cohesion, which matches
with the conceptual cohesion measurement. Finally, 45 participants (57%) rated the
first class as more cohesive, which does not match with structural cohesion neither with



4.3 RESULTS AND ANALYSIS 59

Figure 4.8 Cohesion ratings for the three scenarios.



60 HOW DEVELOPERS REASON ABOUT MODULE COHESION

conceptual cohesion. Therefore, analyzing quantitatively the amount of ratings for each
category, we observe that most of the ratings do not match with structural cohesion
measurement.

These results showed an issue to be further investigated – Why did 45 participants
rate the first class (DB Backend) as more cohesive? So, we turned to the responses where
they explained their rationale. After analyzing the coded explanations, we found that
of these 45 participants, 29 justified their ratings by using conceptual cohesion percep-
tion. Basically, most of them found the second class (DB InsertUpdate) less cohesive
because they considered that it contains two different concerns: inserting and updating
information in database. Although this interpretation does not match with our initial
measurement, as we considered inserting and updating as a single concern, called data
base writing, it can be seen as correct. Other 12 responses mentioned that the class should
be split into two, for instance: “(...) you could say that the Backend is more cohesive
than InsertUpdate, as the second can be split into Insert and Update.”. This viewpoint is
also associated with conceptual cohesion, as they claim the class should be split because
it has multiple responsibilities. Class coupling were mentioned in 8 responses, whereas
class internal structure were mentioned only in 7 out of the 45 responses. In summary,
despite 57% (45) of the participants did not rate according to any of the target cohesion
measurements, we found that most of them applied the conceptual cohesion perception
to explain their reasoning.

We also investigated the reasoning of the four participants (5%) who chose the second
class (DB InsertUpdate) as more cohesive. At first sight, as it matches with the structural
cohesion measurement, we would expect explanations related with this kind of cohesion
perception. However, none of them used the structural cohesion view. Three found more
responsibilities in the first class than in the second one. For example, one participant
explained: “the first class handles database connections, which includes opening, closing
and returning connections. The second one only updates the database”. Readability and
comprehension, complexity, suitability to split, and encapsulation are topics with one
occurrence each.

Finally, we analyzed the explanations from those who rated both classes with similar
cohesion. From the 30 participants of this group (37%), 28 mentioned the class respon-
sibilities topic and two mentioned the suitability to split topic. Other three topics had
one occurrence each: poor method decomposition, encapsulation, and class internal struc-
ture. These observations indicate the association between the ratings of this group and
conceptual cohesion measurement.

In summary, in the first scenario, most of the ratings matched with the conceptual
cohesion measurement. Moreover, when analyzing the coded explanations, we found that
most of them refer to the conceptual cohesion perception, even when the ratings do not
match with it.

Second scenario. In this scenario, the first class (Main Config2) is more cohesive
than the second one (DB Helpers) in terms of conceptual cohesion measurement, whereas
the opposite stands for structural cohesion measurement. 54 participants (68%) rated the
first class as more cohesive, which matches with the conceptual cohesion measurement.
15 participants (19%) chose both classes with similar cohesion. 10 (12%) rated the



4.3 RESULTS AND ANALYSIS 61

second class as more cohesive, which matches with the structural cohesion measurement.
Therefore, just analyzing quantitatively this result, we can conclude that most ratings
associate with the conceptual cohesion measurement.

Analyzing the explanations of the participants who chose the second class as more
cohesive (those that apparently matched with structural cohesion), we did not find any
rationale referring to structural cohesion perception. Interestingly, all of these 10 partici-
pants gave explanations related with conceptual cohesion. 8 of them explicitly mentioned
the identification of multiple concerns in Main Config2 class, for instance: “(...) it con-
tains DB information and billing information and currency information”. Basically, they
found that Maing Config2 works with distinct and unfocused properties (billing, database,
hotel information, etc.). The other 2 seem to have mistakenly checked the wrong answer
– they explained the first class as more cohesive but picked the alternative “second class
is more cohesive”.

The reasons for rating both classes as similarly cohesive were: class responsibilities (12
occurrences); suitability to split (6 occurrences); coupling and class internal structure with
1 occurrence each. In fact, 12 out of 15 participants justified their answers by mentioning
class responsibilities. This shows that most of the participants who considered both
classes similarly cohesive also had a conceptual cohesion perception.

Finally, we analyzed the explanations behind the 54 ratings that matched with con-
ceptual cohesion measurement. 45 participants said that the first class (Main Config2)
was more cohesive because it was focused on a single behavior of the software (class
responsibilities topic). 10 participants argued that this class is less suitable to split
than the second one. This justification is somehow related to class responsibilities. Six
participants justified their ratings by mentioning structural relatedness of class internal
members. This shows that these six participants used the structural cohesion perception.
Four participants applied the coupling concept as a proxy for cohesion, and one argued
in terms of class comprehension. Overall, these results show that most of the partici-
pants used the conceptual cohesion perception. This reinforces the association between
participants’ ratings and the conceptual cohesion measurement.

Third scenario. In this scenario, both classes are similarly cohesive in terms of struc-
tural cohesion measurement. However, in terms of conceptual cohesion measurement, the
second one (RelationParentChild) is more cohesive than the first one (RelationSpouse).
43 participants, who represent 54% of the sample, rated the second class as more cohesive.
These ratings match with the conceptual cohesion measurement. 30 participants (38%)
rated both classes as similarly cohesive. These ratings match with the structural cohesion
measurement. Six participants (7%) rated the first class as more cohesive. Therefore, it
is clear to observe that most of the ratings associate with conceptual cohesion. However,
further analysis is necessary to clarify other issues: Why did 7% of the participants rate
the first class as more cohesive? And why did 38% rate both classes similarly cohesive?

Four of the six participants who rated the first class (RelationSpouse) as more cohesive
seem to had done that by mistake. They explained their decisions as if the second class
was more cohesive. The other 2 justified their decisions by mentioning the difficulty to
understand the intention of the classes, and by using odd arguments like “the first class
is more cohesive because it makes several imports”.



62 HOW DEVELOPERS REASON ABOUT MODULE COHESION

Apparently the 30 ratings for both classes with similar cohesion match with struc-
tural cohesion measurement. However, just two explanations behind them were actually
related to structural cohesion perception. In addition, we coded 24 responses related
to conceptual cohesion perception. However, 23 of them considered that both classes
had the same number of concerns, thus assuming both classes similarly cohesive. For
instance, one participant wrote: “Both handles specific functionality”. Only 2 mentioned
structural cohesion in their reasoning, for example: “I don’t see substantial differences in
the usage pattern of members”. Other 6 responses mentioned issues related to coupling
(3 occurrences), class similarity (2 occurrences) and reusability (1 occurrence). These
results show, therefore, that most of the participants’ rationale was based on conceptual
cohesion.

Finally, we analyzed the responses of the 43 participants who chose the second class
as more cohesive, matching with the conceptual cohesion measurement. We found terms
related to the class responsibilities topic in all of them. This indicates that these partic-
ipants’ rationale is strongly aligned with conceptual cohesion.

On the association between participants’ reasoning and cohesion mea-
surement. Most of the ratings in the three scenarios do not associate with
structural cohesion measurement. Actually, participants rated cohesion mostly
based on class responsibilities, which shows they used the conceptual cohesion
point of view. Even the participants who rated differently from the conceptual
cohesion measurement applied the conceptual cohesion perception for justifying
their decisions. These results confirm hypothesis that, even though structural
cohesion measurement has been considered in academia and industry-scale tools,
the perception of conceptual cohesion is predominant, which was also observed
when addressing the previous research question (see Section 4.3.2).

4.3.3.2 Cohesion Ratings vs. Cohesion Familiarity In this section, we assess
whether familiarity with the concept of cohesion associates with the cohesion ratings the
participants gave. To do that, we cross-analyzed the ratings with answers of the survey
first question (see Section 4.3.2.1), which asks whether or not the participant is familiar
with cohesion.

First, we applied the Fisher exact test, which is a statistical test used to examine the
significance of the association between two kinds of classification (two categorical vari-
ables) – in our case the nominal-scale cohesion ratings and bivariate cohesion familiarity
(Yes/No). With this test we aimed at verifying whether the following null hypothesis is
rejected: There is no association between participant’s previous familiarity with cohesion
and participant’s cohesion ratings. After applying the Fisher exact test we got the follow-
ing p-values respectively for the three scenarios: 0.170, 0.175, and 0.054. Therefore, we
could not reject the null hypothesis for any of them. Hence, it is not possible, according to
this quantitative assessment, to assume that there is an association between participants’
previous familiarity with cohesion and participants’ ratings on class cohesion. Then, we
turned to the coded responses to try to find any possible association between these two
variables.



4.3 RESULTS AND ANALYSIS 63

Just nine participants considered themselves not familiar with cohesion in the begin-
ning of the survey. Thus, we analyzed the corresponding ratings and explanations of
these nine participants for the three scenarios. Regarding the first scenario, none of them
rated the second class as more cohesive, that is, none of their ratings matched with struc-
tural cohesion measurement. Of these nine, one participant checked the “I don’t know”
alternative. Four of the ratings matched with the conceptual cohesion measurement,
that is, the alternative “both classes have quite similar cohesion”. After analyzing the
corresponding coded explanations, we found that, regardless of the ratings, most of the
participants (5 out of 9) justified their answers using the conceptual cohesion perception.
Just two applied the structural cohesion perception.

Turning to the second scenario, one participant chose the second class (DB Helpers) as
more cohesive, which apparently corresponds to lower structural cohesion measurement.
However, the participant justified his or her choice by applying the conceptual cohesion
perception. He or she identified two different concerns in Main Config2 class but did not
identify additional concerns in DB Helpers. This scenario also had one participant who
checked “I don’t know”. So, there are seven remaining responses. Analyzing the coded
explanations of them, five used the conceptual cohesion perception, three mentioned class
suitability to split, and two used the structural cohesion reasoning. It is worth recalling
that we often found two or more coded topics in a single response.

Analyzing the third scenario, most of the participants (6 out of 9) considered both
classes with similar cohesion, apparently matching with structural cohesion measure-
ment. However, from these six, just two explained their choice based on the structural
cohesion perception. The others (4) justified their choice based on similarity of classes’
responsibilities, as they did not find additional concerns on the RelationSpouse class. The
participant who checked the RelationSpouse class as more cohesive actually did it mis-
takenly according to his/her explanation. He or she explicitly explained RelationSpouse
as less cohesive by using the conceptual cohesion perception and pointing additional con-
cerns on it. Besides, we confirmed that the two who checked RelationParentChild as more
cohesive, matching with conceptual cohesion measurement, indeed used the conceptual
cohesion perception.

On the association between developer’s ratings and previous famil-
iarity with cohesion. Conceptual cohesion perception was predominant even
among participants who declared themselves not familiar with cohesion in the
beginning of the survey. The overall conclusion for this sample subset follows
the conclusion for the entire sample presented in previous subsections. This in-
dicates that no matter whether or not developers have previous familiarity with
cohesion, if they are provided with a brief explanation of what cohesion means
(in different views – structural and conceptual), they apply the conceptual cohe-
sion perception. These results support the claim that conceptual cohesion seems
to be more intuitive and closer to the human-oriented view of cohesion.

4.3.3.3 Cohesion Ratings vs. Participants’ Experience Another possible fac-
tor that could influence the cohesion ratings is the participant’s previous experience in



64 HOW DEVELOPERS REASON ABOUT MODULE COHESION

programming. As shown in Figure 4.6, we asked participants the number of years they
have in programming (in general) as well as in programming on large software projects.

Following the same strategy for the previous analysis, we applied the Fisher exact
test. However, in this case we had to transform the years of programming experience
variable, which is continuous, into a categorical variable. Thus, we split the years of
programming experience data into the following categories: 5 years or less (<= 5), more
than 5 years but less than or equals 12 (> 5AND <= 12), and more than 12 years (> 12).
The first and third ranges represent the lower quartile and upper quartile, respectively
(see Figure 4.6), whereas the second category comprises the interquartile range. The null
hypothesis for the Fisher test was: There is no association between participant’s cohesion
ratings and participant experience in programming. As a result, we could not reject this
null hypothesis for any of the three scenarios, as we found the respective p-values 0.7,
0.8 and 0.5. Therefore, we turned to the coded explanation trying to find any possible
association between these two variables.

Based on participants’ programming experience, we split the participants from the
sample into two groups: the least experienced and the most experienced developers based
on the lower and upper quartiles of programming experience distribution (Figure 4.6).
The least experienced developers were 21 participants with 5 years or less of programming
experience. The most experienced ones were 20 developers with more than 12 years of
programming experience. Then we counted the occurrences of the coded topics in the
three scenarios as summarized in Table 4.1. The columns represent the three scenarios
for both groups of developers (≤ 5 and > 12 years of programming experience), and the
rows represent the coded topics from the participants’ explanation. Regardless of their
experience, most of the participants used the conceptual cohesion perception (see “Class
responsibilities.” row). Other topics were used but with very few occurrences compared
with Class responsibilities. Class internal structure, for example, had one occurrence on
each group of participants for each scenario of comparison.

Table 4.1 Programming experience and coded topics for cohesion ratings explanation
≤ 5 years > 12 years

Topics 1st 2nd 3rd 1st 2nd 3rd
Class responsibilities 17 17 17 14 17 17
Suitability to split 4 6 1 3 1 1
Reusability/modularization 1 1 2 4 0 0
Class internal structure 1 1 1 1 1 1
Readability/Comprehension 1 1 1 0 0 0
Complexity 1 0 0 0 0 0
Coupling 0 0 0 2 3 1

In summary, we could not reject the null hypothesis which states that there is no asso-
ciation between participant’s cohesion ratings and participant experience in programming,
by using Fisher exact test. However, we could observe that the class responsibilities topic
was mostly mentioned both by the least experienced and the most experienced develop-
ers. We made the same analysis considering participants’ experience in large software



4.4 THREATS TO VALIDITY 65

projects and the results are very similar.

On the association between developer’s ratings and experience. We can
conclude that conceptual cohesion represents the most common way of reasoning
about cohesion regardless of the developers’ experience on programming. This
is another important finding which supports the claim that conceptual cohesion
seems to be more intuitive and closer to the human-oriented view of cohesion.

4.4 THREATS TO VALIDITY

Construct validity. Threats to construct validity concern the question how we know we
are really measuring the attribute we want to measure. There are many ways to measure
participants’ ratings regarding class cohesion that may influence the results. We opted
to treat developers’ cohesion ratings as a categorical (nominal scale) variable based on a
class cohesion paired comparison, as in (Katzmarski; Koschke, 2012). This scale is less
powerful for applying statistical tests. Instead, we could have provided a set of classes
and asking participants to give a cohesion rate within a range (e.g. from 0 to 1) for each
class, as in (Etzkorn; Delugach, 2000), or we could have used a Likert scale (from 1 - very
low cohesion to 5 - very high cohesion). However, with our choice it is cognitively easier
for participants to make a decision comparing two concrete examples without needing to
give a numerical rate for each analyzed class. Although this is less powerful by means of
statistical tests, this helped us to achieve more reliable results by means of qualitative
analysis.

Another possible threat is related to the way we provided classes to participants’
analysis. Participants could only analyze the classes under study without having access
to other project documents. However, we selected classes relatively easy to understand.
Also, we shortly described the overall purpose of each class and their corresponding
context in the project. This is the choice for simplifying, as much as possible, participants’
analysis task, allowing them to focus on what is most important.

To measure cohesion, we used two metrics – LCOM5 and LCbC – which influenced
on two parts of our study: (i) in the class selection process for matching the measure-
ment scenarios (Section 4.2.2.1); and (ii) in the comparison between developers’ ratings
with cohesion measurement (Section 4.3.3). We explained the reasons for choosing these
two metrics in Section 4.2.2.2. However, we could have used other metrics, for instance,
LCOM3 or LCOM4 (Briand; Daly; Wüst, 1998) for structural cohesion, and C3 (Marcus;
Poshyvanyk; Ferenc, 2008) or MWE (Liu et al., 2009) for conceptual cohesion. They
would probably lead us to select other classes for the study in order to match the mea-
surement scenarios. Nonetheless, our main focus relied on capturing how developers
reason about class cohesion and how their opinions associate with two different ways of
measuring cohesion (structural and conceptual), regardless of the specific metrics applied.
Additionally, we claim that LCbC has a higher potential to measure conceptual cohesion
than C3 and MWE, as these two metrics compute cohesion based on topics extracted
from source code comments and identifiers by executing automated text mining tech-
niques. There is not enough evidence to rely on textually mined topics as proxies for



66 HOW DEVELOPERS REASON ABOUT MODULE COHESION

class responsibilities.

Internal validity. Read and interpret class code is a quite subjective task and there
are distinct confounding factors that may influence it. Thus, we carefully defined a set
of criteria to select classes to be analyzed by developers, as explained in Section 4.2.2.1.
Participants’ experience may also affect how the code is interpreted and how cohesion is
rated. We discussed the participants’ profile in Section 4.3.1, where we presented the set
of participants with varied but sufficient experience to analyze code and rate cohesion.
Also, the varied participants’ experience was considered positive to enable cross analysis
between research questions and experience factors such as years of programming and
academic degree.

Conclusion validity. This comprises lack of statistical calculations or misuse of
statistical assumptions that leads to incorrect conclusions made by the researcher. This
study is predominantly qualitative and most of the analysis relies on discussion over
qualitative data (coded responses) and by using basic statistic description illustrated and
summarized in charts. Additionally, in Section 4.3.3.1 we used the Fleiss Kappa test,
which is a non-parametric statistical test, to quantitatively assess the level of agreement
among participants when rating cohesion. Then, we used the Fisher exact test (also
non-parametric) in two situations: (i) in Section 4.3.3.2 to find a possible association be-
tween participant’s previous familiarity with cohesion and participant’s cohesion ratings;
and in Section 4.3.3.3 to test the association between cohesion ratings and categorized
participant’s programming experience. In none of these two situations we could reject
the corresponding null hypotheses, which led us to rely on qualitative analysis.

External validity. The main question related to external validity is whether the re-
sults discussed here can be considered to other groups of developers and classes of other
systems. As discussed in Section 4.2.4, we applied convenience sampling instead of proba-
bilistic sampling, as most of state-of-the-art software engineering papers do (Katzmarski;
Koschke, 2012) (Bavota et al., 2013). However, our sample was not restricted to a group
of developers with specific characteristic. As explained in Section 4.3.1, the analysis of
the participants profile revealed an heterogeneous set of participants from nine countries
with varied experience in programming and academic degree. Additionally, we limited
this study to six Java classes from open source systems, mainly because we had to provide
source code of only a limited number of class pairs to be analyzed in a relatively short
amount of time. However, we excluded language features special to Java and the overall
content of each class could be written in other object-oriented programming language.

4.5 SUMMARY

Although cohesion measures have been addressed in several works during the last decades,
little is known about developers reasoning on module cohesion. The understanding of how
developers perceive cohesion is important to know how they reason about such important
quality attribute during software development and maintenance, as in most of the cases
software modules are built and maintained by humans. This work provides empirical
evidence on how developers perceive module cohesion and whether or not such perception
associates with conceptual cohesion and structural cohesion – two state-of-the-art ways



4.5 SUMMARY 67

of measuring cohesion.
The study involved a web-based survey with 80 participants from 9 countries and dif-

ferent levels of experience and academic degree. The survey comprised questions related
to: general perception of module cohesion; module cohesion pair-wise comparison and
rating; cohesion reasoning; and participant profile. We applied quantitative and mostly
qualitative analysis through developer’s responses. In summary, the results indicated
that most of the developers are familiar with cohesion and those who are not familiar
with cohesion are most likely the least experienced ones. Some developers use other pop-
ular concepts to explain cohesion such as “coupling” and “size” or more general concepts
such as “maintainability” and “reusability”. However, most of the developers perceive
cohesion in a conceptual manner, i.e., based on class responsibilities, thus associating
more with conceptual cohesion measurement. Moreover, this is the most common way of
reasoning about cohesion regardless of the developers’ experience on programming.

These results support the claim that conceptual cohesion seems to be more intuitive
and closer to the human-oriented view of cohesion observed on software developers. Al-
though structural cohesion measurement has been the most common way of measuring
cohesion both in academic works and in commercial industry-scale software tools, our
findings point out that conceptual cohesion measurement captures better the real notion
of cohesion as perceived by developers in contrast with the traditional structural cohesion
measurement. This result reinforces the need to improve knowledge and technology on
conceptual cohesion measurement.

Particularly, in the next chapter, we analyze how conceptual cohesion metrics perform
in the association with change-proneness in comparison with conventional structural co-
hesion metrics. We share Martin’s view (Martin, 2003) that a cohesive module should
be entirely focused on a single concern, because concerns are change drivers along each
module’s evolution history. Knowing which modules are more likely to change over time
can improve the process of developing and evolving new or existing software modules in
a given project by focusing attention on them.





Chapter

5
CONCEPTUAL COHESION AND

CHANGE-PRONENESS

The study presented in Chapter 3 showed that conceptual cohesion unveils an additional
dimension of cohesion measurement. This result was supported by a quantitative as-
sessment and explained by the underlying interpretation of cohesion which is based on
the abstraction of concerns. It uses a different counting mechanism in comparison with
structural cohesion metrics. Those findings gave us scientific evidence to support fur-
ther investigations in order to understand how conceptual cohesion fits in comparison to
conventional structural cohesion metrics.

One possible way to improve our understanding on the applicability of conceptual
cohesion metrics is to assess their impact on software quality attributes. Software product
metrics such as coupling, size and cohesion are often empirically assessed in terms of
their impact on quality attributes such as fault-proneness, comprehension or maintenance
effort, and change-proneness (Basili; Briand; Melo, 1996). The intention is to understand
whether and to what extent a metric has the potential to be an indicator of a software
quality attribute.

Therefore, in our research context, there is a lack of evidence to understand the im-
pact of conceptual cohesion measurement on software quality attributes. We chose the
change-proneness quality attribute due to concept of cohesion. Change-proneness (Mad-
havji; Fernandez-ramil; Perry, 2006) refers to the degree to which a software module is
likely to change along its evolution history, whereas cohesion is the degree to which a
module is focused on a single concern of the software. Hence, we share Martin (2003)
hypothesis that the concerns a module implements may drive changes along the devel-
opment and maintenance life-cycle. Thus, a highly cohesive module should focus on a
single concern decreasing its likelihood to undergo changes, whereas modules addressing
several concerns (low cohesion) are more likely to undergo changes. According to this
view, concerns drive changes in modules’ evolution history. It is a reasonable hypothesis
as the more concerns a module addresses the more reasons it may have to change along
the history. Knowing which modules are more likely to change over time can improve the

69



70 CONCEPTUAL COHESION AND CHANGE-PRONENESS

process of developing and evolving new or existing software modules in a given project by
focusing attention on them. However, there is not enough empirical evidence to support
this hypothesis. In this context, our fourth research question remains unanswered:

RQ4. Whether and to what extent does conceptual cohesion associate to
change-proneness?

In addition, we also took the opportunity to compare the association between concep-
tual cohesion and change-proneness with the corresponding association between structural
cohesion and change-proneness. It also supports us to understand whether the abstraction
of concerns of conceptual cohesion metrics make it significantly different from structural
cohesion metrics (RQ1).

Therefore, this chapter presents an empirical study to investigate the contribution
of conceptual cohesion to the association between cohesion and change-proneness. We
carried out an empirical assessment where we statistically analyzed whether and to
what extent this association holds in comparison to other structural cohesion metrics.
How strong is the correlation between conceptual cohesion metrics and module change-
proneness? How do conceptual cohesion metrics perform in this correlation in comparison
with structural cohesion metrics? Do conceptual cohesion metrics contribute to predict
changes in modules when other structural cohesion metrics are also considered? This
work supports the investigation about the association between conceptual cohesion and
an external quality attribute, like change-proneness, in the context of industry-scale long-
lived systems.

The remainder of this chapter is organized as follows: Section 5.1 explains study
settings; Section 5.2 presents and discuss the results; in Section 5.3 the study threats to
validity are then described; Section 5.4 discusses related work; and Section 5.5 presents
the conclusion.

5.1 STUDY SETTINGS

The procedures for subject systems selection, concern mapping and cohesion measure-
ment are the same from the previous study presented in Chapter 3. Table 5.1 presents
additional information in the last three rows regarding the history analyzed for change
counting. All the analyzed history totalized 30,248 revisions. The shortest period was
51 months (jEdit) and the longest period was 94 months (Rhino). Those periods were
formed from the day when the selected release was delivered up to the day we made the
change counting procedure (described in Section 5.1.1). So, for example, in JEdit system,
the selected release (4.3.2) was delivered in May 2010, then we analyzed from this month
up to July 2014, when we executed this study phase for all systems.

In next section we describe how the changes were counted for each module of the
subject systems. Then, Section 5.1.2 presents the statistical methods applied for the
analysis.



5.1 STUDY SETTINGS 71

Table 5.1 Systems and analyzed change-set
JFreeChart Rhino jEdit Tomcat Findbugs Freecol

Release 1.0.6
(June/2007)

1.6R5
(Nov/2006)

4.3.2
(May/2010)

6.0.26
(Mar/2010)

1.3.5
(Sep/2008)

0.84
(Aug/2009)

Description Chart li-
brary for
the Java
platform

Mozilla’s
Javascript
interpreter

Text editor
for pro-
grammers

web server
container
for the
Java plat-
form

Static anal-
ysis tool to
find bugs in
programs

A
civilization-
like game

LOC 76,059 59,182 109,516 161,735 98,914 75,902
# of Java
files

514 156 531 1060 1041 431

Repository SVN
(Source-
Forge)

Git
(Mozilla)

SVN
(Source-
Forge)

SVN
(Apache)

SVN
(Source-
Forge)

SVN
(Source-
Forge)

# of revi-
sions

3,271 2,765 5,851 8,941 4,612 4,808

# of
months
analyzed

86 94 51 53 71 60

5.1.1 Change Counting

This study involves the Change Count (CC) metric computation, which quantifies the
amount of changes each module suffered along its evolution history. This metric counts
the number of revisions on which each module was changed. For instance, if a module m
was changed in 10 revisions throughout the analyzed period of time then CC(m) = 10.
We considered each commit in the source code repository as a revision. It is important
to highlight that each commit in the used source code repository involves all the Java
files changed in the revision. Table 5.1 presents the number of revisions and number of
months we took into account for each system. We considered the period of time from
the selected releases until July 2014 (the month when the data collection was finished).
We used CC as the dependent variable when analyzing the association of the cohesion
metrics and change-proneness.

After the change counting step, we merged all the measurement results in a single file,
for each system, to be used as input in the R statistical tool1. All the measurements are
available at (Silva, 2015a). In summary, we gathered values for eight metrics: five struc-
tural cohesion metrics, two conceptual cohesion metrics, and the change count metric.
All these metrics were computed per module. Given the 3,733 Java files, this totalized
about 29,000 data points.

1Available at http://http://www.r-project.org/



72 CONCEPTUAL COHESION AND CHANGE-PRONENESS

5.1.2 Method of Analysis

The study research question is concerned with investigating whether and at what extent
conceptual cohesion associates to change-proneness. Additionally, we address how this
association fits in comparison with conventional structural cohesion metrics. Therefore,
we first applied a correlation analysis to evaluate how strong is the correlation between
conceptual cohesion metrics and module change count. Also, we compare the performance
of such correlation with the performance of conventional structural cohesion metrics.
For this purpose, we applied the Spearman correlation method (Cohen, 1988), which
is a non-parametric method, as the data distributions were non-normal. We made the
distributions available at (Silva, 2015a).

In addition to the correlation analysis we used a machine learning technique, called
Regression Tree (Breiman et al., 1984), to support us on finding evidence about the as-
sociation between conceptual cohesion and change-proneness. With Regression Trees we
built tree-based models to coidentify highly-changed modules and those with the high-
est cohesion measurement values. This method attempts to establish predictive relations
through recursive partitioning. In tree-based models, results are represented in tree struc-
tures. Each node in a tree represents a set of data points which is recursively partitioned
into smaller subsets, as illustrated in Figure 5.1. The data used in such models consist
of multiple attributes. One attribute should be identified as the response variable, which
is change count in our case; and one or more other attributes identified as predictor
variables, which are the conceptual and structural cohesion measurements in this study.

Figure 5.1 illustrates an example of a regression tree for JFreeChart system. Each
node represents a group of modules, where we show: (i) the cutoff variable, which is the
cohesion metric found by the regression algorithm that best cuts the sample to achieve
the maximum deviance reduction in change count; (ii) the change count average of the
modules within a group; and (iii) the group size in terms of number of modules as well
as the corresponding percentage with respect to the total number of modules analyzed.

The regression algorithm starts with the complete data set and recursively partitions
it into two smaller subsets. In the example, LCOM2 was selected by the algorithm to
partition the modules with cutoff value of 562. Thus, modules with LCOM2 less than
562 are placed in the left-hand side partition, which groups 95% of JFreeChart modules
having CC value of 6.9 in average. Whereas, modules with LCOM2 equals or greater
than 562 are then placed in the right-hand side partition with CC = 24 in average and
thus representing the top 5% most changed modules in average. The left-hand side group
of 490 modules is then partitioned by using LCbC XScan metric following the same
algorithm. For each new partition the regression tree algorithm evaluates whether or not
it has to partition again. Each partitioning performed by the algorithm finds the most
homogeneous two groups in terms of change count because, for each group, the difference
between the average change count and the actual change counts for individual modules
was minimized.

With the complete tree built, it is possible to see which cohesion metrics ended up
in the regression model as change count predictors. Following the example, LCOM2,
LCbC XScan, LCOM4 and TCC were the selected response metrics for predicting change



5.2 RESULTS AND DISCUSSION 73

Figure 5.1 An example of a regression tree having CC as response variable

count. If one needs to predict the 30% of the JFreeChart modules that most changed, the
following reasoning applies over the resulting tree: first, select the modules with LCOM2
equals or greater than 562 as it represents the 5% most changed modules; second, with
the remaining 95%, follow the path of LCOM2 < 562 and LCbC XScan >= 2.5 to
obtain the 26% most changed modules besides the other 5%.

The R scripts for correlation tests as well as for generating and plotting regression
trees are available in Appendix F.

5.2 RESULTS AND DISCUSSION

This section focus on presenting results and analysis after applying correlation test and
regression tree in order to address the fourth research question. We also discuss typical
situations that might affect positively and negatively the association between conceptual
cohesion and change-proneness.

Correlation Analysis. We show the results for the correlation tests in Figure
5.2. Each cell shows the Spearman correlation coefficient between each cohesion metric
and change count for each system under study. In order to give a qualitative label for
the correlation coefficients, we follow Cohen’s range (Cohen, 1988), which suggests that a



74 CONCEPTUAL COHESION AND CHANGE-PRONENESS

coefficient from 0 to 0.30 is a weak correlation; from 0.30 to 0.50 is a moderate correlation;
and higher than 0.50 is a strong correlation. Some correlation tests did not achieve a
significance level, having a p-value higher than 0.05, thus we represented such cases with
a “*” character in Figure 5.2.

Figure 5.2 Correlation between each cohesion metric and change count

Figure 5.2 also highlights the highest coefficients in each system. This shows that, on
average, LCbC XScan and LCOM2 are the most correlated with change count. LCbC
had strong correlation in JFreeChart, whereas LCOM2 had strong correlation in Rhino.
In jEdit all metrics had weak correlation. In Tomcat, LCOM2, LCOM3 and LCbC had
almost the same coefficient achieving a moderate correlation. In Findbugs, LCOM2 had
a moderate correlation. In Freecol, LCOM2 and LCbC had almost the same correlation
at moderate level. Some metrics such as MWE and TCC had a weak correlation with
change count in all systems.

In summary, although LCbC was not always the most correlated with change count,
this metric together with LCOM2 varied between the most and the second most corre-
lated in five of the six systems. When comparing the two conceptual cohesion metrics
LCbC outperformed MWE. Overall, these results suggest that it is possible to have a con-
ceptual cohesion metric moderately or strongly associated to change-proneness. Among
the metrics we analyzed, LCbC and LCOM2 are the most promising indicators of change-
proneness from the cohesion perspective.

Regression Tree Analysis. Besides the regression tree illustrated in Figure 5.1 we
show the generated trees for the other systems in Appendix G. They follow the same
drawing pattern, having each node showing: the cutoff metric and corresponding cutoff
value; average change count of the corresponding group; and absolute and relative group
size.

Overall, LCOM2 was the only metric present in all regression trees. LCbC XScan
was present in Tomcat, Freecol and JFreeChart, while MWE was present in Tomcat,
Findbugs and Freecol.

It is out of scope of this study the search for the best prediction model for change-
proneness. Differently, here we aim at analyzing if conceptual cohesion metrics con-
tributed to the final regression model when using only cohesion metrics as predictor



5.2 RESULTS AND DISCUSSION 75

variables. Certainly the best prediction models would include other metrics for different
properties such as coupling and size. However, the inclusion of such metrics in this study
would shift the focus from comparing cohesion metrics.

Therefore, we can conclude that it is possible to have conceptual cohesion met-
rics contributing to predict change-prone modules together with other cohesion metrics.
LCbC XScan and MWE were present in four out of six systems analyzed. This result
confirms correlation analysis and gives us statistical evidence that there is an association
between conceptual cohesion and change-proneness and that such association, for some
analyzed systems, performs equal or better than the association of structural cohesion
metrics and change count.

Additionally, in the context of our study we tried to understand possible cases that
might have increased and decreased the association strength between conceptual cohesion
metrics and change-proneness. Therefore, we went deep into our data set to analyze
some classes and their evolution history in order to better understand typical cases where
conceptual cohesion metrics scored and failed in the association with change count.

Success depends upon the concern mapping . We used the same subject sys-
tems and cohesion data set from the previous study (Chapter 3). Therefore, the same
constraint related to concern mapping applies to the current study. In general, concep-
tual cohesion succeeds on indicating module cohesion and on its association to change-
proneness whenever the underlying concern mapping succeeded on identifying concerns
in modules. Therefore, besides other factors that may influence on the potential of con-
ceptual cohesion as a change-proneness indicator, we could observe that concern mapping
accuracy is determinant. This supports us on investing effort to investigate the impact
of varying concern mapping strategies for conceptual cohesion measurement other than
analyzing other possible factors.

For instance, the StandardManager class in Tomcat is responsible for managing the
pool of sessions in Tomcat web container, having 8 concerns identified by XScan. The
eight concerns place it at the Top 3% least cohesive class according to LCbC measurement.
This class changed 33 times, thus ranked at the Top 5% most changed classes in Tomcat.
We manually analyzed the change history of this class and found that indeed many
changes were related to the eight concerns identified by XScan and computed by LCbC.
Turning to structural cohesion, we take LCOM2 metric to represent this group of cohesion
metrics as it had the best correlation with change count, in general. The StandardManager
class had LCOM2 = 158, which places it at Top 13% least cohesive class according to
this metric. As a consequence, in such cases LCbC is closer to change count, which make
it scores better than LCOM2 in such comparative association.

We also identified a similar situation in classes of all other analyzed systems. For
example, the ReportColonyPanel in Freecol, according to LCbC, was at Top 10% least
cohesive class, while according to MWE, it was at Top 14% least cohesive class. This
class changed 62 times, then placed at the Top 10% most changed class. We manually
identified several changes related to the concerns implemented by this class. According to
LCOM2 it was at Top 31% least cohesive class. As a result, it is another case that explains
typical situations where conceptual cohesion metrics worked out as better indicators of
change-proneness.



76 CONCEPTUAL COHESION AND CHANGE-PRONENESS

However, as also reported in Chapter 3, we found some classes where the underlying
concern mapping of conceptual cohesion metrics failed to identify concerns. We observed
classes with few or no concerns mapped by the underlying mapping strategy while we
manually identified concerns that should have been computed. In addition, in some
situations where conceptual cohesion failed on computing the classes actual concerns,
structural cohesion performed well on identifying lack of cohesion and scoring on the
association with change-proneness.

For example, the JEditBuffer class represents the content of an open text file in jEdit
user interface. This class had the 4th highest LCOM2 value as well as the 6th most
changed class in the project. According to these metrics, JEditBuffer is at the Top 1%
least cohesive rank and among the Top 1% most changed classes. However, according
to conceptual cohesion metrics, it is highly cohesive. LCbC was 0, as XScan was not
able to identify important concerns implemented by this class, neither the main concern
of text editing. Also, MWE ranked this class at Top 60% least cohesive classes. This
is a typical situation found in all systems we analyzed which contributed to minimize
the association between conceptual cohesion and change-proneness, whereas it scored in
favor of structural cohesion metrics. Although this observed phenomenon hindered the
performance of conceptual cohesion in our study, we still found substantial results to
support our hypothesis and to conclude that conceptual cohesion is worth to be further
investigated as a promising way of cohesion measurement.

5.3 THREATS TO VALIDITY

This current study used the same subject systems and data set from the study in Chapter
3. Therefore, the threats to validity discussed in Section 3.3 can also be applied here. In
addition, we discuss two specific threats related to internal validity.

When computing Change Count, we did not filter the revisions based on the type
of changes. We simply considered every add, delete and modify operations as changes
regardless whatever motivated them. So, we took into account changes of any type
such as bug fixing, inclusion of new features, preventive maintenance or refactoring.
As a consequence, we did not eliminate the noise represented by non-essential changes
throughout the software history we analyzed. For example, moving operations among
repository folders or updating comments for license changing. To overcome this threat
we adopted two requirements on selecting the six analyzed systems: (i) we searched the
systems website to find intermediary releases reporting a reasonable number of changes
in their later releases; and (ii) a candidate system release should have a repository with
a large change scenario ahead in their commit history. Table 6.1 shows that we analyzed
commits along 51 months (jEdit) to 94 (Rhino). Therefore, even in the presence of noise
the change sets were predominantly composed by essential changes.

Another issue is regarding the regression tree analysis. We are aware that cohesion
is not the only internal quality attribute that affects module change-proneness. To build
complete models for change-proneness prediction other attributes have to be considered.
However, this is out of scope of this study as our purpose was to investigate whether
there is an association between conceptual cohesion and change-proneness. Therefore,



5.4 RELATED WORK 77

we applied a prediction modeling technique in order to evaluate how conceptual cohe-
sion metrics fit together with structural cohesion metrics as explanatory variables having
change count as response variable. We were not concerned on finding the best predictors
for changes in modules. Instead, we were concerned on analyzing whether conceptual co-
hesion metrics contribute to predict changes in modules when structural cohesion metrics
are also considered in the same conditions.

5.4 RELATED WORK

Several researchers have investigated the association between one or more cohesion met-
rics and quality attributes, such as fault-proneness, changeability or change-proneness.
In this section we briefly present how recent work have addressed this issue, what are
their findings, and how our investigation fit in this scenario.

Dallal and Briand (2012) assessed the relationship between structural cohesion metrics
and fault-proneness. They included their new cohesion metric called Lack of Similarity-
based Class Cohesion (LSCC), which computes cohesion based on the interaction degree
among methods within a class. Their results suggest that class quality, measured in terms
of fault occurrences, can be more accurately explained by cohesion metrics that account
for the degree of interaction between pairs of methods, such as LSCC. Their study did
not include conceptual cohesion metrics.

Kabaile, Keller and Lustman (2001) studied the relationship between two structural
cohesion metrics (LCC and LCOM) and changeability. Changeability is perceived as a
quality indicator of the capacity of a software module to absorb changes. Their study
involved three object-oriented systems in C++, and their results did not point any re-
lationship between those two metrics and changeability that justified the application of
this metric as changeability indicator.

Chowdhury and Zulkernine (2010) studied the relation of several structural metrics for
OO systems, including LCOM2, with software vulnerabilities. They found that LCOM2
moderately correlated to vulnerabilities, and they suggest that this metric can be used,
together with complexity metrics, as early indicators of vulnerabilities in software.

Koru and Tian (2005) identified and compared modules that change most and modules
with the highest structural measurement values of several properties in two large-scale
open-source projects. Among other metrics, they included six for structural cohesion.
They did not find a strong match between top modules in change count rankings and top
modules in rankings of structural metrics, including cohesion. Koru and Liu (Koru; Liu,
2007) also conducted a study over the same two projects to characterize change-prone
classes, but only one cohesion metric (LCOM3) was considered in this study. They found
that cohesion appeared in the regression models as secondary feature.

Romano and Pinzger (2011) investigated the correlation between change-proneness
and cohesion for Java interfaces. They found that the Interface Usage Cohesion (IUC)
metric, also proposed in that work, exhibited the strongest correlation with source code
changes. They also proved that IUC is an adequate metric to compute prediction models,
based on machine learning algorithms, for classifying change-prone Java interfaces. Their
study did not address other kinds of modules than interfaces.



78 CONCEPTUAL COHESION AND CHANGE-PRONENESS

Finally, Lu et al. (2012) also assessed the ability of OO metrics to predict change-
proneness. Their study included 18 structural cohesion metrics. They found that cohesion
metrics generally have a lower predictive ability compared to size metrics.

The metrics named C3 (Marcus; Poshyvanyk; Ferenc, 2008), CLCOM5 (Ujhazi et al.,
2010) and MWE (Liu et al., 2009), that we presented in Chapter 2, were empirically
evaluated as fault-proneness indicators together with structural cohesion metrics. In
summary, their results indicate that they can be used together with structural cohesion
metrics to improve the prediction of faults in classes.

In summary, although some studies have investigated the relationship between struc-
tural cohesion metrics and external quality attributes, to the best of our knowledge there
is no work that has studied the relationship between conceptual cohesion metrics and
change-proneness. Actually, as far as we know, (Marcus; Poshyvanyk; Ferenc, 2008),
(Ujhazi et al., 2010) and (Liu et al., 2009) are the only works that empirically stud-
ied the association between conceptual cohesion metrics and a quality attribute such as
fault-proneness. However, the authors observed that these metrics strongly depend on
comments and naming conventions applied in the source code. When they are miss-
ing, these metrics do not perform well. Moreover, code refactoring for applying naming
conventions and comments is not a trivial task and may not be cost effective.

5.5 SUMMARY

This study is a continuing work on the quest for providing empirical evidence about the
contribution of conceptual cohesion metrics. Previous study presented in Chapter 3 gives
statistical basis for showing that conceptual cohesion is an significant additional way
of cohesion measurement. In other words, conceptual cohesion represents an additional
dimension of cohesion measurement which is not captured by conventional structural
metrics, and that it is worth continuing research effort. The study presented in this
chapter complements the previous one by showing evidence that such additional dimen-
sion captured by conceptual cohesion metrics adds to structural cohesion when they are
considered together for predicting changes in modules. Our correlation analysis also con-
firmed that conceptual cohesion, represented by LCbC, performed well as an indicator
of module change-proneness when compared to the performance of structural cohesion
metrics. Additionally, we highlighted and discussed typical situations where conceptual
cohesion metrics worked well or not in the association with change-proneness. Regard-
less other factors that may influence, this basically depends on how well the underlying
concern mapping strategy identifies concerns addressed by the analyzed classes.

In summary, the results have shown that conceptual cohesion can leverage the asso-
ciation between cohesion and change-proneness. This reinforces conceptual cohesion as
an additional way of cohesion measurement and that it is a promising approach that is
worth to be further considered in software measurement research and practice. As we
empirically observed in previous and current chapters that the success of conceptual co-
hesion strongly depends on concern mapping, in next chapter we investigate the impact
of different concern mapping strategies on conceptual cohesion measurement.



Chapter

6
THE IMPACT OF DIFFERENT CONCERN MAPPING

STRATEGIES ON CONCEPTUAL COHESION

Several researchers have attempted to provide an objective and effective way to measure
module cohesion (Briand; Daly; Wüst, 1998). Most of them rely on structural informa-
tion extracted from the source code, as we explain in Chapter 2. In contrast, there is
an alternative group of recently proposed cohesion metrics which attempts to measure
module cohesion by extracting information about concerns addressed by the modules
(Marcus; Poshyvanyk, 2005) (Liu et al., 2009) (Silva et al., 2012). Also, we describe
them in Chapter 2. In Chapter 3 we provide empirical evidence that metrics in this
group have an additional dimension of cohesion measurement that is not captured by
conventional structural cohesion metrics. Moreover, conceptual cohesion is closer to how
developers reason about module cohesion (Chapter 4).

However, measuring conceptual cohesion is not straightforward as it is difficult to
capture what concerns a module realizes. We summarized concern mapping techniques in
Section 2.2.3. In addition, in previous chapter we discussed some problems related to the
concern mappings we used for measuring conceptual cohesion through LCbC and MWE.
We analyzed some modules and could find that the underlying techniques for concern
mapping might have decreased the correlation degree between conceptual cohesion and
change-proneness. However, at that point we did not have enough evidence to support
this observation. Moreover, we did not know how and at what extent different strategies
for concern mapping affect conceptual cohesion measurement and its impact on change-
proneness.

Therefore, the main goal of this study is to provide empirical evidence of whether, how
and at what extent different concern mapping strategies impact on conceptual cohesion
measurement. In addition, we also analyze whether differences on concern mapping
strategies impact on the association between conceptual cohesion and change-proneness.
To achieve this goal we stated the fifth, sixth and seventh questions of our research scope
also presented in Chapter 1:

79



80THE IMPACT OF DIFFERENT CONCERN MAPPING STRATEGIES ON CONCEPTUAL COHESION

� RQ5: Do different concern mapping strategies impact on conceptual cohesion mea-
surement?

� RQ6: If such impact is significant, can we explain how different is conceptual cohe-
sion over different mapping strategies?

� RQ7: Does it influence on the correlation between conceptual cohesion and change-
proneness?

We carried out an empirical study where we investigated how conceptual cohesion
varied over three different concern mapping strategies having six systems under analy-
sis. In summary, we could provide empirical evidence that: (i) different concern mapping
strategies significantly impact on conceptual cohesion measurement; (ii) manual mapping
increases the correlation between conceptual cohesion and change-proneness in contrast
to other two automatic strategies we used; (iii) as manual mapping strategy is subjec-
tive it can drive different cohesion distributions depending on what auxiliary artifacts
developers use to carry out mappings; (iv) although the manual strategy outperformed
the automatic ones, it is also possible to have automatic mappings driving moderate to
strong correlations between conceptual cohesion and change-proneness; and (v) one of the
two automatic strategies we analyzed should be considered when manual mapping is not
possible to be applied. Additionally, as another contribution of this work, we provide to
the research community a manual concern mapping carried out by us over jEdit system
and a description about our manual mapping process. The purpose is to make it available
for other studies as it is not easy to find manual mappings intended to cover as much as
possible the system concerns and modules.

The remainder of this chapter is organized as follows: Section 6.1 describes the study
design; Section 6.2 presents results and findings; Section 6.3 discusses threats to validity;
Section 6.4 describes related work; and Section 6.5 presents the conclusion and future
work.

6.1 STUDY SETTINGS

The selection of a conceptual cohesion metric was the first step of this study. C3 (Con-
ceptual Cohesion of Classes) (Marcus; Poshyvanyk; Ferenc, 2008), CLCOM5 (Conceptual
Lack of Cohesion of Methods) (Ujhazi et al., 2010), MWE (Maximal Weighted Entropy)
(Liu et al., 2009) and LCbC (Lack of Concern-based Cohesion) (Silva et al., 2012) are
the most recent conceptual cohesion metrics available in literature (see also Chapter 2).
On one hand, C3, CLCOM5 and MWE directly depend upon text mining techniques to
identify concerns in source code and then compute cohesion. On the other hand, for the
same purpose, LCbC is not dependent upon a specific technique. LCbC quantifies cohe-
sion of a given module in terms of the number of concerns addressed by it. It just counts
the number of concerns identified in each module. Therefore, it is possible to compute
LCbC by having any concern mapping strategy applied beforehand. As other conceptual
cohesion metrics strongly depend upon a specific concern mapping technique, this study
uses LCbC as the representative metric for conceptual cohesion.



6.1 STUDY SETTINGS 81

Then, the next step was the selection of concern mapping strategies to be applied.
We considered the following three: (i) manual mapping based on source code analysis
made by developers who do not work in the development of the target system; (ii) XScan
(Nguyen et al., 2011) mapping strategy, which is an automatic hybrid approach mixing
static analysis using text mining heuristics and structural dependency analysis; and, (iii)
Topic-based automatic mapping (Savage et al., 2010) through LDA (Latent Dirichlet
Allocation), which is a text mining technique for extracting topics from source code
comments and identifiers.

Regarding the target systems, we considered the same from previous studies presented
in Chapters 3 and Chapter 5. In order to make the reading of this chapter easier we repeat
in the next subsection a brief description about the analyzed systems. If the reader
is familiarized with them we suggest skip next section. After generating the concern
mappings for all systems under study we then measured LCbC according to each mapping
strategy. Then, the next step was the change count measurement for each module of all
systems. Section 6.1.4 explains how we carried out the change count measurement in
order to address the seventh research question. It is the same procedure presented in the
previous chapter where we also counted changes in modules. Thereby, Section 6.1.4 can
be skipped if the reader is aware of how we measured changes.

6.1.1 Analyzed Systems

Table 6.1 summarizes the systems we used in this study. Firstly, we selected Rhino 1.6R51

and jEdit 4.3.22. Rhino is an open source javascript engine written in Java by the Mozilla
Developer Network. It is typically embedded into Java applications to provide scripting
to end users, and it is the default Java scripting engine embedded in the official Oracle’s
Java Development kit. Rhino has been analyzed in different studies recently (Eaddy et
al., 2008b) (Dit et al., 2011) (Hill; Rao; Kak, 2012), and Mozilla Developer Network has
been maintaining Rhino over the past 15 years involving thousands of commits so far.

jEdit is a long-lived open source text editor for programmers written in java, having
thousands of downloads, and highly rated at SourceForge repository. Its commit history
is also rich, which reveals an intensive development activity, involving more than 23.600
commits so far. Similar to Rhino, jEdit has been studied in many other works related
to software metrics, repository mining and concern mapping (Falleri et al., 2011) (Dit
et al., 2011) (Rysselberghe; Demeyer, 2007). As part of this work, we carried out a
manual concern mapping on jEdit code as described in Section 6.1.3. Besides Rhino and
jEdit, we did not find any other available system with a concern mapping manually done
and having a rich change-set, in order to enable us measuring class change count and
addressing the seventh research question.

Additionally, we applied two automatic concern mapping strategies (see Section 6.1.2)
to Rhino, jEdit and other four systems in widespread use: Tomcat 6.0.263, JFreeChart

1https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
2http://jedit.org/
3http://tomcat.apache.org/



82THE IMPACT OF DIFFERENT CONCERN MAPPING STRATEGIES ON CONCEPTUAL COHESION

1.0.64, Findbugs 1.3.55 and Freecol 0.846. Tomcat is one of the most traditional and
reliable open source Java web containers available with more than 15 years of active
development so far. JFreeChart is another 15 year project and the most widely used
open source chart library for Java. Findbugs is a static analysis tool written in Java
to find bug patterns in bytecode, and has been used by many major companies such as
Google. Freecol is an open source civilization-like game written in Java with more than
12 years of active development and also highly rated at SourceForge.

As the automatic mapping strategies require less effort we could analyze four more
systems besides Rhino and jEdit in order to enrich our data-set and make it more het-
erogeneous. Table 6.1 summarizes the analyzed systems including the release ID, system
size in terms of lines of code and also information related to the change-set: repository,
number of revisions and months analyzed.

Table 6.1 Systems and change-set analyzed

Rhino jEdit JFreeChart Findbugs Tomcat Freecol
Release 1.6R5

(Nov/2006)
4.3.2
(May/2010)

1.0.6
(June/2007)

1.3.5
(Sep/2008)

6.0.26
(Mar/2010)

0.84
(Aug/2009)

Description Mozilla’s
Javascript
inter-
preter

Text ed-
itor for
program-
mers

Chart li-
brary for
the Java
platform

Static anal-
ysis tool to
find bugs in
programs

web server
container
for the Java
platform

A
civilization-
like game

LOC 59,182 109,446 76,059 98,914 161,735 75,902
Repository Git

(Mozilla)
SVN
(Source-
Forge)

SVN
(Source-
Forge)

SVN (Source-
Forge)

SVN
(Apache)

SVN
(Source-
Forge)

# of revi-
sions

2,765 5,851 3,271 4,612 8,941 4,808

# of
months
analyzed

94 51 86 71 53 60

6.1.2 Automatic Mapping Strategies

XScan Mapping: The XScan (Nguyen et al., 2011) automatic mapping strategy con-
sists of a tool and a mix of static dependency analysis methods and textual analysis of
code similarities. It was also applied in our previous studies presented in Chapters 3 and
5 for measuring LCbC. To make this chapter self-contained we briefly repeat here how
XScan works.

The goal of XScan is to collect groups of methods that participate together in the
realization of a concern. First, XScan searches for pairs of methods as candidates to
be part of a concern. Two methods will be part of a concern if they satisfy at least

4http://www.jfree.org/jfreechart/
5http://findbugs.sourceforge.net/
6http://www.freecol.org/



6.1 STUDY SETTINGS 83

one of the following conditions: (i) they have similar portions of code in their body; (ii)
they override or implement the same ancestor method; or (iii) they have similar names.
Then, after all possible pair of methods are detected, XScan builds a graph in which
nodes represent the methods and edges represent methods relations. Each connected
component of that graph might be reported as a concern. Therefore, this is an approach
that puts together different techniques which can heuristically suggest groups of methods
as concerns realizations mined from the source code.

The XScan solution was proposed recently and the authors reported results indicating
more than 90% of accuracy for finding concerns which are addressed by several modules
(Nguyen et al., 2011). We made available at the companion website (Silva, 2015b) the
complete XScan output with the concern mappings. This output shows a list of method
groups each one realizing a concern. Also, at the website it is possible to download our
XScan extension for computing LCbC and generating a csv file.

Topic-based Mapping: Also, for Topic-based mapping we used the same tool (Top-
icXP) and text mining technique (LDA) applied in previous studies explained in Chapters
3 and 5. LDA (Latent Dirichlet Allocation) (Blei; Ng; Jordan, 2003) is a generative prob-
abilistic model for collections of discrete data such as text corpora. In our context LDA is
used to automatically discover a set of topics within a corpus. A corpus if formed by a set
of documents. Each document is expressed as a probability distribution of topics. Each
topic is itself a probability distribution of words that co-occur frequently in a corpus of
text. Words can belong to multiple topics, while documents can contain multiple topics.

LDA require a set of input parameters for its execution. We used the same parame-
ters explained in 3. For more details about how we executed LDA topic modeling, refer
to Section 3.1.2. However, the difference in this study is that we took the Topic-based
mapping generated by TopicXP and measured LCbC instead of measuring MWE. There-
fore, for each class we counted the number of topics assigned to them. The result of this
counting for each class is their corresponding LCbC value.

6.1.3 Manual Mapping Strategy

We applied the strategy of manually mapping concerns to source code, besides the two
automatic strategies presented in previous sections. The main reason we used man-
ual mapping is the opportunity to contrast concern mappings carried out by automatic
strategies with the ones made by software developers. This would provide a crisp notion
about their differences on conceptual cohesion measurement and consequent impact on
change-proneness.

For example, one main difference between automatic and manual mappings is that
in automatic mappings there is not a predefined list of concerns to be searched by un-
derlying techniques, while in manual mappings developers may have in advance a list of
possible concerns extracted from other artifacts. Therefore, concerns identified by auto-
matic mapping strategies may not exactly represent the ones that developers perceive as
concerns addressed by the system. Developers may have other information in addition
to the source code text.

The manual mappings were based on the Prune Dependency Rule proposed by Eaddy



84THE IMPACT OF DIFFERENT CONCERN MAPPING STRATEGIES ON CONCEPTUAL COHESION

et al. (2008b), which states that “a program element is relevant to a concern if it should
be removed, or otherwise altered, when the concern is pruned”. Developers carried out the
concern mapping task by systematically inspecting the source and deciding if the prune
dependency rule applies to any of the concerns. In some cases, this decision is trivial,
e.g., any method named “saveFile” has a prune dependency on the “file saving” concern.
The task is highly dependent on how well the developers understand code under analysis.
To aid in code comprehension and to decide what concerns to find, developers relied on
other project artifacts such as user guides and test cases, and on basic IDE features such
as code navigation and search tools.

We applied the manual mapping strategy for Rhino and jEdit. Rhino’s manual map-
ping was carried out by other researchers and software developers in a different study
(Eaddy et al., 2008b), and it has been also used in other works (Dit et al., 2011) (Hill;
Rao; Kak, 2012). Rhino is a Javascript interpreter which follows the Ecmascript standard.
Therefore, developers who performed Rhino’s manual mapping followed the Ecmascript
standard specification. As a result, every normative section of the specification was con-
sidered as concerns to be mapped in source code. To persist the association between
code elements and the concerns they used the ConcernTagger tool (Eaddy et al., 2008b).
This tool stores in a embedded database every mapping relation between a code ele-
ment (such as methods, fields or the whole class) and a named concern. In addition, we
extended ConcernTagger to compute and report LCbC measurement. The companion
website (Silva, 2015b) includes links for the Rhino concern mapping and the extended
version of ConcernTagger.

For jEdit, we did all the manual concern mapping from scratch. Two researchers7,
co-authors of this study, carried out this activity which was basically divided in two
stages: (i) the initial stage when we invested effort on building an initial set of concerns;
and (ii) the mapping stage, when we iteratively and incrementally performed the concern
mapping until covering all the set of concerns. The set of concerns is a list of concern
names and their description. For example, Table 6.2 shows three concerns in jEdit set of
concerns. The complete set is available in Appendix I and on the web (Silva, 2015b).

Table 6.2 A sample of jEdit set of concerns
Concern name Description

Transferring text Set of commands and actions for moving and copying text
(including cut, paste and copy)

Rectangular Selection Selection of a text fragment by dragging the mouse with the
control key held down for creating a rectangular selection.

Syntax Highlighting It is the display of programming language tokens using differ-
ent fonts and colors.

During the mapping stage, we also evolved the initial set of concerns. So, as long as
we mapped concerns we also revisited the set of unmapped concerns to think and discuss

7Bruno Carreiro da Silva and Neylor Rocha.



6.1 STUDY SETTINGS 85

about what we were listing as candidate concerns. To build the set of concerns and have
more information about jEdit concerns we took as input the following resources:

� The features list available at http://www.jedit.org/, which is different from what
we mean as “set of concerns”. For instance, “tool bar” is not a feature considered
in the features list at jEdit website but it is an important concern implemented by
several classes and methods in the project.

� The user guide available at http://www.jedit.org/users-guide/.

� The source code itself - jEdit release 4.3.2, provided by the Qualitas.class corpus
(Terra et al., 2013).

� System execution. We ran the jEdit 4.3.2 to explore features which had not been
previously identified as candidates from analyzing other resources; and also to con-
firm what we had pointed as candidates.

� Domain knowledge. As programmers, we extensively use a variety of text and code
editors. jEdit has several features also found in many other text and code editors
we have used.

Overall, the mapping process involved forty seven concerns and two researchers. We
split the set of concerns in two parts where each one was assigned to a researcher. This
would be unfeasible in terms of time and cost having each researcher performing the
entire mapping followed by an additional merging and conflict resolution effort. As a
result, the mapping effort of the two researchers totaled 25 hours in several working
sessions interspersed with other activities during their working days. Along this process,
we studied the user guide many times to confirm or disconfirm candidate concerns or to
include new ones in the set of concerns to be mapped. The user guide was very useful
to clarify the concepts and behavior behind each jEdit concern. For example, we had
doubts about what a switching buffer means in jEdit. By reading the user guide we
could have clear explanation about it. In addition, at some points during the mapping
stage we executed jEdit to confirm or disconfirm candidate concerns, to include new ones
or to have a crisp notion about how a concern is manifested through the graphical user
interface.

To support the activity of storing the mapping between source code elements and
concerns we also used the ConcernTagger tool. The following steps summarize typical
mapping tasks we carried out:

1. Pick a concern from the set of unmapped concerns.

2. Register the time corresponding to the beginning of the mapping task to track the
time effort dedicated to map each concern.

3. Define a set of strings and regular expressions to query source code fragments
implementing the desired concern. For instance, “encoding; char*enc; enc*char;
charset” was the set of strings and regular expressions used for finding candidate
code elements to the character encoding concern implementation.



86THE IMPACT OF DIFFERENT CONCERN MAPPING STRATEGIES ON CONCEPTUAL COHESION

4. Run the Eclipse text search using the defined set of strings and regular expressions.

5. Navigate over the results of text-based search, check whether each occurrence in
searched results contributes to the concern implementation. If so, assign the code
fragment to the concern using ConcernTagger plug-in. As said before, to decide
if a code fragment implements a concern, we used the prune dependency rule. If
the occurrence corresponds to a statement within a method, we assign the enclosed
method, as ConcernTagger does not support concern assignment to statements.
Only attributes, methods and entire classes are supported. Additionally, if we
identify a method entirely contributing to a concern we then search for other oc-
currences calling such method, according to the prune dependency rule.

6. If the set of strings and regular expressions defined in step 3 is not entirely covered,
go to step 4. Otherwise, proceed to next step.

7. When there is no more code fragments to visit neither search queries to execute,
we register the finishing time as well as the strings used for searching concern
implementation occurrences.

8. During this activity, in case of any doubt regarding the procedure, source code or
any concern, write down a piece of text in corresponding documentation for further
discussion in next meeting. This is to make sure that doubts raised during the
mapping process could be discussed and double checked.

After every five concerns each researcher mapped we arranged a meeting to: (i) briefly
discuss the mapping activity; (ii) solve possible conflicts and doubts; (iii) and align what
each one had previously done such as time spent to map the five concerns, and size of each
mapped concern in terms of number of classes and methods; and (iv) communicate new
concerns discovered during the mapping activities that are candidates to be added to the
set of concerns. After covering all the set of unmapped concerns, we arranged a meeting
to make a final discussion about the whole process experience and lessons learned. The
complete jEdit concern mapping used in this study is available in our online resources
page (Silva, 2015b) to be opened with the ConcernTagger plug-in.

6.1.4 Change Count Measurement

Change count measurement is necessary to assess the correlation between change-proneness
and respective variations of conceptual cohesion measurement. Therefore this should sup-
port us on addressing the seventh research question. The same change count measurement
presented in previous study (Chapter 5) was used here, which consists of counting the
number of revisions each class undergone along its evolution. For instance, if a class m
was changed in 8 revisions throughout the analyzed period of time then CC(m) = 8. We
considered each commit in the source code repository as a revision. Table 6.1 presents
the number of revisions and the corresponding number of months we took into account
for each system. We considered the period of time from the selected releases until July
2014 (the month when we completed this study phase).



6.2 RESULTS AND ANALYSIS 87

6.2 RESULTS AND ANALYSIS

This section presents results regarding the application of three concern mapping strate-
gies involving six systems. Over the concern mapping results we analyzed how LCbC
varied (Section 6.2.1) and whether this variation impacted on the correlation with change-
proneness (Section 6.2.2). With this analysis we could point out several findings described
in this section.

6.2.1 Concern Mappings and LCbC Distributions

Table 6.3 shows some numbers related to the application of different concern mapping
strategies over the systems under analysis. For each system and each concern mapping
we show: the number of mapped concerns; the percentage of Java files with at least one
concern mapped; and four properties related to the corresponding LCbC distribution
(min and max values, median and standard deviation). For example, in Rhino, XScan
mapping identified 26 concerns touching 32% of the Java files. The minimum LCbC
over XScan mapping in Rhino was 0, the maximum was 11, the median was 0, and the
standard deviation was 2.4. This means that there are classes without concerns mapped
by XScan (classes with LCbC = 0) and the highest number of concerns that XScan
mapped to a class in Rhino was 11 (classes with LCbC = 11). The “N/A” cells refer to
the systems we did not have a corresponding manual mapping. As explained in Section
6.1, we had the manual mapping strategy only for Rhino and jEdit. In addition, Figures
6.1 and 6.2 illustrates through boxplots the analyzed LCbC distributions. The reasoning
guiding the analysis applied in this section is to assess whether and how differences on
LCbC distributions could be explained by the applied concern mapping strategies. This
supports us on addressing first and second research questions.

6.2.1.1 Auxiliary Artifacts Drive the Accuracy of Manual Mappings As ex-
plained in Section 6.1.3 the manual mapping strategy was applied for two of the six
systems in this study: Rhino and jEdit. Table 6.3 shows that for Rhino the manual
strategy mapped 417 concerns and covered all the Java files, whereas for jEdit it mapped
47 concerns covering 57% of Java files.

The question which arises in this analysis is why did jEdit, which is bigger than Rhino,
has less concerns mapped than Rhino when applied manual mapping strategy? The rea-
son behind this issue is that manual mappings, as expected, are subjective and mainly
depends on two factors: (i) individual reasoning of the developers who carried out the
mapping procedure; and (ii) the artifacts they used as input to support them on under-
standing the system and finding concerns on source code. In our study the two manual
mappings varied in these two factors.

For Rhino we used a concern mapping previously reported in literature (Eaddy et
al., 2008b), while for jEdit the manual mapping was carried out in the context of this
study by two researchers of our group, who have academic and industrial experience on
software development in Java. Hereafter, we use the term “developers” referring to those
who performed the mapping tasks but did not participated in the development of Rhino



88THE IMPACT OF DIFFERENT CONCERN MAPPING STRATEGIES ON CONCEPTUAL COHESION

Table 6.3 Summary of Concern Mapping Strategies Applied
Rhino

Manual Mapping XScan Topic-based
Concerns found 417 26 40
Java files with concern(s) 100% 32% 100%
LCbC min. 17 0 1
LCbC max. 344 11 4
LCbC median 289 0 2
LCbC sd. 130.9 2.4 0.7

jEdit
Manual Mapping XScan Topic-based

Concerns found 47 97 69
Java files with concern(s) 57% 36% 95%
LCbC min. 0 0 1
LCbC max. 27 11 4
LCbC median 1 0 2
LCbC sd. 2.44 2.4 0.7

JFreeChart
Manual Mapping XScan Topic-based

Concerns found N/A 282 70
Java files with concern(s) N/A 46% 93%
LCbC min. N/A 0 0
LCbC max. N/A 37 6
LCbC median N/A 0 2
LCbC sd. N/A 3.5 1

Findbugs
Manual Mapping XScan Topic-based

Concerns found N/A 151 91
Java files with concern(s) N/A 32% 92%
LCbC min. N/A 0 0
LCbC max. N/A 10 6
LCbC median N/A 0 2
LCbC sd. N/A 1.6 0.9

Tomcat
Manual Mapping XScan Topic-based

Concerns found N/A 319 92
Java files with concern(s) N/A 35% 96%
LCbC min. N/A 0 0
LCbC max. N/A 20 13
LCbC median N/A 0 2
LCbC sd. N/A 2.4 1.9

Freecol
Manual Mapping XScan Topic-based

Concerns found N/A 91 66
Java files with concern(s) N/A 56% 98%
LCbC min. N/A 0 0
LCbC max. N/A 13 4
LCbC median N/A 1 2
LCbC sd. N/A 2.1 0.8



6.2 RESULTS AND ANALYSIS 89

and jEdit.
Intuitively, concern mappings manually performed by different developers are ex-

pected to be different even if they have the same intent, as they apply distinct and
individual reasoning. Additionally, developers used different artifacts to support them on
understanding source code during mapping tasks. As Rhino is a Javascript engine based
on the Ecmascript standard the developers used the standard specification as input, which
is a detailed document describing how the scripting engine should behave. Thus, they
considered each section and subsection of the standard specification document as a single
concern to be addressed and manifested in code. Also, to help them in finding which code
elements implement each section of the document they used unit tests available in the
repository. Each unit test is dedicated to test the adherence of Rhino to the Ecmascript
standard.

For jEdit there is not such standard specification, so we mainly followed: the user
guide; the features list published on the web; and system execution for searching con-
cerns on the graphical user interface and for understanding how some concerns behave
externally, as explained in Section 6.1.3. Therefore, in jEdit the gap between input ar-
tifacts for concern mapping tasks and source code is bigger. So it turns out to be more
difficult to cover a high number of software concerns and files accurately as in Rhino. Fig-
ure 6.1 shows boxplots for LCbC distributions using manual mapping, including minimum
and maximum values, median and standard deviation. We use the “LCbC MM” label to
represent LCbC measurement with manual mapping strategy. The boxplots show that,
in Rhino’s distribution, besides having more concerns it also has more variance. jEdit’s
mapping led to a less spread LCbC distribution. Most of the classes have 0 to 4 concerns,
whereas only 3% of them have 5 or more concerns.

In summary, developers who carried out Rhino’s mapping had a more precise doc-
umentation in hand, which was actually the same one used by Rhino’s developers for
coding, testing and addressing Ecmascript standard. This is the main reason in Rhino
there is a more detailed mapping with more than 400 concerns touching all the system
files. Therefore, which auxiliary artifacts developers use for manual mapping are crucial
for determining mapping accuracy, and this certainly influences on conceptual cohesion
distribution.

Figure 6.1 LCbC distributions using manual mapping strategy



90THE IMPACT OF DIFFERENT CONCERN MAPPING STRATEGIES ON CONCEPTUAL COHESION

6.2.1.2 Less Coverage of XScan Mappings Turning to the other mapping strate-
gies, they are automatically executed and we used them for all systems. As explained in
Section 6.1.2, XScan strategy only needs the source code as input. Its own heuristics are
dedicated to find groups of correlated methods mainly based on structural dependency
and textual similarity of statements and identifiers. Each group of methods in the XScan
output was treated as a concern.

File coverage on XScan mappings varied from 32% to 56% (see Table 6.3), which
represents the least coverage over project files among the mapping strategies we ana-
lyzed. XScan does not favor a high coverage over files because it was not designed for
it. In Section 6.2.1.5 we highlight some characteristics of XScan strategy after analyzing
mapping outputs. In summary, there are two main reasons for such low coverage. First,
not all concerns manifest over methods with statements or identifiers similarly defined
and over methods structurally dependent with each other. Second, XScan was originally
designed for finding concerns spread over several files without having file coverage as a
primary issue. Therefore, concerns addressed by one or few files may not be captured
by XScan. This may lead to classes without concerns mapped to them. Moreover, the
LCbC distributions using XScan had median zero in all the systems except for Freecol
with median 1.

6.2.1.3 Low LCbC Variance of Topic-based Mappings For Topic-based map-
ping, the number of topics is one of the parameters needed. We calculated it based on the
number of Java files (see Section 6.1.2). Therefore, the number of concerns is exactly the
calculated number of topics as each topic is treated as a concern. Different from XScan,
this mapping strategy leads to a high coverage over Java files, as it varied from 92% to
100%.

Figure 6.2 presents boxplots of LCbC distributions using XScan and Topic-based
mappings. It graphically shows that Topic-based mappings lead to slightly higher medians
in LCbC distributions but less variance in comparison with XScan mappings. Therefore,
although Topic-based mappings cover almost all the system files, these mappings lead to
flatter LCbC distributions. In other words, the Topic-based strategy maps almost the
same number of concerns to each Java classes. The standard deviation, min and max
values in Table 6.3 also give evidence to this observation.

In summary, manual mappings generate LCbC distributions with more variance,
whereas automatic mappings lead to flatter LCbC distributions. Comparing the two
automatic strategies, on one hand XScan generates mappings with low to medium file
coverage and provides LCbC distributions with low median but higher variance. On the
other hand, Topic-based mappings cover more files and lead to LCbC distributions with
slightly higher medians but lower variance. In other words, XScan leaves many classes
without concerns mapped but it is able to identify classes focusing on several concerns,
whereas Topic-based strategy leaves less classes without concerns mapped but all classes
end up with an almost uniform number of concerns. This analysis shows that Topic-based
strategy leads to less realistic mappings. In real world projects, like the ones in this study,
there are classes realizing several concerns, while others are focused on one or just few
concerns.



6.2 RESULTS AND ANALYSIS 91

Figure 6.2 LCbC distributions using XScan and Topic-based mapping strategies

Overall, this comparative analysis gives empirical evidence that as we vary the concern
mapping strategy, we also have a significant variation on LCbC measurement. Thus,
different concern mapping strategies imply different LCbC distributions over the same
set of classes.

6.2.1.4 Statistical Tests We applied the Friedman test (Neave, 2010) for LCbC
measurements of each system under analysis. Friedman test is a non-parametric test
which is used to detect differences in treatments across multiple measurements. In this
study, for Rhino and jEdit we have three variations of LCbC measurement, whereas for
JFreeChart, Findbugs, Tomcat and Freecol we have two variations of LCbC. Therefore,
we set the following null hypothesis: given a system, the LCbC distributions, each one
corresponding to a concern mapping strategy, are the same. After applying the Friedman
test in R over the LCbC distributions we rejected the null hypothesis for all systems with



92THE IMPACT OF DIFFERENT CONCERN MAPPING STRATEGIES ON CONCEPTUAL COHESION

a p-value less than 0.00. Thus, for all the systems and concern mapping strategies under
study we could statistically validate the hypothesis that different mapping strategies
indeed drive different distributions of conceptual cohesion. The complete script and log
for this test execution in R are available at Appendix H and on the web at (Silva, 2015b).

6.2.1.5 Characterizing XScan Mapping Results To have a concrete notion about
what the automatic mappings generate as results and understand what kind of concerns
they identify, we analyzed the outputs of XScan and TopicXP tools. In XScan, for each
system, we analyzed the output files containing groups of methods. In TopicXP, for each
system, we analyzed the list of words forming each identified topic. We considered each
group of methods generated by XScan and each topic generated by TopicXP as a concern.
The output files for all systems are available at our companion website (Silva, 2015b).

XScan mapping identifies concerns only manifested in methods by using code simi-
larity analysis and structural dependency. We found that it typically captures concerns
implemented over different classes which uses the same method name. Concerns mapped
by XScan are not labeled. However, in general, it is relatively easy to identify what the
concerns mean, by reading method signatures and class names forming each concern.

There are situations where XScan goes right on the target, for instance, the stop
concern in Tomcat. It implements the stopping mechanism of the web container. In
source code it is addressed by several implementations of the stop() method. This concern
involves 39 classes from 11 packages. XScan was able to identify this concern mainly
because the involved classes use the same method name. If there are other methods
involved in this concern but with other names, XScan is not able to identify them.

In some situations XScan heuristics identify very specific concerns like the “dialog
canceling action” for window dialogs in jEdit system. This concern involves 20 different
classes that implement the dialog canceling action through the cancel() method.

However, XScan fails to identify concerns that do not manifest themselves through
similar method names. For instance, the JEditBuffer class in jEdit. This class had no
concerns mapped by XScan, while it is an important class that represents the contents of
an open text file as it is maintained in computer memory. When looking at the class we
clearly find concerns like load/unloading content, inserting/removing text into the buffer
and text indentation.

These examples reinforce observations over Table 6.3 and Section 6.2.1.2 that XScan
strategy leads to less coverage over classes. However, in spite of such characteristic
XScan is able to identify some classes with several concerns. Table 6.3 shows that XScan
mapping leads to higher max values for LCbC than Topic-based mapping. We can also
observe some high values of LCbC XScan in the boxplots (Figrue 6.2) when compared
to LCbC Topics. Those XScan characteristics lead to an incomplete mapping in general,
but it is able to capture some critical classes in terms of lacking conceptual cohesion.

6.2.1.6 Characterizing Topic-based Mapping Results Topic-based mapping iden-
tifies concerns manifested through correlated words within classes, including identifiers
(at class, field and method level) and comments embedded in source code. The topics



6.2 RESULTS AND ANALYSIS 93

extracted are not labeled. We manually analyzed the topics by looking at the words that
form them. We observe similar results also reported previously in literature (Lucia et al.,
2012): while some topics are easy to label and give a notion about what they mean, some
other topics are difficult to label, as their words are not meaningful enough.

For instance, when reading the topic [plugin, jar, path, name, file, manag] we could
label it as the Plug-in manager concern, which is responsible for managing plug-ins as
jar files into jEdit editor. However, some topics are hard to understand. For instance,
the words in the following topic are meaningful [jedit, edit, method, j, i, param] if you
analyze them separately. However, when considering them together forming the topic
they are meaningless, becoming difficult to put a label on it in jEdit context. Even with
the previous experience of carring out a manual mapping over jEdit code we could not
find a label to this topic.

In addition, after analyzing the classes having that topic, we could observe that
“jedit” and “edit” words are very common in the project and it appears as class and
variable names in many places. Particularly, the “method” word appears in comments
attached to several methods across the project. The words “i” and “j” are common in
classes having loops. “Param” is a common word appearing in javadoc comments with-
ing several classes. In fact, these words are examples of textual noise for the Topic-based
mapping strategy. They should have been ignored by the LDA implementation in Top-
icXP tool, as they do not add meaning to a relevant topic in the overall system. This
leads us to conclude that in order to improve the results the Topic-based mapping strat-
egy requires additional effort to filter out general and meaningless words from the source
code. Ideally, in addition to the list of English stop words as part of the pre-processing
step of LDA execution, there should be a list of project-specific stop words to be used in
LDA applications over source code such as Topic-based concern mapping.

6.2.1.7 XScan Requires less Effort It is obvious that manual mapping requires
more effort and so it is more expensive to apply. jEdit manual mapping took 22 hours of
work, while Rhino took 102 hours, as reported in (Eaddy et al., 2008b). Turning to the
automatic strategies, XScan is easier to execute than Topic-based strategy for two reasons:
(i) besides the source code, it does not require any input parameters, neither effort to
parameters calibration; and (ii) it takes less time to process and generate results. For
instance, TopicXP took 6 hours to generate the results for Tomcat, which is the biggest
system we analyzed, while it took less than an hour using XScan in the same computer.

6.2.1.8 They are different but are they correlated with each other? We found
that LCbC distributions have different characteristics when varying the concern mapping
strategy for the same set of classes. However, the question which arises is: being different,
are they correlated? In other words: Given a system, are the different LCbC distributions
correlated with each other? If two different LCbC distributions are correlated it is an
evidence that we can choose one of them in future studies in order to reduce effort of
generating both of them. We applied Spearman correlation (Cohen, 1988) to address
this question. Table 6.4 shows the correlation test results for Rhino and jEdit with



94THE IMPACT OF DIFFERENT CONCERN MAPPING STRATEGIES ON CONCEPTUAL COHESION

‘*’ representing no significance level achieved. In addition, Table 6.5 shows the same
correlation test applied for the other four systems which we have only the automatic
mapping strategies.

In order to give a qualitative label for the obtained correlation coefficients, we follow
Cohen’s range (Cohen, 1988). Such a range suggests that a coefficient from .00 to .30 is a
weak correlation; from .30 to .50 is a moderate correlation; and higher than .50 is a strong
correlation. For Rhino, we found moderate correlation between LCbC over manual map-
ping (LCbC MM) and LCbC over XScan mapping (LCbC XScan). And also moderate
correlation between LCbC XScan and LCbC over Topic-based mapping (LCbC Topics).
For jEdit, we found a weak correlation among the three LCbC measurements.

Table 6.4 Correlation among LCbC variations for Rhino and jEdit
Rhino

LCbC MM LCbC XScan LCbC Topics
LCbC MM 1 0.38 *

LCbC XScan 1 0.39
LCbC Topics 1

jEdit
LCbC MM LCbC XScan LCbC Topics

LCbC MM 1 0.27 0.22
LCbC XScan 1 0.16
LCbC Topics 1

Turning to the other four systems, the correlation analysis consists of comparing only
LCbC XScan with LCbC Topics. For this set, the results also varied with significance
level achieved. We found almost no correlation between LCbC XScan and LCbC Topics
for Tomcat (0.08 coefficient), whereas this correlation varied from weak (Findbugs and
Freecol) to moderate (JFreeChart). Therefore, we did not find any strong correlation
among LCbC distributions. This is another evidence that variation on concern mapping
strategy significantly impacts on conceptual cohesion measurement. Also, this corre-
lation analysis, together with previous observations in this work, supports us not in
recommending the replacement of one strategy over another for measuring conceptual
cohesion, unless having a specific reason.

Table 6.5 Correlation among LCbC variations for JFreeChart, Findbugs, Tomcat and Freecol
LCbC XScan vs. LCbC Topics
JFreeChart 0.41
Findbugs 0.28
Tomcat 0.08
Freecol 0.29

In summary, according to our results, there is a significant impact on conceptual co-
hesion measurement when varying the concern mapping strategy. Manual mappings can
drive different LCbC distributions depending on what auxiliary artifacts developers have
to carry out mappings. Comparing to Topic-based strategy, XScan executes faster but



6.2 RESULTS AND ANALYSIS 95

has less coverage over Java classes, leaving more classes without concerns mapped. How-
ever, XScan is able to identify classes with several concerns, and it scores on mapping any
kind of concern manifested through similar method names. In counterpart, XScan fails
when concerns are not expressed like that. Topic-based strategy captures well concerns
expressed in identifiers and comments, however it suffers from textual noise. Also, corre-
sponding LCbC distributions have lower variance than XScan ones, which leads to a less
realistic mapping. In real software projects there is high imbalance regarding concerns
implementation among project classes, that is, while some classes realize several concerns,
some others realize just one or few of them. This increases the variance of conceptual
cohesion distribution.

Additionally, we need to know whether such different mapping strategies affect the
correlation between conceptual cohesion and change-proneness, which is the point of RQ3
and the main issue analyzed in the next section.

6.2.2 Correlation between LCbC and Change-Proneness

As explained in Section 6.1.4 we measured change count (CC) for each class of all systems
over a period of time in their evolution history. A summary of the analyzed change-set
for each system can be found in Table 6.1. The CC metric is our proxy for change-
proneness, having the following interpretation: the higher the CC value for a class, the
more change-prone the class is, and vice-versa.

Table 6.6 shows the results after applying Spearman correlation between LCbC of
each mapping strategy and change count for all systems. We highlight in bold the highest
correlation coefficients of each system. ‘*’ means no significance level achieved. Consid-
ering the two systems we had manual mappings, LCbC MM had the highest coefficients,
achieving the strong range in Rhino and moderate in jEdit. Considering all projects,
LCbC XScan and LCbC Topics had similar coefficients. However, LCbC XScan achieved
a strong correlation in JFreeChart, whereas LCbC Topics achieved moderate correlation
in the best case.

Table 6.6 Correlation between Change Count and LCbC measurements
Rhino jEdit JFreeChart Findbugs Tomcat Freecol

LCbC MM 0.67 0.38 N/A N/A N/A N/A
LCbC XScan 0.32 0.18 0.63 0.21 0.33 0.47
LCbC Topics * 0.27 0.41 0.30 0.26 0.45

6.2.2.1 Mapping Size Does not Matter Taking into account the LCbC distribu-
tions graphically shown in Figures 6.1 and 6.2 and also descriptive statistics in Table 6.3,
we could not find any possible association between change count and mapping size in
terms of number of concerns and class coverage. For example, in jEdit, Topic-based map-
ping covered more classes than the other strategies, while XScan found more concerns.
However, LCbC over manual mapping had the highest correlation with change-proneness.
A high number of identified concerns or covered classes do not necessarily mean a complete
and accurate mapping neither increase the correlation with change count. Therefore, we



96THE IMPACT OF DIFFERENT CONCERN MAPPING STRATEGIES ON CONCEPTUAL COHESION

can conclude that concern mapping size does not necessarily impact on the correlation
between conceptual cohesion and change-proneness.

6.2.2.2 XScan Mapping when Manual Mapping is not Possible When com-
pared to automatic mapping strategies, manual mappings had the highest correlation
coefficients, achieving a strong correlation in Rhino. The mapping quality is more im-
portant than number of concerns and number of files covered. In other words, the main
driver for better mappings is how well the concern assignment to source code elements
can represent what the software performs. In general, manual mappings are at better
quality as developers, in theory, extract more accurate knowledge from analyzing code
than automatic techniques currently available. When developers code following a specifi-
cation such as requirements, use cases, or a standard as in Rhino, they address in source
code the concerns present in such higher level artifacts. Therefore, when such artifacts
are also used as input for manual concern mapping this enables building a better out-
come. We found evidence that more complete concern mappings, such those found in
Rhino and jEdit manual mappings, increase the correlation between conceptual cohesion
and change-proneness.

When manual mapping is not possible to be applied we recommend the XScan map-
ping strategy. In terms of automatic mappings, LCbC with XScan achieved a strong
correlation in JFreeChart, showing that it is also possible to have automatically gener-
ated concern mappings with moderate to strong correlation between conceptual cohesion
and change-proneness. In addition, as discussed in Section 6.2.1, when compared with
Topic-based mappings, XScan: (i) requires less effort, because it executes faster and does
not require calibration of input parameters; (ii) is able to identify classes with several
concerns which may be critical classes in terms of lacking conceptual cohesion.

In summary, these results confirm that varying concern mapping strategies impacts
on conceptual cohesion distribution and therefore such variation significantly impacts on
the correlation between conceptual cohesion and change-proneness. Manual mappings
seem to reflect better what the modules address and so improve such correlation. In
general, manual and XScan strategies showed more potential to drive higher correlations
between conceptual cohesion and change-proneness.

6.3 THREATS TO VALIDITY

Internal validity: This type of threat may have a negative effect on the occasional
relationship between treatment and outcome. In this study we identified two possible
threats to internal validity. First, it is about how we addressed RQ5 and RQ6. We
mitigated possible occasional relationship between concern mapping strategies and con-
ceptual cohesion by providing empirical evidence through qualitative and quantitative
analysis. We qualitative analyzed how and in which context the mappings were built and
what are the main characteristics of mapping results. We also used descriptive statistics
and graphical analysis over LCbC distributions. The Friedman test was then applied
just to confirm and add statistically significant support to our observations. Therefore,
we claim that the outcome we found between the impact of different concern mapping



6.3 THREATS TO VALIDITY 97

strategies and conceptual cohesion measurement is not occasional.

The second threat to internal validity is regarding the correlation between LCbC
distributions and change-proneness, that is, whether low/high conceptual cohesion really
influenced on more/less class changes (seventh research question). This threat does not
become critical in this study as our focus is on a relative comparison between different
ways of measuring LCbC and change-proneness. In other words, given a system, what
varied was only the concern mapping strategy and that was the desired point of interest
in this study. Other factors that could have affected a correlation test would have affected
in the same way all the correlation tests of a given system.

External validity: Two factors affect the external validity. First, our study involved
three different concern mapping strategies, having the manual strategy applied only in
two of the six systems under study. It is very difficult to find an available tool to map
concerns which is ready to be used in software projects. We are only aware of XScan
and TopicXP tools. Others are prototypes cited in papers or addressing projects in other
languages than Java.

The Manual Mapping strategy was considered for only two systems as we did not find
any other available project with a concern mapping manually done with the prerequisites
we needed for this study. The prerequisites were: (i) a manual mapping intended to cover
as much as possible the source code modules and the system concerns of any kind; (ii)
implemented in Java, as the tools we used only supports Java systems; (iii) a system with
a rich change set to allow us addressing the seventh research question.

The second factor affecting external validity is that we analyzed six open source
systems. We believe this number of systems is reasonable to draw the first conclusions in
this kind of empirical assessment which were partially done manually. Also, the systems
are from distinct domains and also varying from libraries to standalone applications.
They are popular and widely used, as discussed in Section 6.1.

Therefore, we do not claim that our conclusions can be generalized outside the scope
of our study. However, as far as we know, this is the first study on analyzing and improv-
ing knowledge about the impact of different concern mapping strategies on conceptual
cohesion measurement. Even restricted to the study settings our findings give evidences
to support software engineers on cohesion measurement activities and researchers in their
further studies involving conceptual cohesion.

Construct validity: When evaluating the correlation between conceptual cohesion
and change-proneness we used the CC (Change Count) metric. We considered this metric
as a proxy for change-proneness according to the reasoning that a change-prone class is
a module that has high likelihood to undergo changes. Thus, as we count the number of
changes we are also counting the change-proneness degree. However, there is a possible
threat in this context as we did not analyzed which type of changes each class suffered. We
just counted changes without filtering out non-essential changes such as moving folders,
license changing and source code comments. We considered every add, delete and modify
operations as changes regardless whatever motivated them. So, we took into account
changes of any type such as bug fixing, inclusion of new features, preventive maintenance
or any kind of refactoring. The analyzed systems and corresponding change history are
the same used in previous study (Chapter 5). Therefore, the design decisions to overcome



98THE IMPACT OF DIFFERENT CONCERN MAPPING STRATEGIES ON CONCEPTUAL COHESION

this threat are also the same. We adopted two requirements on selecting the six analyzed
systems: (i) we searched the systems website to find intermediary releases reporting a
reasonable number of changes in their later releases; and (ii) a candidate system release
should have a repository with a large change scenario ahead in their commit history. Table
6.1 shows that we analyzed commits along 51 months (jEdit) to 94 (Rhino). Therefore,
even in the presence of noise the change sets were predominantly composed by essential
changes.

The parametrization of LDA execution for Topic-based mappings was identified as
another possible threat to construct validity. The calibration of LDA parameters is
important to better explore the LDA algorithm and achieve more confident results in
Topic-based mappings. However, it is an empirical time-consuming activity which is out
of scope of this study, as explained in Section 6.1. To compensate this threat we followed
recent literature regarding the application of LDA in source code topics extraction. For
the number of topics, we used the equation proposed by (Grant; Cordy; Skillicorn, 2012).
For the α and β parameters we followed recommendations from (Binkley et al., 2014).

Conclusion validity: Threats to conclusion validity are lack of statistical calcula-
tions or misuse of statistical assumptions that leads to incorrect conclusions made by the
researcher. Due to the nature of our first and second research questions, we could not ad-
dress them only using statistical calculations. Therefore, most of our empirical assessment
for RQ5 and RQ6 relied on qualitative analysis, where we analyzed and explained charac-
teristics of concern mapping outputs and how they were generated. However, whenever
applicable we used statistical support. In Section 6.2.1 we used descriptive statistics and
Friedman test to support us on explaining the impact of mapping strategies on LCbC
measurement. The Friedman test was applied in place of Repeated Measures Analysis
of Variance (rANOVA) because it is a non-parametric test. The LCbC distributions do
not match the necessary assumptions to apply rANOVA, as the normality assumption
for example. For the seventh question we applied Spearman correlation test to support
us on explaining whether and to what extent such impact affects the correlation between
conceptual cohesion and change-proneness (Section 6.2.2). Also, we chose the Spearman
test due to characteristics of LCbC distributions, as it is a non-parametric correlation
test. Moreover, Spearman’s method can find correlation between variables even if their
relationship is not linear. Pearson correlation test would be an alternative. However, it
is by definition restricted for finding linear relationship and it is not robust enough if the
analyzed distributions have outliers.

6.4 RELATED WORK

The problem of mapping concerns to source code elements is not new (Biggerstaff; Mit-
bander; Webster, 1994). However, we are not aware of any study that analyzed the impact
of different concern mapping strategies on conceptual cohesion measurement. Therefore,
in this section we focus on citing studies that investigated the activity of concern mapping
and somehow relate to our work.

Eaddy et al. (Eaddy et al., 2008a) proposed a tool called Cerberus which imple-
mented an automated concern mapping strategy combining three techniques: text min-



6.5 SUMMARY 99

ing, execution tracing, and structural dependency analysis. They applied each technique
individually and combined in pairs over Rhino source code. Also, Dit et al. (Dit; Rev-
elle; Poshyvanyk, 2013) studied the combination of different techniques for automatically
mapping concerns. Overall, the results of those two studies pointed out that combination
of techniques are more effective for mapping concerns. They did not study the impact
on code measurement, and their tools are not available. However, their results match
with ours in the way that XScan implements a hybrid approach combining two differ-
ent techniques (textual similarity and dependency analysis) and that we found XScan
outperforming Topic-based strategy, which only implements text mining.

Figueiredo et al. (Figueiredo et al., 2011) assessed the impact of manual concern
mappings on code measurement. They analyzed the accuracy of concern mappings in-
dividually made by 80 developers and their impact on 12 metrics focused on measuring
concern properties. They did not include metrics for software module properties such
as cohesion. Also, they did not apply automatic concern mapping strategies. However,
one of their results match with ours. They found that developers are usually conserva-
tive when mapping concerns, thereby not assigning concerns to elements that they are
uncertain about. This somehow relates with out experience on building jEdit manual
concern mapping. As we had less auxiliary artifacts than in Rhino’ manual mapping, we
probably were more conservative on assigning concerns to jEdit code elements. To some
extent this may explain why in jEdit, which is a bigger system than Rhino, we had fewer
concerns and lower coverage when comparing their manual mappings. We discussed this
issue in Section 6.2.1.1.

6.5 SUMMARY

Cohesion measurement is challenging and several researchers have attempted to address
this issue across decades. Most of them rely on conventional cohesion metrics which
are based on the structural relatedness among methods and attributes within a class.
However, this approach does not necessarily capture the degree to which a class is focused
on a single software concern.

With the emergence of concern mapping techniques, researchers have investigated
cohesion metrics based on abstract information extracted from source code. The Lack of
Concern-based Cohesion (LCbC) is a simple metric that counts the number of concerns
a software module realizes, and it is flexible to be used over concern mappings resulted
from applying any concern mapping strategy.

However, little is known about the impact of different concern mapping strategies
on conceptual cohesion measurement. This is the first empirical study to address this
issue. This work presented an empirical assessment which improves knowledge about how
different concern mapping strategies impact on conceptual cohesion measurement.

We used three different concern mapping strategies: the manual strategy based on
developers analysis on source code and other auxiliary artifacts such as user guide and test
cases; and two automatic strategies, one named XScan, which is based on code similarity
and structural dependency, and another named Topic-based strategy, which applies text
mining. In addition, the study involved six popular long-lived open source systems from



100THE IMPACT OF DIFFERENT CONCERN MAPPING STRATEGIES ON CONCEPTUAL COHESION

different domains.
We found that XScan requires less effort than Topic-based strategy. And the manual

mapping is the most time-consuming one and the most expensive to perform. When per-
forming manual mapping, auxiliary artifacts besides source code are crucial for generating
accurate results. Although XScan leaves many classes without concerns mapped it is able
to identify classes that stand out for having several concerns. Differently, Topic-based
strategy leads to quite uniform LCbC distributions, which means that classes in a given
project have almost the same number of concerns.

In addition, Topic-based mappings suffer from textual noise, that is, meaningless
words for representing concerns used in source code identifiers and comments. Therefore,
we recommend to build a list of project-specific stop words to be pre-processed together
with English stop words when executing Topic-based strategy.

Overall, variation in concern mapping strategy significantly impacts on conceptual
cohesion measurement. The automatic strategies we analyzed are not good substitutes
for manual mapping, at least for cohesion measurement and its association with change-
proneness. Mapping size does not matter. Mapping accuracy is more important and how
the strategy is able to capture critical classes lacking cohesion.

Therefore our results can be used by software engineers when planning and executing
cohesion measurement in their activities and when building metric tools for development
environments; it can also support researchers on further investigations involving cohesion
measurement. We suggest three directions for future work. First, the evaluation of
other concern mapping strategies using different techniques such as history-based concern
mapping and dynamic tracing source code execution. Second, besides counting changes
and correlating them with cohesion, we recommend investigation on analyzing whether
changes within modules are associated with the concerns mapped by different strategies.
Third, as topic-based mappings were very different from manual mappings, it is also
important to investigate whether other cohesion metrics that use topic-based strategies
measure cohesion as perceived by developers.



Chapter

7
CONCLUSION

Cohesion has been considered throughout decades as one of the most important soft-
ware quality attributes, and several approaches for measuring cohesion and investigating
its application in different software engineering contexts has been produced (Stevens;
Myers; Constantine, 1974), (Myers, 1978), (Chidamber; Kemerer, 1994), (Henderson-
sellers, 1996), (Briand et al., 2000), (Martin, 2003), (Marcus; Poshyvanyk; Ferenc, 2008).
Amongst a number of definitions, module cohesion can be viewed as the degree to which a
module is focused on a single concern of the software. Highly cohesive modules are claimed
to be easier to understand and evolve than less cohesive modules (Briand; Bunse; Daly,
2001; Chen et al., 2002; Dallal; Briand, 2012).

Building and maintaining cohesive software modules is a desired practice and a num-
ber of metrics have been proposed for measuring module cohesion. Most of them are
structural cohesion metrics, i.e., they measure the cohesion of a module based on the
degree of relatedness of its internal elements. However, structural cohesion metrics ex-
pose limitations as they are tightly dependent upon the source code structure no matter
the amount of different concerns a module implements. In this context, researchers have
proposed an alternative way of cohesion measurement based on which concerns software
modules address.

Conventional structural cohesion metrics such as the ones presented in Chapter 2 have
been in scene through decades. They are vastly applied on source code measurement as
part of empirical studies that include cohesion as a design property among others such
as coupling and size. Also, they are present in a number of open source and commercial
software measurement tools. However, the emergent set of conceptual cohesion metrics
lacks empirical evidence to better understand how they fit among several conventional
structural metrics for cohesion measurement. Therefore, this scenario motivated us to
conduct a series of empirical studies to fill this gap.

As a result, we could statistically validate conceptual cohesion, represented by two
distinct metrics, as an orthogonal way of cohesion measurement in comparison with struc-
tural cohesion metrics. This means that a different dimension of cohesion measurement

101



102 CONCLUSION

is captured by conceptual cohesion metrics due to different source of information and
the counting mechanism for computing cohesion. The study involved more than three
thousand modules of six long-lived, industry-scale, medium to large-sized systems.

Also, we could demonstrate, through an additional study, how developers from differ-
ent countries and levels of experience perceive module cohesion. Our results supported
the claim that conceptual cohesion seems to be more intuitive and closer to the human-
oriented view of cohesion observed on software developers. Structural cohesion measure-
ment has been the most common way of measuring cohesion both in academic works and
in industry-scale software tools. However, our findings point out that conceptual cohesion
measurement captures better the real notion of cohesion as perceived by developers in
contrast with the conventional structural cohesion measurement.

We could also contribute on studying the association of conceptual and structural
cohesion metrics with module change-proneness. We found that conceptual cohesion is a
potential change-proneness indicator when compared to conventional structural metrics,
and its success on this role mainly depends upon how well concerns are mapped over the
source code.

Therefore, we also studied the impact of different concern mapping strategies on con-
ceptual cohesion measurement. With this later study we could find that when measuring
conceptual cohesion, the selection and execution of a mapping strategy should not be
neglected as it significantly impacts the measurement results. Among the strategies we
studied, manual mapping leads to better results. However, as it requires much effort,
XScan mapping should be also considered when the manual strategy is not possible.

All of our study datasets and materials are public available at our companion websites
(Silva, 2015a) (Silva, 2015b) (Silva, 2013).

In summary, based on a series of empirical studies, our work explained conceptual
cohesion as an additional way of cohesion measurement that is worth to be further con-
sidered in software measurement research and practice. Our results can be directly used
by software engineers when planning and executing cohesion measurement in their tasks
and when building metric tools for development environments. Overall, this justifies
additional effort to keep improving cohesion measurement knowledge and technology.
Thereby, in the next section we describe possible directions for future research.

7.1 FUTURE RESEARCH DIRECTIONS

We suggest the following directions for future work that arise from our research:

� Assessment of additional concern mapping strategies. As explained in
Chapter 2, there are several techniques that have been proposed as concern map-
ping strategies. We applied three different strategies in the context of our research.
Therefore, we recommend broadening this scope to assess additional concern map-
ping strategies such as the ones based on history analysis and dynamic tracing
source code execution. The former relies on extracting information about what
concerns system modules address by analyzing how they change over time. This
kind of strategy builds a concern mapping by identifying changing patterns and
associating co-changing modules and its internal elements. The latter relies on cre-



7.1 FUTURE RESEARCH DIRECTIONS 103

ating a concern mapping by processing different execution scenarios of the software
under analysis. Thus, this strategy dynamically traces source code fragments in-
volved in each execution scenario in order to capture which methods and attributes
are used by each concern. Therefore, a possible study goal could be the investiga-
tion of how such additional strategies fit within the two automatic ones we used
in our studies with respect to conceptual cohesion measurement. Also, we suggest
investigation on whether those additional strategies could be used when manual
mapping is not feasible to be applied.

� Conceptual cohesion measurement for a specific domain. In this current
scope we did not select a specific application domain. The studies presented in
chapters 3, 5 and 6 involved six long-lived, industry-scale, medium to large-sized
systems from different domains such as games, source code analysis tools, language
interpreters and text editors. Therefore, after the results we achieved, a future
study could focus on whether or not conceptual cohesion measurement would be
more effective on a specific application domain.

� Deep analysis on whether and to what extent changes within modules
are associated to concerns mapped to them. We quantitatively assessed the
association between several cohesion metrics and module change-proneness. One of
our threats to validity was that we did not analyze details about the change context.
For example, we did not analyze the kind of changes and what had motivated them.
Therefore, we studied the change-proneness issue in a more quantitative way by
selecting rich and long change-set periods so that possible noise in this kind of data
could be minimized. For that reason there is still room for an additional study
on investigating what has motivated changes over modules along their history and
whether or not this could be associated to cohesion metrics. We hypothesize that
this could reinforce conceptual cohesion metrics as change-proneness indicators by
showing that relevant changes suffered by modules are associated to their concerns.

� Assessment of whether other conceptual cohesion metrics associate to
developers’ perception about module cohesion. In our study described in
Chapter 4, besides understanding developers’ reasoning about module cohesion,
we assessed how close developer ratings are to conceptual cohesion measurement,
having LCbC as a representative. Therefore, we do not know whether topic-based
conceptual cohesion metrics, such as MWE and C3, also associate with how devel-
opers reason about module cohesion as we found with LCbC.

� Broadening scope to systems in other languages. Our set of empirical
studies and findings relied on projects written in Java. It is reasonable to think
that most of our results could also be found in similar widely used object-oriented
languages (e.g. C#,), as these languages provide object-oriented concepts in a
similar way. However, there are also widely used languages, such as Javascript, that
have distinct characteristics (e.g. dynamic typing, script-based) besides providing
object-oriented programming concepts. A recent study (Silva et al., 2015) showed



104 CONCLUSION

that most of the Javascript modules do not use the abstraction of classes. Therefore,
we claim that it is necessary to understand and demonstrate how we can measure
cohesion of JavaScript modules, specially those which do not apply object-oriented
concepts. For those, conventional structural cohesion metrics could not be used.
Conceptual cohesion metrics might be a good choice for this purpose.

� Assessment of how conceptual cohesion associate to other quality at-
tributes. We analyzed the association of conceptual cohesion with module-change
proneness and compared how structural cohesion performed for the same associa-
tion. The main motivation for choosing change-proneness was the fact that cohesion
is defined to be a natural change-proneness indicator. Considering that cohesion is
defined to be the degree to which a module is focused on a single concern, the more
concerns a module addresses the more reasons there are to change it (Martin, 2003).
However, it is also important to understand whether conceptual cohesion metrics
associate to other quality attributes, such as fault-proneness, comprehension effort
and maintenance effort. Recent works (Marcus; Poshyvanyk; Ferenc, 2008) (Liu
et al., 2009) have studied the association of fault-proneness with separate concep-
tual cohesion metrics without comparing them. Recently our research group has
started to study the relationship of structural and conceptual cohesion metrics with
program comprehension effort (Batista; Sant’Anna, 2015).

� Incorporation of conceptual cohesion metrics on measurement tools.
One of the main outcomes of this current research is that we could provide empiri-
cal evidence through a series of empirical studies that conceptual cohesion measure-
ment is promising and it is worth further effort to keep improving cohesion mea-
surement knowledge and technology. Conceptual cohesion can increase its value by
taking advantage of concern mapping techniques which suffer continued improve-
ment. Therefore, we recommend the incorporation of conceptual cohesion metrics
together with concern mapping techniques in software measurement tools and de-
velopment environments. Developers may benefit from this and provide feedback
whereas they have available conceptual cohesion metrics within their daily working
tool environment.



BIBLIOGRAPHY

Adams, B.; Jiang, Z. M.; Hassan, A. E. Identifying crosscutting concerns using historical
code changes. In: Proceedings of the 32nd ACM/IEEE International Conference on Soft-
ware Engineering - Volume 1. New York, NY, USA: ACM, 2010. (ICSE’10), p. 305–314.
ISBN 978-1-60558-719-6.

Antoniol, G.; Gueheneuc, Y. G. Feature identification: An epidemiological metaphor.
IEEE Transactions on Software Engineering, IEEE Computer Society, Los Alamitos,
CA, USA, v. 32, p. 627–641, 2006.

Badri, L.; Badri, M.; Gueye, A. B. Revisiting class cohesion: An empirical investigation
on several systems. Journal of Object Technology, v. 7, n. 6, p. 55–75, 2008.

Baldi, P. F. et al. A theory of aspects as latent topics. In: Proceedings of the 23rd
ACM SIGPLAN Conference on Object-oriented Programming Systems Languages and
Applications. New York, NY, USA: ACM, 2008. (OOPSLA ’08), p. 543–562.

Basili, V.; Briand, L.; Melo, W. A validation of object-oriented design metrics as quality
indicators. Software Engineering, IEEE Transactions on, v. 22, n. 10, p. 751–761, Oct
1996.

Batista, E.; Sant’Anna, C. Avaliação experimental da relação de coesão e acoplamento
com o esforço de compreensão de software. In: 2nd Latin-American School on Software
Engineering. Porto Alegre, Brazil: [s.n.], 2015.

Bavota, G. et al. An empirical study on the developers’ perception of software coupling. In:
Proceedings of the 2013 International Conference on Software Engineering. Piscataway,
NJ, USA: IEEE Press, 2013. (ICSE ’13), p. 692–701.

Bieman, J. M.; Kang, B.-K. Cohesion and reuse in an object-oriented system. SIGSOFT
Softw. Eng. Notes, ACM, New York, NY, USA, v. 20, n. SI, p. 259–262, ago. 1995. ISSN
0163-5948.

Biggerstaff, T. J.; Mitbander, B. G.; Webster, D. E. Program understanding and the
concept assignment problem. Commun. ACM, ACM, New York, NY, USA, v. 37, n. 5,
p. 72–82, maio 1994.

Binkley, D. et al. Understanding lda in source code analysis. In: Proceedings of the 22Nd
International Conference on Program Comprehension. New York, NY, USA: ACM, 2014.
(ICPC 2014), p. 26–36.

105



106 BIBLIOGRAPHY

Blei, D. M.; Ng, A. Y.; Jordan, M. I. Latent dirichlet allocation. J. Mach. Learn. Res.,
JMLR.org, v. 3, p. 993–1022, mar. 2003. ISSN 1532-4435.

Bohnet, J.; Voigt, S.; Dollner, J. Locating and understanding features of complex soft-
ware systems by synchronizing time-, collaboration- and code-focused views on execution
traces. In: Program Comprehension, 2008. ICPC 2008. The 16th IEEE International
Conference on. [S.l.: s.n.], 2008. p. 268 –271.

Breiman, L. et al. Classification and Regression Trees. New York: Chapman and Hall,
1984.

Breu, S.; Zimmermann, T. Mining aspects from version history. 2011 26th IEEE/ACM
International Conference on Automated Software Engineering (ASE 2011), IEEE Com-
puter Society, Los Alamitos, CA, USA, v. 0, p. 221–230, 2006. ISSN 1527-1366.

Briand, L.; Bunse, C.; Daly, J. A controlled experiment for evaluating quality guidelines
on the maintainability of object-oriented designs. Software Engineering, IEEE Transac-
tions on, v. 27, n. 6, p. 513 –530, jun 2001.

Briand, L. C.; Daly, J. W.; Wüst, J. A unified framework for cohesion measurement in
object-orientedsystems. Empirical Softw. Engg., Kluwer Academic Publishers, Hingham,
MA, USA, v. 3, n. 1, p. 65–117, jul. 1998. ISSN 1382-3256.

Briand, L. C.; Morasca, S.; Basili, V. R. Defining and validating measures for object-
based high-level design. IEEE Transactions on Software Engineering, IEEE Computer
Society, Los Alamitos, CA, USA, v. 25, p. 722–743, 1999. ISSN 0098-5589.

Briand, L. C. et al. Exploring the relationship between design measures and software
quality in object-oriented systems. J. Syst. Softw., Elsevier Science Inc., New York, NY,
USA, v. 51, n. 3, p. 245–273, maio 2000.

Buse, R. P.; Weimer, W. R. Learning a metric for code readability. IEEE Transactions
on Software Engineering, IEEE Computer Society, Los Alamitos, CA, USA, v. 36, n. 4,
p. 546–558, 2010.

Chae, H. S.; Kwon, Y. R.; Bae, D.-H. A cohesion measure for object-oriented classes.
Softw. Pract. Exper., John Wiley & Sons, Inc., New York, NY, USA, v. 30, n. 12, p.
1405–1431, out. 2000. ISSN 0038-0644.

Chen, Z. et al. A novel approach to measuring class cohesion based on dependence anal-
ysis. In: Software Maintenance, 2002. Proceedings. International Conference on. [S.l.:
s.n.], 2002. p. 377 – 384.

Chidamber, S. R.; Kemerer, C. F. Towards a metrics suite for object oriented design.
SIGPLAN Not., ACM, New York, NY, USA, v. 26, n. 11, p. 197–211, nov. 1991.

Chidamber, S. R.; Kemerer, C. F. A metrics suite for object oriented design. IEEE Trans.
Softw. Eng., IEEE Press, Piscataway, NJ, USA, v. 20, n. 6, p. 476–493, jun. 1994. ISSN
0098-5589.



BIBLIOGRAPHY 107

Chowdhury, I.; Zulkernine, M. Can complexity, coupling, and cohesion metrics be used
as early indicators of vulnerabilities? In: Proceedings of the 2010 ACM Symposium on
Applied Computing. New York, NY, USA: ACM, 2010. (SAC ’10), p. 1963–1969.

Cohen, J. Statistical Power Analysis for the Behavioral Sciences (2nd Edition). 2. ed.
[S.l.]: Routledge Academic, 1988. Hardcover.

Counsell, S. et al. Object-oriented cohesion subjectivity amongst experienced and novice
developers: an empirical study. SIGSOFT Softw. Eng. Notes, ACM, New York, NY, USA,
v. 31, n. 5, p. 1–10, set. 2006.

Cox, G. W.; Etzkorn, L. H.; Jr., W. E. H. Cohesion metric for object-oriented systems
based on semantic closeness from disambiguity. Applied Artificial Intelligence, Tayler &
Francis, p. 419–436, 2006.

Dallal, J. A.; Briand, L. C. A precise method-method interaction-based cohesion metric
for object-oriented classes. ACM Trans. Softw. Eng. Methodol., ACM, New York, NY,
USA, v. 21, n. 2, p. 8:1–8:34, mar. 2012.

Deerwester, S. et al. Indexing by latent semantic analysis. JOURNAL OF THE AMER-
ICAN SOCIETY FOR INFORMATION SCIENCE, v. 41, n. 6, p. 391–407, 1990.

Dit, B. et al. Feature location in source code: a taxonomy and survey. Journal of Software
Maintenance and Evolution: Research and Practice, John Wiley and Sons, 2011.

Dit, B.; Revelle, M.; Poshyvanyk, D. Integrating information retrieval, execution and
link analysis algorithms to improve feature location in software. Empirical Softw. Engg.,
Kluwer Academic Publishers, Hingham, MA, USA, v. 18, n. 2, p. 277–309, abr. 2013.

Eaddy, M. An empirical assessment of the crosscutting concern problem. Tese
(Doutorado), New York, NY, USA, 2008. AAI3305217.

Eaddy, M. et al. Cerberus: Tracing requirements to source code using information re-
trieval, dynamic analysis, and program analysis. In: Program Comprehension, 2008.
ICPC 2008. The 16th IEEE International Conference on. [S.l.: s.n.], 2008. p. 53 –62.

Eaddy, M. et al. Do crosscutting concerns cause defects? IEEE Transactions on Software
Engineering, IEEE Computer Society, Los Alamitos, CA, USA, v. 34, p. 497–515, 2008.

Eisenberg, A.; Volder, K. D. Dynamic feature traces: finding features in unfamiliar code.
In: Software Maintenance, 2005. ICSM’05. Proceedings of the 21st IEEE International
Conference on. [S.l.: s.n.], 2005. p. 337 – 346.

Etzkorn, L.; Delugach, H. Towards a semantic metrics suite for object-oriented design. In:
Proceedings of the Technology of Object-Oriented Languages and Systems. Washington,
DC, USA: IEEE Computer Society, 2000. (TOOLS ’00), p. 71–. ISBN 0-7695-0774-3.
Dispońıvel em: 〈http://dl.acm.org/citation.cfm?id=832261.833277〉.



108 BIBLIOGRAPHY

Etzkorn, L. H. et al. A comparison of cohesion metrics for object-oriented systems. In-
formation and Software Technology, v. 46, n. 10, p. 677 – 687, 2004.

Falleri, J.-R. et al. Efficient retrieval and ranking of undesired package cycles in large soft-
ware systems. In: Bishop, J.; Vallecillo, A. (Ed.). Objects, Models, Components, Patterns.
[S.l.]: Springer Berlin Heidelberg, 2011, (Lecture Notes in Computer Science, v. 6705).
p. 260–275.

Feigenspan, J. et al. Measuring programming experience. In: Proceedings of the 20th
International Conference on Program Comprehension (ICPC). Los Alamitos, CA: [s.n.],
2012. p. 73–82.

Fenton, N. E.; Pfleeger, S. L. Software Metrics: A Rigorous and Practical Approach. 2nd.
ed. Boston, MA, USA: PWS Publishing Co., 1998. ISBN 0534954251.

Figueiredo, E. Concern-Oriented Heuristic Assessment of Design Stability. Tese
(Doutorado), Lancaster, UK, 2009.

Figueiredo, E. et al. Evolving software product lines with aspects: an empirical study on
design stability. In: Proceedings of the 30th international conference on Software engi-
neering. New York, NY, USA: ACM, 2008. (ICSE ’08), p. 261–270.

Figueiredo, E. et al. On the impact of crosscutting concern projection on code measure-
ment. In: Proceedings of the tenth international conference on Aspect-oriented software
development. New York, NY, USA: ACM, 2011. (AOSD ’11), p. 81–92.

Figueiredo, E. et al. Applying and evaluating concern-sensitive design heuristics. Journal
of Systems and Software, v. 85, n. 2, p. 227 – 243, 2012.

Fleiss, J. L. Measuring Nominal Scale Agreement Among Many Raters. Psychological
Bulletin, v. 76, n. 5, p. 378–382, 1971.

Garcia, A. et al. Modularizing design patterns with aspects: a quantitative study. In:
Proceedings of the 4th international conference on Aspect-oriented software development.
New York, NY, USA: ACM, 2005. (AOSD ’05), p. 3–14.

Grant, S.; Cordy, J. R. Estimating the optimal number of latent concepts in source
code analysis. IEEE 13th International Working Conference on Source Code Analysis
and Manipulation (SCAM), IEEE Computer Society, Los Alamitos, CA, USA, v. 0, p.
65–74, 2010.

Grant, S.; Cordy, J. R.; Skillicorn, D. B. Using topic models to support software mainte-
nance. In: Proceedings of the 2012 16th European Conference on Software Maintenance
and Reengineering. Washington, DC, USA: IEEE Computer Society, 2012. (CSMR ’12),
p. 403–408.

Gwet, K. Handbook of Inter-Rater Reliability (3rd Edition): The Definitive Guide to Mea-
suring the Extent of Agreement Among Multiple Raters. 3. ed. [S.l.]: Advanced Analytics
Press, 2012.



BIBLIOGRAPHY 109

Hashimoto, M.; Mori, A. Enhancing history-based concern mining with fine-grained
change analysis. In: Software Maintenance and Reengineering (CSMR), 2012 16th Euro-
pean Conference on. [S.l.: s.n.], 2012. p. 75 –84.

Henderson-sellers, B. Software Metrics. [S.l.]: Prentice Hall, UK, 1996.

Hill, E.; Rao, S.; Kak, A. On the use of stemming for concern location and bug local-
ization in java. In: Source Code Analysis and Manipulation (SCAM), 2012 IEEE 12th
International Working Conference on. [S.l.: s.n.], 2012. p. 184–193.

Hitz, M.; Montazeri, B. Measuring coupling and cohesion in object-oriented systems. In:
Proc. Intl. Sym. on Applied Corporate Computing. [S.l.: s.n.], 1995.

Jolliffe, I. T. Principal Component Analysis. Second. [S.l.]: Springer, 2002. Hardcover.
ISBN 0387954422.

Kabaili, H.; Keller, R. K.; Lustman, F. Cohesion as changeability indicator in object-
oriented systems. 15th European Conference on Software Maintenance and Reengineering,
IEEE Computer Society, Los Alamitos, CA, USA, v. 0, p. 39, 2001.

Katzmarski, B.; Koschke, R. Program complexity metrics and programmer opinions.
In: Proc. 20th IEEE International Conference on Program Comprehension. [S.l.]: IEEE,
2012. p. 17–26.

Kellens, A.; Mens, K.; Tonella, P. Transactions on aspect-oriented software develop-
ment iv. In: Rashid, A.; Aksit, M. (Ed.). Berlin, Heidelberg: Springer-Verlag, 2007.
cap. A survey of automated code-level aspect mining techniques, p. 143–162. ISBN
3-540-77041-0, 978-3-540-77041-1. Dispońıvel em: 〈http://dl.acm.org/citation.cfm?id=
1793854.1793862〉.

Koru, A. G.; Liu, H. Identifying and characterizing change-prone classes in two large-
scale open-source products. J. Syst. Softw., Elsevier Science Inc., New York, NY, USA,
v. 80, n. 1, p. 63–73, jan. 2007.

Koru, A. G.; Tian, J. J. Comparing high-change modules and modules with the highest
measurement values in two large-scale open-source products. IEEE Transactions on Soft-
ware Engineering, IEEE Computer Society, Los Alamitos, CA, USA, v. 31, p. 625–642,
2005.

Landis, J. R.; Koch, G. G. The Measurement of Observer Agreement for Categorical
Data. Biometrics, v. 33, n. 1, p. 159–174, mar. 1977.

Lee, Y. S.; Liang, B. S. Measuring the coupling and cohesion of an object-oriented pro-
gram based on information flow. In: Prof. Intl. Conference on Software Quality. [S.l.:
s.n.], 1995.

Linstead, E. et al. Mining concepts from code with probabilistic topic models. In: Proceed-
ings of the Twenty-second IEEE/ACM International Conference on Automated Software
Engineering. New York, NY, USA: ACM, 2007. (ASE ’07), p. 461–464.



110 BIBLIOGRAPHY

Liu, Y. et al. Modeling class cohesion as mixtures of latent topics. In: 25th IEEE In-
ternational Conference on Software Maintenance (ICSM 2009), September 20-26, 2009,
Edmonton, Alberta, Canada. [S.l.]: IEEE, 2009. p. 233–242.

Lu, H. et al. The ability of object-oriented metrics to predict change-proneness: a meta-
analysis. Empirical Softw. Engg., Kluwer Academic Publishers, Hingham, MA, USA,
v. 17, n. 3, p. 200–242, jun. 2012.

Lucia, A. D. et al. Using ir methods for labeling source code artifacts: Is it worthwhile?
In: ICPC. [S.l.: s.n.], 2012. p. 193–202.

Madhavji, N. H.; Fernandez-ramil, J.; Perry, D. Software Evolution and Feedback: Theory
and Practice. [S.l.]: John Wiley & Sons, 2006. ISBN 0470871806.

Mäntylä, M. V.; Lassenius, C. Drivers for software refactoring decisions. In: Proceedings
of the 2006 ACM/IEEE international symposium on Empirical software engineering. New
York, NY, USA: ACM, 2006. (ISESE ’06), p. 297–306.

Marcus, A.; Poshyvanyk, D. The conceptual cohesion of classes. In: Proceedings of the
21st IEEE International Conference on Software Maintenance. Washington, DC, USA:
IEEE Computer Society, 2005. (ICSM ’05), p. 133–142.

Marcus, A.; Poshyvanyk, D.; Ferenc, R. Using the conceptual cohesion of classes for fault
prediction in object-oriented systems. IEEE Transactions on Software Engineering, IEEE
Computer Society, Los Alamitos, CA, USA, v. 34, p. 287–300, 2008.

Marcus, A. et al. An information retrieval approach to concept location in source code.
In: Proceedings of the 11th Working Conference on Reverse Engineering. Washington,
DC, USA: IEEE Computer Society, 2004. (WCRE ’04), p. 214–223. ISBN 0-7695-2243-2.
Dispońıvel em: 〈http://dl.acm.org/citation.cfm?id=1038267.1039053〉.

Martin, R. C. Agile Software Development: Principles, Patterns, and Practices. Upper
Saddle River, NJ, USA: Prentice Hall PTR, 2003. ISBN 0135974445.

Maskeri, G.; Sarkar, S.; Heafield, K. Mining business topics in source code using latent
dirichlet allocation. In: Proceedings of the 1st India Software Engineering Conference.
New York, NY, USA: ACM, 2008. (ISEC ’08), p. 113–120.

Myers, G. Composite/Structured Design. 1st. ed. New York, NY, USA: Van Nostrand
Reinhold, 1978. ISBN 0442805845.

Neave, H. Elementary Statistics Tables. 2nd. ed. [S.l.]: Routledge, 2010.

Nguyen, T. T. et al. Aspect recommendation for evolving software. In: Proceedings of
the 33rd International Conference on Software Engineering. New York, NY, USA: ACM,
2011. (ICSE ’11), p. 361–370.



BIBLIOGRAPHY 111

Poshyvanyk, D.; Marcus, A. Combining formal concept analysis with information retrieval
for concept location in source code. In: Program Comprehension, 2007. ICPC ’07. 15th
IEEE International Conference on. [S.l.: s.n.], 2007. p. 37 –48.

Punter, T. et al. Conducting on-line surveys in software engineering. In: Proceedings of
the 2003 International Symposium on Empirical Software Engineering. Washington, DC,
USA: IEEE Computer Society, 2003. (ISESE ’03), p. 80–.

Robillard, M. P.; Murphy, G. C. Representing concerns in source code. ACM Trans.
Softw. Eng. Methodol., ACM, New York, NY, USA, v. 16, n. 1, fev. 2007.

Romano, D.; Pinzger, M. Using source code metrics to predict change-prone java inter-
faces. Software Maintenance, IEEE International Conference on, IEEE Computer Soci-
ety, Los Alamitos, CA, USA, v. 0, p. 303–312, 2011.

Rysselberghe, F. V.; Demeyer, S. Studying versioning information to understand inheri-
tance hierarchy changes. In: Proceedings of the Fourth International Workshop on Mining
Software Repositories. Washington, DC, USA: IEEE Computer Society, 2007. (MSR ’07),
p. 16–.

Sant’Anna, C. On the Modularity of Aspect-Oriented Design: A Concern-Driven Mea-
surement Approach. Tese (Doutorado), Rio de Janeiro, Brazil, 2008.

Sant’Anna, C. et al. On the modularity of software architectures: A concern-driven mea-
surement framework. In: Oquendo, F. (Ed.). Software Architecture. [S.l.]: Springer Berlin
/ Heidelberg, 2007, (Lecture Notes in Computer Science, v. 4758). p. 207–224. ISBN 978-
3-540-75131-1.

Sartipi, K.; Safyallah, H. Dynamic knowledge extraction from software systems using
sequential pattern mining. International Journal of Software Engineering and Knowledge
Engineering, p. 761–782, 2010.

Savage, T. et al. Topicxp: Exploring topics in source code using latent dirichlet allocation.
In: Proceedings of the 2010 IEEE International Conference on Software Maintenance.
Washington, DC, USA: IEEE Computer Society, 2010. (ICSM ’10), p. 1–6.

Seaman, C. B. Qualitative methods in empirical studies of software engineering. IEEE
Trans Softw. Eng., IEEE Computer Society, Los Alamitos, CA, USA, v. 25, p. 557–572,
1999.

Shull, F.; Singer, J.; Sjberg, D. I. K. Guide to Advanced Empirical Software Engineering.
1st. ed. [S.l.]: Springer Publishing Company, Incorporated, 2010.

Silva, B. Developers reasoning about module cohesion: companion website. out. 2013.
Dispońıvel em: 〈http://homes.dcc.ufba.br/∼brunocs/CohesionSurveyResults.html〉.

Silva, B. Conceptual cohesion and change-proneness: study resources. jun. 2015.
Dispońıvel em: 〈http://homes.dcc.ufba.br/∼brunocs/ICPC12 extension.html〉.



112 BIBLIOGRAPHY

Silva, B. The Impact of Different Concern Mapping Strategies on Conceptual Cohesion:
study resources. jun. 2015. Dispońıvel em: 〈http://homes.dcc.ufba.br/∼brunocs/IST2015
DiffMappings.html〉.

Silva, B. et al. Concern-based cohesion: Unveiling a hidden dimension of cohesion mea-
surement. In: Proc. 20th IEEE International Conference on Program Comprehension.
[S.l.]: IEEE, 2012. p. 103–112.

Silva, L. et al. Does javascript software embrace classes? In: Software Analysis, Evolution
and Reengineering (SANER), 2015 IEEE 22nd International Conference on. [S.l.: s.n.],
2015. p. 73–82.

Smith, E. et al. Improving developer participation rates in surveys. In: Proceedings of the
6th International Workshop on Cooperative and Human Aspects of Software Engineering.
[S.l.: s.n.], 2013.

Stevens, W. P.; Myers, G. J.; Constantine, L. L. Structured design. IBM Systems Journal,
v. 13, n. 2, p. 115 –139, 1974.

Tarr, P. et al. N degrees of separation: multi-dimensional separation of concerns. In:
ICSE ’99: 21st International Conference on Software Engineering. Los Alamitos, CA,
USA: IEEE Computer Society Press, 1999. p. 107–119. ISBN 1-58113-074-0.

Terceiro, A. et al. Analizo: an extensible multi-language source code analysis and visual-
ization toolkit. In: 1st Brazilian Conference on Software - Tools track. Washington, DC,
USA: IEEE Computer Society, 2010.

Terra, R. et al. Qualitas.class corpus: A compiled version of the qualitas corpus. SIGSOFT
Softw. Eng. Notes, ACM, New York, NY, USA, v. 38, n. 5, p. 1–4, ago. 2013.

Thomas, S. W. et al. Validating the use of topic models for software evolution. In: Pro-
ceedings of the 2010 10th IEEE Working Conference on Source Code Analysis and Ma-
nipulation. Washington, DC, USA: IEEE Computer Society, 2010. (SCAM ’10), p. 55–64.

Together, B. Borland Together IDE. jun. 2011. Dispońıvel em: 〈http://www.borland.
com/us/products/together〉.

Trifu, M. Improving the dataflow-based concern identification approach. 2011 15th Euro-
pean Conference on Software Maintenance and Reengineering, IEEE Computer Society,
Los Alamitos, CA, USA, v. 0, p. 109–118, 2009.

Ujhazi, B. et al. New conceptual coupling and cohesion metrics for object-oriented sys-
tems. In: Proceedings of the 2010 10th IEEE Working Conference on Source Code Anal-
ysis and Manipulation. Washington, DC, USA: IEEE Computer Society, 2010. (SCAM
’10), p. 33–42.

Yourdon, E.; Constantine, L. L. Structured Design: Fundamentals of a Discipline of
Computer Program and Systems Design. 1st. ed. Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1979. ISBN 0138544719.



Appendices

113





Appendix

A
R SCRIPT FOR PCA

115



116 R SCRIPT FOR PCA

Listing A.1 R script for executing PCA.

library(psych) # library for the ’principal()’ function

#the distributions analyzed here do not include CC (change count) metric.

Only cohesion metrics

TOMCAT <-

read.table("cohesionMetricsFinal_with_MWE_tomcat_without_LCbC_Topics.csv",

header=TRUE, sep=",");

TOMCAT2 <- TOMCAT[,c(2,3,4,5,6,7,8)] # keeping only desired columns

TOMCAT2 <- na.omit(TOMCAT2) # omiting N/A measures

TOMCAT_PCA2 <- principal(TOMCAT2, nfactors=5, rotate="varimax") # PCA

function with varimax rotation

TOMCAT_PCA2

JFREECHART <-

read.table("cohesionMetricsFinal_with_MWE_tomcat_without_LCbC_Topics.csv",

header=TRUE, sep=",");

JFREECHART2 <- JFREECHART[,c(2,3,4,5,6,7,8)]

JFREECHART2 <- na.omit(JFREECHART2)

JFREECHART_PCA2 <- principal(JFREECHART2, nfactors=5, rotate="varimax")

JFREECHART_PCA2

FINDBUGS <-

read.table("cohesionMetricsFinal_with_MWE_Findbugs_without_LCbC_Topics.csv",

header=TRUE, sep=",");

FINDBUGS2 <- FINDBUGS[,c(2,3,4,5,6,7,8)]

FINDBUGS2 <- na.omit(FINDBUGS2)

FINDBUGS_PCA2 <- principal(FINDBUGS2, nfactors=5, rotate="varimax")

FINDBUGS_PCA2

FREECOL <-

read.table("cohesionMetricsFinal_with_MWE_Freecol_without_LCbC_Topics.csv",

header=TRUE, sep=",");

FREECOL2 <- FREECOL[,c(2,3,4,5,6,7,8)]

FREECOL2 <- na.omit(FREECOL2)

FREECOL_PCA2 <- principal(FREECOL2, nfactors=5, rotate="varimax")

FREECOL_PCA2



R SCRIPT FOR PCA 117

JEDIT <-

read.table("cohesionMetrics_MERGED_V3_jEdit-4.3.2_without_LCbC_MM_Topics.csv",

header=TRUE, sep=",");

JEDIT2 <- JEDIT[,c(2,3,4,5,6,7,8)]

JEDIT2 <- na.omit(JEDIT2)

JEDIT_PCA2 <- principal(JEDIT2, nfactors=5, rotate="varimax")

JEDIT_PCA2

RHINO <-

read.table("cohesionMetrics_MERGED_V3_Rhino_1.6R5_without_LCbC_MM_Topics.csv",

header=TRUE, sep=",");

RHINO2 <- RHINO[,c(2,3,4,5,6,7,8)]

RHINO2 <- na.omit(RHINO2)

RHINO_PCA2 <- principal(RHINO2, nfactors=5, rotate="varimax")

RHINO_PCA2





Appendix

B
SURVEY QUESTIONNAIRE

119



120 SURVEY QUESTIONNAIRE

The following figures reproduce the questions we had in our web-based survey about
developers’ opinion on module cohesion. The figures show the exact questions participants
had to answer according to the following sequence. The first question (Figure B.1) is
mandatory and starts the survey. Then the second question (Figure B.2) appeared only
in case of “yes” answer in first question. Afterwards, we showed a page defining cohesion
(Figure B.3).

The next questions are illustrated in Figures B.4 to B.6. They show questionnaire
pages for the three scenarios of cohesion comparison and rating, including a manda-
tory explanation about the applied rationale. The last group of questions (Figure B.7)
is intended to collect participant’s profile, with all of them mandatory except the last
question.

It is worth noting that this is a web-based survey. Therefore, we had page interactions
such as automatic verification of mandatory questions, “save & resume later” feature,
progress bar, and hyperlinks to the classes source code.

Figure B.1 Cohesion familiarity

Figure B.2 Cohesion explanation



SURVEY QUESTIONNAIRE 121

Figure B.3 Information about cohesion definition

Figure B.4 First scenario about cohesion comparison and rating



122 SURVEY QUESTIONNAIRE

Figure B.5 Second scenario about cohesion comparison and rating



SURVEY QUESTIONNAIRE 123

Figure B.6 Third scenario about cohesion comparison and rating



124 SURVEY QUESTIONNAIRE

Figure B.7 Participant profile



Appendix

C
SURVEY CLASSES

125



126 SURVEY CLASSES

Listing C.1 DB Backend class source code.

/*

* This file is part of FGMP-Hotelverwaltung

*

* Copyright 2010, 2009 Daniel Fischer, David Gawehn, Martin Meyer, Christian

Pusch

*

* FGMP-Hotelverwaltung is free software: you can redistribute it and/or

modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation, either version 3 of the License, or

* (at your option) any later version.

*

* This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with this program. If not, see <http://www.gnu.org/licenses/>.

*

*/

package FGMP_Hotel_Management.Datenbank2;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.swing.JOptionPane;

import FGMP_Hotel_Management.Messaging;

/**

* Provide methods for the connection to the database

*

* @author Daniel Fischer, David Gawehn

*/

public class DB_Backend {

private final static int conns= 5;

public static Connection [] con_pool = new Connection [conns];

private static int concount=-1;

private String Host;

private String Port;



SURVEY CLASSES 127

private String Database;

private String User;

private String Password;

public DB_Backend(String h, String p, String d, String u, String pw) {

init(h, p, d, u, pw);

}

public void init(String h, String p, String d, String u, String pw) {

Host = h;

Port = p;

Database = d;

User = u;

Password = pw;

}

/**

* Provide the central connection to the MySQL database

*

* @param host Database computer host

* @param database DB name

* @param user DB-User

* @param PW User-Password

* @return false, if failed

*/

public static Boolean connect_DB(String host, String database, String

user, String PW) {

Boolean connected = false;

try {

Class.forName("com.mysql.jdbc.Driver");

try {

for (int i=0; i<5; i++) {

con_pool[i] =

DriverManager.getConnection("jdbc:mysql://" + host +

"/" + database, user, PW);

}

connected = true;

} catch (SQLException ex) {

Messaging.show_Dialog(ex.toString().substring(ex.toString().

indexOf(":")+1), "Error", JOptionPane.ERROR_MESSAGE);

}

} catch (ClassNotFoundException e) {

e.printStackTrace();



128 SURVEY CLASSES

}

return connected;

}

/**

* Provide the central connection to the MySQL database

*/

public Boolean connect_DB() {

Boolean connected = false;

try {

Class.forName("com.mysql.jdbc.Driver");

try {

for (int i=0; i<conns; i++) {

con_pool[i] =

DriverManager.getConnection("jdbc:mysql://" +

Host.concat(":").concat(Port).concat("/").

concat(Database), User, Password);

}

connected = true;

} catch (SQLException ex) {

ex.printStackTrace();

}

} catch (ClassNotFoundException e) {

e.printStackTrace();

}

return connected;

}

/**

* Closing the database connection

**/

public static void close_DB() {

try {

for (int i=0; i<conns; i++) {

if (con_pool[i]!=null)

con_pool[i].close();

}

} catch (SQLException ex) {

Logger.getLogger(DB_Backend.class.getName()).log(Level.SEVERE,

null, ex);

}

}



SURVEY CLASSES 129

/**

* Obtain a connection from the connection pool

*/

public static Connection getConnection() {

if (concount<conns-1) {

concount++;

} else {

concount=0;

}

return con_pool[concount];

}

}

Listing C.2 DB InsertUpdate class source code.

/*

* This file is part of FGMP-Hotelverwaltung

*

* Copyright 2010, 2009 Daniel Fischer, David Gawehn, Martin Meyer, Christian

Pusch

*

* FGMP-Hotelverwaltung is free software: you can redistribute it and/or

modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation, either version 3 of the License, or

* (at your option) any later version.

*

* This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with this program. If not, see <http://www.gnu.org/licenses/>.

*

*/

package FGMP_Hotel_Management.Datenbank2;

import java.sql.PreparedStatement;

import java.sql.SQLException;

import java.sql.Statement;

import java.util.ArrayList;

import java.util.logging.Level;

import java.util.logging.Logger;



130 SURVEY CLASSES

/**

* Provide methods to write (insert/update) to the database

*

* @author Daniel Fischer, David Gawehn

*/

public class DB_InsertUpdate {

/**

* Create a new record in a table

*

* @param Table Target table to be written

* @param Values ArrayList of data, length of the list must be the same

number of table columns

* @return 1, when written, -1 if not written

*/

public static int insertAt (String Table, ArrayList Values) {

try {

String values = "";

for (int i = 0; i < Values.size() - 1; i++) {

values = values.concat("’" + String.valueOf(Values.get(i)) +

"’,");

}

values = values.concat("’" +

String.valueOf(Values.get(Values.size() - 1)) + "’");

Statement statement = DB_Backend.getConnection().createStatement();

int insertAt = statement.executeUpdate("INSERT INTO " + Table + "

VALUES (" + values + ")");

return insertAt;

} catch (SQLException ex) {

Logger.getLogger(DB_InsertUpdate.class.getName()).log(Level.SEVERE,

null, ex);

return -1;

}

}

/**

* Update the record in a table where the column "where" and the value of

"what" are given

*

* @param Table target table

* @param Values the values in the form: "Column Name", value, "Column

Name", value...

* @param where column for the where clause



SURVEY CLASSES 131

* @param what value for the condition

* @return 1, when successful; -1, when not

*/

public static int update (String Table, ArrayList Values, String where,

int what) {

try {

String values = "";

for (int i = 0; i < Values.size() - 2; i += 2) {

values = values.concat(String.valueOf(Values.get(i)) + "=’" +

String.valueOf(Values.get(i + 1)) + "’, ");

}

values = values.concat(String.valueOf(Values.get(Values.size() -

2)) + "=’" + String.valueOf(Values.get(Values.size() - 1)) +

"’");

PreparedStatement statement =

DB_Backend.getConnection().prepareStatement("UPDATE " + Table +

" SET " + values + " WHERE " + where + "= ? LIMIT 1");

statement.setInt(1,what);

int update = statement.executeUpdate();

return update;

} catch (SQLException ex) {

Logger.getLogger(DB_InsertUpdate.class.getName()).log(Level.SEVERE,

null, ex);

return -1;

}

}

public static int update (String Table, ArrayList Values, String where,

String what) {

try {

String values = "";

for (int i = 0; i < Values.size() - 2; i += 2) {

values = values.concat(String.valueOf(Values.get(i)) + "=’" +

String.valueOf(Values.get(i + 1)) + "’, ");

}

values = values.concat(String.valueOf(Values.get(Values.size() -

2)) + "=’" + String.valueOf(Values.get(Values.size() - 1)) +

"’");

PreparedStatement statement =

DB_Backend.getConnection().prepareStatement("UPDATE " + Table +

" SET " + values + " WHERE " + where + "= ? LIMIT 1");

statement.setString(1,what);

int update = statement.executeUpdate();

return update;

} catch (SQLException ex) {

Logger.getLogger(DB_InsertUpdate.class.getName()).log(Level.SEVERE,

null, ex);



132 SURVEY CLASSES

return -1;

}

}

}

Listing C.3 Main Config2 class source code.

/*

* This file is part of FGMP-Hotelverwaltung

*

* Copyright 2011, 2010, 2009 Daniel Fischer, David Gawehn, Martin Meyer,

Christian Pusch

*

* FGMP-Hotelverwaltung is free software: you can redistribute it and/or

modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation, either version 3 of the License, or

* (at your option) any later version.

*

* This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with this program. If not, see <http://www.gnu.org/licenses/>.

*

*/

package FGMP_Hotel_Management.Configuration;

import FGMP_Hotel_Management.Language.ErrorMsg;

import FGMP_Hotel_Management.Language.LanguageFile;

import FGMP_Hotel_Management.Messaging;

import java.beans.XMLDecoder;

import java.beans.XMLEncoder;

import java.io.BufferedInputStream;

import java.io.BufferedOutputStream;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.util.Vector;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.swing.JOptionPane;



SURVEY CLASSES 133

/**

* Get and set information in the main config file

*

* @author David Gawehn

*/

public class Main_Config2 {

private String fileName;

private XMLDecoder d;

private XMLEncoder o;

private String hotelAddress;

private String fax;

private String telephone;

private String mail;

private String web;

private String VAT;

private String invoice_Place;

private String invoice_extD;

private Vector[] cancellationFee = new Vector[2];

private String DB_Host;

private String DB_Port;

private String DB_Name;

private String DB_User;

private String DB_Password;

private String Currency;

private String Bill_Top;

private String Bill_Bottom;

private String languageFileAbsolutePath;

public Main_Config2(String fn) throws Exception{

this.fileName = fn;

this.init(fn);

}

private void init(String fn) throws Exception{

this.load_config();

}

private void load_config() throws FileNotFoundException,

ArrayIndexOutOfBoundsException{

d = new XMLDecoder(new BufferedInputStream(new

FileInputStream(this.fileName)));

this.hotelAddress = (String) d.readObject();



134 SURVEY CLASSES

this.fax = (String) d.readObject();

this.telephone = (String) d.readObject();

this.mail = (String) d.readObject();

this.web = (String) d.readObject();

this.VAT = (String) d.readObject();

this.invoice_Place = (String) d.readObject();

this.invoice_extD = (String) d.readObject();

this.cancellationFee[0] = (Vector)d.readObject();

this.cancellationFee[1] = (Vector)d.readObject();

this.DB_Name = (String) d.readObject();

this.DB_Host = (String) d.readObject();

this.DB_User = (String) d.readObject();

this.DB_Port = (String) d.readObject();

this.DB_Password = (String) d.readObject();

this.Currency = (String) d.readObject();

this.Bill_Top = (String) d.readObject();

this.Bill_Bottom = (String) d.readObject();

String pa = (String) d.readObject();

if (pa != null) {

LanguageFile.applyLanguageFile(new File(pa));

}

}

public void save_config() throws FileNotFoundException{

this.o = new XMLEncoder(new BufferedOutputStream(new

FileOutputStream(this.fileName)));

o.writeObject(hotelAddress);

o.writeObject(fax);

o.writeObject(telephone);

o.writeObject(mail);

o.writeObject(web);

o.writeObject(VAT);

o.writeObject(invoice_Place);

o.writeObject(invoice_extD);

o.writeObject(cancellationFee[0]);

o.writeObject(cancellationFee[1]);

o.writeObject(DB_Name);

o.writeObject(DB_Host);

o.writeObject(DB_User);

o.writeObject(DB_Port);

o.writeObject(DB_Password);

o.writeObject(Currency);

o.writeObject(Bill_Top);

o.writeObject(Bill_Bottom);

o.writeObject(languageFileAbsolutePath);

o.flush();



SURVEY CLASSES 135

}

/* *

* SETs *

* */

public void setBill_Bottom(String Bill_Bottom) {

this.Bill_Bottom = Bill_Bottom;

}

public void setBill_Top(String Bill_Top) {

this.Bill_Top = Bill_Top;

}

public void setCurrency(String Currency) {

this.Currency = Currency;

}

public void setLanguageFileAbsolutePath(String LanguageFileAbsolutePath) {

this.languageFileAbsolutePath = LanguageFileAbsolutePath;

}

public void setVAT(String vat) {

this.VAT = vat;

}

public void setInvoice_Place(String invoice_Place) {

this.invoice_Place = invoice_Place;

}

public void setInvoice_extD(String invoice_extD) {

this.invoice_extD = invoice_extD;

}

public void setCancellationFee(Vector[] cancellation) {

this.cancellationFee = cancellation;

}

public void setHost(String Host) {

this.DB_Host = Host;

}

public void setPassword(String PSWD) {

this.DB_Password = PSWD;

}

public void setPort(String Port) {

this.DB_Port = Port;



136 SURVEY CLASSES

}

public void setUser(String User) {

this.DB_User = User;

}

public void setDatabase(String DBName) {

this.DB_Name = DBName;

}

public void setHotelAddress(String text) {

this.hotelAddress = text;

}

public void setTelephone(String text) {

this.telephone = text;

}

public void setFax(String text) {

this.fax = text;

}

public void setMail(String text) {

this.mail = text;

}

public void setWeb(String text) {

this.web = text;

}

/* *

* GETs *

* */

public String getLanguageFileAbsolutePath() {

return languageFileAbsolutePath;

}

public Vector[] getCancellationFee() {

return cancellationFee;

}

public String getDB_Host() {

return this.DB_Host;

}

public String getDB_Port() {

return this.DB_Port;

}



SURVEY CLASSES 137

public String getDB_Name() {

return this.DB_Name;

}

public String getDB_Password() {

return this.DB_Password;

}

public String getDB_User() {

return this.DB_User;

}

public String getHotelAddress() {

return this.hotelAddress;

}

public String getFax() {

return this.fax;

}

public String getTelephone() {

return this.telephone;

}

public String getMail() {

return this.mail;

}

public String getWeb() {

return this.web;

}

public String getVAT() {

return this.VAT;

}

public String getInvoice_Place() {

return this.invoice_Place;

}

public String getInvoice_extD() {

return this.invoice_extD;

}

public Vector[] getCancellation() {

return this.cancellationFee;



138 SURVEY CLASSES

}

public String getCurrency() {

return this.Currency;

}

public String getBill_Top() {

return this.Bill_Top;

}

public String getBill_Bottom() {

return this.Bill_Bottom;

}

}

Listing C.4 DB Helpers class source code.

/*

* This file is part of FGMP-Hotelverwaltung

*

* Copyright 2010, 2009 Daniel Fischer, David Gawehn, Martin Meyer, Christian

Pusch

*

* FGMP-Hotelverwaltung is free software: you can redistribute it and/or

modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation, either version 3 of the License, or

* (at your option) any later version.

*

* This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with this program. If not, see <http://www.gnu.org/licenses/>.

*

*/

package FGMP_Hotel_Management.Datenbank2;

import FGMP_Hotel_Management.Language.ErrorMsg;

import java.sql.*;

import java.util.ArrayList;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.swing.DefaultComboBoxModel;



SURVEY CLASSES 139

import javax.swing.DefaultListModel;

import javax.swing.JOptionPane;

import FGMP_Hotel_Management.Messaging;

/**

* Provide several "helpers" for the DB access

*

* @author Daniel Fischer, David Gawehn

*/

public class DB_Helpers {

/**

* Provides the nearest free ID of a table

* MAY STILL BE OPTIMIZED

*

* @param Table DB-Table

* @param Column Column IDs

* @return -1, if failed, otherwise ID

*/

public static int getNextID(String Table, String Column) {

try {

Statement stmt_id = DB_Backend.getConnection().createStatement();

ResultSet max_id = stmt_id.executeQuery("SELECT MAX(" + Column +

") FROM " + Table);

max_id.next();

return max_id.getInt(1) + 1;

} catch (SQLException ex) {

Logger.getLogger(DB_Helpers.class.getName()).log(Level.SEVERE,

null, ex);

return -1;

}

}

/**

* Delete a record from a table

*

* @param Table table Name

* @param where column Name

* @param what column entry

* @return -1, if failed, otherwise 1

*/

public static int delEntry(String Table, String where, int what){

try{

PreparedStatement stmt_id =

DB_Backend.getConnection().prepareStatement("DELETE FROM " +

Table + " WHERE " + where + " = ?");

stmt_id.setInt(1,what);



140 SURVEY CLASSES

stmt_id.execute();

return 1;

} catch (SQLException ex){

Logger.getLogger(DB_Helpers.class.getName()).log(Level.SEVERE,

null, ex);

Messaging.show_Dialog(ErrorMsg.msg[1], "Error",

JOptionPane.ERROR_MESSAGE);

return -1;

}

}

public static int delEntry(String Table, String where, String what){

try{

PreparedStatement stmt_id =

DB_Backend.getConnection().prepareStatement("DELETE FROM " +

Table + " WHERE " + where + " = ?");

stmt_id.setString(1,what);

stmt_id.execute();

return 1;

} catch (SQLException ex){

Logger.getLogger(DB_Helpers.class.getName()).log(Level.SEVERE,

null, ex);

Messaging.show_Dialog(ErrorMsg.msg[1], "Error",

JOptionPane.ERROR_MESSAGE);

return -1;

}

}

/**

* Fill a combo box with entries from the database conditions

*

* @param Model DefaultComboBoxModel

* @param List_id ArrayList of entries to be filled

* @param Table DB-Table

* @param Column_name DB column names

* @param Column_ID DB column IDs

*/

public static void getComboItems(DefaultComboBoxModel Model, ArrayList

List_id, String Table, String Column_name, String Column_ID) {

try {

if (Model != null) {

Model.removeAllElements();

}

List_id.clear();

Statement stmt = DB_Backend.getConnection().createStatement();



SURVEY CLASSES 141

ResultSet RS = stmt.executeQuery("SELECT * FROM " + Table + "

ORDER BY " + Column_ID);

while (RS.next()) {

if (Model != null) {

Model.addElement(RS.getString(Column_name));

}

List_id.add(RS.getString(Column_ID));

}

} catch (SQLException ex) {

Logger.getLogger(DB_Helpers.class.getName()).log(Level.SEVERE,

null, ex);

}

}

/**

* Fill a JList with entries from the database conditions

*

* @param ListModel DefaultListModel

* @param Liste ArrayList of IDs

* @param Table DB-Table

* @param Column_name DB-Column names

* @param Column_ID DB-Column IDs

*/

public static void getListItems(DefaultListModel ListModel, ArrayList

Liste, String Table, String Column_name, String Column_ID) {

try {

Statement stmt = DB_Backend.getConnection().createStatement();

Liste.clear();

ListModel.clear();

ResultSet rs = stmt.executeQuery("SELECT * FROM " + Table);

while (rs.next()) {

ListModel.addElement(rs.getString(Column_name));

if (Liste != null) {

Liste.add(rs.getString(Column_ID));

}

}

} catch (SQLException ex) {

Logger.getLogger(DB_Helpers.class.getName()).log(Level.SEVERE,

null, ex);

}

}

/**

* Checks whether a room loaded from the database can be deleted

*/

public static boolean isRoomDeletable(int ID) {

try {



142 SURVEY CLASSES

PreparedStatement stmt1 =

DB_Backend.getConnection().prepareStatement("SELECT * FROM

booking_room WHERE room_id = ?");

stmt1.setInt(1, ID);

ResultSet rs1 = stmt1.executeQuery();

while(rs1.next()) {

int counter = 0;

PreparedStatement stmt2 =

DB_Backend.getConnection().prepareStatement("SELECT * FROM

booking WHERE booking_id= ? && paid = ’0’");

stmt2.setString(1, rs1.getString("booking_id"));

ResultSet rs2 = stmt2.executeQuery();

while(rs2.next()) {

counter++;

}

if (counter > 0) {

return false;

}

}

} catch (SQLException ex) {

Logger.getLogger(DB_Helpers.class.getName()).log(Level.SEVERE,

null, ex);

}

return true;

}

/**

* Returns the number rooms in use at the specified date d

*

* @param d date

* @return number of rooms

*/

public static int getReservedRoomsAtDate(Date d) {

int res = 0;

try {

PreparedStatement stmt1 =

DB_Backend.getConnection().prepareStatement("SELECT * FROM

booking,booking_room WHERE booking.arrivaldate <= ? AND

booking.departuredate >= ? AND booking.cancellation = 0 AND

booking.booking_id = booking_room.booking_id");

stmt1.setDate(1, d);

stmt1.setDate(2, d);

ResultSet rs1 = stmt1.executeQuery();

while(rs1.next()) {

res++;



SURVEY CLASSES 143

}

} catch (SQLException ex) {

Logger.getLogger(DB_Helpers.class.getName()).log(Level.SEVERE,

null, ex);

}

return res;

}

/**

* Returns the number of rooms in the database

*

* @return number of rooms

*/

public static int getNumberOfRooms() {

int rooms = 0;

try {

PreparedStatement stmt1 =

DB_Backend.getConnection().prepareStatement("SELECT * FROM

room");

ResultSet rs1 = stmt1.executeQuery();

while (rs1.next()) {

rooms++;

}

} catch (SQLException ex) {

Logger.getLogger(DB_Helpers.class.getName()).log(Level.SEVERE,

null, ex);

}

return rooms;

}

}

Listing C.5 RelationSpouse class source code.

/*

* FamilyTree - Family tree modeling software

* created for research purposes

* Copyright - Helsinki Univerity of Technology,

* Software Business and Engineering Institute

* Created on 23.7.2003

*/

package familytree.model;

import java.io.File;

import java.io.FileWriter;

import java.io.IOException;

import java.util.Iterator;



144 SURVEY CLASSES

import javax.swing.JOptionPane;

public class RelationSpouse extends Relation {

public Person husband;

public Person wife;

public RelationSpouse (Person husband, Person wife)

{

this.husband = husband;

this.wife = wife;

}

public Person getHusband() {

return husband;

}

public Person getWife() {

return wife;

}

public Person getPerson1(){

return getWife();

}

public Person getPerson2(){

return getHusband();

}

public boolean equals(Object obj){

if (obj instanceof RelationSpouse){

RelationSpouse relation = (RelationSpouse) obj;

return (this.getHusband().equals(relation.getHusband())&&

this.getWife().equals(relation.getWife()));

}

return false;

}

public Person getPartner(Person person){

if (person.equals(husband))

return wife;

else if (person.equals(wife))

return husband;

else{

JOptionPane.showMessageDialog(null, "Wrong person type for spouse

relationship...");



SURVEY CLASSES 145

return null;

}

}

public String getRelationType(Person person){

if (person.equals(husband))

return WIFE;

else if (person.equals(wife))

return HUSBAND;

else{

JOptionPane.showMessageDialog(null, "Wrong person type for spouse

relationship...");

return INVALID_RELATIONSHIP;

}

}

public void printToFile(File f)throws IOException{

FileWriter fw = new FileWriter(f, false);

fw.write("*** Outputting RelationSpouse ***\n");

fw.write("Husband:

"+husband.getFirstName()+husband.getLastName()+"("+husband.getId()+")\n");

fw.write("Wife:

"+wife.getFirstName()+wife.getLastName()+"("+wife.getId()+")\n");

Iterator it = husband.getChildren().iterator();

while (it.hasNext()) {

Person child = (Person) it.next();

if (child.getGender().equals(Person.GENDER_FEMALE))

fw.write(" Daughter: "+child.getFirstName()+"\n");

else if (child.getGender().equals(Person.GENDER_MALE))

fw.write(" Son: "+child.getFirstName()+"\n");

}

fw.close();

}

}

Listing C.6 RelationParentChild class source code.

/*

* FamilyTree - Family tree modeling software

* created for research purposes

* Copyright - Helsinki Univerity of Technology,

* Software Business and Engineering Institute

* Created on 23.7.2003

*/

package familytree.model;



146 SURVEY CLASSES

public class RelationParentChild extends Relation {

private Person child;

private Person parent;

public RelationParentChild (Person child, Person parent){

this.child = child;

this.parent = parent;

}

public boolean isParent(Person person){

return person == parent;

}

public boolean isChild(Person person){

return person == child;

}

public Person getChild() {

return child;

}

public Person getParent() {

return parent;

}

public Person getPerson1(){

return getParent();

}

public Person getPerson2(){

return getChild();

}

public boolean equals(Object obj){

if (obj instanceof RelationParentChild) {

RelationParentChild relation = (RelationParentChild) obj;

return (this.getChild().equals(relation.getChild()) &&

this.getParent().equals(relation.getParent()));

}

return false;

}

public Person getPartner(Person person){

if (person.equals(child))

return parent;

else if (person.equals(parent))

return child;



SURVEY CLASSES 147

else

return null;

}

public String getRelationType(Person person) {

if (person.equals(child)) {

if (parent.isFemale())

return MOTHER;

else

return FATHER;

} else if (person.equals(parent)) {

if (child.isFemale())

return DAUGHTER;

else

return SON;

} else

return INVALID_RELATIONSHIP;

}

}





Appendix

D
DATA TRANSFORMATION AND APPLICATION OF

FLEISS KAPPA TEST

149



150 DATA TRANSFORMATION AND APPLICATION OF FLEISS KAPPA TEST

Listing D.1 R functions created to support necessary transformations.

convertRatings <- function (ratings)

{

lev <- levels(as.factor(ratings))

ratings <- as.matrix(na.omit(ratings))

ns <- nrow(ratings)

target <- array(0, dim=c(ns,4))

for (i in 1:ns) {

if(ratings[i] == lev[1])

target[i, 1] <- 1

else if(ratings[i] == lev[2])

target[i, 2] <- 1

else if(ratings[i] == lev[3])

target[i, 3] <- 1

else if(ratings[i] == lev[4])

target[i, 4] <- 1

}

return(target)

}

convertRatings3 <- function (ratings)

{

#ns is used just to iterate the for loop

# and to define the number of columns in the target matrix

ns <- nrow(ratings)

# the resulting matrix

target <- array(dim=c(2,ns))

for (i in 1:ns){

for (j in 1:4) {

if ((j == 1) && (ratings[i, j] == 1)){

target[1,i] = ">"

target[2,i] = "<"

j = 5

}

else if ((j == 2) && (ratings[i, j] == 1)){

target[1,i] = "<"

target[2,i] = ">"

j = 5

}

else if ((j == 3) && (ratings[i, j] == 1)){

target[1,i] = "="

target[2,i] = "="

j = 5

}



DATA TRANSFORMATION AND APPLICATION OF FLEISS KAPPA TEST 151

}

}

return(target)

}

Listing D.2 Fleiss Kappa in R and results.

# loading IRR library package

library(irr)

# loading R syntax file for the survey data

source("survey_44763_R_syntax_file.R", encoding = "UTF-8")

# Transformation 1 for the ratings

ratings1 <- convertRatings (data[,19])

ratings2 <- convertRatings (data[,21])

ratings3 <- convertRatings (data[,23])

# Transformation 2 for the ratings

ratings1_1 <- convertRatings3(ratings1)

ratings2_1 <- convertRatings3(ratings2)

ratings3_1 <- convertRatings3(ratings3)

# Removing rating 52 which corresponds to "I don’t know" answer.

# There might be a better way to do it.

ratings1_1_NAomited <- ratings1_1[,-52]

ratings2_1_NAomited <- ratings2_1[,-52]

ratings3_1_NAomited <- ratings3_1[,-41]

# Executing Fleiss Kappa test and corresponding output

kappam.fleiss(ratings1_1_NAomited)

> Fleiss’ Kappa for m Raters

>

> Subjects = 2

> Raters = 79

> Kappa = 0.193

>

> z = 21.4

> p-value = 0

kappam.fleiss(ratings2_1_NAomited)

> Fleiss’ Kappa for m Raters

>

> Subjects = 2

> Raters = 79

> Kappa = 0.234

>



152 DATA TRANSFORMATION AND APPLICATION OF FLEISS KAPPA TEST

> z = 25.1

> p-value = 0

kappam.fleiss(ratings3_1_NAomited)

> Fleiss’ Kappa for m Raters

>

> Subjects = 2

> Raters = 79

> Kappa = 0.155

>

> z = 17.1

> p-value = 0



Appendix

E
APPLICATION OF FISHER EXACT TEST

153



154 APPLICATION OF FISHER EXACT TEST

Listing E.1 Fisher exact test for cohesion familiarity vs. cohesion ratings.

# http://stat.ethz.ch/R-manual/R-patched/library/stats/html/fisher.test.html

# Creating matrix: cohesion familiarity vs. ratings

> cohFam_Ratings1 <- matrix(c(41,4,26,0, 4,0,4,1), nrow = 2, ncol = 4, byrow

= TRUE, dimnames = list(c("Yes", "No"), c("1st more cohesive", "2nd more

cohesive", "Equally coh", "Don’t know")))

> cohFam_Ratings1

1st more cohesive 2nd more cohesive Equally coh Don’t know

Yes 41 4 26 0

No 4 0 4 1

>cohFam_Ratings2 <- matrix(c(50,9,12,0, 4,1,3,1), nrow = 2, ncol = 4, byrow =

TRUE, dimnames = list(c("Yes", "No"), c("1st more cohesive", "2nd more

cohesive", "Equally coh", "Don’t know")))

>cohFam_Ratings2

1st more cohesive 2nd more cohesive Equally coh Don’t know

Yes 50 9 12 0

No 4 1 3 1

>cohFam_Ratings3 <- matrix(c(5,41,24,1, 1,2,6,0), nrow = 2, ncol = 4, byrow =

TRUE, dimnames = list(c("Yes", "No"), c("1st more cohesive", "2nd more

cohesive", "Equally coh", "Don’t know")))

>cohFam_Ratings3

1st more cohesive 2nd more cohesive Equally coh Don’t know

Yes 5 41 24 1

No 1 2 6 0

# Executing the Fisher exact test between Cohesion familiarity and Ratings

> fisher.test(cohFam_Ratings1, simulate.p.value = TRUE)

Fisher’s Exact Test for Count Data with simulated p-value (based on

2000 replicates)

data: cohFam_Ratings1

p-value = 0.1704

alternative hypothesis: two.sided

> fisher.test(cohFam_Ratings1)



APPLICATION OF FISHER EXACT TEST 155

Fisher’s Exact Test for Count Data

data: cohFam_Ratings1

p-value = 0.1753

alternative hypothesis: two.sided

> fisher.test(cohFam_Ratings2, simulate.p.value = TRUE)

Fisher’s Exact Test for Count Data with simulated p-value (based on

2000 replicates)

data: cohFam_Ratings2

p-value = 0.05447

alternative hypothesis: two.sided

> fisher.test(cohFam_Ratings2)

Fisher’s Exact Test for Count Data

data: cohFam_Ratings2

p-value = 0.06224

alternative hypothesis: two.sided

> fisher.test(cohFam_Ratings3, simulate.p.value = TRUE)

Fisher’s Exact Test for Count Data with simulated p-value (based on

2000 replicates)

data: cohFam_Ratings3

p-value = 0.1544

alternative hypothesis: two.sided

> fisher.test(cohFam_Ratings3)

Fisher’s Exact Test for Count Data

data: cohFam_Ratings3

p-value = 0.1523

alternative hypothesis: two.sided

Listing E.2 Fisher exact test for programming experience (years) vs. cohesion ratings (of each
scenario).

****************************************************************************

Three categories:



156 APPLICATION OF FISHER EXACT TEST

* 1st category (<=5 years): 1st (lower) quartile;

* 2nd category (>5 and > 12.25 years): inter quartile range;

* 3rd category (>=12.25 years): 3rd (upper) quartile;

****************************************************************************

# Creating matrix: years of programming experience vs. ratings

ratings1_1_YearsProg <- matrix(c(10,21,14, 1,2,1, 10,15,5, 0,1,0), nrow = 4,

ncol = 3, byrow = TRUE, dimnames = list(c("1st more cohesive", "2nd more

cohesive", "Equally coh", "Don’t know"), c("<=5", ">5 AND <12.25",

">=12.25")))

> ratings1_1_YearsProg

<=5 >5 AND <12.25 >=12.25

1st more cohesive 10 21 14

2nd more \ncohesive 1 2 1

Equally coh 10 15 5

Don’t know 0 1 0

>

ratings2_1_YearsProg <- matrix(c(14,24,16, 3,5,2, 4,9,2, 0,1,0), nrow = 4,

ncol = 3, byrow = TRUE, dimnames = list(c("1st more cohesive", "2nd more

cohesive", "Equally coh", "Don’t know"), c("<=5", ">5 AND <12.25",

">=12.25")))

> ratings2_1_YearsProg

<=5 >5 AND <12.25 >=12.25

1st more cohesive 14 24 16

2nd more cohesive 3 5 2

Equally coh 4 9 2

Don’t know 0 1 0

>

ratings3_1_YearsProg <- matrix(c(2,4,0, 10,19,14, 9,15,6, 0,1,0), nrow = 4,

ncol = 3, byrow = TRUE, dimnames = list(c("1st more cohesive", "2nd more

cohesive", "Equally coh", "Don’t know"), c("<=5", ">5 AND <12.25",

">=12.25")))

> ratings3_1_YearsProg

<=5 >5 AND <12.25 >=12.25

1st more cohesive 2 4 0

2nd more \ncohesive 10 19 14

Equally coh 9 15 6

Don’t know 0 1 0



APPLICATION OF FISHER EXACT TEST 157

# Executing the Fisher exact test between Years of Prog. Exp. and Ratings

> fisher.test(ratings1_1_YearsProg, simulate.p.value = TRUE)

Fisher’s Exact Test for Count Data with simulated p-value (based on

2000 replicates)

data: ratings1_1_YearsProg

p-value = 0.7716

alternative hypothesis: two.sided

> fisher.test(ratings1_1_YearsProg)

Fisher’s Exact Test for Count Data

data: ratings1_1_YearsProg

p-value = 0.7688

alternative hypothesis: two.sided

>

> fisher.test(ratings2_1_YearsProg, simulate.p.value = TRUE)

Fisher’s Exact Test for Count Data with simulated p-value (based on

2000 replicates)

data: ratings2_1_YearsProg

p-value = 0.8851

alternative hypothesis: two.sided

>

> fisher.test(ratings2_1_YearsProg)

Fisher’s Exact Test for Count Data

data: ratings2_1_YearsProg

p-value = 0.8749

alternative hypothesis: two.sided

>



158 APPLICATION OF FISHER EXACT TEST

> fisher.test(ratings3_1_YearsProg, simulate.p.value = TRUE)

Fisher’s Exact Test for Count Data with simulated p-value (based on

2000 replicates)

data: ratings3_1_YearsProg

p-value = 0.5867

alternative hypothesis: two.sided

> fisher.test(ratings3_1_YearsProg)

Fisher’s Exact Test for Count Data

data: ratings3_1_YearsProg

p-value = 0.5863

alternative hypothesis: two.sided

>

Listing E.3 Fisher exact test for cohesion familiarity vs. academic degree.

# http://stat.ethz.ch/R-manual/R-patched/library/stats/html/fisher.test.html

# Creating matrix: academic degree vs. cohesion familiarity

>cohFam_AcadDegree <- matrix(c(2,20,10,31,8,0, 0,5,1,2,1,0), nrow = 2, ncol =

6, byrow = TRUE, dimnames = list(c("Yes", "No"), c("Undergrad", "Grad",

"Grad Cert Expert", "Master", "PhD", "No degree")))

> cohFam_AcadDegree

Undergrad Grad Grad Cert Expert Master PhD No degree

Yes 2 20 10 31 8 0

No 0 5 1 2 1 0

# Executing the Fisher exact test between Academic degree and Cohesion

Familiarity

> fisher.test(cohFam_AcadDegree, simulate.p.value = TRUE)

Fisher’s Exact Test for Count Data with simulated p-value (based on

2000 replicates)

data: cohFam_AcadDegree

p-value = 0.5512

alternative hypothesis: two.sided

> fisher.test(cohFam_AcadDegree)



APPLICATION OF FISHER EXACT TEST 159

Fisher’s Exact Test for Count Data

data: cohFam_AcadDegree

p-value = 0.5464

alternative hypothesis: two.sided

Listing E.4 Fisher exact test for Academic degree vs. cohesion ratings (of each scenario).

# http://stat.ethz.ch/R-manual/R-patched/library/stats/html/fisher.test.html

# Creating matrix: academic degree vs. ratings

> ratings1_AcadDegree <- matrix(c(1,12,5,21,6,0, 0,2,0,2,1,0, 1,10,6,10,3,0,

0,1,0,0,0,0), nrow = 4, ncol = 6, byrow = TRUE, dimnames = list(c("1st

more cohesive", "2nd more cohesive", "Equally coh", "Don’t know"),

c("Undergrad", "Grad", "Grad Cert Expert", "Master", "PhD", "No degree")))

> ratings1_AcadDegree

Undergrad Grad Grad Cert Expert Master PhD No degree

1st more cohesive 1 12 5 21 6 0

2nd more cohesive 0 2 0 2 1 0

Equally coh 1 10 6 10 3 0

Don’t know 0 1 0 0 0 0

> ratings2_AcadDegree <- matrix(c(2,17,9,22,5,0, 0,3,2,1,4,0, 0,4,0,10,0,0,

0,1,0,0,0,0), nrow = 4, ncol = 6, byrow = TRUE, dimnames = list(c("1st

more cohesive", "2nd more cohesive", "Equally coh", "Don’t know"),

c("Undergrad", "Grad", "Grad Cert Expert", "Master", "PhD", "No degree")))

> ratings2_AcadDegree

Undergrad Grad Grad Cert Expert Master PhD No degree

1st more cohesive 2 17 9 22 5 0

2nd more cohesive 0 3 2 1 4 0

Equally coh 0 4 0 10 0 0

Don’t know 0 1 0 0 0 0

> ratings3_AcadDegree <- matrix(c(0,1,1,3,1,0, 1,15,5,17,5,0, 1,9,4,13,3,0,

0,0,1,0,0,0), nrow = 4, ncol = 6, byrow = TRUE, dimnames = list(c("1st

more cohesive", "2nd more cohesive", "Equally coh", "Don’t know"),

c("Undergrad", "Grad", "Grad Cert Expert", "Master", "PhD", "No degree")))

> ratings3_AcadDegree

Undergrad Grad Grad \nCert Expert Master PhD No degree

1st more cohesive 0 1 1 3 1 0



160 APPLICATION OF FISHER EXACT TEST

2nd more cohesive 1 15 5 17 5 0

Equally coh 1 9 4 13 3 0

Don’t know 0 0 1 0 0 0

# Executing the Fisher exact test between Academic degree and Ratings

> fisher.test(ratings1_AcadDegree, simulate.p.value = TRUE)

Fisher’s Exact Test for Count Data with simulated p-value (based on

2000 replicates)

data: ratings1_AcadDegree

p-value = 0.8656

alternative hypothesis: two.sided

> fisher.test(ratings1_AcadDegree)

Fisher’s Exact Test for Count Data

data: ratings1_AcadDegree

p-value = 0.8646

alternative hypothesis: two.sided

> fisher.test(ratings2_AcadDegree, simulate.p.value = TRUE)

Fisher’s Exact Test for Count Data with simulated p-value (based on

2000 replicates)

data: ratings2_AcadDegree

p-value = 0.04098

alternative hypothesis: two.sided

> fisher.test(ratings2_AcadDegree)

Fisher’s Exact Test for Count Data

data: ratings2_AcadDegree

p-value = 0.03684

alternative hypothesis: two.sided

> fisher.test(ratings3_AcadDegree, simulate.p.value = TRUE)

Fisher’s Exact Test for Count Data with simulated p-value (based on

2000 replicates)



APPLICATION OF FISHER EXACT TEST 161

data: ratings3_AcadDegree

p-value = 0.8716

alternative hypothesis: two.sided

> fisher.test(ratings3_AcadDegree)

Fisher’s Exact Test for Count Data

data: ratings3_AcadDegree

p-value = 0.8831

alternative hypothesis: two.sided





Appendix

F
R SCRIPTS FOR CORRELATION TESTS AND

REGRESSION TREES

163



164 R SCRIPTS FOR CORRELATION TESTS AND REGRESSION TREES

Listing F.1 R script for generating and plotting regression trees.

library(rpart)

library(rpart.plot)

TOMCAT <- read.table("cohesionMetricsFinal_andCC_Tomcat_2014.csv",

header=TRUE, sep=",")

attach(TOMCAT)

tomcat_fit <- rpart(CC ~ LCOM2 + LCOM3 + LCOM4 + LCOM5 + TCC + LCbC_XScan +

MWE)

prp(tomcat_fit, main="Tomcat - Change Count Regression Tree", varlen=10,

faclen = 0, cex = 0.7, extra = 101, type=1)

detach(TOMCAT)

FINDBUGS <- read.table("cohesionMetricsFinal_andCC_Findbugs_2014.csv",

header=TRUE, sep=",")

attach(FINDBUGS)

findbugs_fit <- rpart(CC ~ LCOM2 + LCOM3 + LCOM4 + LCOM5 + TCC + LCbC_XScan +

MWE)

prp(findbugs_fit, main="Findbugs - Change Count Regression Tree", varlen=10,

faclen = 0, cex = 0.7, extra = 101, type=1)

detach(FINDBUGS)

FREECOL <- read.table("cohesionMetricsFinal_andCC_Freecol_2014.csv",

header=TRUE, sep=",")

attach(FREECOL)

freecol_fit <- rpart(CC ~ LCOM2 + LCOM3 + LCOM4 + LCOM5 + TCC + LCbC_XScan +

MWE)

prp(freecol_fit, main="Freecol - Change Count Regression Tree", varlen=10,

faclen = 0, cex = 0.7, extra = 101, type=1)

detach(FREECOL)

JFREECHART <- read.table("cohesionMetricsFinal_andCC_JFreeChart_2014.csv",

header=TRUE, sep=",")

attach(JFREECHART)

jfreechart_fit <- rpart(CC ~ LCOM2 + LCOM3 + LCOM4 + LCOM5 + TCC + LCbC_XScan

+ MWE)

prp(jfreechart_fit, main="JFreeChart - Change Count Regression Tree",

varlen=10, faclen = 0, cex = 0.7, extra = 101, type=1)

detach(JFREECHART)

RHINO <- read.table("cohesionMetricsFinal_andCC_Rhino_1.6R5.csv",

header=TRUE, sep=",")

attach(RHINO)

rhino_fit <- rpart(CC ~ LCOM2 + LCOM3 + LCOM4 + LCOM5 + TCC + LCbC_XScan +

MWE)

prp(rhino_fit, main="Rhino - Change Count Regression Tree", varlen=10, faclen



R SCRIPTS FOR CORRELATION TESTS AND REGRESSION TREES 165

= 0, cex = 0.7, extra = 101, type=1)

detach(RHINO)

JEDIT <- read.table("cohesionMetricsFinal_andCC_jEdit_4.3.2.csv",

header=TRUE, sep=",")

attach(JEDIT)

jedit_fit <- rpart(CC ~ LCOM2 + LCOM3 + LCOM4 + LCOM5 + TCC + LCbC_XScan +

MWE)

prp(jedit_fit, main="jEdit - Change Count Regression Tree", varlen=10, faclen

= 0, cex = 0.7, extra = 101, type=1)

detach(JEDIT)

Listing F.2 R script for executing Spearman rank correlation test.

library(Hmisc) # library for ’rcorr()’ function

TOMCAT <- read.table("cohesionMetricsFinal_andCC_Tomcat_2014.csv",

header=TRUE, sep=",") # readinng the data

rcorr(as.matrix(TOMCAT), type="spearman") # running correlation (it considers

pairwise deletion for missing values)

RHINO <- read.table("cohesionMetricsFinal_andCC_Rhino_1.6R5.csv",

header=TRUE, sep=",")

rcorr(as.matrix(RHINO), type="spearman")

JFREECHART <- read.table("cohesionMetricsFinal_andCC_JFreeChart_2014.csv",

header=TRUE, sep=",")

rcorr(as.matrix(JFREECHART), type="spearman")

JEDIT <- read.table("cohesionMetricsFinal_andCC_jEdit_4.3.2.csv",

header=TRUE, sep=",")

rcorr(as.matrix(JEDIT), type="spearman")

FINDBUGS <- read.table("cohesionMetricsFinal_andCC_Findbugs_2014.csv",

header=TRUE, sep=",")

rcorr(as.matrix(FINDBUGS), type="spearman")

FREECOL <- read.table("cohesionMetricsFinal_andCC_Freecol_2014.csv",

header=TRUE, sep=",")

rcorr(as.matrix(FREECOL), type="spearman")





Appendix

G
REGRESSION TREES

167



168 REGRESSION TREES

Figure G.1 Tomcat regression tree.



REGRESSION TREES 169

Figure G.2 Findbugs regression tree.



170 REGRESSION TREES

Figure G.3 Freecol regression tree.



REGRESSION TREES 171

Figure G.4 JFreeChart regression tree.



172 REGRESSION TREES

Figure G.5 Rhino regression tree.



REGRESSION TREES 173

Figure G.6 JEdit regression tree.





Appendix

H
APPLICATION OF FRIEDMAN TEST

175



176 APPLICATION OF FRIEDMAN TEST

Listing H.1 R script and log for executing Friedman test.

# It is necessary to load the LCbC columns for each system beforehand.

# Tomcat, JFreeChart, Freecol and Findbugs: only two columns (LCbC_XScan vs.

LCbC_Topics)

> friedman.test(as.matrix(Tomcat_LCbC_Topics_XScan[,2:3]))

Friedman rank sum test

data: as.matrix(Tomcat_LCbC_Topics_XScan[, 2:3])

Friedman chi-squared = 367.0662, df = 1, p-value < 2.2e-16

> friedman.test(as.matrix(JFreeChart_LCbC_Topics_XScan[,2:3]))

Friedman rank sum test

data: as.matrix(JFreeChart_LCbC_Topics_XScan[, 2:3])

Friedman chi-squared = 53.5078, df = 1, p-value = 2.576e-13

> friedman.test(as.matrix(Freecol_LCbC_Topics_XScan[,2:3]))

Friedman rank sum test

data: as.matrix(Freecol_LCbC_Topics_XScan[, 2:3])

Friedman chi-squared = 68.3108, df = 1, p-value < 2.2e-16

> friedman.test(as.matrix(Findbugs_LCbC_Topics_XScan[,2:3]))

Friedman rank sum test

data: as.matrix(Findbugs_LCbC_Topics_XScan[, 2:3])

Friedman chi-squared = 381.3333, df = 1, p-value < 2.2e-16

# jEdit and Rhino: three columns (all three LCbC variations)

> friedman.test(as.matrix(JEDIT))

Friedman rank sum test

data: as.matrix(JEDIT)

Friedman chi-squared = 249.0053, df = 2, p-value < 2.2e-16



APPLICATION OF FRIEDMAN TEST 177

> friedman.test(as.matrix(RHINO))

Friedman rank sum test

data: as.matrix(RHINO)

Friedman chi-squared = 154.7427, df = 2, p-value < 2.2e-16





Appendix

I
JEDIT SET OF CONCERNS

179



180 JEDIT SET OF CONCERNS

UNDO: Concern that reverses the most recent editing command.
See more at http://www.jedit.org/users-guide/undo-redo.html.

REDO – Concern that restores editing changes.
See more: (http://www.jedit.org/users-guide/undo-redo.fhtml ).

TRANSFERRING TEXT - Set of commands and actions for moving and copying
text (including cut, paste and copy).
See more: (http://www.jedit.org/users-guide/text-transfer.html ).

KEYBOARDS COMMANDS - For manipulating entire words, lines and paragraphs
at a time.

MARKERS – It is a pointer to a specific location within a buffer, which may or may
not have a single-character shortcut associated with it.
See more: (http://www.jedit.org/users-guide/markers.html ).

SPLIT WINDOWS – A feature to spplit a window (view) into multiple panes.
See more: (http://www.jedit.org/users-guide/views.html )

MULTIPLE SELECTION - In multiple selection mode, multiple fragments of text can
be selected and operated on simultaneously, and the caret can be moved independently
of the selection.
See more: (http://www.jedit.org/users-guide/selection.html#multi-select ).

WORD WRAP - Splits lines at word boundaries in order to fit text within a specified
wrap margin.
See more: (http://www.jedit.org/users-guide/word-wrap.html ).

SYNTAX HIGHLIGHTING – It is the display of programming language tokens using
different fonts and colors.
See more: (http://www.jedit.org/users-guide/modes.html#syntax-hilite ).

BRACKET MATCHING - jEdit has several features to make brackets easier to deal
with.
See more: (http://www.jedit.org/users-guide/bracket-matching.html ).

INDENTATION - jEdit makes a distinction between the tab width, which is is used
when displaying hard tab characters, and the indent width, which is used when a level of
indent is to be added or removed, for example by mode-specific auto indent routines.
See more: (http://www.jedit.org/users-guide/indent.html ).

CODE COMMENTS - jEdit has commands which make inserting comments more
convenient.



JEDIT SET OF CONCERNS 181

See more: (http://www.jedit.org/users-guide/commenting.html ).

ABBREVIATIONS - Abbreviations are invoked by typing a couple of letters and take
the word before the caret as the abbreviation name.
See more: (http://www.jedit.org/users-guide/abbrevs.html ).

FOLDING - Lets you selectively hide and show these sections, replacing hidden ones
with a single line that serves as an “overview” of that section.
See more: (http://www.jedit.org/users-guide/folding.html ).

SEARCH AND REPLACE – This Concern displays a dialog box that allows you surch
and replace text.
See more:(http://www.jedit.org/users-guide/search-replace.html ).

OPEN FILE – This Concern displays a file system browser dialog box and loads the
specified file into a new buffer.
See more: (http://www.jedit.org/users-guide/opening.html ).

SAVE FILE – This Concern saves the current buffer to disk. It still allows rename the
buffer and saves it in a new location(Save as) or It allows to save the buffer to a different
location but does not rename the buffer (Save a Copy As).
See more: (http://www.jedit.org/users-guide/saving.html ).

CLOSE FILE – This Concern closes the current buffer or all buffers (Close All).
See more: (http://www.jedit.org/users-guide/closing-exiting.html ).

NEW FILE – This function opens a new, empty, buffer.
See more: (http://www.jedit.org/users-guide/creating.html ).

CHARACTER ENCODING - A character encoding is a mapping from a set of char-
acters to their on-disk representation.
See more: (http://www.jedit.org/users-guide/encodings.html ).

PRINTING - This Concern prints the current buffer.
See more: (http://www.jedit.org/users-guide/printing.html ).

TEXT INSERTION – It represents the text insertion (typing) in the text area.
See more: (http://www.jedit.org/users-guide/entering-text.html )

TEXT DELETION – It represents the text deletion in the text area.
See more: (http://www.jedit.org/users-guide/entering-text.html ).

KEYBOARD FOCUS – Feature to represent where the keyboard typing is focusing
in the screen.To ensure that the keyboard is focused in the textarea, you can always use



182 JEDIT SET OF CONCERNS

the mouse and click in it, but a more keyboard-friendly way is preferred when you are
just about to start typing anyway. For this reason, a number of jEdit’s actions have a
side-effect of focusing on the text area as well. Ex: View - Toggle Full Screen; View –
Scrolling - Scroll and Center Caret; View – Scrolling - Scroll to Line; View – Docking -
Toggle Docked Areas; View – Docking - Close current docking area.
See more: (http://www.jedit.org/users-guide/keyboard-focus.html ).

SCROLLING - If you have a mouse with a scroll wheel, you can use the wheel to
scroll up and down in the text area. Keyboard commands for scrolling the text area are
also available.
See more: (http://www.jedit.org/users-guide/scrolling.html ).

MACROS RECORDING – Macros in jEdit are short scripts written in a scripting
language called BeanShell. The simplest use of macros is to record a series of key strokes
and menu commands as a BeanShell script, and play them back later.
See more: (http://www.jedit.org/users-guide/recording-macros.html).

MACROS RUNNING - For running an existing macro.
See more: (http://www.jedit.org/users-guide/running-macros.html ).

PLUGIN MANAGER – This Concern displays the plugin manager window. It con-
sists of three tabs: Manage, Update and Install.
See more: (http://www.jedit.org/users-guide/plugin-manager.html).

TIPS OF THE DAY - When starting jEdit, this function displays tips to help use it.

RELOADING FROM DISK – It used to reload the current buffer from disk at any
other time. It still discards unsaved changes in all open buffers and reload them from
disk (Reload All).
See more: (http://www.jedit.org/users-guide/reloading.html ).

WINDOW DOCKING - A docking layout is similar to an Eclipse ”Perspective” in
that it describes a set of dockable windows that are visible to the user at any given time,
hiding the rest.
See more: (http://www.jedit.org/users-guide/docking.html ).

BEANSHELL (BSH) INTEGRATION – BeanShell is a small, free, embeddable, Java
source interpreter with object scripting language Concerns, written in Java. BeanShell
executes standard Java statements and expressions, in addition to obvious scripting com-
mands and syntax. BeanShell supports scripted objects as simple method closures like
those in Perl and JavaScript.
See more: (http://www.jedit.org/users-guide/macro-tips-BeanShell.html ), (http://www.jedit.org/users-
guide/bsh-commands.html).



JEDIT SET OF CONCERNS 183

BUFFER OPTIONS - It displays a dialog box for changing editor settings on a per-
buffer basis.
See more: (http://www.jedit.org/users-guide/buffer-opts.html ).

GLOBAL OPTIONS – This Concern display a dialog box that is divided into several
panes, each pane containing a set of related options.
See more: (http://www.jedit.org/users-guide/global-opts.html ).

PLUGIN OPTIONS – This Concern displays a dialog box for changing plugin set-
tings.
See more: (http://www.jedit.org/users-guide/plugin-manager.html ).

ACTION BAR - The action bar allows almost any editor Concern to be accessed from
the keyboard.
See more: (http://www.jedit.org/users-guide/action-bar.html ).

STATUS BAR – The status bar consists of a number of components, such as: caret
position informatio, a message area where various prompts and status messages are shown
etc.
See more: (http://www.jedit.org/users-guide/status-bar.html ).

TOOL BAR - The file system browser has a tool bar containing a number of buttons.
See more: (http://www.jedit.org/users-guide/vfs-browser.html#d0e1964 ).

SWITCHING BUFFER - Each EditPane has an optional drop-down BufferSwitcher
at the top. The BufferSwitcher shows the current buffer and can also be used to switch
the current buffer, using menu item commands and their keyboard shortcuts.
See more: (http://www.jedit.org/users-guide/buffers.html )

BUFFERSETS - The buffer sets Concern helps keep the buffer lists local and man-
ageable when using jEdit in a multiple-View and multiple-EditPane environment.
See more: (http://www.jedit.org/users-guide/buffersets.html )

PLUGINS MENU – This menu displays plugins commands.

COMMANDS MENU – This menu displays commands like ’Parent Directory’ and
’Reload Directory’.

FAVORITE MENU – This menu displays all files and directories in the favorites list.

EXITING JEdit – This Concern allows a completely exit jEdit, prompting if un-
saved buffers should be saved first. See more: (http://www.jedit.org/users-guide/closing-
exiting.html ).



184 JEDIT SET OF CONCERNS

RANGE SELECTION - Dragging the mouse creates a range selection from where the
mouse was pressed to where it was released.
See more: (http://www.jedit.org/users-guide/selection.html#d0e2421 ).

RECTANGULAR SELECTION – Selection of a text fragment by dragging the mouse
with the control key held down for creating a rectangular selection.
See more: (http://www.jedit.org/users-guide/selection.html#d0e2421 ).

USEFUL RESOURCES:

� jEdit users guide:
http://www.jedit.org/users-guide/index.html;
http://www.jedit.org/index.php?page=download.

� jEdit features:
http://www.jedit.org/index.php?page=features.

� jEdit source code compiled:
http://java.labsoft.dcc.ufmg.br/qualitas.class/download.html


