

Universidade Federal da Bahia

Universidade Salvador

Universidade Estadual de Feira de Santana

TESE DE DOUTORADO

Fault Model-Based Variability Testing

Ivan do Carmo Machado

Programa Multiinstitucional de

Pós-Graduação em Ciência da Computação – PMCC

Salvador-BA

2014
PMCC-DSc-0015

IVAN DO CARMO MACHADO

FAULT MODEL-BASED VARIABILITY TESTING

Tese apresentada ao Programa Multiinstitu-
cional de Pós-Graduação em Ciência da Com-
putação da Universidade Federal da Bahia, Uni-
versidade Salvador e Universidade Estadual de
Feira de Santana como requisito parcial para
obtenção do grau de Doutor em Ciência da
Computação.

Orientador: Eduardo Santana de Almeida

Salvador - BA
2014

 Sistema de Bibliotecas da UFBA

 Machado, Ivan do Carmo.
 Fault model-based variability testing / Ivan do Carmo Machado. - 2014.
 211 p.: il.

 Inclui apêndices.

 Orientador: Eduardo Santana de Almeida.
 Tese (doutorado) - Universidade Federal da Bahia, Instituto de Matemática. Universidade
 Salvador, Universidade Estadual de Feira de Santana, 2014.

 1. Software. 2. Software - Reutilização. 3. Software - Testes. 4. Software - Validação.
 I. Almeida, Eduardo Santana de. II. Universidade Federal da Bahia. Instituto de Matemática.
 III. Universidade Salvador. IV. Universidade Estadual de Feira de Santana. V. Título.

 CDD - 005.1
 CDU - 004.4

187
1

IVAN DO CARMO MACHADO

FAULT MODEL-BASED VARIABILITY TESTING

Esta tese foi julgada adequada à obtenção do
título de Doutor em Ciência da Computação e
aprovada em sua forma final pelo Programa
Multi-institucional de Pós-Graduação em Ciência
da Computação da UFBA-UEFS-UNIFACS.

Salvador, 21 de julho de 2014.

Prof Dr. Eduardo Santana de Almeida (orientador).

Universidade Federal da Bahia

Profª Drª. Christina von Flach Garcia Chavez.

Universidade Federal da Bahia

Prof Dr. Cláudio Nogueira Sant’Anna.

Universidade Federal da Bahia

Prof Dr. Marco Tulio de Oliveira Valente.

Universidade Federal de Minas Gerais

__
Prof Dr. Vander Ramos Alves.

Universidade de Brasília.

Aos meus pais, Serafim e Joselice!!

Agradecimentos

A Deus, em primeiro lugar! A Ele toda honra e toda a Glória! Nada faria sentido sem a Sua
presença em minha vida! Muito obrigado meu Senhor e meu Deus, por tudo!

Expresso aqui nestas poucas porém significativas palavras, imensa gratidão a minha família,
que sempre me apoiou, incondicionalmente, na busca dos meus sonhos, objetivos e ideais. Muito
obrigado por compreenderem a importância da conquista desse importante título acadêmico.
A certeza de saber que poderia sempre contar com vocês foi fundamental para sobreviver aos
altos e baixos do período de doutoramento. O fruto de todo este esforço é a vós que dedico!
Muito obrigado meu pai, Serafim, minha mãe, Joselice, meu irmão Ivo, e minha segunda mãe,
Benedita (Dil). São vocês o meu porto seguro.

Meus sinceros agradecimentos a minha noiva, Edna Telma, que com muito amor e carinho
me fez ter forças para seguir, por ter suportado tanta ausência e eventuais estados de mal-humor.
Agradeço-lhe por ter aderido a condição de parceira de um doutorando, o que por si só demonstra
persistência e resiliência. Muito obrigado por acreditar que toda a espera terá valido a pena!

“A mente que se abre a uma nova ideia jamais voltará ao seu tamanho original”. Tal frase,
proferida outrora por um gênio, retrata fielmente a jornada de um doutorando. Sou bastante
grato pela oportunidade de aprender com pesquisadores tão renomados na área de pesquisa sobre
a qual me debrucei para realizar o presente trabalho. Uma série de encontros que permitiram
fantásticas troca de experiências, que de uma forma ou de outra, contribuíram para a pesquisa
desenvolvida.

Assim, agradeço ao meu orientador, Eduardo Almeida, pelo acolhimento e pelas oportu-
nidades concedidas, pelas conversas francas e as experiências transmitidas ao longo desses
pouco mais de seis anos de convivência.

Agradeço também ao professor John McGregor, da Universidade de Clemson, nos EUA,
por sua importante contribuição a minha pesquisa. Durante o doutorado, passei sete meses em
sua universidade, onde aprendi muitas coisas. Sou profundamente grato pelo acolhimento e
também por esta experiência de vida, muito além do que meramente uma experiência acadêmica
ou profissional.

Agradeço ao professor Klaus Schmid, da Universidade de Hildesheim, Alemanha, que,
durante período sabático em nossa universidade, pode compartilhar um pouco da sua exper-
iência com os membros do grupo RiSE (Reuse in Software Engineering). Agradeço-lhe por
disponibilizar a plataforma EASy-Producer, para a realização de um dos estudos empíricos, bem
como o auxílio na definição do experimento.

Obrigado também aos membros da banca, Christina von Flach Garcia Chavez, Vander

vii

Ramos Alves, Marco Túlio de Oliveira Valente, e Cláudio Nogueira Sant’Anna. Seus valiosos
comentários durante a defesa ajudaram a enriquecer muito este trabalho, bem como direcionar
pesquisas futuras.

Grandes mestres, os professores são essenciais em nossas vidas. Desta forma, agradeço
profundamente aos professores do programa de pós-graduação em computação PMCC/UFBA,
pelo aprendizado. Foi uma honra ter recebido atenção e ensinamentos de pessoas tão qualificadas.

Sou muito grato aos funcionários do CEAPG-MAT/UFBA pela atenção, disponibilidade e
presteza ímpares, ao longo desses pouco mais de quatro anos, e diversas solicitações. Obrigado
a vocês Davilene, Solange, Marcio, Gustavo e Kleber!

Agradeço a todos os amigos e parceiros que fizeram ou fazem parte do grupo RiSE e do
Laboratório de Engenharia de Software da UFBA. Sinto-me privilegiado por ter convivido com
as pessoas que passaram por esses grupos de pesquisa, em especial a Luanna Lobato, Yguaratã
Cavalcanti, Paulo Silveira, Renato Novais, Raphael Oliveira, Alcemir Santos, pessoas que
deram significativa contribuição em diversas oportunidades ao longo do processo de elaboraçao
desta tese. Evidências empíricas indicam que a obtenção de bons resultados de pesquisa é algo
diretamente proporcional a qualidade de boas parcerias estabelecidas ao longo do processo. Que
bom que pude contar com vocês!

Agradeço também ao Instituto Recôncavo de Tecnologia - IRT, em especial a Marcio
Magalhães, Eduardo Trzan, Paula Ferreira, por proporcionarem um ambiente de colaboração
ímpar. A parceria trouxe bons resultados. Que possamos produzir ainda mais em conjunto!

Agradeço ao apoio financeiro da FAPESB - Fundação de Amparo a Pesquisa do Estado da
Bahia, CAPES, CAPES-PDSE, sem as bolsas, em seus respectivos momentos, não seria possível
realizar este trabalho. Agradeço ainda a IBM Research, por ter reconhecido a minha dedicação
e assim ter concedido um importante prêmio, o IBM Ph.D. Fellowship 2012-2013.

Por fim, muito obrigado a todos os demais que passaram pelo meu caminho, nestes pouco
mais de quatro anos. Alguma lição ficou em cada encontro ou desencontro!

Vamos em frente que a caminhada está só começando! ;)

viii

Imperfect tests, run frequently, are much better than perfect tests that are

never written at all.

—MARTIN FOWLER

Abstract

Software Product Line (SPL) engineering has emerged as an important strategy to cope with the
increasing demand of large-scale product customization. Owing to its variability management
capabilities, SPL has provided companies with an efficient and effective means of delivering a
set of products with higher quality at a lower cost, when compared to traditional software engi-
neering strategies. However, such a benefit does not come for free. SPL demands cost-effective
quality assurance techniques that attempt to minimize the overall effort, while improving, or
at least not hurting, fault detection rates. Software testing, the most widely used approach for
improving software quality in practice, has been largely explored to address this particular topic.

State of the art SPL testing techniques are mainly focused on handling variability testing from
a high level perspective, namely through the analysis of feature models, rather than concerning
issues from a source code perspective. However, we believe that improvements in the quality of
variable assets entail addressing testing issues both from high and low-level perspectives.

By carrying out a series of empirical studies, gathering evidence from both the literature
and the analysis of defects reported in three open source software systems, we identified and
analyzed commonly reported defects from Java-based variability implementation mechanisms.
Based on such evidence, we designed an approach for building fault models for variability
testing, from two main perspectives: test assessment, which focuses on the evaluation of the
effectiveness of existing test suites; and test design, which aims to aid the construction of test
sets, by focusing on fault-prone elements.

The task of modeling typical or important faults provides a means to coming up with certain
test inpus that can expose faults in the program unit. Hence, we hypothesize that understanding
the nature of typical or important faults prior to developing the test sets would enhance their
capability to find a particular set of errors.

We performed a controlled experiment to assess the test effectiveness of using fault models
to provide SPL testing with support to design test inputs. We observed promising results
that confirm the hypothesis that combining fault models in an SPL testing process performs
significantly better on improving the quality of test inputs.

Keywords: Software product line enginering, software testing, variability testing, fault
model.

xi

Resumo

A Engenharia de Linhas de Produtos de Software (LPS) surgiu como uma importante estratégia
para lidar com a crescente demanda de customização de produtos de software em larga escala.
Por sua capacidade de gerenciar variabilidade de forma sistemática, o paradigma de LPS tem
proporcionado às empresas métodos eficientes e eficazes para alcançar a entrega de produtos de
software com maior qualidade, a um custo de produção reduzido, quando comparado a estratégias
tradicionais de desenvolvimento de software. No entanto, a obtenção de tais benefícios não é
trivial. O paradigma impõe a necessidade de técnicas de garantia de qualidade eficazes, com
bom custo-benefício, que tentem minimizar o esforço global, ao tempo em que se alcance
melhorias nas taxas de detecção de falhas. Assim, a disciplina de testes de software, abordagem
comumente utilizada na busca por melhoria na qualidade dos produtos de software, tem sido
largamente explorada no contexto de LPS.

As mais relevantes técnicas de testes em LPS estão focadas principalmente no gerenciamento
de testes de variabilidade sob uma perspectiva de alto nível, notadamente através da análise
de modelos, em sobreposição aos aspectos de mais baixo nível, isto é, sob o ponto de vista do
código fonte. Entretanto, acreditamos que melhorias na qualidade dos artefatos de software
variáveis implica na investigação de aspectos da disciplina de testes, em ambas as perspectivas,
quer seja alto nível quer seja baixo nível.

Através da realização de uma série de estudos empíricos, evidências foram obtidas a partir
da análise de textos publicados na literatura, e a partir da análise de defeitos reportados em três
sistemas de software de código aberto. Neste último caso, identificamos e analisamos defeitos
provenientes do uso de mecanismos de implementação de variabilidade em Java. Com base
nas evidências, construímos uma abordagem para construir modelos de falhas que auxiliem o
teste de variabilidade, sob duas perspectivas principais: avaliação de teste, que incide sobre
a avaliação da eficácia dos casos de testes existentes; e o projeto de teste, que visa auxiliar a
construção de casos de teste, concentrando-se em elementos propensos a falhas.

A tarefa de modelagem de falhas típicas ou importantes fornece um meio para identificar
certas entradas de teste que podem expor falhas na execução do programa. Desta forma, a
nossa hipótese é que a compreensão da natureza das falhas típicas, ou importantes, como tarefa
anterior ao desenvolvimento dos casos de teste, tende a aumentar a capacidade dos testes em
encontrar um determinado conjunto de defeitos, quando executados.

Para avaliar a eficácia da abordagem proposta nesta tese, planejamos e executamos um
experimento controlado. Os resultados mostraram-se promissores, provendo indícios de que
a ideia de se combinar modelos de falha em um processo de teste de LPS pode trazer ganhos

xiii

significativos a atividade de teste, bem como melhorar a qualidade dos dados de entrada de
testes.

Palavras-chave: Linhas de produtos de software, testes de software, teste de variabilidade,
modelos de falhas.

xiv

Contents

List of Figures xix

List of Tables xxi

List of Acronyms xxiii

1 Introduction 1
1.1 Motivation . 2

1.2 Objectives . 4

1.3 Research Method . 5

1.4 Contributions . 7

1.5 Thesis outline . 7

2 Software Testing Fundamentals 11
2.1 Fault-Error-Failure chain . 12

2.2 Software testing process . 12

2.3 Test specification . 15

2.3.1 Testing techniques . 16

2.3.2 Test case prioritization . 18

2.4 Test levels . 19

2.5 Regression testing . 21

2.6 Fault models . 22

2.6.1 Fault models in systems and software engineering 25

2.6.2 Fault models in the software development life cycle 26

2.7 Chapter summary . 28

3 Software Product Line Engineering 31
3.1 Domain and application engineering processes 33

3.2 Handling variability . 34

3.2.1 Variability modeling . 35

3.2.2 Variability implementation . 38

3.3 Software Product Lines (SPL) adoption strategies 40

3.4 Chapter summary . 41

xv

4 Software Product Lines Testing 43
4.1 Introduction . 44

4.2 The review method . 47

4.2.1 Research questions . 48

4.2.2 Identification of relevant literature . 49

4.2.2.1 Phase 1: analysis of existing reviews 50

4.2.2.2 Phase 2 - gathering recent publications 51

4.2.2.3 Primary study selection strategy 53

4.2.3 Data extraction . 54

4.2.4 Quality assessment . 55

4.3 Results of the systematic review . 56

4.3.1 Characteristics of the studies . 57

4.3.2 Strategies to handle the selection of products to test (RQ1) 59

4.3.3 Strategies to handle the test of end-product functionalities (RQ2) 62

4.3.4 Strength of evidence in support of available strategies (RQ3) 65

4.3.5 Implications for research and practice (RQ4) 67

4.4 Analysis and discussion . 69

4.4.1 Limitations of this study . 74

4.5 Related work . 76

4.6 Chapter summary . 77

5 A Preliminary Evaluation of the Effects of Unit Testing in SPL Engineering 79
5.1 SPL testing process . 80

5.2 Experiment planning . 83

5.2.1 Design, variables, materials and participants 85

5.2.2 Hypotheses . 86

5.3 Experiment operation . 87

5.4 Data analysis . 88

5.4.1 Descriptive statistics . 89

5.4.1.1 Test case effectiveness (M1) 89

5.4.1.2 Quality of defects found (M2) 89

5.4.1.3 Test coverage (M3) . 90

5.4.2 Hypothesis testing . 91

5.4.3 Exploring relationships among variables 92

5.4.4 Threats to validity . 93

xvi

5.5 Evaluation of results and implications . 94

5.6 Concluding Remarks . 95

6 Defining a Fault Classification Scheme Towards Variability Testing 97
6.1 Fault classification schemes . 98

6.2 Faults in variability mechanisms . 103

6.2.1 Empirical study - Analysis of open source software systems 105

6.2.1.1 Procedure . 106

6.2.1.2 Datasets and empirical study settings 107

6.2.1.3 Study operation . 108

6.2.1.4 Results . 109

6.2.1.5 Limitations . 111

6.3 Chapter summary . 113

7 Fault Modeling for Variability Testing 115
7.1 Overview of the approach . 116

7.2 Fault modeling for test suite evaluation . 121

7.3 Fault modeling for test suite design . 125

7.4 Empirical evaluation . 130

7.4.1 Experiment planning . 130

7.4.1.1 Hypotheses . 131

7.4.1.2 Variables . 131

7.4.1.3 Selection of subjects . 132

7.4.1.4 Instrumentation . 132

7.4.1.5 Design . 132

7.4.2 Experiment operation . 133

7.4.2.1 Fault injection . 136

7.4.3 Analysis and interpretation . 136

7.4.3.1 Does the use of fault models lead to best variability testing
results? (RQ1) . 136

7.4.3.2 Is the fault modeling approach helpful to uncover the faults
that the fault models prescribed? (RQ2) 138

7.4.3.3 Hypothesis testing . 138

7.4.3.4 Threats to validity . 139

7.5 Chapter summary . 141

xvii

8 Conclusions 143
8.1 Future work . 144
8.2 Related work . 146
8.3 Main contributions . 146

References 149

Appendices 171

A Systematic Literature Review - Primary Studies 173
A.1 Venues manually searched . 173
A.2 Quality assessment results . 174
A.3 Primary studies . 176

B Experimental Study - Materials 179
B.1 Background questionnaire . 179
B.2 Background questionnaire - raw data . 181

C Experimental Study - SPL Architecture 183

xviii

List of Figures

1.1 Schematic overview of the thesis structure. 8

2.1 A general software testing process workflow. 15

2.2 Process template. 27

2.3 Software process lifecycle with fault model support. 28

2.4 Fault model support within the requirement phase. 29

3.1 SPL Engineering Framework. 33

3.2 Sample Feature Model. 36

4.1 SPL Testing interest: selection of product instances to test. 45

4.2 SPL Testing interest: actual test of products. 46

4.3 Study selection procedure. 50

4.4 Distribution of studies by SPL testing interest and publication year. 60

4.5 Evidence available to adopt the proposed methods - All studies. 67

4.6 Evidence available to adopt the proposed methods - Interest 1. 67

4.7 Evidence available to adopt the proposed methods - Interest 2. 67

4.8 Studies published between 2003 and 2009. 69

4.9 Studies published between 2010 and 2012. 69

5.1 SPL testing process overview. 80

6.1 Snapshot of issue # 509 from Apache Log4J project. 110

7.1 Fault Model-based SPL Process. 118

7.2 Overall variability testing workflow, enhanced by the fault modeling support. . 120

7.3 Overview of the evaluation workflow. 122

7.4 Set relation F→ FM illustrated. 123

7.5 Overview of the test generation workflow. 125

7.6 Example of a .ivml file containing the selection of features. 128

7.7 Feature model of the elevator simulator SPL. 129

7.8 Configurations of the three product instances generated from the PL_SimElevator
SPL project. 135

7.9 Boxplots for TCE measures and the msscore. 137

7.10 Boxplots for TCov measures for each product instance. 138

xix

C.1 Classes of the package simulator model. 183
C.2 Classes of the package simulator. 184
C.3 Classes of the package simulator controllers. 185
C.4 Classes of the package gui buttons. 186
C.5 Relationship between packages and classes. 187

xx

List of Tables

3.1 Variability Implementation Mechanisms. 39

3.2 Typical Binding Times with respect to Implementation. 40

4.1 PICOC structure . 48

4.2 Detailed search strings applied in the automated search engines. 52

4.3 Exclusion criteria and list of excluded studies. 54

4.4 Quality assessment questions. 57

4.5 Summary of selected primary studies by publication type and publication year. 58

4.6 Study distribution per publication sources. 59

4.7 Selected studies vs. SPL testing interest addressed. 60

4.8 Leveraged SPL testing characteristics . 63

4.9 Relationship between selected studies and characteristics 64

4.10 Evidence level of selected studies. 66

5.1 Hypothesis formulation. 86

5.2 Experiment agenda. 87

5.3 Amount of defects found in terms of difficulty and severity. 89

5.4 Difficulty ratings. Correlations on the PCA of the high/medium/low variables. . 90

5.5 Severity ratings. Correlations on the PCA of the high/medium/low variables. . . 90

5.6 Difficulty and severity of defects found. 90

5.7 Descriptive statistics for Quality of Defects Found (QDF) score. 91

5.8 Descriptive statistics for TCov score. 91

5.9 Results from the t-test applied to TCE, QDF and TCov measures. 91

5.10 Significance of the regression estimation parameter values. 92

5.11 Significance of the regression estimation parameter values. 93

6.1 Classes of errors proposed by Basili and Perricone (1984). 99

6.2 Defect types and their description based on ODC. 100

6.3 Classification of errors from a source code perspective. 101

6.4 Coding defect classes defined by Burnstein (2003). 101

6.5 Source code defect types defined by Seaman et al. (2008). 102

6.6 Variability mechanisms in Java and likely source of errors 104

6.7 Coding defect classes . 106

6.8 List of open source software systems. 107

xxi

6.9 Number of issues reported per severity. 108
6.10 Defect statistics from the open source software systems 109
6.11 Results from the analysis of open source systems 110
6.12 Fault models for implementation issues . 111

7.1 Testing strategies and the life cycle . 117
7.2 Data from the PL_SimElevator SPL. 127
7.3 Hypothesis formulation - PL_SimElevator SPL. 131
7.4 Number of designed test cases and defects found 139
7.5 t-test results. 139
7.6 Test coverage (% of statements) per product instance 140

A.1 Venues subject to manual search . 173
A.2 Quality assessment. 175
A.3 Selected primary studies. 176
A.3 Continued. 177
A.3 Continued. 178

B.1 Raw data of the background questionnaire applied in the case study. 182

xxii

List of Acronyms

APFD Average Percentage of Fault Detected

CBD Component-Based Development

CR Change Request

FODA Feature-Oriented Domain Analysis

GQM Goal Question Metric

LLD Low-Level Design

ODC Orthogonal Defect Classification

OVM Orthogonal Variability Model

OOP Object-Oriented Programming

OS Operating Systems

PCA Principal Component Analysis

PUT Program Under Test

QDF Quality of Defects Found

SDLC Software Development Life Cycle

SLR Systematic Literature Review

SOA Service-Oriented Architecture

SPL Software Product Lines

SUT Software Under Test

SVM Suport Vector Machine

TCE Test Case Effectiveness

TDD Test-Driven Development

V&V Verification and Validation

xxiii

1
Introduction

Software is a key element in many of the devices and systems that pervade most facets of modern
life. It is inevitable to ensure the important role it plays in the society, both economically and
socially. Software systems control from small gadgets to the largest civil aircraft built so far
(Burger et al., 2013). Together with a perceived ever-increasing complexity of software systems,
software engineering has called for building better and more cost-effective methods, to cope
with tight deadlines and market pressure.

SPL has proved to be an efficient and effective strategy to deal with the aforementioned
demands (Clements and Northrop, 2001). As a major source for competitive advantage, SPL
engineering may lead companies to achieve economies of scale and scope, and remarkable
results such as substantial cost savings, reduction of time to market, and large productivity gains
(Clements and McGregor, 2012).

SPL engineering is based on the idea that, by exploiting the commonalities and managing
variabilities among related products, it is possible to establish a common platform on top of
which a set of assets could be systematicaly reused and assembled into different products, thus
meeting particular customer and/or market demands (Pohl et al., 2005).

While the capability of accomodating commonalities and variabilities in a plataform may
ease the process of assembling assets into a multitude of products, particular attention should
be paid to the quality of the developed assets. The reason is that, as the platform may hold
a high degree of variability, an uncovered defect in a single asset may be propagated to the
many products that include the asset. As verifying every individual product configuration in an
exhaustive manner is not always feasible in practice, more affordable strategies must be taken
into account. From a software testing perspective, there are some particular characteristics that
SPL engineering must accommodate. Whereas commonality testing may undertake traditional
software testing techniques, and as such it is, to a certain extent, a mature field, variability testing

1

improvements are at the core of testing in SPL engineering (McGregor et al., 2004).

In this thesis, we investigate such a problem in details and propose a contribution to SPL
testing by employing fault modeling concepts. This Chapter contextualizes the focus of this
work and starts by presenting its motivation and a clearer definition of the research problem, in
Section 1.1. Next, Section 1.2 provides details of the thesis statement, highlighting the research
goals. We present the steps taken to conduct this work in Section 1.3. The main contributions
are listed in Section 1.4, and finally Section 1.5 outlines the Thesis structure.

1.1 Motivation

Software testing is an important and practical technique to efficiently detect faults in complex
software systems (Ammann and Offutt, 2008). A mandatory activity in SPL engineering is to
ensure that an artifact holds an adequate level of quality, as it is likely to be used in a range of
different product configurations (Pohl et al., 2005).

Software testing techniques usually encompass one or more of the following topics (Myers
et al., 2011): test case design, when a new test set is expected; test case selection, whenever an
existing test suite is available and it is ready to run; test case prioritization, a means to improve
the test selection, which aims at increasing the effectiveness of testing effort within a scenario
with limited resources; and test case assessment, employed to evaluate the capability of a test
case, or a suite of test cases, to detect errors.

In traditional Software Engineering, hereinafter called single system development, in which
every new product is built from scratch, there are techniques supporting all of the aforementioned
topics. Although not as mature as in single system development, software testing has evolved in
SPL engineering, in a range of topics. The initial investigation on the topic was carried out by
Harrold (1998), who reported on the underlying concepts of testing evolving software systems,
that would be further addressed and formalized to fit testing in the SPL engineering field. Some
years later, McGregor (2001) published a Technical Report entitled Testing a Software Product

Line, a work that served to introduce the fundamental concepts underlying SPL testing. Based
on a long-term practical experience, the author pointed out a need for specific SPL testing
strategies, given that common strategies from single system development could not yield the
expected results in SPL engineering.

The demand for particular SPL testing approaches has led the research community to
increasingly propose novel techniques, methods, and tools, as earlier discussed by Neto et al.

(2011a) and Engström and Runeson (2011), who reported on the state-of-the-art SPL testing

2

1.1. MOTIVATION

approaches. In general, there are two groups of interests addressed by the existing approaches
(Machado et al., 2012b): selecting instances of products for testing (focusing on verifying if the

features of a product work properly together), which handles how the assets can be combined so
that valid products can be composed, and testing actual products (veryifying if features fulfill

their specifications), which cares about the actual functionalities of the produced assets. The
concepts surrounding these interests are further discussed in Chapter 4.

While we recognize that both interests are important and should coexist in an SPL testing
process, the latter is more closely related to the purpose of our investigation, which is aimed
at improving SPL testing by employing the concept of fault models. Among the approaches
dealing with such an interest, we noticed that the techniques do not take into consideration
fine-grained variability, i.e., at source-code level, when desigining the SPL test cases. The
studies have been focused on modeling variability in the problem domain, over the support of
variability at the solution domain (Machado et al., 2014a). They are mostly concerned with
modeling domain variability in a higher level of abstraction, as a means to represent the common
and variable features of products, and how testing can be managed thereupon. We might enlist
two main likely reasons to explain this:

• The underlying assumptions of most SPL testing techniques is that, handling tests at
source code level is a straighforward task, and as such, techniques from single system
development suffices.

• The challenge of handling variabilities is more easily addressed at higher levels of ab-
stractions (e.g., through models), rather than at low levels (i.e., at source code). Given
that models are more abstract and less detailed than source code, variability is likely less
scattered, what simplifies its management.

However, while it can facilitate understanding how products could be composed, in terms
of features, it is rather important to manage variability at source code level, given that it holds
important role in establishing variable behavior. Furthermore, no empirical evidence can be
found in the literature to ensure that such a statement is not a simple guess.

In this effect, considering existing testing support for SPL engineering, and the SPL demands,
as exemplified above, the central problem addressed in this thesis is the lack of adequate support

for the low-level variability testing in SPL engineering.
More than verifying either if the features fulfill their specifications, or verifying if the

features of a product work properly together, what usually do not have to do with source code,
but high-level models instead, a challenge is to establish an understanding on how testing in

3

an SPL could benefit from the variability awareness, i.e., it is important to use the powerful
capability of the variability mechanisms to improve the quality of the SPL assets, considering
large-scale gains. That is, not only using variability to define high-level tests, but also to deal
with the source code particularities, so as to enable better fault coverage still while developing
the artifacts.

1.2 Objectives

Predicting future is infeasible, but establishing trends based on historical data and other is rather
possible. This statement is particularly important to the software testing field. The analysis of
historical data enables the construction of statistical models for estimating fault-proneness of
software modules before testing (Denaro et al., 2002). As a consequence, testing activities can
be better planned and monitored. The estimation of software fault-proneness is important for
assessing costs and quality and thus better planning and tuning the testing process.

Counting on historical data to modeling the fault-prone elements can be referred to as fault
modeling. It is indeed not a new idea in the software testing field. Morell (1990) early introduced
a theory of fault-based program testing, stating that a fault model describes the set of known
defects that can result from the activities leading to the test point. McGregor (2008) introduced
the idea of fault models in SPL engineering. He presented an initial version of a fault model,
which considered faults originated in the developments of assets such as requirements and
design. He considered some of the characteristics of an SPL and its development organization
that are the basis for the faults.

Building on top of McGregor (2008) work, and inspired by the ideas from Morell (1990),
we developed a method for building fault models for variability testing. The goal is to establish
an affordable strategy to design effective test cases that prioritize the fault-prone elements in
variability implementation.

On the basis of such a goal, we established the research question that drives this investigation:

Can fault modeling support improve test effectiveness in variability testing?

In general, a fault model is an engineering model of something that could go wrong in the
construction or operation of a piece of equipment, structure, or software (Martin and Xie, 2007).

4

1.3. RESEARCH METHOD

In our case, we are modeling source code statements that could be faulty when implementing
variations in an SPL project.

The expected benefits of using fault models for test case design is twofold:

• By focusing on the most fault-prone elements of the variability implementation, the testing
activity should benefit from this risk-based capability, so as the priorities are directed to
what might go wrong, first. Boehm and Basili (2001) earlier presented the results of an
empirical investigation on software testing that almost 90% of software failures come
from 10% of the faults. Even by considering a more flexible set of values, e.g., the 80/20
rule (The Pareto Principle (Juran et al., 1979)), a broadly accepted measure to illustrate
that most defects are found in a small percentage of the code (Gittens et al., July), we
could generalize such a statement, and have a clearer indication that, by firstly covering
what might go wrong, we improve the fault detection capability of the designed test cases.

• Given that a fault model provides testers with the information about what can go wrong,
it is likely that such a test case design should cover not only the expected scenarios, but
also what is unexpected, so as to improve the fault detection capability of test cases. It is
useful in case of software changes, which is often regarded as the common scenario in the
development of software-intensive systems.

1.3 Research Method

This Section describes the research design employed as the basis for this work. Based upon the
research goal, we applied a combination of methods, to both gain a fuller understanding of the
research problem, and to fortify and enrich our study’s conclusions (Hesse-Biber, 2010).

The present investigation can be split into two main parts: 1. Literature review and 2.
Concept establishment and evaluation. These are detailed next.

Part 1. Literature review

This initial part of this thesis comprises the analysis of existing literature on the topics
involved in this investigation, as a means of devising our research questions, and narrowing
down the possibilities to consider. Besides, it also served to guide and focus the early steps of
our research.

Regarding the literature on variability mechanisms, a set of reviews and empirical studies
exist that provided us with the current state-of-the-art in such a field. We mainly considered

5

the studies of (Svahnberg et al., 2005) and (Chen and Babar, 2011). Both provide an extensive
analysis of literature.

As part of our preceding investigation, we analyzed existing literature on the SPL testing
field, and reported it as a means of a Systematic Mapping Study (Neto et al., 2011a). Such a
publication served us to perform a more in-depth and current analysis of existing knowledge, as
a means of a Systematic Literature Review (Machado et al., 2014b). This latter comprised the
analysis of 273 primary studies available in the most important venues in the field of Software
Engineering. We complemented the first investigation by analyzing prominent techniques for
product testing in SPL engineering, pinpointing the variability potential used in those techniques.
Chapter 4 presents the results of such an investigation.

Part 2. Concept

The second part represents the core of this investigation. It comprises four subparts: a

preliminary evaluation on the use of a systematic process for testing SPL projects, identifying

common faults in variability implementation, building a fault classification scheme for variability

implementation and building fault modeling support.

Achieving better test results can be tied to the planning of the whole testing activity. On the
other hand, test planning might demand systematic methods to guide test assets management.
In the light of such an assumption, we investigated the role of a systematic process for testing
SPL projects at improving test effectiveness. In a scenario containing low-level variability, we
aimed at understanding whether the use of a systematic process could lead to better test results.
As opposed to a systematic use of fault models, further addressed in the thesis, the preliminary
evaluation counted on a naive approach to simulate the presence of problems in the source code
under testing.

Next, we identified the common faults found in popular variability implementation mecha-
nisms, particularly in the Java programming language, pinpointing the most commonly occurring
ones. For such, we gathered data from two main sources: (i) the analysis of bugs from a set of
open source projects that contain variability implementation; (ii) informal literature analysis,
given the existence of a set of studies which report on common errors in different implementation
techniques, it is possible to sketch a relationship between those and the variabitiy mechanisms.
The overall goal of this task is to establish a fault classification scheme, which subsumes
commonly occurring faults in variability implementation mechanisms.

The latter task, building fault modeling support, was backed up by data obtained from
the preceding task. It is the main goal of this investigation, and mainly consists of proposing

6

1.4. CONTRIBUTIONS

fault modeling support for variability testing.. Next, we proceeded with an evaluation, which
comprised a controlled experiment performed with software engineers as participants.

1.4 Contributions

The main expected contributions of this work can be listed as follows:

• Body of knowledge about testing in SPL engineering. The number of studies in the
SPL testing field is increasing year by year. We performed a series of structured literature
reviews aiming at synthesizing state-of-the-art evidence, that can be used in a range of
investigations in the field, as also to serve as comparisons with other approaches.

• Commonly occurring defects in variability implementation. The main goal of the
thesis is to build fault model support for variability testing. In order to accomplish that,
it was necessary to enlist the commonly occurring defects that are faced by variability
mechanisms. We built a fault classification scheme, based on three widely used variability
mechanisms for the Java programming language, that might be helpful to others that are
not intended to use our proposed approach, but still work with variability implementation.

• Fault model support for helping engineers to prioritize tests. The core of our inves-
tigation is to propose the fault model support for variability testing. The results are
promising, in that it shows it is possible to improve testing effectiveness.

1.5 Thesis outline

Figure 1.1 shows a schematic overview of the thesis structure. Besides the Introduction Chapter,
the remainder can be outlined as follows:

• Background. This part provides background concepts on the topics involved in this
investigation, namely software testing, SPL engineering and SPL testing. In addition to
the basic concepts, this part also presents a state-of-the-art review of the field of testing in
SPL engineering, which includes current development, controversies and breakthroughs.

– Chapter 2 (Software Testing Fundamentals) presents basic fundamentals about
software testing. In addition, we discuss the fundamentals of fault models, shedding
light on its usage and likely benefits for software testing.

7

Conclusions

Introduction

Concept

Background

Chapter 3
SPL Engineering

Chapter 2
Software Testing

Chapter 4
SPL Testing

Chapter 7
Emerging Fault

Modeling Approach

Chapter 1
Introduction

Chapter 8
Conclusions

Chapter 6
Faults Identification

Chapter 5
Preliminary
Evaluation

Figure 1.1: Schematic overview of the thesis structure.

– Chapter 3 (Software Product Line Engineering) presents the SPL engineering
field, and focuses on variability and reuse, and how these concepts are managed. A
clear understanding on how variability should be represented and implemented in
both logical and implementation views is vital for our test approach. We left out
organizational concerns an SPL demands, and rather focused on technical aspects of
variability.

– Chapter 4 (Software Product Lines Testing) surveys the state-of-the-art of soft-
ware testing strategies for SPL engineering. We reviewed and analyzed a range of
studies and summarized the main findings, that should be relevant to sketch the
current scenario in the field, stressing out where our approach fits.

• Concept. This part motivates and define in details the novel concept of fault-model based
variability testing in software product line engineering.

8

1.5. THESIS OUTLINE

– Chapter 5 (A Preliminary Evaluation of the Effects of Unit Testing in SPL En-
gineering) reports on an experimental study aimed at analyzing and understanding
the capabilities and effects of a proposed unit testing infrastructure for SPL projects.

– Chapter 6 (Defining a Fault Classification Scheme Towards Variability Testing)
introduces the effort to build up an empirical picture of commonly occurring faults
from different variability implementation mechanisms.

– Chapter 7 (Fault Modeling for Variability Testing) details the fault model support
for variability testing, and reports on the empirical evaluation.

• Conclusions. In this final part, Chapter 8 (Conclusions), we summarize the achieved
contributions and discuss the perspectives on future research directions.

9

2
Software Testing Fundamentals

Software testing is the discipline aimed at raising the quality and reliability of the software sys-
tems. Testing plays an important role in the software quality assurance. It aims at demonstrating
that the system works as expected, therefore meeting customer needs, and also, by assuming the
premise that any program contains errors, testing aims at finding those errors.

Indeed, the main concern of software testing is to find as many errors in the software system
as possible, especially before delivering the systems, leading to reduced repair costs. This is how
software testing might add some value to the software system. Boehm and Papaccio (1988) first
presented a logarithmic increasing cost representation for bug fixing throughout the software
development life cycle. Such a representation indicates the importance of preventing defects or
detecting and removing them early, as it can realize significant cost and schedule benefits.

Myers et al. (2011) define testing as “the process of executing a program with the intent of

finding errors”. Such a statement can be considered as an overall and accurate goal of software
testing. For this reason, testing can only be successful if it can detect faults in a given time. If it
is incapable of detecting any fault, it fails.

Extensive and philosophical discussions about definitions of testing goals are available
in well-known references that use a vocabulary widely accepted in academia and industry
(Binder, 1999; Burnstein, 2003; Ammann and Offutt, 2008; Naik and Tripathy, 2008). Along
this Chapter we describe the foundations of software testing explicitly discussed in such studies,
by emphasizing the elements that are important to this research.

The organization of this Chapter is as follows. Section 2.1 gives an overview of the software
defect terminology. Section 2.2 introduces a typical software testing process. Section 2.3
presents the commonly used testing techniques. Section 2.4 focuses on testing levels, namely
unit, integration, and system, and Section 2.5 provides an overview of regression testing. Fault
models are introduced in Section 2.6, and Section 2.7 concludes the Chapter.

11

2.1 Fault-Error-Failure chain

The terms fault, error, and failure should not be used interchangeably, as they actually have
different meanings. The understanding of both their definitions and the relationship among them
is a key feature for the purpose of this thesis. This section summarizes the fundamental concepts
of faults, errors, and failures, according to a commonly used taxonomy (Avizienis et al., 2004).

• Fault. A fault is a structural imperfection, as judged against the requirements. A fault

is a defect within the system. It may be an incorrect program instruction, an incorrect
requirement, or other incorrect artifact. Faults are often referred to as software bugs.

• Error. An error is a deviation from expectation based on encountering a fault during
execution. An error is the result of executing the portion of the program that contains a
fault. A fault may lead to an error. The error may be an incorrect result due to a faulty
algorithm, it may be a value that arrives too late in a time sensitive design, or it may be
that no value is produced and a variable has a bad value as a result. It is important to
highlight that a fault may stay inactive for a long time before it manifests itself as an
error. For example, a software bug in a subroutine is not visible while the subroutine is
not called.

• Failure. A failure is the inability of a system or component to perform its required
function within the specified requirements. When an error occurs and propagates to the
point that it causes a deviation from the expected to either a human user or another system,
a failure has occurred. For example, the user interface shows a computed value. If the
value is different from the expected, the program has failed.

2.2 Software testing process

A typical software testing process encompasses four phases: (i) Planning, (ii) Specification,

(iii) Execution and (iv) Reporting (Myers et al., 2011). The purpose of the Planning phase
is to plan all test activities to ensure project success, as a means to properly manage testing
from this phase until project termination. This phase is ruled out by an artifact called test plan,
later discussed in this Section. The Specification phase involves the use of test strategies to
develop (write, generate, fix, rewrite) the test cases. Next, the Execution and Reporting phases
are responsible for executing the Software Under Test (SUT) with the test cases, by employing
input data under a particular set of conditions, and to verify whether the outputs are correct for

12

2.2. SOFTWARE TESTING PROCESS

all test inputs, reporting the observed behavior of the SUT, respectively. Knowing the proper
outputs for a given set of inputs and execution conditions is a mandatory aspect of the software
testing discipline (Burnstein, 2003).

A software testing process is associated to the test artifacts defined in the Standard for
Software Test Documentation (IEEE, 1998). These are described next:

• Test plan. This artifact is the main output of the Planning phase. A test plan details
all tasks to perform, which includes the test strategies to employ (approach) - including
both the techniques and the coverage criteria to reach, the items to be tested (scope)
- modules, features, and the project estimates and resources - risks and dependencies,
schedule, personnel, etc. The test plan should be updated throughout the project until the
completion of closure activities. A well though-out test plan will provide the test team
with a clear direction and understanding of the procedures taken to achieve a certain result.

• Test specification. The specification defines how testing will be performed. The artifacts
surrounding test specification are managed at the Design phase of a software testing
process. These can be defined as follows:

– Test design specification. It refines the test approach and identifies the features
to be covered by the design and its associated tests. Besides, it identifies the test
cases and test procedures, if any, required to accomplish the testing and specifies the
pass/fail criteria.

– Test case specification. It documents the actual values used for input along with
the anticipated outputs. A test case also identifies constraints on the test procedures
resulting from the use of that particular test case. Test cases are separated from test
designs to allow for use in more than one design, and to allow for reuse in other
situations. A collection of test cases that are grouped for test execution purposes is
often referred to as a test suite.

– Test procedure specification. This artifact identifies all steps required to operate
the system and exercise the specified test cases, in order to implement the associated
test design. Test procedures are separated from test design specifications as they are
intended to be followed step by step and should not have extraneous details.

• Test execution. It consists of running the test cases, either manually or automatically.
This phase is usually bundled with the test reporting. It covers the following artifacts:

13

– Test log. This artifact is responsible for recording what occurred during test execu-
tion, i.e., the result of a test case execution - pass/fail.

– Test incident report. It describes any event that occurs during the test execution
which requires further investigation, i.e., events that cannot be handled at a particular
execution.

• Test reporting. It comprises the artifacts from the last phase of a test process, as follows:

– Test item transmittal report. It identifies the test items being transmitted for testing
in the event that separate development and test groups are involved or in the event
that a formal beginning of test execution is desired.

– Test summary report. It summarizes the testing activities associated with one or
more test design specifications.

While the description above claims each testing phase to precede another one, by following
a sequence, from Planning to Reporting, it is worth mentioning that such a waterfall structure is
not encouraged. Instead, the phases should communicate with each other, providing continuous
feedback.

Figure 2.1 shows an activity diagram that illustrates a general software testing process
workflow, with its main tasks, and the communication among them. By following such a flow,
after being planned, the tests are designed, and run afterwards. The design is represented
by a fork node, with two possibilities, i.e., manual and automated test cases. A manual test
case is a sequence of test steps written in natural language, whereas the automated scripts are
mechanically interpretable representations of manual test cases (Thummalapenta et al., 2012).
When executing a test and finding an issue, a report should be created to capture what is already
known about the issue. Next, if the established pass/fail criteria is not achieved, it is necessary
to write new test cases, or even make some adjustments in the test plan, and the flow repeats
from the beginning, until the condition of a test success is achieved.

The above description specifies the common information to consider in a software testing
process. Despite the importance that all testing artifacts and phases hold, more attention should
be given to the test case artifact. It is far the most important one in the testing process, and main
focus of research in the software testing field, independently on the major. Its definition is the
core task of a testing strategy.

Many authors claims software testing to be a costly activity in software development, taking
over fifty percent of development budget (Harrold, 2000). Vegas and Basili (2005) argue that
one of the factors that influence such a cost is the number of test cases used. The problem is

14

2.3. TEST SPECIFICATION

Figure 2.1: A general software testing process workflow.

that, when a large number of test cases is created, a long time is required to specify, execute, and
analyze them, what demands a high amount of resources. It would seem to make sense to limit
the test scope to the most important test cases in the test suite. Therefore, the major concern in
software testing is to effectively use the resources available by developing a set of test cases that
yields the maximum amount of defects for the time and effort spent (Burnstein, 2003).

2.3 Test specification

Test cases are designed to cause faulty programs to make errors which result in program failure
(Ammann and Offutt, 2008). A test case is defined as a success if it can detect faults in a given
amount of time, and as a fail if it does not detect any fault. The capability a test case holds in
identifying a defect shows how effective it is.

Test case specification is concerned about designing effective test cases (Myers et al., 2011).

15

In general, fixing a bug is easy, but finding the bug could be a nightmare. A developer may
spend hours and days in front of the debugger, trying to identify the faults from which the errors
emerged. Besides, fixing one bug could break other parts of the code, and also the bug, once
fixed could appear again later.

In addition, effective test cases should also consider their capability to uncover the most
important input data values, i.e., those that are likely to hold defects, in an efficient fashion, with
a minimum amount of time and effort.

Therefore, adequate testing techniques should be employed towards designing effective test
cases. Along this section we discuss the commonly applied techniques to achieving this goal.

2.3.1 Testing techniques

Software testing techniques provide different criteria to designing the set of test cases. These
criteria allows grouping testing techniques in families according to the source of information
used to define the test requirements. These can count on specification (functional) or source

code (structural) information (Juristo et al., 2004). We next describe the role of each group of
techniques.

• Functional testing. This family of techniques is used by considering the system as a
black-box, i.e., the test case generation counts on inputs and associated outputs, as defined
in the requirement or design specifications. It focuses on the external behavior of the
software entity under test, and the internal structure is not taken into account. The most
common techniques in this family are equivalence class partitioning, boundary value

analysis, and cause-effect graphing.

The main idea behind equivalence class partitioning and boundary value analysis is to
divide the system inputs into subsets, termed equivalence classes, where each class element
behaves similarly. On the other hand, cause-effect graphing explores the combinations of
input circumstances (Myers et al., 2011), not covered by the preceding techniques. That is,
in a cause-effect graph, causes are the input conditions and effects are the results of those
input conditions. Causes and effects are identified by reading the specification word by
word and underlining words or phrases that describe causes and effects. By methodically
tracing state conditions in the graph, the graph can be converted into a limited-entry
decision table. Each column in the table represents a test case.

Given that testing all possible inputs is not feasible in practice, functional testing tech-
niques apply some strategies aimed at reducing the most part of the software, while

16

2.3. TEST SPECIFICATION

keeping relevant input data (Ammann and Offutt, 2008).

• Structural testing. As opposed to the prior, structural testing requires knowledge of
source code. It is often referred to as white-box technique, by emphasizing the internal
structure of the software. The goal of selecting such a family is to cause the execution
of specific spots in the software entity, such as specific statements, program branches or
paths, determining if all the logical and data elements in the software unit are functioning
properly. The expected results are evaluated on a set of structure-related coverage criteria,
such as control-flow, and data-flow coverage (Ammann and Offutt, 2008).

Control-flow criteria works by examining the branch and loop structure of a program. The
logic elements to consider for coverage based on the control flow in a source code unit
are the following: program statement, branches (decisions - if/then/else and for/while
statements; conditions - true/false expressions), and combinations of decisions and condi-
tions (Burnstein, 2003). In program statement coverage, every statement must be executed
at least once, and in branch coverage, every branch must be traversed. The majority of
systematic white-box testing approaches consider the control-flow of the program and try
to cover as many aspects as possible (Fraser and Zeller, 2012).

Data-flow criteria focuses on how variables are bound to values, and how these variables
are to be used (Rapps and Weyuker, 1985). As opposed to selecting program paths based
solely on the control structure of a program, the data flow track input variables through a
program, following them as they are modified, until they are ultimately used to produce
output values.

A meaningful measure of testing technique is its fault-detection ability, i.e., its effectiveness.
A good means to accomplish that is for a software testing strategy does not only consider either
functional or structural testing, but instead it might feature elements of both, to ensure that a
rigorous program testing was designed. In practice, testing techniques are much more effective
used in combination than used separately (Wood et al., 1997).

A test case can be generated for both manual or automatic execution. The first is more
intended to functional testing, while the structural testing should be automated. However, even
functional testing should be as automated as possible, so as to enable rapid feedback, and cost
and effort reductions. Research on automated test case generation has resulted in a great number
of approaches for test case derivation, either from models or source code, and using different
test objectives such as coverage criteria, and using different techniques and algorithms (Fraser
and Zeller, 2012).

17

Some authors also include another testing technique, that also holds a great importance to
achieve the test case goals, the so-called error-based testing, introduced by Morell (1990), and
further explored in the software testing field (Delamaro et al., 2007). In this technique, the test
criteria and requirements come from the kwnoledge about the common and recurring errors
made in the software development process. Therefore, it seeks to demonstrate that prescribed
faults are not in the program.

The technique has some components. One is the identification of general classes of errors
that occur during program construction. Another is the assumption that the expert tester knows
how to interpret general error classes in particular contexts, and choose relevant tests and test
methods (Howden, 2011).

Error Seeding (Meek and Siu, 1989) and Mutation Analysis (DeMillo et al., 1978; Mathur,
2002; Jia and Harman, 2011), both error-oriented techniques, are typical testing criteria applica-
ble to this testing technique. They are usually applied to assess the quality of the test cases, i.e.,
whether they can reveal certain types of faults.

In error seeding, a predefined number of artificially generated errors is inserted into the
system. After that, test runs are used to detect errors and to examine the ratio between actual
and artificially “sown” errors, based on the total number of detected errors. The testers do not
know the artificially generated errors.

Mutation testing is a kind of systematic method of error seeding. The criteria considers all
simple faults that could occur. Hence, certain statements in the source code are “mutated”, i.e.,
purposely modified, to introduce single faults, one at a time, to create “mutants” of the original
program. The test set is then applied to each mutant program, to check if the test code is able to
find the errors. The test adequacy is measured by the amount, or percentage, of “mutants killed”.

In practice, mutation testing would be extremely difficult without a reliable, fast and auto-
mated tool that generates mutants, runs the mutants against a test suite and reports the mutation
score of the test suite (Madeyski, 2010). Judy1 is a well-accepted mutation test tool for Java.

2.3.2 Test case prioritization

Given the usually limited resources in software projects, it is rather important to establish
priorities to test case execution, in order to increase the likelihood of revealing defects in the
program under test (Haidry and Miller, 2013).

Test case prioritization is the process of establishing test case priority order, with respect to
a given goal, in such a way that test cases with high utility are given higher priority, as they are

1http://mutationtest.com/

18

http://mutationtest.com/

2.4. TEST LEVELS

expected to present better fault detection results (Gonzalez-Sanchez et al., 2010). It means that
if known which test cases are more likely to detect faults, these should be run earlier than others.

Catal and Mishra (2012) analyzed existing literature on the topic, covering about 120
research papers. The study leveraged the most important aspects of test case prioritization,
and pointed out which techniques have caught researchers’ attention in the last years. The
investigation elaborates on the work of Yoo and Harman (2012), that discussed about existing
techniques for test case prioritization. They classified the existing techniques into the following
categories: coverage-based prioritization, distribution-based approach, human-based approach,

probabilistic approach, history-based approach, requirement-based approach, model-based

approach, and cost-aware approach. Among these, there is a higher prevalence of coverage-
based prioritization techniques.

Another classification (Haidry and Miller, 2013) reduces to three the number of categories of
techniques, as follows: History-based: prioritizes by using information from previous execution
cycles, like data about code-coverage, i.e., the higher the achieved coverage by a test set,
the higher the priority; Knowledge-based: uses the human knowledge power to perform the
prioritizations; and Model-based: uses models of the system to determine the priorities. It
considers the models to establish “weights" of importance, for a given entity, thus enabling
prioritization based on the entity’s importance, e.g., the number of dependencies an entity has.

2.4 Test levels

Software testing activities are commonly categorized into different levels (Ammann and Offutt,
2008). The definition of different levels has been used to characterize an activity that occurs at a
specific timepoint in a software development process. Each level has a particular interest, such as
analyzing the incorrect use of a given algorithm, or to expose deviations from the requirements,
or even evaluating robustness to stressful load conditions. These are distinct fault types that can
be found in different levels of abstraction, e.g., the prior could be found when analyzing the
implementation routine, the second should consider if the system functionalities were developed
accordingly, and the latter counts on the whole application usage to analyze whether system
performance is in compliance with the specified non-functional requirements. The levels are
described next.

• Unit Testing. It tests the smallest part of a program. It usually consists of testing methods
in a component (in Object-Oriented Programming (OOP)), both to ensure the unit is
working properly, and to find internal logic implementation errors. As a piece of code is

19

implemented, a test should be designed that test the new functionality. It is also possible
to consider a whole component as a unit. The level of granularity will depend on the test
strategy employed. Automated unit tests are very popular, probably because in the majority
of the projects, developers are responsible for testing (Greiler et al., 2012). Developers
create unit test cases in the form of small programs, typically in a framework such as the
JUnit 2, or the TestNG framework3. A great advantage of unit testing is that a suite of tests
can be run as often as desired without any manual intervention (Thummalapenta et al.,
2012).

• Integration Testing. It is carried out when two or more tested units are ready. It tests the
integration of units to prove they also work properly when put together. Integration tests
can be performed by accessing the source code, and also using their external interfaces.
Alike unit testing, a framework such as the JUnit can be used to automate the integration
tests. Indeed, there are specific tools for this level, however their usefulness is dependent
on the type of system components to integrate.

• System Testing. After finishing the components that will compose a product, it is neces-
sary to test the behavior of the entire system, i.e, the interactions of all components, to
verify whether the actual system meets the specifications. Besides, at this level, quality
attributes (i.e., non-functional requirements, e.g., availability, performance, usability,
security, reliability, etc.) may be tested, given that the whole system is expected to be
functional. Unlike the preceding levels, system testing does not require access to the
source code. Furthermore, system tests are typically written by testers, not the developers
of the application.

Besides the three standard test levels, a fourth test level can also be considered, the accep-
tance testing. This is the only level in which the testing goal is more to prove the system is
working rather than finding errors (Burnstein, 2003). Acceptance testing consists of an enhanced

system testing, usually performed with the presence of end-users or customers, to ensure that the
system is performing what they initially defined in the requirements specification document, and
that the system does not operate outside of its specifications as well (Lewis, 2008). Some projects
do not formalize acceptance tests, especially when end-users have been involved continuously
throughout the development cycle and have been implicitly applying acceptance testing as the
system is developed (Lewis, 2008), or due to time constraints in the project.

2JUnit is a unit testing framework for the Java programming language. Available at http://junit.org/
3Another unit testing framework for Java. Available at http://testng.org/

20

http://junit.org/
http://testng.org/

2.5. REGRESSION TESTING

There is some attempt to accurately reflect the software development lifecycle phases with
the test levels, such as in the V-model for system development, initially presented by Boehm
(1979), and largely discussed in the literature afterwards. However, in practice, implementing
unit tests and integration tests as single, separated phases results in a thoughtless approach for
testing. For example, a single unit test will require a custom test harness. Each unit may require
a different test harness. For a large project containing several units, this could prove to be costly
and problematic. A better idea could be testing a unit when connected to the actual system,
using the system to deliver test messages (Marick, 1999).

Therefore, it is way more interesting to look at the test levels from another perspective, other
than only trying to establish a path in which each level must only be adopted during a particular
development phase. As the test levels enable to understand which kind of faults they are more
likely to uncover, it could be helpful for a fault management process, which should determine
where faults are found, and also where they are introduced.

2.5 Regression testing

Whenever software changes, it is necessary to analyze whether that modifications are correct,
and that already tested functionalities, that previously worked properly, have not been negatively
affected. Regression testing is the testing activity aimed at providing confidence that the newly
introduced changes do not harm the existing behavior of the software (Rothermel and Harrold,
1997). It constitutes the vast majority of testing effort in commercial software development,
being regarded as an essential part of the maintenance activity, especially when multiple software
releases are developed (Ammann and Offutt, 2008). As such, it demands special attention in the
software testing process.

The most straightforward regression testing strategy is to rerun all existing test cases, in a
strategy called retest-all approach (Yoo and Harman, 2012). However, such a strategy cannot
be considered as feasible, due to its high cost. Including every existing test sets entails a likely
unmanageably large regression test set (Ammann and Offutt, 2008). This limitation forces
consideration of selective strategies that aim at reducing the required effort.

Rothermel and Harrold (1996), the most influential authors in the regression testing field,
introduced two decades ago, a detailed study on existing techniques for selecting regression
tests4. In the investigation, the authors analyzed thirteen techniques, which spans a variety

4Although this study (Rothermel and Harrold, 1996) is not a recent source, it may still be considered as a
well-accepted source of information regarding regression test selection techniques. As early as in March 2012, the
google scholar indicates that about 450 studies have cited it so far. Two years later, in March 2014, the number

21

of topics, such as: linear equation, symbolic execution, path analysis, dataflow, program

dependence graph, system dependence graph, among others.

The authors proposed a framework to categorize the regression techniques according to a
set of criteria (inclusiveness, precision, efficiency, and generality), thus enabling comparisons
of their fault-detection and cost reduction abilities, conditioned on criteria. They argued about
a required trade-off analysis between the costs of selecting and executing test cases, when
choosing a technique for practical application.

Another investigation held by the same group of authors and their colleagues (Graves et al.,
2001) reported on an empirical evaluation of the cost and benefit analysis of five techniques
for reusing test cases, focusing on their relative abilities to reduce regression testing effort and
uncover faults in changed programs.

Engström et al. (2010) carried out a thorough systematic literature review on the topic.
They analyzed thirty-two techniques, in order to compare available evidence on regression test
selection. Similarly to the aforementioned investigations, the statement about the trade-off

analysis continues to hold true in this study, given that authors claim about the lack of common
definition of what criteria defines a good regression test selection technique.

2.6 Fault models

Software engineers, when designing test sets, have in mind what problems are more likely to
occur, given they usually have accumulated those in memory, from years of experience. While it
is possible to design test sets without fault modeling support, it is not true that a common testing
strategy does not involve fault models, at least implicitly. That is, an experienced developer often
knows where errors are more likely to occur, and as such may put more effort into exercising the
“hot spots" than others.

An important steps towards the improvement of the testing process is the ability of estimating
software fault-proneness, i.e., the probability of the presence of faults in the software (Fenton
and Neil, 1999). The idea is to estimate to what extent a software module is expected to be
faulty both before and after testing. A realistic estimation might aid testing as understanding the
nature of software fault-proneness allows to beter focus the testing activities, thus improving the
allocation of resources. Conversely, after testing, the estimation of software fault-proneness can
provide feedback on testing and help in defining maintenance actions.

increased to 518, what demonstrates an increasing trend. Rothermel and Harrold remain the most influential authors
in the field. They have authored or co-authored the most cited publications in the field.

22

2.6. FAULT MODELS

A significant research effort has been dedicated to defining specific measures and building
quality models based on those measures (Arisholm et al., 2007). Several software metrics have
been proposed to characterize software both statically and dynamically, and many evidence
prove the existence of correlation between values and fault-proneness, as well as many other
non-directly measurable software attributes have been empirically proved by many authors
(Basili and Hutchens, 1983; Gill and Kemerer, 1991; Frankl and Iakounenko, 1998).

In theory, if relations are found between the software attributes and fault-proneness, better
and more accurate predictive models can be defined. On the other hand, the attempts to define
models for computing fault-proneness indicators based on software metrics have not succedded
in producing convincing general models (Denaro et al., 2002). There exists little evidence of the
economic viability of such models (Briand and Wüst, 2002).

The fault prediction models support the identification of faulty modules in a software system.
These are modules candidate for verification and testing, or at least where priority should be
given. Building such predictive models demands investigating sets of historical observations
so as to understand the nature of faults in the software systems, rather than only counting on
structural measures.

To build such models there exists a large number of modeling techniques to choose from,
including standard statistical techniques such as logistic regression (Denaro et al., 2002), or
optimized set reduction (Briand et al., 1992), data mining techniques such as decision trees

(Porter and Selby, 1990; Selby and Porter, 1988), machine learning techniques such as support

vector machines (Elish and Elish, 2008), and neural networks (Khoshgoftaar et al., 2006).
It is rather important to build models that reflect the occurrence of faults in a given software

system, so that testing activities can be planned effectively. Associated with the understanding
of the nature of faults, another line of action in a testing process may emerge. It consists of fault
modeling. It is tied to the idea of building fault dictionaries to augment the efficacy of testing
process and to improve the overall quality of the delivered software.

In terms of what actually constitutes a fault model, the literature provides a plethora of
definitions for the term, as Reinecke et al. (2010) identified in their literature review on the
topic. Among the commonly accepted definitions, Burnstein (2003) claims a fault model as

“a link between the error made, and the defect in the software”. In order for such a simplistic
definition to be intelligible, recall that defects/faults arise because errors are made, in a sort
of cause-and-effect relationship. Even under the best of development circumstances errors
are made, resulting in faults being injected in the software during the phases of the Software
Development Life Cycle (SDLC). Recall also that a failure is an observed deviation from the
expected behavior (specification).

23

By following the basic concepts of fault-tolerant computing (Cristian, 1991) and the demon-
stration from (Reinecke et al., 2010), let us employ the notion of software components (provider)
that implement a set of functionality to be used by other software components (consumer). This
consumer in turn can be thought of as a provider of functionality to other consumers, and so
on. The functionality provided by a component is correct if it complies with the specification
for the software component. By hypothesizing that a functionality-failure in a component may
be the cause of a failure of the functionality the client in turn provides to its own consumers.
Consequently, the failure in the provider is a fault for the consumer. As we may observe, different
failures in the provider constitute different faults to the consumer and may result in different
consumer failures.

This scenario motivates the importance of knowing the sources of faults and understanding
how they could affect the behavior of a system, not just the faults themselves, as an opportunity
to eliminate them at their source. According to many sources, the earlier within the SDLC a
problem is discovered, the cheaper, and often easier, it is to fix (Basili and Perricone, 1984;
Ammann and Offutt, 2008; Myers et al., 2011).

We could rephrase the definition of a fault model as a description of the behavior of, and

assumptions about, how components in a faulty system behave. A fault model provides testers
with specific fault types for which to search based on the types of technologies used and the
activities that have preceded the tests. Tests or review scenarios are written to search for each
possible type of fault.

A fault model describes the space of erroneous behaviors which can be expected as a result
of a error. Such a description consists of a fault list or dictionary. From the fault list/dictionary,
faults can be selected, and test inputs can be developed (McGregor, 2008). It is an effective
means to design test cases that have a high probability of revealing faults (Martin and Xie, 2007).

The tester with access to the fault model and the frequency of occurrence of fault types
could use this information as the basis for generating fault hypotheses and test cases, aiming at
building a minimal complete test suites for a fault model.

Determining the frequency occurrence should rely on the extensive analysis of historical
data, encompassing a collection of experience, in terms of common faults, about the scenario
under analysis in a range of criteria (e.g., application domain, programming language, structural
complexity of the software, etc).

Furthermore, the role of a fault model relies on specifying the fault types to be detected
by a test. This is strongly tied to the SDLC phases, as there are different fault categories for
each work product (e.g., requirements, design, code, and test artifacts) (Chillarege et al., 1992;
Seaman et al., 2008; Strecker and Memon, 2012).

24

2.6. FAULT MODELS

In practice, there is no a generic fault model that can be used by every scenario. Fault models
are usually dependent on particular domains and types of applications. When understanding
the issues of a particular domain, the interest is in the behaviour of the system under various
common faults. While the fault model support cannot guarantee the absence of a specific type of
fault, it can be used in assurance arguments that specific procedures have been used to search
for specific faults.

A measurement of the efficiency of a fault model can be defined as the percentage of the
existing actual faults covered by testing the modeled faults (Bengtsson and Kumar, 2005; Jansen,
2010). It is worth to mention that, since more thorough fault models need higher test effort,
because more possible faults have to be considered, a trade-off between quality and cost of a test
must be found in practice.

Although the relationships between software failures, software faults, and their origins are
not easily mapped, fault models concept and fault lists are useful to design tests and for diagnosis
tasks during fault localization activities. Such a scenario might pose a challenge for defining
fault models for software engineering.

2.6.1 Fault models in systems and software engineering

A fault model is an engineering model of something that could go wrong in the construction or
operation of a piece of equipment, structure, or software (Martin and Xie, 2007).

Fault models have been largely used in testing of physical systems, such as integrated circuits,
microcontrollers, and Operating Systems (OS) device drivers. In such application domains,
testing today typically consists of generating test patterns based on multiple fault models that
emulate manufacturing defects. A seminal study dates back to 1982, where Malaiya and Su
(1982) proposed a fault model to improve fault coverage in testing CMOS5 devices. Since then,
the use of fault models has been growing increasingly, that several models have become sort
of standards to follow when test cases are generated (Botaschanjan and Hummel, 2009). It is
the case of the “classic" fault models stuck-at faults, multiple stuck-at faults, bridging faults,

interconnect open faults, and delay faults, that have long been used for fault diagnosis in the
development of electronic circuits (Pomeranz and Reddy, 2009; Jansen, 2010).

In the domain of OS device drivers, the research community has also defined a detailed
representation of commonly occurring faults, and modeled these as fault models, such as bit

flipss, data type dependent parameter corruptions, and parameter fuzzing. These are mandatory
assumptions when test cases are generated that aim at revealing robustness vulnerabilities of an

5CMOS stands for Complementary metal oxide semiconductor, a technology for constructing integrated circuits.

25

OS device driver (Winter et al., 2011).

From the software engineering perspective, fault modeling has also served to improve
software testing efficiency and effectiveness for the detection and removal of faults, of which a
not exhaustive list is provided below:

Offutt et al. (2001) presented a model for the appearance and realization of OOP faults
and defined specific categories of inheritance and polymorphic faults. The investigation was
aimed at providing support to empirical evaluations of OOP testing techniques, and to improve
design and development of OOP software. They observed that, rather than only taking corrective
measures to eliminate the faults, it is necessary to understand the problems that can be caused
by method overriding and polymorphism and document them as a fault model.

Martin and Xie (2007) employed a fault model approach to modeling things that could go
wrong when constructing an access control policy. They used a fault model to measure the
fault-detection effectiveness of automatic test generation and selection techniques. To this end,
it was necessary to create a broad categorization of faults in the domain under evaluation.

Babu and Krishnan (2009) applied the fault modeling concept to support the identification of
faults during aspect composition in the early design stage. They provided a list of faults that can
occur during aspect composition at a shared join point. Such a support would help in adopting
better coding strategies that result in modular, reusable and maintainable code.

Reinecke et al. (2010) surveyed the use of fault-models for Quality of Service studies of
Service-Oriented Systems. They provided an overview of the fault-models available in the
literature, using a fault-classification scheme based on architectural properties of a Service-
Oriented Architecture (SOA)-based system, and review schemes that have been proposed for
classifying faults in SOA-based systems. Such a study is another clear indication that fault
models subsume a range of benefits for early fault detection in software systems development.

2.6.2 Fault models in the software development life cycle

Fault modeling may be an important element for several activities in the software development
life cycle, ranging from requirements to maintenance. These activities deal with different inputs,
at different abstraction levels. A fault model provides testers with specific fault types for which
to search based on the types of technologies used and the activities that have preceded the tests.

Different fault models helps detecting defects that were introduced during different phases,
so that they could be fixed in the earlier stages of the projects avoiding rework (Kumaresh and
Baskaran, 2012). Thus, a fault management process could be defined as a means to determine
where faults are found and where they are introduced.

26

2.6. FAULT MODELS

A template for a development phase description can be defined to support the process. Figure
2.2 shows a template we defined. It comprises four elements of interest for the development
phase, as explained next:

LEGEND:

Faults
Expected

Faults
Propagated

DEVELOPMENT
PHASE

Faults
Introduced

Faults
Eliminated

Figure 2.2: Process template.

• Faults expected - When defining a process each phase will propagate some faults on to
the next phase. The activities in the second phase should be created to identify and handle
these faults.

• Faults eliminated - The activities in each development phase may eliminate faults that
have been previously introduced.

• Faults introduced - Each phase of development has the potential to inject faults into the
product or its supporting artifacts. The nature of the phase determines what is possible.

• Faults propagated - Faults that are either anticipated or introduced must either be elimi-
nated or they will be passed on to the following phase.

Artifacts created at one phase are passed on to, and used by, later phases. As a consequence,
any fault injected and not detected by the verification activities in that particular phase is still in
the artifact when it is used by the later phase. This action is referred to as fault propagation.

When a fault is injected into a development artifact, such as architecture or program code, that
fault remains until it is recognized and removed. As the development proceeds and the artifacts
are used by later phases, a fault may cause errors that result in additional faults being created in
other artifacts. For example, a faulty requirement may result in a fault in the architecture and
several faulty test cases thereupon.

The Verification and Validation (V&V) activities of a development process are intended to
identify those faults. These activities should be planned with specific faults in mind. Developing

27

REQUIREMENTS

DESIGN

IMPLEMENTATION

TESTING

LEGEND:
Faults
Expected

Faults
Propagated

Faults
Introduced

Faults
Eliminated

Faults
Models

Figure 2.3: Software process lifecycle with fault model support.

the V&V plan for a project is the point at which specific fault types related to the technologies
being used are mapped to the development process. This is the point at which fault modeling be-
comes particularly interesting. At each phase, the V&V activities will be defined in conjunction
with the fault models. A process definition will be a composition of phase definitions, as Figure
2.3 shows. The V&V activities in each phase are the first line of defense. Expected fault types
and introduced fault types are searched for.

Figure 2.4 illustrates a typical requirements phase definition. This phase comprises require-
ments elicitation and writing. Considering this as the initial phase in the development life
cycle, there are no input faults. However, a number of faults can be introduced. Seaman et al.

(2008) listed a number of defect types inherent to requirements definition: clarity, completeness,

compliance, consistency, correctness, and testability. Thus, the fault models should take into
consideration the common mistakes in requirements statement definition.

We should be aware that, even applying an effective set of fault models, it is likely that some
faults might still be propagated. The role of fault models will be to reduce the probability of
such a propagation.

2.7 Chapter summary

Software testing can be regarded as the most important quality assurance technique. Employing
a testing strategy is crucial to any software project success. In this background chapter, we
reviewed some of the basic concepts of software testing.

28

2.7. CHAPTER SUMMARY

Faults Eliminated:
Incomplete, ambiguous statements

No input faults

Faults Propagated:
Incorrect statements

Faults Introduced:
Incomplete, Incorrect, Ambiguous
Statements

REQUIREMENTS

Faults Models:
Common mistakes in requirement
statement definition

Figure 2.4: Fault model support within the requirement phase.

Besides, we introduced the concepts of fault modeling. As a commonly applied strategy
in testing of physical systems, we discussed the inherent aspects that make fault models also
relevant to improving the software testing practice.

Next Chapter presents a general introduction of software product lines, presenting their
principles, and discussing its benefits and drawbacks.

29

3
Software Product Line Engineering

Traditional Software Engineering is usually focused on building individual software systems,
one system at a time. It includes some sort of specification gathering, proceeding with the
design, implementation, and testing. By the end of the construction process, a software system is
deployed. A range of practices have been well established that support this software development
strategy (Sommerville, 2011).

Such a typical software development strategy might not cope with the increasing market
demands for variability and customizability. That is, similar products that share functionalities
and might accommodate some adaptations, to meet the needs of particular customers. As each
product is treated as an individual unit, the designed assets are not variable enough to be reusable
in different products. Therefore, in order to meet customer needs, several products have to be
built from scratch. From both engineering and economic perspectives, it does not make sense to
develop each product separately, as it would demand setting up different development teams
to cope with the creation of different products. In effect, the support for variability and mass
customization might not be cost effective. Both these aspects have become important attributes
of modern software development practices (Rashid et al., 2011), and due to become a must for
market success (Benavides et al., 2010).

Svahnberg et al. (2005) define variability as the ability of a software system or artefact to

be efficiently extended, changed, customized or configured for use in a particular context. From
a product line development perspective, such a definition could be rephrased as the ability to

derive different products from a common set of artifacts (Apel et al., 2013). Variability of a
software component is related to its reuse as increased variability increases the likelihood of
reuse (Fazal-Amin et al., 2011).

Further, the concept of mass customization is tied to the definition of mass production.
As Benavides et al. (2010) state, the latter stands for “the production of a large amount of

31

standardized products using standardized processes that produce a large volume of the same

product in a reduced time to market”. Therefore, mass customization could be defined as the

production of goods and services to meet individual customers’ needs with near mass production

efficiency (Tseng and Jiao, 2001). This is widely applied in the automotive industry, which
focuses on efficiently producing and maintaining multiple similar products, exploiting what they
have in common and managing what varies among them (Krueger, 2001). This strategy is an
important player in market competition (Alford et al., 2000).

As opposed to the creation of “customized” individual software from scratch, SPL engi-
neering provides efficient means to develop variable software, and manage variability across
a very large number of similar products. Clements and Northrop (2001) defines an SPL as “a

set of software-intensive systems sharing a common, managed set of features that satisfy the

specific needs of a particular market segment or mission, and that are developed from a common

set of core assets in a prescribed way”. It is based on the idea that assets, built on the basis
of a common design, can be systematically configured and composed in different ways, so
as to enable the creation of a diversity of products, in a shortened building period, instead of
either developing each product from scratch, or copying the software from a similar system and
changing it when necessary, in an ad-hoc fashion.

SPL engineering provides a series of benefits over any ad-hoc reuse strategy (Clements and
McGregor, 2012), such as savings in development and maintenance costs, reductions in time
to market, and improvements in the quality of the product delivered to customers (Pohl et al.,
2005). SPL engineering leads companies to achieve remarkable economies of scale and scope,
leading to large productivity gains. Examples of SPL are manifold and can be found in different
application domains (Rashid et al., 2011). There are lots of companies that report successful
stories about the application of SPL engineering in their development processes, as listed in
(Pohl et al., 2005, chap. 21) (Weiss et al., 2006) 1 (van der Linden et al., 2007, chap. 8-17).

In order to achieve the potential benefits of SPL engineering, it is necessary to understand
and control common and distinguishing characteristics between the systems that are part of
the product line. Given that SPL engineering demands software assets with high variability,
there is a minimally necessary set of steps to accomplish (Svahnberg et al., 2005), namely
identifying, constraining, implementing, and managing variability. These steps are subject to
discussion in the following sections, as follows: Section 3.1 introduces the particular aspect of

1The Carnegie Mellon Software Engineering Institute (SEI) maintains the Software Product Line Hall of
Fame web site - c.f. http://splc.net/fame.html. It contains a list of sucessful stories about the application of SPL
engineering in software-intensive systems development. These stories serve as models of what an SPL should be,
according to the view of a board committee, formed by active players in the SPL (research & development) field.

32

3.1. DOMAIN AND APPLICATION ENGINEERING PROCESSES

SPL engineering, namely, the division of development into two processes. Section 3.2 elaborates
on variability, the key element of the SPL development. The commonly adopted SPL strategies
are discussed in Section 3.3. Finally, Section 3.4 summarizes the Chapter.

3.1 Domain and application engineering processes

Unlike traditional Software Engineering (henceforth named as single systems development), SPL
engineering splits the software development into two distinct processes: domain engineering
and application engineering. Figure 3.1 shows a simplified version of a commonly accepted
SPL engineering framework, encompassing the both processes and their associated lifecycle
disciplines. The framework was originally introduced by Pohl et al. (2005), but a range of
modified versions can be found in the literature, which consider another set of disciplines in
the SDLC. It is the case of an extension proposed by our Research Group (Neiva et al., 2010;
Machado et al., 2011; Cavalcanti et al., 2011a), which includes aspects of Scoping (Moraes
et al., 2011), Evolution Management (Oliveira, 2009) and Risk Management (Lobato et al.,
2012), orthogonal disciplines that should be considered in both processes.

Domain
Requirements
Engineering

Domain
Design

Domain
Implementation

Domain
Testing

Appication
Requirements
Engineering

Application
Design

Application
Implementation

Application
Testing

Product
Management

DOMAIN ENGINEERING

APPLICATION ENGINEERING

Figure 3.1: SPL Engineering Framework.

Domain engineering (development for reuse) is in essence, the activity of collecting, orga-
nizing, and storing past experience in building systems or parts of systems in a particular domain
in the form of reusable assets, on top of which all products are built (Czarnecki and Eisenecker,
2000). It includes the implementation of a set of common assets, and base technologies which al-

33

low the derivation of products. The derivation of products describes the process of their creation,
carried out during application engineering (Rashid et al., 2011). In application engineering
(development with reuse), products are then assembled, by reusing the commonalities, binding
the variability defined in the domain artifacts, according to customer- and/or market-specific
needs, and implementing product-specific parts (Pohl et al., 2005).

SPL engineering is strongly dependent on a common product line architecture, that is also
called reference architecture (Pohl et al., 2005). It must be designed as early as in domain
engineering. It specifies the common structure of the products and centers in the development
and evolution of both domain and application assets (Wu et al., 2011).

3.2 Handling variability

The explicit division of interest into domain and application engineering provides an infrastruc-
ture for developing highly customized software systems. However, to enable a large scale reuse,
SPL engineering explicitly represents the variations for managing dependencies among variants
and supporting their instantiation throughout the SPL life cycle (Schmid and John, 2004). The
management includes identifying and managing commonalities and variations across a set of
system artifacts such as requirements, architecture, code components, and test cases (Babar
et al., 2010).

To this end, a product line can be divided into features, characteristics that are used to
differentiate among members of the product line, and hence to determine and define the common
and variable functionality of an SPL (Gomaa, 2005). Kang et al. (1990) define feature as “a

user-visible aspect or characteristic of the domain”. Griss (2000) introduces a similar definition.
He claims that a feature is “a product characteristic that users and customers view as important

in describing and distinguishing members of the product-line”. Batory (2006) adopts a more
simplistic definition for features, and assumes that “a feature is an increment in program

functionality”.

Features in an SPL may be classified into two types: mandatory and variable features.
The mandatory features determine the degree of commonality in the SPL. These features must
appear in the same way in every product in the SPL. The variable features determine the degree
of variability in the SPL (Gomaa, 2005), that is, the products in an SPL are distinguished from
each other on the basis of their variant features. Variable features can be either optional or
alternative. Optional are those that need to be provided by only some SPL members. When
two or more features are alternatives to each other, only one of them can be provided in a given

34

3.2. HANDLING VARIABILITY

SPL member. These are the commonly represented relationships among features.

Variability management encompasses the activities of eliciting and representing variability
in software artefacts, in both logical and implementation views. The logical representation is
tied to the problem domain, and consists of structuring how the product line features can be
combined to each other. It is more the view that should be presented to/handled by non-developer
stakeholders. On the other hand, representing variability in source code refers to the solution

domain, and consists of implementing the features using a specific mechanism (Jaring and
Bosch, 2004; Svahnberg et al., 2005). The source code of an SPL is usually more complex than
that of single systems because of the increased variability, what makes it harder to understand
(Kästner et al., 2008).

Furthermore, variability management also encompasses establishing and managing depen-
dencies among different variabilities, and supporting the exploitation of the variabilities for
building and evolving an SPL (Chen and Babar, 2011). Also, as the management is usually
performed at different levels of abstraction and across all generic development assets, there is a
need of effective methods, techniques, and tools to provide adequate support (Bosch et al., 2002;
Sinnema and Deelstra, 2007; Chen and Babar, 2011).

3.2.1 Variability modeling

Numerous approaches have been proposed for modeling variability in an SPL (Kang et al.,
1990; Czarnecki and Eisenecker, 2000; Gomaa and Eonsuk Shin, 2002; Dashofy et al., 2002;
Schmid and John, 2004; Gomaa, 2005; Pohl et al., 2005; Dhungana et al., 2011). Among
them, feature modeling is perhaps the most popular technique. It was firstly proposed in the
Feature-Oriented Domain Analysis (FODA) (Kang et al., 1990) method, and has been used in
many different software development paradigms, like model-driven development (Trujillo et al.,
2007), feature oriented programming (Batory, 2003), software factories (Greenfield and Short,
2003), generative programming (Czarnecki and Eisenecker, 2000), and so on. A feature model
describes the type of features, the relationships and dependencies among features and their
interrelationships, i.e., defining the way decisions about variable features influence each other,
such as stating that one variable feature requires another, or that one feature be incompatible
with another. These decisions are made for a given SPL member by configuring the feature
model. Voelter (2009) states that a great advantage of configuration is its simplicity, in a sense
that it is not necessary for an engineer to learn complex formalisms for defining an SPL variant,
but rather to simply select from a predefined set of alternatives.

Feature models are tree-like structures in which features are depicted using labeled boxes.

35

WI-FIGPS

SMS

CallsScreen

Basic HD

Media

Camera

Mobile Phone

Message

Rear

3D

Front

MP3MMS

Mandatory

Optional

Alternative (XOR)

OR

Requires

ExcludesLE
G

EN
D

Figure 3.2: Sample Feature Model.

Each feature in the model may have a set of child features with which it can interrelate in a
given type of relationship: mandatory, optional, or alternative. They describe the features that
can appear in a member of the product line, to separate the common features from the variable
ones, and to indicate how the variable features can appear (Czarnecki and Eisenecker, 2000).
Features can be activated and deactivated in order to create a specific SPL variant2.

Figure 3.2 illustrates a feature model, an excerpt of the mobile phone domain. It uses a
widely used notation (Czarnecki and Eisenecker, 2000), which includes all types of relationships
among features, and parent»child relations. Dependency constraints are also illustrated.
Besides the root feature, that describes the application domain under analysis, the figure presents
three mandatory features, three optional features (variation point), three OR-group features
(variation point), from which one or more (variant) features may be selected for an SPL member,
and one alternative group of features, from which exactly one feature must be selected. Re-
garding constraint dependencies, whenever the feature Camera»Front is selected, the feature
Screen»HD must be selected as well. It represents the requires constraint. On the other hand,
whenever the feature GPS is selected, the feature Screen»Basic must not be selected, and
vice-versa.

2Powerful tools exist to manage features and their relationships, e.g. FeatureIDE (Thüm et al., 2014),
pure::variants (Beuche, 2012). Lisboa et al. (2010) systematically reviewed the literature aiming at finding
out available tools that offer support to such a task. They analyzed the main characteristics of the selected tools,
pinpointing their potential benefits, and leveraged still existing gaps to the complete support.

36

3.2. HANDLING VARIABILITY

From this sample feature model, we could generate a number of 168 valid configurations3.
A valid configuration is one in which all rules are satisfied, or, in terms of the concrete syntax
used in Fig 3.2, a valid subtree that satisfies all cross-tree dependencies.

There are complex analyses that can be made over feature models, in addition to determining
whether a configuration is either valid or not. Benavides et al. (2010) provide state-of-the-art
information on the analysis of feature models, leveraging the operations employed in model
verification. The operations are used to identify anomalies in the models, and to detect structural
and integrity constraint violations as well. They both help verifying the ability of the product
line model to generate all the desired products, and only them, and measure the quality of the
model, as a means to identify and correct the defects in the model, a vital task for efficient
management and exploitation of the SPL (Salinesi and Mazo, 2012).

Besides using feature models to expose user-visible features as requirements, they can also
be used for design, implementation, testing, and deployment features visible only to developers.
Some scenarios enable linking these features, so that user-visible features match a (sub-)set of
developer-visible features. An illustrative example could consider linking user-visible front-end
features to developer-visible solution-layout features. It could enable the generation of a default
solution layout based on the type of front-end chosen by the user.

In SPL engineering, feature models can be stated as the de-facto standard to model variability
(Kang et al., 1990; Czarnecki and Eisenecker, 2000; Chen and Babar, 2011). However, feature
modeling is just one of many ways that can be used to describe variability. Others include forms,
tables, wizards, designers, templates, patterns, scripts, and code. They can be used alone, and in
various combinations.

A well-known alternative approach to feature models is the Orthogonal Variability Model
(OVM) technique, introduced by Pohl et al. (2005). The OVM technique provides variation
points, variants, variability dependencies, and constraint dependencies to define the variability
of an SPL. Unlike feature models, OVM is not hierarchical. Technically, it does not describe
features and their relationships but rather variation points. It is mainly aimed at explicitly
defining and managing the variability of an SPL without considering the common features.
However, the two representations are semantically equivalent (Roos-Frantz, 2009).

Furthermore, some researchers proposed the so-called Constraint Based Product Line

language. They aimed at translating the relationships between features into semantics, so as to
denote cross tree constraints by using propositional logic formulas (Czarnecki et al., 2005; Thüm

3We calculated such a value in the SPLOT tool (Mendonca et al., 2009). This sample feature model (Mobile-
Phone) is available at the SPLOT’s feature model repository: http://gsd.uwaterloo.ca:8088/SPLOT/index.
html and http://gsd.uwaterloo.ca:8088/SPLOT/models/model_20140503_110898123.xml

37

http://gsd.uwaterloo.ca:8088/SPLOT/index.html
http://gsd.uwaterloo.ca:8088/SPLOT/index.html
http://gsd.uwaterloo.ca:8088/SPLOT/models/model_20140503_110898123.xml

et al., 2009; Batory et al., 2011; Passos et al., 2011). Consequently, they can capture constraints
that are not covered by the feature model tree. Besides, with the automated analysis of the
models, it is possible to identify and automatically eliminate inconsistencies, thus reducing the
scope of products to handle.

3.2.2 Variability implementation

As presented in Figure 3.1, the SPL development life cycle makes the asset goes through a
number of phases. Each phase has its own representations, and it is possible to state that
development consists of transformations of these representations (van Gurp et al., 2001). For
example, a SPL requirement specification can be transformed into a feature model. Next, the
feature model and the requirements will serve as the basis to design the architecture. After that,
this will form the basis of the detailed design, from which the source code development will be
based upon. The source code is compiled, linked and finally run. The variability contained in
the source code must reflect the variability early defined in the previous assets.

In order to make the final product satify the variability requirements, variability mechanisms
are employed in the development process. This is the way to enable multiple configurations of
an SPL.

In the simplest case, configuration can be achieved by simply setting flags in a configuration
file. The literature offers a large amount of variability mechanisms, that consider variability
in several steps during development life cycle (Svahnberg et al., 2005; Kim et al., 2005;
Mohan and Ramesh, 2007; Deelstra et al., 2009). An important project decision concerns
to the variability mechanisms to use in the artifacts development in order to encapsulate the
variable parts and provide appropriate support for instantiating the variation mechanism. As
the purpose of this thesis encompasses variability issues at the source code level, hence the
focus is on how variability corresponding to functionality can be managed at this level. Well-
established techniques like conditional compilation, inheritance, or parameterization can be used
as variability implementation mechanisms (Svahnberg et al., 2005; Bosch and Capilla, 2013).
Table 3.1 lists a set of common mechanisms, just to name a few.

In the early days of SPL adoption, in industrial practice, the variability used to be of-
ten realized using macro preprocessors (conditional compilation). A reason for this is the
widespread availability and know-how resulting from the distribution of such a tool with C
and C++ languages (van Gurp et al., 2001). The C preprocessor is often the standard tool to
introduce variability to software, especially for its simplicity and flexibility. Despite the use of
proprocessors has been criticized in academia, as it usually introduces problems surrounding

38

3.2. HANDLING VARIABILITY

Table 3.1: Variability Implementation Mechanisms.

Variability Mechanisms

• Aggregation/Delegation • Aspects (AOP) • Conditional Compilation • Dynamic Class Loading

• Dynamic Link Libraries • Frames Reflection • Inheritance • Overloading

• Parameterization • Properties • Static Libraries

comprehensibility and correctness (Le et al., 2011), novel techniques have been proposed to cope
with such problems, and keep the use of preprocessors a cost-effective strategy to implement
variability (Feigenspan et al., 2013; Machado et al., 2014a).

Therefore, over the years, object-oriented development has become an alternative product line
implementation technology (Fazal-Amin et al., 2011), with a large set of variability mechanisms
available at the code level. Other technologies such as aspect-oriented software development
(Alves et al., 2008) also gained interest by the research community, as an alternative to macro
preprocessors.

Whereas these more recent variability technologies aim at reducing the problems identified
in the use of preprocessors, there are some inherent problems, as follows. Given that some of
the mechanisms are used both in ordinary algorithmic implementation, as well as for managing
variation points (Bosch and Capilla, 2013), it is sometimes rather difficult to establish a seamless
traceability relation between problem space (feature model) and solution space (source code),
especially if the SPL is barely documented. Some research initiatives, e.g., (Anquetil et al.,
2010; Cavalcanti et al., 2011b; Santos et al., 2012; Linsbauer et al., 2013; Tsuchiya et al.,
2013), however, have proposed solutions to produce reliable traceability relations at low levels
of precision and reasonable levels of recall, based on ideas from single system development
(Antoniol et al., 2002).

Variability mechanisms are architectural patterns, design patterns, idioms, or guidelines for
coding (Fritsch et al., 2002). There are three main indispensable characteristics a mechanism
must offer: implementation of the specified options, a technique to select the options for a

certain product configuration, and the binding time. This latter specifies when the variability
described by a specific feature is bound in the development proces. The binding time refers to
either the time at which a variation was assigned to a variation point, or the latest time during
the development when a variation can be bound to a variation point (Deelstra et al., 2009).

The binding time of variability restricts the use of a variability mechanism, that is, if the
variability is to be bound at run time, it is not possible to implement it with a mechanism which

39

Table 3.2: Typical Binding Times with respect to Implementation.

Binding Time When Variability is Resolved Example Mechanisms

Compile-time
The variability is resolved before the actual
program compilation or at compile time

Function overloading, precompiler (pre-
processor directives), template evaluation,
static aspect weaving

Link-time
The variability is resolved during module
or library linking DLLs, class loading

Runtime
The variability is resolved during program
execution

Virtual functions, inheritance & polymor-
phim, factory-based instance creation, dele-
gation, meta programming, data driven (ta-
bles, interpreters)

Post-runtime
The variability is resolved during program
updates or after program execution

Update utility which adds functionality to
existing modules

is bound at compile time. Krueger (2004) provides an extensive list of binding times. From
these, Table 3.2 presents typical binding times with respect to the implementation level, together
with a brief description and example variability mechanisms, based on the work of Gacek and
Anastasopoules (2001).

3.3 SPL adoption strategies

An orthogonal issue to the SPL development methods refers to the adoption strategy (Alves
et al., 2006; Bastos et al., 2011). Krueger (2001) termed three broad SPL adoption strategies:
proactive, reactive and extractive. In the proactive strategy, the organization analyzes, designs,
and implements a complete SPL to support the full scope of products needed on the foreseeable
horizon, that will pay-off at some point after enough applications within the SPL are generated
(Rashid et al., 2011). As opposed to this strategy, both the reactive and extractive strategies
capitalize on existing systems within the company. These can be enacted by the application
of program refactorings (Alves et al., 2006). In the former, the organization incrementally
grows their software product line when the demand arises for new products or new requirements
on existing products. All involved assets, i.e., feature models, source code, and so on, are
incrementally extended in reaction to new requirements. In the latter, the organization capitalizes
on existing custom software systems by extracting the common and varying source code into a
single production line.

In all strategies, variability management must be addressed in the domain: while focusing
on exploiting the commonality within the products, adequate support must be available for

40

3.4. CHAPTER SUMMARY

composing SPL core assets with product-specific artifacts in order to derive a particular SPL
instance (Alves et al., 2006).

A proactive strategy might be the most desirable one for any organization, due to its capability
of defining the variability early in the SDLC, thus enabling controlling the traceability on what
is likely to vary within the assets (Cavalcanti et al., 2011b). However, it may be less frequent in
practice than the other strategies, due to its incurred high upfront investment and risks (Alves
et al., 2006), particularly for small to medium-sized software development organizations with
projects under tight schedules (Bastos et al., 2011). In this strategy, although not every asset
should be implemented before starting to build products, it is necessary to design and plan for the
development of all assets that will be part of the product line, what demands a high investment.
In contrast, the inherently incremental nature of the reactive strategy offers a quicker and less
expensive transition into SPL engineering. Similar benefits are provided by the extractive
strategy, in which the high level of software reuse enables an organization to very quickly adopt
an SPL. These two strategies can be more suitable.

Nevertheless, these strategies are not necessarily mutually exclusive. It is possible to
bootstrap an SPL effort using the extractive approach, by applying program refactorings in
existing software products (Alves et al., 2006), and then move on to a reactive approach to
incrementally evolve the production line over time (Krueger, 2001).

3.4 Chapter summary

This Chapter introduced the general principles of SPL engineering. In a nutshell, we could state
that SPL engineering is the software version of an old manufacturing concept: to build a suite
of products from common parts assembled under a common design in a common production
facility.

While traditional software engineering practices are focused on developing and maintaining
single products, such a strategy might not be efficient in cases where groups of products are
related. SPL engineering exploits the commonalities among products to achieve economies of
scale, by creating core assets, and accommodates the differences among products by explicitly
identifying and planning for those variations in product behavior and qualities.

The special properties of software make SPL engineering a particularly high-payoff propo-
sition. The management of variation allows the organization to achieve economies of scope
and provides the capability of mass customization where every market is treated as a niche.
Management ensures that core asset developers create effective core assets and product builders

41

efficiently build products by using them.
However, despite the SPL promised benefits, guaranteeing the quality of the products in

an SPL deserves special attention. Testing, as an important quality assurance technique, is
especially chalenging in an SPL. Testing the differences in a cost-effective way can become
complex because in realistic product lines, variability abounds. The next Chapter elaborates on
the main concepts of testing in SPL engineering, in the light of existing knowledge. We discuss
the current state-of-the-art, pinpointing the still existing gaps to bridge.

42

4
Software Product Lines Testing

Testing plays an important role in the quality assurance process for SPL engineering. There are
many opportunities for economies of scope and scale in the testing activities, but techniques that
can take advantage of these opportunities are still needed.

This Chapter reports on the state of the art aspects of the SPL testing field. It is the result of
a systematic literature review carried out to identify SPL testing practices that have the potential
to achieve these economies, and to synthesize available evidence on the strategies for testing
SPL projects (Machado et al., 2014b).

The analysis of the reported strategies comprised two fundamental interests for SPL testing:
the selection of products for testing, and the actual test of products. In the former, the investiga-
tion addressed the generation of representative sets of products from domain models, in order to
sketch which techniques could be used and what their properties are. The latter addressed the
existing support for testing end-product functions, which takes advantage of commonality and
variability.

The review encompassed the analysis of two hundred seventy-six studies published from the
year 1998 up to the 1st semester of 2013. Several filters were used to focus the review on the
most relevant studies, and detailed analyses of the core set of studies was provided.

With the review, we could leverage a number of strategies that applied to support both the
selection of products, and the actual testing of products. However, the findings indicate that
the literature offers a large number of strategies to cope with such aspects. However, a lack of
reports on realistic industrial experiences might be observed, which limits the inferences that
can be drawn.

This Chapter details how the review was conducted, and presents the main results. It is
structured as follows. Section 4.1 introduces fundamentals concepts of SPL testing. Section 4.2
describes the research method used in the review. Section 4.3 presents the results of the review.

43

The main findings are discussed in Section 4.4, together with the threats to validity. Section 4.5
discusses related work and, finally, Section 4.6 concludes the Chapter.

4.1 Introduction

Guaranteeing that every feature in an SPL will work as expected, and ensuring that combinations
of features will work in each product is often problematic because of the high costs involved.
Exhaustive testing is seldom feasible in any development process. This is particularly infeasible
in SPL due to the variability in features, due to the many input variables.

A scoping review, carried out as background to the present review (Machado et al., 2012b),
revealed two independent but complementary interests an SPL testing strategy should handle, as
follows:

• Firstly, it is necessary to check the feature interaction coverage, i.e., when checking the
properties or configurations of an SPL, every feature combination has to be consistent
with the specification and must not violate the stated constraints.

• Secondly, it is necessary to check the set of correctness properties of each product. Given
that a built software artifact can be used by a range of products, an uncovered defect may
be propagated to the many products that include it.

The first interest considers testing generation as a systematic selection of a representative set
of product instances, comprising a subset of all possible configurations in an SPL. The main
idea is to reduce the testing space. Figure 4.1 illustrates the first interest. It shows that test cases
refer to product configurations, i.e., a test case is responsible for testing whether an instance of
the feature model (or whatever represents the variability in an SPL) is valid or not.

There are two main inputs to consider for this interest: a set of product requirements and
the quality of the variability model under test. The role of requirements is to establish what
functionalities a product instance should encompass. Regarding the quality of the variability
model, through the analysis of its consistency, we could ensure that the produced models are
complete and correct, in the sense that there are no conflicting restrictions between features, and
that all the important distinctions and differences in a domain are covered by the model.

The second interest focuses on performing testing on end-product functionalities. Such an
interest deals with the systematic reuse of test assets and results, as a means to reduce the overall
effort, and avoid retesting of already tested features, while being effective at revealing faults.
Test assets are designed to test the functionalities of features that will compose the products.

44

4.1. INTRODUCTION

Test Cases

Test Case :
Configuration for Prod-A

Products Requirements

SPL Variability Models (ready for testing)

...

Prod-A

REQ REQ

Prod-n

REQ REQ

...

Test Case :
Configuration for Prod-n

TC-2TC-1 TC-n

...
TC-3TC-1 TC-n

...

...

Analysis of SPL Variability Models

...

Figure 4.1: SPL Testing interest: selection of product instances to test.

Figure 4.2 illustrates how this interest works. It comprises both domain and application

engineering processes (Pohl et al., 2005). From a testing standpoint, the former defines the
variable test assets (test cases, test scenarios etc.), taking as input the variability defined for the
SPL. In the later, when a product variant is instantiated, the variable assets are bound, according
to the requirements expected for that particular product instance. Existing testing assets are also
bound, as it is encouraged the reuse of test assets between product instances.

In both interests, a particular problem is the number of test inputs to consider, which can
increase exponentially with the number of features that an SPL comprises (Perrouin et al.,

45

SPL Assets (Requirements, Design, etc)

REQ

......
REQ

SPL Variability Models

...

SPL Testing Assets

TC

TS

TC
TC

...

TC

Domain Engineering

Application Engineering

TC

Prod-n

REQ REQ

Prod-A

REQ REQ

TC TC TC

...

TC TC TC

...

...

Bound AssetsProduct Instances

Figure 4.2: SPL Testing interest: actual test of products.

2010). Therefore, designing and/or selecting an effective1 set of test cases, considering the likely
amount of test inputs, play an important role in SPL testing.

Considering the importance of knowing which test case design and selection techniques

1By effective we mean the defect revealing ability of a test suite (Naik and Tripathy, 2008).

46

4.2. THE REVIEW METHOD

the current SPL practice adopts, a detailed insight from the point of view of the interests
aforementioned would be valuable. To this end, we conducted a systematic literature review,
aiming at identifying, assessing, and interpreting available research evidence in the SPL testing
research field, for the purpose of clear categorization. We investigated how studies address the
generation of representative sets of products, from domain models, in order to sketch which
techniques could be used and what their properties are. Yet, we investigated the existing support
for testing end-product functions by taking advantage of the specific features of a product line,
i.e., commonality and variability. We intend to collect evidence about current research that
suggests implications for practice, and to identify open problems and areas that need attention.

4.2 The review method

A Systematic Literature Review (SLR) is a rigorous, systematic, and transparent method to
identify, appraise, and synthesize all available research relevant to a particular research question,
or topic area, or phenomenon of interest, which may represent the best available evidence
on a subject (Cruzes and Dybä, 2011). A SLR may serve as central link between evidence
and decision making. They provide the decision-maker with best available evidence. This
evidence, in combination with field expertise and the customer-related values, characteristics,
and circumstances, are necessary ingredients for making good decisions.

The importance of SLR for software engineering has been addressed by a reasonable amount
of studies, as deeply discussed in (Cruzes and Dybä, 2011; Kitchenham et al., 2009; Dybå and
Dingsøyr, 2008b; Brereton et al., 2007). Kitchenham and Charters (2007) describe a set of
reasons for undertaking a SLR, as follows:

• to review the existing evidence concerning a treatment or technology;

• to identify gaps in the existing research, which may indicate areas for further investigation;

• to provide a context/framework in order to properly position new research activities.

The review was carried out by following Kitchenham’s guidelines for performing SLR in
software engineering (Kitchenham and Charters, 2007), which comprises the following steps:
development of a review protocol, conducting the review, analyzing the results, reporting the

results and discussing the findings. The protocol specifies all steps to take in the review, and
increases its rigour, transparency, and repeatability, while establishing a means to reduce risk of
bias. The protocol includes: (i) the strategy employed to define the research questions, based

47

upon an explicit research objective; (ii) the systematic searching methods that reduce the risk of
selective sampling of studies, which may support preconceived conclusions, thus reducing risk
of bias, and (iii) the method employed to evaluate available information.

The methodology employed in the SLR included formulation of research questions to attain
the objective, as next detailed in Section 4.2.1; identification of sources from where research
papers were to be extracted, described in Section 4.2.2; and also the search criteria and principles
for selecting and assessing the relevant studies, discussed in Section 4.2.3.

4.2.1 Research questions

The Population, Intervention, Comparison, Outcome and Context (PICOC) structure was used
to define the research questions, as defined by Petticrew and Roberts (2006). This structure
describes the five elements to consider when defining a searchable question. Articulating a
research question in terms of its elements facilitates searching for a precise answer.

This review was not intended to sketch any comparison of interventions, therefore the
element comparison is not applicable. Table 4.1 shows the PICOC structure.

Table 4.1: PICOC structure

Element Description

Population Software product line testing research.

Intervention Approaches, i.e., methods, strategies, techniques, and so on, that support testing
in SPL engineering.

Comparison n/a.

Outcome The effectiveness of the testing approaches.

Context Within the domain of SPL engineering, with a focus on testing approaches.

Considering that the two SPL testing interests discussed in Section 4.1, hold different
overarching goals, studies from both categories should be analyzed in a proper manner. Hence,
our SLR aims to answer the following research questions:

• RQ1. What SPL testing strategies are available to handle the selection of products to test?

• RQ2. What SPL testing strategies are available to deal with the test of end-product
functionalities?

• RQ3. What is the strength of the evidence in support of these proposed SPL testing
strategies?

48

4.2. THE REVIEW METHOD

• RQ4. What are the implications of these findings for the software industry and the
research community?

We defined the RQ1 to get an in-depth view on how existing SPL testing techniques cope
with the selection of product instances for testing (first SPL testing interest). It considers the
configuration of features as the main input for the design of test cases.

In addition, RQ2 aimed at carrying out tests of end-product functions, as we intended to
gather the SPL strategies used to handle the actual testing of SPL assets (second SPL testing
interest). The RQ2 considers core assets as the input for designing the test cases. Recall that
core assets are those assets that form the basis for the SPL. They are produced in Domain
Engineering phase. They often include, but are not limited to, the architecture, domain models,
requirements statements, reusable software components etc.

Within the set of strategies identified in RQ1 and RQ2, we observed whether tool support
was available to practitioners.

Furthermore, RQ3 helps researchers assess the quality of existing research. The results of
this question are critical for researchers to identify new topics for empirical studies, and for
practitioners to assess the maturity of a proposed strategy. RQ4 help us outline directions for
future research and identify areas that need work in order to make strategies more applicable in
industrial practice.

4.2.2 Identification of relevant literature

The process of gathering and selecting relevant studies involved three phases, as Figure 4.3
shows. Our initial set of candidate papers was provided by previously published literature
reviews on SPL testing (Neto et al., 2011a; Engström and Runeson, 2011; Lamancha et al.,
2009). Therefore, the first phase consisted of collecting the primary studies listed in each of
these literature reviews, which include research papers published up to the year 2009. For the
second phase, we performed a search for studies published from the year 2009 up to the year
2013. The third phase consisted of the screening process to exclude studies that are not relevant
to answer the research questions.

Along this Section, we expand on each gathering phase, and detail the study selection
procedure.

49

Filtered studies
(125)

Included Studies
(49)

Inclusion/Exclusion
Criteria

(39)

2.3 Manual Search
(7)

Duplicated studies
(35)

Out of Scope
[Title + Abstract]

(279)

Literature Reviews
(6)

ACM DL
(84)

IEEE Xplore
(133)

SpringerLink
(74)

ScienceDirect
(116)

Retrieved
(407)

Automated
Search

(87)

2.1

2.2

3.2

3.3

3.1

Full-text reading/
Critical appraisal

(76)

Updating List
(101)

Source of Studies

Discarding Rationale

Process Step

LEGEND

Number of discarded
studies

(x)

Stage

Snowballing
(7)

2.4

Potentially
Relevant: merge

(165)

Phase 2

Literature Reviews
(64)

Phase 1

Duplicated study
(1)

LR-1
(45)

LR-2
(64)

LR-3
(23)

1.1 Retrieved
(132)

Duplicated studies
(49)

Out of Scope
[Title + Abstract]

(19)

Phase 3

2.5
1.2

Figure 4.3: Study selection procedure.

4.2.2.1 Phase 1: analysis of existing reviews

In earlier research, we reported on a systematic mapping study of SPL testing (Neto et al.,
2011a). By analyzing the literature published up to the year 2009, we identified the major
existing practices in the field, setting up clusters of studies that could support a fuller review.
The systematic mapping study investigated 45 unique publications. The findings were in
accordance with an analogous study (Engström and Runeson, 2011), which also systematically
mapped out the existing literature on SPL testing, in order to identify useful approaches and
needs for future research. This latter analyzed a set of 64 unique publications.

In both reviews, the overall focus was to enlighten researchers and practitioners with a broad
picture of research and practice in the field of SPL testing, without providing in-depth analysis
of any nature whatsoever.

A third study was performed with similar goals (Lamancha et al., 2009). In a systematic
literature review, a group of reseachers analyzed 23 unique publications. Unlike the two

50

4.2. THE REVIEW METHOD

previously mentioned mapping studies, published as journal papers, this third review was
published as a conference paper, which, due to space constraints, might have limited the
treatment of some required details, as a reader could expect.

These three studies complement each other in terms of research questions investigated. All
of them have in common their overall goal, namely to provide an overview of the SPL testing
field, pointing out achievements, opportunities, problems and available resources.

Thus, the initial set of primary studies for this SLR was gathered from these literature
reviews, respectively LR-1 (Neto et al., 2011a), LR-2 (Engström and Runeson, 2011), and
LR-3 (Lamancha et al., 2009). Given that they followed systematic processes of gathering,
selecting, and assessing the studies (Kitchenham and Charters, 2007; Petersen et al., 2008), we
acknowledge that they are a representative sampling of all primary studies in the SPL testing
field, for studies published up to early 2009.

Within the reviews, we identified 132 potentially relevant papers, illustrated as stage (1.1)
in Figure 4.3. We read the titles and abstracts of the publications, to identify and exclude those
which bear no relation to our investigation, i.e., studies that are not suitable to answer the RQs.
This stage of screening was carried out by two independent reviewers who screened and then
met to compare their results. Any disagreement or uncertainty was discussed and arbitrated by a
third independent reviewer.

Besides, as some studies were included in more than one literature review, we removed the
overlap. In the end of such a screening, we had a set of 64 studies, illustrated as stage (1.2).

4.2.2.2 Phase 2 - gathering recent publications

The second phase of the search process consisted of an update on the list of primary studies. We
analyzed the literature published between 2009 and the first semester in 2013.

We performed an automated search in the following search engines and indexing systems:
ScienceDirect, ACM Digital Library, IEEE Xplore, and SpringerLink. These are very useful
online databases, since they index IEEE, ACM, Springer and Elsevier publications which,
together, provide many of the leading publications in the Software Engineering field. Therefore,
they are likely to include major SPL testing-related venues. Here we use the word venue as a
generic name for journals or conferences (including workshops).

From the stated research questions, and known terms of the SPL testing domain, we identified
the keywords to use in the search process. We applied variants of the terms “software product

lines”, “software product family 2”, “software testing” and “testing techniques”, to compose

2Software product family is a commonly used synonym for SPL (Clements and Northrop, 2001).

51

the search query. This was coded to fit the syntax requirements and capability of the search
engines of each data source used. Table 4.2 lists the search strings applied in each search engine.
The Table also shows the number of results retrieved from each.

Table 4.2: Detailed search strings applied in the automated search engines.

Engine URL Search string
Results*

Raw Refined

IEEE Xplore http://ieeexplore.ieee.org (((software product line) OR software prod-
uct family) AND test)

158 133

Springer http://www.springerlink.com ’software product line’ AND ’(test, OR test-
ing)’ within 2009 - 2013

77 74

ScienceDirect http://www.sciencedirect.com

pub-date >2008 ((“software product line”
OR “software product lines” OR “software
product family”) AND (“testing” OR “test”))
AND LIMIT-TO(topics, “software, prod-
uct line”) AND LIMIT-TO(yearnav,
“2013,2012,2011,2010,2009”)[All
Sources(Computer Science)]

129 116

ACM DL http://dl.acm.org

(“software product lines test”) OR (“software
product line test”) OR (“software product
line testing”) OR (“software product lines
testing”) OR (“software product family test-
ing”) OR (“software product family test”)

92 84

(*) Raw results means the whole set of entries listed by the search engines. Inasmuch as not only research
papers are retrieved, but also cover letters, foreword, preface, guest introductions etc., hence, we filtered out
those entries, and list the total number of research papers retrieved in the column refined results.

From this task, we obtained a set of 407 publications, depicted as stage (2.1) in Figure 4.3.
As we considered studies retrieved from different search engines, 35 articles were excluded
because they were duplicates, i.e., retrieved in more than one search engine. This search also
retrieved related work, such as the literature reviews analyzed, and similar studies. We discarded
these 6 publications, since they have been considered in other respects in this study, such as
either source of studies or related work.

Next task included reading the title and abstract of each remaining paper, similarly as in
the previous phase. In this sense, a set of 279 articles were found to be irrelevant, as they did
not consider testing from an SPL standpoint, but instead addressed issues from single-system
software development. In the end, we had a pool of 87 publications from the automated search,
depicted as stage (2.2) in Figure 4.3.

52

4.2. THE REVIEW METHOD

Upon completion of the automated search, we carried out a manual search aiming at increas-
ing coverage and quality (Zhang et al., 2011; Kitchenham et al., 2010), considering the same
time span as in the automated search. Some important journals and conference proceedings were
individually searched. Table A.1 in Appendix A lists the venues, and their usual abbreviations.
They are clearly representative of the Software Engineering field. Such a claim is grounded
in observations in related work, and also in discussions with colleagues. The task retrieved an
additional 7 publications, as shown as stage (2.3) in Figure 4.3.

In addition, reference lists of all identified publications were manually scanned, in order to
identify missing relevant papers. This is the process called snowballing (Webster and Watson,
2002). This task resulted in an additional 7 articles, as Figure 4.3 illustrates in stage (2.4). With
such a small number of additional papers, we are convinced that we have a representative sam-
pling and, furthermore, that the pool of the papers we have are relevant from a SPL engineering
perspective. At the end of Phase 2, we revealed a universe of 101 new publications.

4.2.2.3 Primary study selection strategy

By merging the results from Phases 1 and 2, the list of potentially relevant studies was then
composed of 165 publications. Stage (3.1) in Figure 4.3 shows such an amount. We identified
one duplicate, a study listed in LR-1 that was also retrieved in the automated search. This was
due to the year 2009 was considered in both LR-1 and in the automated search phase.

We established a set of inclusion and exclusion criteria to assess each potential primary
study. They were applied to the titles and abstracts of identified articles.

The criteria were specified based on the analysis scope of found papers to guarantee that
only works really related to the context of testing approaches3 for SPL should be selected as the
primary studies of this SLR.

This task aims to ensure that relevant studies are included and no study is excluded without
thorough evaluation. At the outset, studies are only excluded if they clearly meet one or more of
the exclusion criteria.

To be included in the review, studies had to present an approach to cope with SPL testing and
at least one empirical evaluation to demonstrate the approach’s feasibility. It is worth mentioning
that only studies produced in English were included. Table 4.3 presents the exclusion criteria.

At the end of the screening process, we ended up with a pool of 125 studies, to be subject of
full-text reading, depicted as stage (3.2) in Figure 4.3.

3We herein generalize the term approaches to include not only actual approaches but also strategies, methods,
techniques, and processes, given that authors sometimes interchangeably use those terms to define their proposal.

53

Table 4.3: Exclusion criteria and list of excluded studies.

Exclusion Criteria Rationale

Related Work Secondary studies were not considered in this review. Such a kind of study were
analyzed as related work.

Abstracts We excluded prefaces, editorials, and summaries of tutorials, keynotes, panels and
poster sessions.

Doctoral Symposium

Studies published in doctoral symposia were also discarded. To the best of our knowl-
edge, this kind of study does not bring information other than a status report on the
doctoral thesis work, and usually make reference to more complete studies, published
elsewhere.

Extended Studies
When several duplicated articles of a study exist in different versions that appear as
books, journal papers, conference and workshop papers, we include only the most
complete version of the study and exclude the others.

Position Papers

Position or philosophical papers, i.e., papers only presenting an anecdotal evidence
of the SPL testing field, were excluded from the literature review, but some of the
position papers showing future directions are mentioned in the conclusion and future
work section.

Comparative Papers Comparative papers, with no additional contribution, but rather only analyzing existing
literature, that eventually were included in our primary studies list.

Out of scope
By analyzing the introduction section of a study, it is possible to figure out what the
topic under investigation is about. Based on this statement we discarded studies which
did not deal directly with testing, but instead that consider SPL in a general viewpoint.

4.2.3 Data extraction

After using the criteria to select relevant papers, we undertook a comprehensive analysis of the
125 filtered studies, to collect data necessary to answer the research questions, and to measure
their quality.

The data were extracted and stored in a spreadsheet after reading each paper using a data
extraction form. The form included the following attributes: title, authors, corresponding
email address, year of publication, source of publication, publication type, notes, and an
additional set of attributes, as listed below:

• Research result. We analyzed the outcomes of each primary study, and classified their
main findings according to the types of software engineering research results (Shaw,
2002): procedure or technique, qualitative or descriptive model, empirical model, analytic

model, notation or tool, specific solution, answer or judgment, or report.

• Evidence gathering method. We evaluated the evidence level (Lev1-6) reported in the

54

4.2. THE REVIEW METHOD

study. Such assessment might lead researchers to identify new topics for empirical studies,
and for practitioners to assess the maturity of a particular approach. Kitchenham et
al. classified six levels of study design, based on the evidence hierarchy suggested from
medical research (Kitchenham and Charters, 2007). Later on, Alves et al. (2010) described
a tailored classification that could be fully applicable to the interest of this review. The
classification includes the following hierarchy (from weakest to strongest):

1. No evidence.

2. Evidence obtained from demonstration or working out toy examples.

3. Evidence obtained from expert opinions or observations.

4. Evidence obtained from academic studies.

5. Evidence obtained from industrial studies.

6. Evidence obtained from industrial practice.

• Industry. In case a study was evaluated in industry settings, matching evidence levels 5
and/or 6 above, this attribute was used to identify the application domain in which authors
carried out the evaluation.

• SPL testing interest. As a means to analyze techniques matching either one of the SPL
testing interests, earlier discussed in this article, we decide to verify which interest is the
main concern in each analyzed primary study.

As well as for the initial screening stage, the procedure of reading and completing the
extraction form for each paper was again conducted by two independent reviewers, and any
discrepancies were resolved by calling upon a third reviewer.

4.2.4 Quality assessment

We also quality appraised each study remained for data extraction, using a set of quality criteria.
We extracted the criteria mainly from the questionnaire for quality assessment proposed by Dybå
and Dingsøyr (2008a), which is based on principles of good practice for conducting empirical
research in Software Engineering (Kitchenham and Charters, 2007), and also on the Critical
Appraisal Skills Programme (CASP)4.

4http://www.casp-uk.net/

55

The questionnaire used to critically appraise the quality of the selected studies contained
11 closed-questions, as listed in Table 4.4. Taken together, the criteria provided a measure of
the extent to which we could be confident that findings of a particular study could provide the
review with a valuable contribution. The criteria covered the four main issues pertaining to
quality that need to be considered when appraising the studies identified in the review (Dybå
and Dingsøyr, 2008a):

• Reporting. Reporting of the study’s rationale, aims, and context.

• Rigour. Has a thorough and appropriate approach been applied to key research methods
in the study?

• Credibility. Are the findings well-presented and meaningful?

• Relevance. How useful are the findings to the software industry and the research commu-
nity?

From the criteria obtained from Dybå and Dingsøyr (2008a), we only made a few changes
to customize the criteria for relevance assessment, as a means to evaluate the relevance of the
study for the software industry at large and the research community.

Each of the 11 criteria was answered with either “yes” (1) or “no” (0). Then, a quality
assessment score was given to a study by summing up the scores for all the questions for a study.
The resulting total quality score for each study ranged from 0 (very poor) to 11 (very good).

We used quality assessment criteria for both synthesis purposes and filtering papers. For the
second matter, the first criterion was used as the minimum quality threshold of the review to
exclude non-empirical research papers. Hence, 76 papers were excluded as part of this screening
process.

Upon completion of the quality evaluation assessment, the set of selected primary studies
was composed of 49 studies, illustrated as stage (3.3) in Figure 4.3. See Table A.3 in Appendix
A for a list of selected primary studies.

Results of the quality evaluation are presented in Table A.2 in Appendix A. Again, as QC1
was used as the basis for including or excluding a study, the table shows the assessment for the
set of included papers.

4.3 Results of the systematic review

We used the extracted data to answer our research questions. In this section, we initially give an
overview of the selected studies with respect to their publication venues. Then, we answer each

56

4.3. RESULTS OF THE SYSTEMATIC REVIEW

Table 4.4: Quality assessment questions.

No. Question Issue

QC1. Is the paper based on research and it is not merely a “lessons learned” report based on
expert opinion?

Reporting

QC2. Is there a clear statement of the aims of the research? Reporting

QC3. Is there an adequate description of the context in which the research was carried out? Reporting

QC4. Was the research design appropriate to address the aims of the research? Rigour

QC5. Was there a control group with which to compare treatments? Rigour

QC6. Was the data collected in a way that addressed the research issue? Rigour

QC7. Was the data analysis sufficiently rigorous? Rigour

QC8. Has the relationship between researcher and participants been considered to an adequate
degree?

Credibility

QC9. Is there a clear statement of findings? Credibility

QC10. Is the study value for research or practice? Relevance

QC11. Are there any practitioner-based guidelines? Relevance

research question, based on the extracted information.

4.3.1 Characteristics of the studies

Table 4.5 shows the temporal distribution of the selected 49 primary studies, encompassing
the years 2003 through 2013. The table also shows the distribution of the studies based on
their publication channels, along with the number of studies from each source: workshops,
conferences, journals, and the grey literature5. We observe that only 3 out of 49 studies were
found in journals, whereas most was published in conferences.

Such a distribution give us the initial impression that most relevant studies in the field were
only found in recent publications, i.e., as of the year 2010. Regardless the number of studies
removed from our final list for matching any of the exclusion criteria, we should recall that we
only included studies which presented any kind of empirical evaluation. Thus, we may notice
a trend curve in the data, showing an increasing attention on the use of scientifically rigorous
evaluation methods as a means to assessing and making explicit the value of the proposed
approaches for the SPL testing field.

5Grey literature comprises technical reports and book chapters.

57

Table 4.5: Summary of selected primary studies by publication type and publication year.

Venue 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Total

Workshop 1 - 1 3 2 - - 1 - - 3 11

Conference - 1 1 1 - 2 1 8 7 4 6 31

Journal - - - - - 1 - 1 - 1 - 3

Grey Literature - - - 3 - 1 - - - - - 4

Total 1 1 2 7 2 4 1 10 7 5 9 49

Table 4.6 lists the venues of all selected studies and the publication count. A list comprising
all manually searched venues can be found at Appendix A.1.

The 49 selected primary studies were gathered from 20 conferences, 6 workshops, and 3
journals. The remaining 4 studies were published as book chapters, 3, and one technical report.
As expected, the greater amount of studies in a single vehicle was found in the SPLC6 (10
studies), considered the most representative conference for the SPL engineering area, followed
by the SPLiT7 (4 studies), a workshop dedicated to the SPL testing topic, co-located with the
SPLC. The workshop was held yearly for five years, between 2004 and 2008.

During the data extraction process, we collected the SPL testing interest each selected
primary study addressed. As the both interests are not mutually exclusive, i.e., a comprehensive
process for testing SPL might encompass both, in this analysis we could group the studies
according to their central proposal. The histogram in Figure 4.4 shows the number of studies
addressing each interest by publication year, where Interest 1 means selection of product

instances to test, and the Interest 2 means the actual test of products, as earlier discussed in this
article. Table 4.7 shows what studies addressed what SPL testing interest.

This histogram shows a recent growing interest in the proposals towards overcoming the
first SPL testing interest. Despite the observed trend, we can state that both interests holds the
same importance. Regarding the second one, much has been proposed along the years, so as to
enable a detailed analysis of existing practices and describe the inherent challenges.

Besides, despite of the importance of both interests working together in a same technique,
only in the year 2013 we found studies dealing with both. Although this is a rather small number
of studies, it might be some indication that the research community has realized the benefits of
proposing approaches which encompass both interests.

6SPLC stands for International Software Product Line Conference.
7SPLiT stands for International Workshop on Software Product Line Testing.

58

4.3. RESULTS OF THE SYSTEMATIC REVIEW

Table 4.6: Study distribution per publication sources.

Source Count

Conferences
Intl. Software Product Line Conference (SPLC) 10
Intl. Conference on Model Driven Engineering Languages & Systems (MODELS) 3
Intl. Conference on Software Reuse (ICSR) 2
Intl. Symposium on Software Reliability Engineering (ISSRE) 2
Brazilian Symposium on Software Components, Architectures and Reuse (SBCARS) 1
European Software Engineering Conference / Foundations of Software Engineering (ESEC/FSE) 1
Intl. Conference on Modularity (AOSD) 1
Intl. Conference on Advanced Information Systems Engineering (CAiSE) 1
Intl. Conference on Evaluation of Novel Approaches to Software Engineering (ENASE) 1
Intl. Conference on Fundamental Approaches to Software Engineering (FASE) 1
Intl. Conference on Engineering of Complex Computer Systems (ICECCS) 1
Intl. Conference on Enterprise Information Systems (ICEIS) 1
Intl. Conference on Software Testing (ICST) 1
Intl. Conference on Testing Software and Systems (ICTSS) 1
Intl. Conference on Information Technology - New Generations (ITNG) 1
Intl. Conference on Software Engineering and Formal Methods (SEFM) 1
Intl. Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM) 1
Intl. Conference on Tests and Proofs (TAP) 1
Genetic and Evolutionary Computation Conference (GECCO) 1
Haifa Verification Conference (HVC) 1

Workshops
Intl. Workshop on Software Product Line Testing (SPLiT) 4
Workshop on Advances in Model Based Testing (A-MOST) 1
Concurrency, Specification, and Programming workshop (CS&P) 1
Intl. Workshop on Combinatorial Testing (IWCT) 1
Intl. Workshop on Product Line Approaches in Software Engineering (PLEASE) 1
Intl. Workshop on Variability & Composition (VariComp) 1

Journals
IEEE Transactions on Software Engineering 1
Journal of Software (JSW) 1
Software Quality Journal (SQJ) 1

Book Chapters and Technical Reports 4

Total 49

4.3.2 Strategies to handle the selection of products to test (RQ1)

Variability in features may lead to diverse products composition possibilities (Dordowsky et al.,
2011; Tischer et al., 2011). Although it is necessary to test and analyze all possible feature

59

Table 4.7: Selected studies vs. SPL testing interest addressed.

Interest Studies Count

1 [P05], [P15], [P18], [P19], [P20], [P21], [P23], [P24], [P25], [P26], [P28], [P29], [P30],
[P31], [P33], [P36], [P37], [P38], [P40], [P43], [P44], [P47]

22

2 [P01], [P02], [P03], [P04], [P06], [P07], [P08], [P09], [P10], [P11], [P12], [P13], [P14],
[P16], [P17], [P22], [P27], [P32], [P34], [P35], [P39], [P41], [P45], [P48], [P49]

25

Both [P42], [P46] 2

1	
 1	
 1	

6	
 6	

3	

4	

1	
 1	

2	

6	

1	

3	

1	

4	

1	

2	

3	

2	

0	

2	

4	

6	

8	

2003	
 2004	
 2005	
 2006	
 2007	
 2008	
 2009	
 2010	
 2011	
 2012	
 2013	

Distribution of studies by SPL testing interest	

Interest 1	

Interest 2	

Both interests	

Figure 4.4: Distribution of studies by SPL testing interest and publication year.

combinations, this is unrealistic for variability models of a reasonable size. In this sense, the
core problem of the first SPL testing interest is to reduce the set of possibilities to a reasonable
and representative set of product configurations. While keeping a small sample is critical to
limit the effort necessary for testing each selected configuration (Hervieu et al., 2011), this is
particularly a combinatorial problem, that should be handled accordingly.

Optimization techniques may be used to prune redundant configurations that need not be
explored. From the set of 24 selected studies that cope with this SPL testing interest, we found
combinatorial interaction testing (CIT) to be the de-facto standard to handle test selection in
such an interest. CIT enables the selection of a small subset of products where the interaction
faults are most likely to occur. This is a cost-effective strategy for SPL engineering, aimed at
reducing the test set by selecting the possible combinations of features that will be present in
most products. That is, the representative subset of sample products under test. Within the
selected studies, this selection is usually based on combinatorial criteria on feature models,
coverage criteria on variable test models, and coverage criteria on feature interactions.

A prevalence of formal approches could be noted in those selected studies. For instance,

60

4.3. RESULTS OF THE SYSTEMATIC REVIEW

t-wise feature coverage has been applied in conjunction with SAT solvers, by dividing the set of
clauses, transformed from a feature diagram, into solvable subsets. The idea is to automatically
generate the test products from a feature diagram that satisfy the t-wise SPL test adequacy
criteria. Alloy can be applied to generate the test cases, and works by capturing all dependencies
between features in a feature diagram as well as the interactions that should be covered by the
test cases. Some algorithms to translate feature diagrams into Alloy specifications have been
proposed, e.g., FeatureDiagram2Alloy - P31 -, and Kesit - P36. Alloy specifications are used to
examine the semantics of features and their interactions, as a means to cope with the problem of
scale.

A number of studies - P05, P18, P19, P20, P23, P24, P28, P29, P30, P38, P043, P044
(50% out of the total from the first SPL testing interest group) - applied pairwise testing, a
specialized notion of t-wise coverage, as the main heuristic both for designing and selecting test
cases. Pairwise has proven to be most effective when solving problems of large complexity. The
underlying assumption is that, by describing the input model as a combination of two features
each other, obeying the constraints between them, it might be easier to find inconsistencies,
rather than trying to combine all features at once. Establishing pairwise as a test case reduction
heuristic may lead to a practical means of sampling all the relevant combination in features
models. As a test minimization technique, it aims at identifying and eliminating redundant
test cases from test suites in order to reduce the total number of test cases to execute, thereby
improving the efficiency of testing.

Pairwise feature interactions serve as an input for test generation based on constraint

programming, i.e., a paradigm which enables the design of a tailor-made pairwise constraint.
This paradigm is well suited for optimization problems such as those related to the minimization
of the size of test sets. It maps a feature model into a finite domain constraint model.

All selected studies provide either a process or an algorithmic implementation, aiming to
improve test coverage while reducing the overall test effort. However, the observed heterogeneity
prevents us from sketching any kind of categorization.

Furthermore, we analyzed the tool support in the proposed approaches. In 17 studies, which
represents 71% out of the total amount of selected studies handling the first SPL testing interest,
we found a descriptive information about automated tool support. Among them, there are 8
studies - P23, P24, P30, P33, P36, P37, P42, P44 - which provide details about the proposed tool
support, in terms of their goals and implemented requirements. They are aimed at analyzing
feature models and automatically generate a set of test configurations that cover interactions
(usually pairwise) between features in a feature model. Furthermore, the study P42 handles test
case selection. In all of these studies it is possible to check the algorithm that implement the

61

approach.

While this was expected to be a relevant aspect to enhance transparency in their proposals,
an important downside might be observed, that is, from such a set, only 2 studies make reader
aware of how the tool could be obtained. The main reason is that, the proposed algorithms and
tools are often developed solely to demonstrate a particular nuance of a methodology, mostly
within the context of a research group.

Furthermore, in the remaining studies, authors from P05, P20, P25, P28, P29, P31, and
P38 claimed that their approaches should be implemented in a tool support; however, they only
described the algorithms associated to the proposal. No other information could be found. In
one study - P18 -, carried out as an industrial case study, authors stated that an in-house tool
was used to support their proposal. For this reason, they could not provide readers with further
details. In P21, authors stated that their proposal works in conjunction with a tool that was
developed beforehand, and discussed in a preceding publication.

4.3.3 Strategies to handle the test of end-product functionalities (RQ2)

Whereby research on configuration-aware software testing for SPL focuses on the combinatorial
problems during interaction testing by detecting valid and invalid combinations of configuration
parameters, the SPL testing interest covered in the RQ2 reveals testing practices and problems
for the actual testing of functionalities.

The leveraged techniques work either by performing testing at the domain engineering, or
testing the concrete assets at application engineering. Domain engineering is by definition the
SPL process where commonality and variability analysis take place, leading to the definition of
reusable test assets, i.e., by representing the points in which assets will accommodate different
properties, that will be further exploited during application engineering.

As software reuse plays a fundamental role in SPL engineering, we analyzed the selected
primary studies in the light of a set of characteristics a technique should cover. Table 4.8 presents
the characteristics, and Table 4.9 sketches a relationship between the selected studies and the
addressed characteristics.

Regarding the characteristic variability, our interest is to understand which, and how, the
approaches define test cases (TC) and test scenarios (TS) by expressing variability from domain
models in such artifacts. We hypothesize that, for each feature, there should be test cases present
in the test suite to validate whether the feature has been correctly implemented. We identified 12

out of 27 studies (44%) proposing strategies that use the variability models to define reusable
test assets.

62

4.3. RESULTS OF THE SYSTEMATIC REVIEW

Table 4.8: Leveraged SPL testing characteristics

Characteristic Rationale

Variability SPL test assets are explicitly designed and modeled making their variation points explicit.

Test reuse Test assets from domain engineering may be systematically reused in application engineering,
as assets from a product instance may serve as input for a next instance.

Automation Employing an automated strategy for generating SPL test assets leads to significant effort
reduction.

SPL process Tests can be performed in domain engineering, application engineering, or both.

In the following characteristic, asset reuse, the focus was to understand whether the study
explicitly provided a technique to reuse test cases (TC), test scenarios (TS), test results (TR),
and test data (TD), either between products, or from a core asset base. This was found to be the
most common characteristic within the selected studies. The amount of 23 out of 27 studies
(85%) made any contribution to this group of characteristics, with a larger amount dedicated to
establish strategies to handle TC and TS reuse.

There is an initiative to improve test asset reuse by focusing on the differences between
product instances, in a so-called delta-oriented testing technique, based upon regression testing
principles and delta modeling concepts. The idea behind the technique is that an SPL can be
represented by a core module and a set of delta modules. While the core modules will provide an
implementation of a valid product, the delta modules specify changes to be applied to the core
module to implement further products, by adding, modifying and removing code (Schaefer et al.,
2010). In this effect, test models for a new product instance will be generated by considering the
deltas between this and the preceding product instances. That is, testing will focus on the deltas,
what enables an increased reuse of test assets and test results between products. The tecnhique
was investigated in both P41 and P48.

Next, we analyzed how the studies addressed the automated generation of test cases (TC), test
case selection (TCS), and test inputs (TI). A small number of studies provided any description
on how they could automate such important tasks so as to make SPL testing a feasible practical
approach. Only 5 out of 27 studies (19%) explicitly provide tool support to handle the listed
characteristics, as summarized in Table 4.9. They are: P01, P11, P27, P42, P49. In all of
them, the studies only state they developed a tool, but they do not make their tool available.
Another 5 studies - P03, P12, P14, P17, P22 - point out the need of tool support to handle those
characteristics. However, instead of proposing new tools, they use already established ones.

In another 7 studies (26%) - P06, P08, P32, P35, P39, P41, P45 - authors state their proposed

63

Table 4.9: Relationship between selected studies and characteristics

Variability Asset reuse Automated gen. Process
Study

TC TS TC TS TR TD TC TCS TI DE AE Both

P01 · · � · · · � · · · · �

P02 � · � · · · · · · � · ·

P03 	 � · � · · 	 · · · · �

P04 � · � · · · · · · · · �

P06 · · � · · · · · · · � ·

P07 � · � · · · · · · · · �

P08 · · · · � · · · · · � ·

P09 · � · · · · · · · · · �

P10 · · � · · · · · · � · ·

P11 · · � · · · � · � · � ·

P12 · · � · · · 	 · · · � ·

P13 · � · � · · · · · � · ·

P14 · � · � · · 	 	 · � · ·

P16 · · · � · · · · · � · ·

P17 · � 	 � 	 · 	 · · · · �

P22 � · · · · · 	 · · � · ·

P27 · � · � · · · · � � · ·

P32 � · · · · · · · · � · ·

P34 � · � · 	 · · · · · · �

P35 · · · · � � · · · · · �

P39 · · � · · · · · · · � ·

P41 · · � · � · · · · · � ·

P42 · · · · · · · � · � · ·

P45 · · · · � � · · · · � ·

P46 · · · · � � · · � � · ·

P48 · · � · � · · · · · � ·

P49 · · � · · · · � · · � ·

Legend: [�] Characteristic clearly addressed by the study, [] The study encourages
the use of such characteristic, but do not provide any implementation (e.g., it states an
external tool is used, but no detail is provided), [·] Characteristic not mentioned in the
study, [TC] Test case, [TI] Test input, [TD] Test data, [TCS] Test case selection, [TR]
Test result, [DE] Domain Engineering, [AE] Application Engineering.

64

4.3. RESULTS OF THE SYSTEMATIC REVIEW

approaches are supported by automated tools. However, they do not provide readers with detailed
information about the tools, neither make clear whether the tool was built for the particular
purpose of the investigation.

The last characteristic observed in which SPL process the approaches fit, domain engineering,
application engineering, or both. Testing the common aspects early in domain engineering is
essential, since an undetected error in the “framework” assets can be spread to all instances
depending on those assets. However, as it is unfeasible to test all possible input values for the
domain assets, since different variants might depend on specific applications, testing must also
be performed in application engineering. Besides testing input data not covered yet in domain
engineering, even the common assets previously tested might not work properly when bound in
a specific product instance. Thus, some of domain assets should be retested again in application
engineering, considering the particular behaviour of a product instance. In this effect, we found
10 approaches working at domain engineering, while 9 approaches handle testing at application

engineering. Finally, we found 8 approaches that can be applied in both SPL processes.

4.3.4 Strength of evidence in support of available strategies (RQ3)

According to the evidence evaluation scheme described in Section 4.2.3, Table 4.10 presents
detailed results on how much evidence is available to adopt the proposed approaches. Figure 4.5
provide a summarized data representation of the results.

Data showed that all selected studies present any kind of preliminary evaluation. However,
this apparent benefit is diminished when we consider the low level of evidence of the proposed
approaches. The most commonly employed evaluation methods are academic studies (Lev4) -
53% out of the total, followed by demonstration (Lev2) - 33%. Only a very small number of
the approaches claimed to be evaluated in industry - 14%, what lead us to consider an overall
low-level of evidence in the SPL testing field.

The scenario is even more worrying as data from the SPL testing interests are considered in
a separate way. Figures 4.6 and 4.7 show data from interests 1 and 2, respectively. Only one
study from the first interest set was evaluated in industry settings. We found no studies with both
academic and industrial evidence.

It is worth mentioning that we found no studies applying more than one evaluation method.
The combination of empirical evaluation methods to assess the feasibility of an approach is
desirable because it increases external validity for findings.

65

Table 4.10: Evidence level of selected studies.

Study Lev1 Lev2 Lev3 Lev4 Lev5 Lev6

P01 �
P02 �
P03 �
P04 �
P05 �
P06 �
P07 �
P08 �
P09 �
P10 �
P11 �
P12 �
P13 �
P14 �
P15 �
P16 �
P17 �
P18 �
P19 �
P20 �
P21 �
P22 �
P23 �
P24 �
P25 �
P26 �
P27 �
P28 �
P29 �
P30 �
P31 �
P32 �
P33 �
P34 �
P35 �
P36 �
P37 �
P38 �
P39 �
P40 �
P41 �
P42 �
P43 �
P44 �
P45 �
P46 �
P47 �
P48 �
P49 �

66

4.3. RESULTS OF THE SYSTEMATIC REVIEW

6%	

8%	

33%	
53%	

Evaluation methods - All studies	

Industrial practices	

Industrial studies	

Demonstration/
Toy example	

Academic studies	

Figure 4.5: Evidence available to adopt the
proposed methods - All studies.

25%	

4%	

71%	

Evaluation methods - Interest 1	

Demonstration/
Toy example	

Industrial studies	

Academic studies	

Figure 4.6: Evidence available to adopt the
proposed methods - Interest 1.

11%	

11%	

37%	

41%	

Evaluation methods - Interest 2	

Industrial practices	

Industrial studies	

Demonstration/
Toy example	

Academic studies	

Figure 4.7: Evidence available to adopt the
proposed methods - Interest 2.

4.3.5 Implications for research and practice (RQ4)

To determine the implications of the approaches found in the literature for both research and
practice, we have to initially figure out the limitations of selected studies. We used the quality
criteria established for appraising the selected studies, presented in Table 4.4, to determine the
strength of inferences. The criteria were categorized in four groups of issues: reporting (QC1-3),
rigour (QC4-7), credibility (QC8-9), and relevance (QC10-11).

Table A.2 lists the quality assessment results for all selected studies. Most of the selected
studies perform fairly well on reporting issues. We recall that, as the first criterion (QC1) was
used as the basis for either including or excluding a study, meaning that all selected studies are
based on research and not merely a “lessons learned” report based on expert opinion. The same
positive result could be observed in the QC2, while roughly 98% of the selected studies clearly
state the aims of the research. While excelent results were obtained in the first two criteria,
only 71% of the studies provided an adequate description of the context in which the research

67

was carried out. That is, authors provide readers with limited information on the application
domain(s) in which the approach was used, or the software process(es) involved, or even the
skills of involved engineers, necessary to seamlessly use the proposed approach etc.

Four criteria relate to the rigour of the research methods employed in the primary studies. In
roughly 49% of them, the research design is appropriate to address the aims of the research. In
only 29% out of the total, there was a control group with which to compare treatments, so as to
enable authors to compare the outcomes of the proposed approach against an external entity. In
43% of the studies, data was collected in a way that addressed the research issue, and in only 16%
of the studies, data analysis was sufficiently rigorous. The results point out to a frustrating lack
of rigour, as it is likely that some of the findings from the selected studies are probably accurate
and usefully generalisable. However, the apparent shortcomings in methodology seriously limit
their usefulness.

In relation to credibility of the study methods, for ensuring that the findings are valid and
meaningful, we found a rather small amount of studies (12%), in which the relationship between
researcher and participants was considered in the evaluation. However, for 65% of the studies the
findings were explicitly stated, in which they discussed the results on the basis of the research
questions, and an adequate discussion of the evidence, thus including the limitation of the
approach, was provided.

In terms of relevance for both research and practice, we considered that 84% of the selected
studies as valuable, for they describe the strengths and weaknesses of their proposal, and point
out open rooms for improvement. As opposed to this high value, only 16% of the studies present
any practitioner-based guideline, which seems to be a barrier to providing optimal usage of the
proposed approach, especially for industry-scale application.

To understand the impact of the selected studies for the research field, we gathered their
citation counts. A simple way to gather the citations is using the Google Scholar Citations8.
While some academics have been very critical of Google Scholar (Aguillo, 2012), as it may lack
the quality control needed for its use as a bibliometric tool, other authors (Harzing, 2013) argue
that its coverage is very comprehensive, and as such it might provide a less biased comparison
across disciplines than tools such as Web of Science or Scopus. These present an insufficient
coverage, as they barely include conferences and/or workshops, but are focused on journals
instead. Besides, Google Scholar has displayed considerable stability over time, increasing the
coverage for disciplines that have traditionally been poorly represented.

Figures 4.8 and 4.9 shows scatterplots for the citation counts9 and quality scores, respectively

8http://scholar.google.com
9The citation counts were gathered by the end paper selection process, late in the first semester of 2013.

68

4.4. ANALYSIS AND DISCUSSION

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

0	
 2	
 4	
 6	
 8	
 10	

C
ita

tio
n

C
ou

nt
	

Quality Score	

Figure 4.8: Studies published between 2003
and 2009.

-10	

0	

10	

20	

30	

40	

50	

60	

70	

80	

0	
 2	
 4	
 6	
 8	
 10	

C
ita

tio
n

C
ou

nt
	

Quality Score	

Figure 4.9: Studies published between 2010
and 2012.

for the set of included studies published between 2003 and 2009, and the studies published
between 2010 and 2012. Such a division was arbitrarily established as a means to mitigate the
likely timing effect in the analysis, i.e., as time passes, it is likely that more citations a paper will
hold. Hence, it would not be fair to use observations from all studies in a same sample.

It is worth to mention that we excluded selected studies published in the year 2013. The
reason is that it usually takes time for any automated citation engine to index all publications
and the citations thereof. In a briefly performed search, we barely found a citation to any paper
published in the year 2013 that was considered in this systematic review.

The y-coordinate corresponds to the number of citations of a paper. The x-coordinate corre-
sponds to the quality score achieved in our assessment. The point representing the observation
for a given paper is placed at the intersection of the two coordinates. In the first set we list 14
observations (we found no results for 4 studies). In the latter, we list 23 observations.

In both sets we observe an uphill linear pattern, as we move from left to right. It is a brief
indication of a positive relationship between the citation count and the quality score attributed
to the selected studies, especially in the second set. However, it is hard to infer whether any
cause-and-effect relationship exists, due to the rather limited number of observations.

4.4 Analysis and discussion

This systematic review identified a set of testing approaches that are relevant for the SPL
engineering field. The main observation in this study is the emerging need of supporting future
development of an evidence-based and effective testing pratice designed to address the special
SPL engineering quality needs, thereby improving the overall SPL practice. Along with such an

69

observation, we describe throughout this section other important aspects that may arise from
this research.

This review has to do with software testing in SPL engineering. We should recall that testing
is a validation technique employed to measure the product correctness and efficiency, identifying
early in the development life cycle points in the program that need fixes, before delivering it to
the final customer. An ideal purpose for SPL testing is to evaluate the correctness of features’
assembly by gathering information on the sources of faults and statistics on how many errors are
generated with certain volumes.

Much of the work on reducing test effort for SPLs has been performed from the feature-based

(first interest) or product-based (second interest) perspectives. An overall impression we had is
that, while approaches in both interests are concerned about minimizing the test effort, there is
little discussion on the subject of achieving higher defect detection rates. There is rather limited
evidence describing which are the commonly found faults in either interest. As each interest has
a specific goal in the SPL testing task, knowing common faults can be helpful. It might guide
an engineer to better identify the faults that are more likely to occur, and provide him/her with
recommendations for the correct repair actions.

As our work attempts to provide research directions to SPL testing engineers to design and
develop more effective SPL testing approaches, besides the previously stated observation, we
next discuss the main open issues we found under each of the interests.

• First SPL testing interest

Within the challenges in this SPL testing interest, the main concern is in how to establish
a strategy to test all the feature interactions that result in testing of all variations across all
dimensions of variation. As pointed out in P46, current techniques handling the combinatorial
problem can be categorized as sampling and exhaustive exploration techniques. While the
former emphasizes the selection of configurations, likewise in pairwise coverage, to reduce the
combinatorial space involved, the latter intends to consider all possible configurations, with the
aid of specialized techniques to eliminate - or even to minimize - redundant configurations that
do not need to be explored.

Within the selected studies, that fit into either one or another category, we observed the use
of diverse optimization algorithms. Although the proposed solutions are usually claimed to
achieve better levels of effectiveness than others, it is usually hard to figure out which can be
suitable for an average scenario so as to enable generalizations. Despite the large amount of
algorithms, we could not identify which could yield better results for a SPL project, due to the
lack of reliable comparative assessment.

70

4.4. ANALYSIS AND DISCUSSION

Another important highlight is that comparative studies of existing approaches are barely
published. Perrouin et al. (2011) empirically analyzed the capabilities of studies P29 and
P31, in an investigation that can be considered one of the few and relevant reports providing
comparisons between SPL testing techniques. Such an endeavor in highlighting the strengths
and weaknesses of their approaches could be followed by other researchers, as a means to make
practitioners aware of which testing approaches could be feasible to a given application domain
and/or scenario.

A task strongly related to the automated generation of product configurations involves
determining the quality of the product line variability models. For instance, in a feature model, it
is necessary to analyze the relationships among the features that determine the composition rules
and the cross-tree constraints, and some additional information, such as trade-offs, rationale, and
justifications for feature selection (Thörn, 2007; Pohl et al., 2011). Such analysis determines
which configurations are feasible in practice.

SPL modeling approaches seek to better and more effective strategies to ensuring consistency
of the variability models. This verification effort concerns the technical quality of the variability
structure, such as checking that two features that are mandatory are not also mutually exclusive.
This type of check usually employs some forms of logic or rule checker on the constructs
provided by the methodology.

Figure 4.1, earlier presented in Section 4.1, illustrates the role of the analysis of variability
models in the first SPL testing interest. The analysis layer represents an input activity to the
selection of product configurations to test. That is, before selecting the test cases - the valid
and representative products - the SPL testing approaches should perform a series of analysis
operations on feature models, such as finding if a product is valid, obtaining all products,
calculating commonality and variability, detecting dead and false optional features, etc. (Rincón
et al., 2014), through the extraction and understanding of the feature model semantics, as earlier
introduced in Chapter 3 (c.f. Section 3.2.1).

Despite the importance of model verification for the SPL testing field, the set of primary
studies analyzed in this review, that discuss fundamental and practical aspects of testing in SPL
engineering, do not provide details about how they perform the model verification task. They
usually use the operations on feature models aimed at generating sets of valid products from
them, instead of using the ones aimed at measuring the quality of the models. Therefore, model
verification aspects are not subject to discussion in this systematic review. Salinesi and Mazo
(2012) surveyed the literature on verification of product line models, and as such their work can
be used as a means to understand the gaps and challenges ahead.

71

• Second SPL testing interest

Most of the approaches dealing with specification of variability in the test assets work by
annotating variability in test models. UML activity and sequence diagrams have been used as
the standard models. The variable scenarios include specifications to the whole set of admissible
products, plus other test cases which instead will vary for each specific product, depending on
how the variant characteristics are instantiated. Indeed, not all admissible test cases are derived,
but rather they derive the SPL test specification and leave it unfolded. The test cases will actually
be derived for a specific product after having instantiated the tags in each SPL use case to the
appropriate values.

While those approaches seems to work for any SPL project, improving testing practice, no
discussions on the maintenance effort for those variable test assets is provided. A variable test
suite is typically developed to test the whole SPL and the test suite will be modified as new
products come into play, or the current products need to be improved. However, as the number
of products increases, the number of test cases for testing the SPL will also increase. Therefore,
it becomes practically impossible to execute all the test cases of the product line due to limited
available time and resources for each new product. Therefore, it is essential to seek a solution
to minimize test suites for a specific product efficiently before execution to reduce the cost of
testing. Besides, an efficient testing process should systematically exploit the reusability of test
artifacts between the products under test.

Besides, we observed a strong concern about handling test design at a very high level of
abstraction, regardless the importance of also coping with variability at lower levels, such as at
source code. While the existing approaches can be applied to any SPL project, with only minor
adjustments, satisfying system testing of end-product functionalities, no studies could be found
that consider the likely particularities of unit testing, performed in conjunction (either before,
or right after) with the actual implementation of features. We have no indications about the
impact of employing different mechanisms to implement variability in the domain assets, and
its consequence for the unit testing, the lowest abstraction level for testing. This observation
proceeds from the fact that testing techniques relevant to single-system engineering might not
deal with the variability intrinsic to the SPL domain. Thus, a deeper evidence-based discussion
on such an issue would be valuable.

Another important aspect to consider is the potential an SPL testing strategy has to cope
with traceability issues. In a SPL, establishing traceability between feature models to actual
implementation artifacts is a key task to a number of tasks, such as program comprehension,
maintenance, requirement tracing, impact analysis, and reuse opportunities (Antoniol et al.,

72

4.4. ANALYSIS AND DISCUSSION

2002). From a SPL testing perspective, the links between problem space and solution space
entities enable both the definition of the test assets, and the capability to cope with evolution, in
a sense that it is possible to identify the work products affected by a proposed change.

The selected primary studies address part of the aforementioned tasks. The use of annotated
UML models (activity and sequence diagrams), in which features are associated to stereotypes,
makes it possible to establish the relationship between a given feature and its corresponding test
models and implementation - P07, P09, P11, P12, P13, P14, P17, P34, P35. It is also possible to
use traceability-mining algorithms (Linsbauer et al., 2013) to recover the tracing information,
even though no primary study discussed about this feasible opportunity.

Traceability information between features and test source code should also be established.
For each product, it is important to know the functionalities it provides and hence the features
that it contains and its source code (Machado et al., 2014a). However, such low-level traceability
information is barely mentioned in the analyzed primary studies. The studies P45 and P46
propose a means to handle low-level variability in test cases. Variability is implemented as simply
Java Boolean variables, i.e., an SPL is an ordinary program with if-conditions. This known
limitation prevents us to generalize such a technique to scenarios in which other variability
implementation mechanisms are employed.

Furthermore, in practice, as systems evolve, traceability links between the models and the
test code artifacts may become broken or outdated. Thus, it is necessary to keep the consistency
between the artifacts. The study P22 contributes an approach to provide traceability links in
a way that ensures consistency between the feature model and the code artifacts, enables the
evolution of variability in the feature model. The approach provides information on the artifacts
that are actually impacted by a change, and provides immediate feedback on the actual impact
of that change, reflecting on the tracing between feature and code assets. In addition, in P49, test
cases are augmented with an attribute to associate it to the feature, or to a set of features. This is
a promising strategy that makes it possible to keep the tracing between both entities updated.

As a matter of fact, SPL testing strategies still have lots to do in terms of traceability and
evolution. Currently, external tools handle most traceability and evolution aspects, as mentioned
in P09. Just a few research efforts could be retrieved that incorporate those aspects into their
proposals.

Another real concern in this SPL interest refers to the strength of evidence in the selected
studies, as earlier discussed in RQ3 and reinforced hereinafter. There is ample evidence that
many SPL testing approaches are methodologically weak. Despite the amount of approaches,
just a few of them have benchmarked their results against other approaches. It may hinder any
inference on highlighting the benefits of selecting and/or using an approach over another. Good

73

research requires not only a result, but also clear and convincing evidence that the result is sound.
This evidence should be based on experience or systematic analysis, not simply persuasive
argument or small examples (Shaw, 2002).

Empirical studies comparing the effectiveness of existing approaches, in a range of scenarios,
thus involving project of different sizes and domain, is encouraged. Furthermore, there are some
obstacles in the current tool support that should be addressed before further empirical studies
can be conducted. As mentioned earlier, although some studies attempt to describe their tool
support, no tools are readily available. When some algorithms describing how the approach
would work in an automated scenario, readers are not provided with any discussion on their real
benefits, and the required effort for its implementation.

The observed lack of empirical studies does not allow to evaluate what are the best ways to
test an SPL. This is an important research issue for the area.

Besides, no guideline or methodology is provided to train test engineers to handle test design
and selection. This means the current practice of test selection largely depends on the expertise
of test engineers and it might not scale when more components are developed and are to be
tested.

This analysis has considered individual research reports, but major results that influence
practice rely on accumulation of evidence from many projects. Each individual paper thus
provides incremental knowledge, and collections of related research projects and reports provide
both confirming and cumulative evidence.

4.4.1 Limitations of this study

Our systematic review has some limitations. To the extent that we performed a systematic
literature review, the potential for incomplete identification of relevant studies and publication
bias are always consideration.

A potential risk that we might have missed relevant papers is due to lack of agreed terminol-
ogy in the SPL field, leading to the possible existence of relevant papers that do not explicitly
mention the keywords we specified. Hence, there is always a risk that important studies are
omitted. To minimize this possibility, the search for potentially relevant studies encompassed a
bibliographic search of published literature reviews on the topic under investigation, a search
with multiple databases, and also bibliographic searches of the reviewed articles to identify
additional studies. Thus, by combining the list of retrieved papers, we might assume a good
coverage of publications and venues in the SPL testing field.

With respect to publication bias, the heterogeneity in studies’ design, interventions, and

74

4.4. ANALYSIS AND DISCUSSION

outcome measures, and the absence of statistically reliable effects preclude any strong claims for
the effectiveness of the analyzed approaches. In most cases, data collection and analysis were
poorly described. Overall, empirical studies are not supported by rigorous evidence. Hence, due
to there being insufficient data in the papers, necessary for the computation of effect sizes, we
could not assess publication bias through meta-analysis. However, we acknowledge that, given
the goals of this study, meta-analysis would not have been appropriate.

The effect of publication bias might have affected the data extraction, in terms of inaccuracy
and bias. We had some difficulties to extract relevant information from the selected papers. For
instance, several papers do not explicitly mention in which domain the proposed approaches
could be used, or there is a lack of information regarding the empirical methods employed by
the studies to carry out their evaluation. In situations like these, we had to make subjective
interpretations of information. Therefore, the researcher’s bias could affect the final extracted
data. Hence, we acknowledge that there is a possibility of having misunderstandings in the
way we have extracted data from the primary studies. The data extraction form was designed
to obtain consistent and relevant information for answering the research questions. Besides,
we performed quality assessment on relevant studies to ensure that the identified findings and
implications came from a credible basis.

We next discuss the potential threats to the validity of this systematic literature review, in
accordance with the following taxonomies: construct validity, internal validity, external validity,
and reliability (Wohlin et al., 2012).

• Construct validity concerns establishing a relationship between the theory behind the study
and the observations. It covers issues that are related to the design of the study, to analyze
its ability to represent what reseachers have in mind, and what is investigated according to
the research questions. To avoid threats to construct validity, we applied the concepts of
“testing in SPL” and “systematic literature review" as the main constructs. In the former,
we leveraged the key characteristics in the studies, following the division of interests..
As for the second construct, we followed the guidelines to design the research questions,
search and assessment criteria. Another important aspect is to ensure the discovering of all
relevant studies in the topic under investigation. For this purpose, we combined automated
and manual searches, to increase the coverage.

• Internal validity concerns establishing a causal relationship, whereby certain conditions
are shown to lead to other conditions. As threats to the internal validity we can consider
the subjective decisions that might have occurred during primary studies selection and data
extraction, and individual bias in assessment. The decision process for including a study

75

into the analysis may be considered the most important influential factor on the resulting
conclusions. Given that some primary studies did not provide a clear description or proper
objectives and results, it was difficult the objective application of the eligibility criteria or
the impartial data extraction. The strategy to minimize selection and extraction mistakes
was to consider several stages in the review in order to incorporate the most complete
primary studies possible to increase reliability of the conclusions. Besides, to minimize
threats regarding data analysis, that arise from individual researchers bias when assessing
her assigned primary studies, we followed a pre-defined protocol, carrying out several
dry runs individually, and consolidating the differences collaboratively. However, it is
possible that some papers that do not contribute to the understanding of the study goals are
included, as it is possible that some excluded papers might present useful characteristics
that might affect the review conclusions.

• External validity concerns establishing the extent to which results of the studies provide
a correct basis for generalization to other scenarios and application domains. Most of
the papers included in this investigation refers to approaches that have not been used in
industry. Even most of the evaluation and assessment performed on the approaches do
not refer to real-world practice. This prevents us from asserting that the classification
provided in this analysis is fully generalizable.

• Reliability is concerned with issues that affect the ability to draw that the operations of
a study can be repeated with the same results. To attain this goal, we defined the search
strings and procedures in such a way that other researchers could directly and objectively
replicate this study. However, we cannot guarantee that other researchers could achieve
the exact same outcomes, as subjectivity is a major criticism levelled at primary studies
analysis. However, we believe that the underlying trends should remain unchanged.

4.5 Related work

Early in 2003, Kolb and Muthig (2003) published one of the initial analysis of existing SPL
testing practices, and pointed out a set of directions for further improvement. Although the study
was not organized as a literature survey, the authors discussed about the use of techniques that
were commonly used to test a SPL, and also highlighted the common problems of applying
techniques from traditional software development in the SPL scenario. Despite the importance
of such a study to the field, since its publication, much more investigation has been carried out.

76

4.6. CHAPTER SUMMARY

One year later, Tevanlinna et al. (2004) published a survey on product family testing. In the
light of available studies at the time of publication, the authors provided research community
with an overview on the established practices and the challenges surrounding the SPL testing
field. Authors focused on discussing methods developed for or that could be applied to test
product families, while disregarding particular characteristics of a given method. The paper
served for a long time as a good roadmap for researchers intended to investigate the field.

Johansen et al. (2011) presented a survey of product line testing, focusing on the investigation
of strategies employed towards developing test suites for a SPL. They followed a formalized
literature review process (Dybå et al., 2005). After analyzing existing publications, the authors
focused on the analysis of three studies that contained empirical evaluations on their data. The
authors claimed that the reason to only include and analyze empirically assessed studies was
to perform a more reliable assessment of SPL testing practices. However, the small amount of
studies prevents the generalization of research findings.

There are some other related research we could include in this section, such as a series of
literature reviews on the topic (Neto et al., 2011a; Engström and Runeson, 2011; Lamancha et al.,
2009). Such studies provide state-of-the-art evidence on the SPL testing field. In a systematic
way, these surveyed existing research trying to identify useful approaches, and synthesize the
achievements, identify gaps, and propose research directions, based on studies published up to
the year 2009. They complement each other well in terms of research questions addressed.

As a next step, in this present study, we go further, and analyze the current research on
strategies for handling testing in SPL, by assessing provided evidence about current research
regarding how far it can convince practitioners, and also try to identify open problems and areas
for improvement.

4.6 Chapter summary

The goal of SPL engineering is to optimize effectiveness and efficiency by capitalizing on the
commonality and managing the variation that exists between multiple software systems. In
order to achieve the benefits of a software product line, testing of the assets that will compose
the products is a critical activity. Given that an asset can be reused by multiple products, it is
not economically meaningful to test every interaction between assets in every product instance
derived from the product line. A new paradigm demands new strategies that result in new
improvements.

This chapter reported on the results of a systematic literature review of testing in software

77

product line engineering. It aims at understanding how products are selected from the very large
set of possible products for asset testing, and how each selected product is tested. Twenty-four
papers were found to provide the material for the discussion surrounding the first research
question, while twenty-seven papers described strategies that matched the second.

Despite an observed increasing interest in the SPL testing topic, the study led us to claim
the need for more effective methods and techniques for testing SPL, issue stated a decade ago
by Kolb and Muthig (2003), that still holds true as probably the main rationale for current
research. Given the current available evidence, we noted that research has advanced in terms
of strategies to handle testing each selected product, but it is still in its initial stages when
considering strategies to cope with the selection of representative products. Additionally, in
either topic, we observed a lack of generalization of existing techniques, which demands further
investigation.

Based on the findings of this systematic literature review, we suggest that research be
undertaken to expand on the strategies that have been investigated. Further research into this
topic should include some form of empirical assessment of existing strategies, as a means to
improve their accuracy, and enable generalizations. This may entail investigating more than just
small usage scenarios, but rather large-scale and industry-side scenarios.

This Chapter closes the second part of this thesis, which discussed the underlying concepts
for this work. Next Part presents the thesis concept, encompassing the steps to build the proposed
fault model support for variability testing.

78

5
A Preliminary Evaluation of the Effects of

Unit Testing in SPL Engineering

In a previous investigation we defined a process for testing SPL projects (Machado et al., 2011).
The process establishes a systematic relationship between the common test levels and the SPL
processes - domain and application engineering, exploring the usage of testing-related resources
in the overall SPL life cycle.

By following the process, we carried out an empirical evaluation aiming to analyze and
understand the capabilities and effects of the unit testing infrastructure, as well as capture lessons
learned and practices that could be used by other SPL teams for their unit testing.

Unit testing is an important part of the development stage. As earlier discussed in this thesis,
the earlier a defect is uncovered, the cheaper it may be to fix the problem. This statement
continues to hold true in case of SPL engineering. However, there is little evidence available on
carrying out empirical studies in SPL testing, which encompasses low-level testing.

Therefore, as the proposed fault model support aims at improving testing carried out at a
low level of abstraction, we consider the empirical study reported along this chapter as an initial
endeavor towards building the concept underlying this thesis. The collected insights are reported
for further analysis and the gathered data will serve as baseline values for next evaluations.

Along this chapter we describe the empirical study, consisted of a controlled experiment,
conducted in an academic environment with students from a V&V course as participants1.
The study was carried out by following the guidelines for conducting experiments in software
engineering defined in (Wohlin et al., 2012), and reported as suggested by the guidelines
described in (Jedlitschka et al., 2008).

The remainder of this chapter is organized as follows. Section 5.1 briefly introduces the

1Portions of the material presented in this chapter have appeared previously in (Machado et al., 2012a).

79

APPLICATION ENGINEERING

DOMAIN ENGINEERING

Planning

Technical
Reviews

Planning

Technical
Reviews

Integration
TestingUnit Testing

Unit Testing Integration
Testing

System
Testing

Master
Planning

Figure 5.1: SPL testing process overview.

proposed approach for SPL testing, used in the experiment. Section 5.2 presents the experiment
planning and definition, and Section 5.3 describes its operation. Next, Section 5.4 discusses the
results. Given the insights from the experiment, Section 5.5 discusses the potential implications
of following the proposed unit testing process, and Section 5.6 concludes the Chapter.

5.1 SPL testing process

Testing an SPL encompasses domain and application engineering phases. In a broad view, a
process in an SPL must consider particularities of each phase, since they hold different, although
complementary, goals.

Figure 5.1 presents an overview of the process subject to assessment in this empirical study
(Machado et al., 2011). The figure shows the test levels to handle in each SPL phase. Feedback
is a closure activity common to all of these.

In domain engineering, when assets are developed with a special attention to the forthcoming
reuse, the focus is on the unit and integration test levels. Thinking of Component-Based
Development (CBD), firstly, in order to ensure that a component may be reused, it should be

80

5.1. SPL TESTING PROCESS

tested, under planned conditions. Therefore, planning should be mandatory for both domain
and application engineering processes, as illustrated in the Figure 5.1. After performing unit
tests in a component, and ensuring that it fulfills what it was specified to, integration tests are
performed.

Recall that unit and integration testing are responsible for detecting different types of
faults (Juzgado and Vegas, 2003). On one hand, unit testing independently tests methods,
classes, and the interaction among these pieces that comprises a component. On the other hand,
integration testing is responsible for validating the interaction among components interfaces
and the integration between modules, that is, architectural information is a mandatory input for
integration testing (Neto et al., 2012).

A preceding box presented in the figure, named technical reviews, has also its very particular
V&V goals. The process has included such an element seeking to increase the importance of
statically verifying the entities, as a complementary V&V task. However, as there are several
techniques available in the literature to cope with static analysis and verification, the process
does not delve into sufficient detail to give exhaustive guidance for selecting an appropriate
technique.

Taking the SPL testing interests earlier discussed in Chapter 4, and reported in (Machado
et al., 2012b), the proposed process fits into the second one, where the concern about variability
surrounds how the test cases responsible for testing the end-product functionalities could be
optimized. Thus, instead of considering a test case as a possible product instance, as the first
interest does, the variability perspective employed in this process concerns on how to design and
implement variable test cases that can be reused by a range of products, as they share a set of
features.

Unit testing concentrates on testing the code from the inside, exercising the code logic.
This activity is directly linked with coding, and as such, it should be held right after a piece of
code is developed, or even before developing the source code, when employing a Test-Driven
Development (TDD) approach. The strategy to use is a project decision. In either case unit
testing serves to ensure that the unit (1) does everything that its specification claims, and that
it (2) does not do anything it should not do. Carrying out unit testing may be particularly
productive because the visibility into the code under test is at its maximum. The degree of
visibility is related directly to the testability (the ease with which the code under test can be
tested) (Clements and Northrop, 2001).

Unit testing continues to hold the same role in SPL as in traditional development. However,
the variability contained in the units should be managed so that the effort devoted for testing a
unit can be reused in next units, if representing characteristics that suffice. The reuse potential

81

should be exploited in this early stage.
Unit testing comprises the following steps and associated tasks:

• Planning (1) Analyze input artifacts - before starting the tests, it is necessary to access
the repository (if available) in order to identify if there is any unit test available that can
be reused; (2) Define and prepare the test environment; (3) Select features to be tested

in each cycle; (4) Define the schedule, testing techniques, strategy to test the integration

of classes, coverage criteria, test input domain, acceptance (Pass/Fail rate) criteria; (5)

Summarize the information in a test plan; and (6) Review and approve the test plan.

• Design (1) Implement tests to evaluate the components methods. For mandatory features,

the test case implementation is trivial, i.e., same technique from single system can be

employed. However, whether a feature is either optional or alternative, the test case

should implement the variable behavior, so as to enable its forthcoming reuse, when

instantiating products with different feature selection; (2) Create tests to evaluate the

classes integration; (3) Group test cases in test suites.

• Execution (1) Perform tests for each method; (2) Perform tests of the integration of

methods contained in a class; (3) Perform tests of the integration of classes contained in a

component; (4) Associate a Change Request (CR) to a defect found.

• Reporting (1) Assemble information on the cycle execution; (2) Record the issues found;
(3) Check for test completion and provide feedback.

Later in application engineering, integration, system and acceptance testing are performed,
based on the assets previously developed and tested. Unit testing is performed in application
engineering only in special cases, as explained next. It may be required whenever a new
requirement or feature that does not belong to the core asset base yet is to be included in a
specific product. That is, it involves the analysis, design and implementation of a new unit.
Hence, as this new artifact is built, unit tests have to be performed. After that, the new unit

might be propagated to the core asset base, to be reused in other product instances.
Whether there is no new unit to implement, but instead only existing features are to be

assembled to compose a new product instance, integration testing is the first level to be performed.
The point is why to perform it again. Given the purpose of avoiding repetition and consequently
reducing the overall testing effort, in domain engineering only the integration between tightly
coupled units is performed, regardless integrating the whole set of components. It considers the
behavior of the core asset base, in which there are several components, attending to a diverse

82

5.2. EXPERIMENT PLANNING

range of variations, that not necessarily integrate with each other, but indeed should be ready for
instantiation in application engineering. This is when integration testing should take place in
this SPL phase. Integration testing on the components of a product instance might ensure the
workability of the interconnected modules as well.

Next, system testing is carried out. It focuses on validating the product instance as a whole,
intended to detect system and/or end-to-end defects. At this point, testers evaluate the system
against the requirements specification.

In all activities mentioned for both domain and application testing, each level encompasses
four main tasks: planning, design, execution and reporting, to be iteratively and incrementally
performed, with feasible feedback connections enabling refinements, as earlier introduced in
section 5.1. Indeed, we can share the same tasks as in single system development. What mainly
changes from one to another perspective is the capability of handling with variable assets, and
the inherent systematic reuse of test assets. This is the main focus of every strategy for SPL
testing.

5.2 Experiment planning

We applied the Goal Question Metric (GQM) method (Basili et al., 1994) to set the measurement
goal, define a set of questions, and finally create the corresponding metrics to perform the
evaluation.

The goal of the controlled experiment was to analyze the unit testing level for the purpose of
evaluation with respect to its effectiveness from the point of view of the potential users (testers)

in the context of a SPL testing project in an academic environment.
The following questions were defined to evaluate the goal.

• RQ1. Does the quality of the detected defect improve when the process is followed?

• RQ2. Does the rate of defect detection increase when the process is followed?

• RQ3. Does the test coverage rate increase when the process is followed?

• RQ4. Which professional skills influence results of testing activity?

Three metrics, associated with the questions in order to answer them in a measurable way,
were defined, as follows.

M1. Test Case Effectiveness (TCE): The more defects test cases find, the more effective
they are (Chernak, 2001). It is defined as the ratio of defects found by test cases to the total

83

number of defects reported during a test cycle. We tailored such measure to our context, so that
(TCE) is defined as the ratio of the amount of defects (Dtot) reported to the total number of test
cases (Ntc). This value provides insights on the effectiveness of functional test cases. It refers to

both RQ2 and RQ4, and is defined as: TCE =
Dtot

Ntc
.

M2. QDF: It refers to the number of valid defects found, normalized to difficulty (DD) and
severity (SV) values. We characterized severity values as follows (Jones, 2010): high (software
does not operate at all), medium (major features disabled or incorrect), and low (minor features
disabled or incorrect, i.e., cosmetic defects that do not affect operation).

Difficulty values were also tabulated as high, medium and low, based on the expected amount
of effort required to find the defects within the code. The experiment team classified difficult
values themselves using consensus.

Every defect, in a set of known defects, are valued with a coefficient (k and r) according to
its DD and SV. As we did not have baseline values to define the values for such coefficients,
we performed Principal Component Analysis (PCA) correlations (Abdi and Williams, 2010),
in order to identify their values. A principal component is a linear combination of weighted
observed variables. By performing PCA, it is possible to calculate a score for each subject on a
given principal component (Koch and Naito, 2010).

The quality of defects is then assumed as the total amount of defects considering each value
category and their coefficients. The higher the score of the quality of defects found, the more
effective testing was. It refers to both RQ1 and RQ4, and is defined as: QDF = f (DD) + f (S V).
These are next detailed in formulas (1) and (2), respectively.

With the coefficients, it was possible to extract the QDF score. The formula is presented
next (3). Ei corresponds to the amount of defects found by the subject i in a determined class -
DL and S L for low, DM and S M for medium, and DH and MH for high, in respectively difficulty

and severity classes.

f (DD) =
∑

Ei∈DL

Ei.kl +
∑

Ei∈DM

Ei.km +
∑

Ei∈DH

Ei.kh (1)

f(SV) =
∑

Ei∈S L

Ei.rl +
∑

Ei∈S M

Ei.rm +
∑

Ei∈S H

Ei.rh (2)

S DS = f (DD) + f (S V) (3)

These formulas were created for the purpose of this experiment. We have no evidences about
their effectiveness in other contexts. They need to be re-calibrated to other situations.

84

5.2. EXPERIMENT PLANNING

M3. Test Coverage (TCov): It gives the fraction of all features (or requirements/use cases)
covered by a selected number of test cases or a complete test suite (Naik and Tripathy, 2008).
We assume Cov as the basic blocks coverage2 generated by the Eclemma3 code coverage tool,
used in this study. It refers to RQ3 and RQ4.

5.2.1 Design, variables, materials and participants

Design. This was an experiment with one factor with two treatments. We compared the two
treatments against each other (Wohlin et al., 2012). Factor in this experiment was the SPL unit
testing process; the treatments were: (1) Testing with the process.; and (2) Testing without the

process. We used a completely randomized design for comparing the two treatment means, i.e.,
for the design setup, we used the same objects for both treatments and assigns the subjects
randomly to each treatment (Wohlin et al., 2012). Hence, the participants were divided in two
groups, each addressing a treatment, with respectively, 17 and 15 participants, each. Initially,
we had 34 participants, but 2 of them left experiment during its execution, and their data were
not considered. As we did not have the same number of subjects per treatment the design was
unbalanced.

Variables. The dependent variables are the metrics TCE, QDF, and TCov. Independent
variables are the background information items that compose the professional skills of the
participants.

Experiment materials. The experiment used Consent Form, Background and Feedback
Questionnaires, a set of Test Assets, Project Source Code, Defect Reporting Form, and the
process documentation - guidelines and usage samples. After being informed about the goals
and be given overall information on the experiment, all participants signed a consent form, as
a means of agreeing to join the study, and filled out a background questionnaire, providing
information about their expertise with software development in industrial projects, SPL, testing,
and the tools used in the experiment. These are detailed in Section 5.3.

There were two main kinds of feedback questionnaire: (a) addressed to the group which
did not follow the test process; (b) addressed to the group that applied the process. A third
kind of questionnaire was designed to gather feedback from the participants which performed
the experiment without the process. We aimed at gathering some information regarding the
participants’ opinion about the likelihood of finding more defects, if they had used the process

2http://emma.sourceforge.net/faq.html#q.blockcoverage
3http://www.eclemma.org/

85

http://emma.sourceforge.net/faq.html#q.blockcoverage
http://www.eclemma.org/

Table 5.1: Hypothesis formulation.

Null Hypothesis Alternative Hypothesis

H01 : µTCERP ≤ µTCEAH H11 : µTCERP > µTCEAH

H02 : µQDFRP ≤ µQDFAH H12 : µQDFRP > µQDFAH

H03 : µTCovRP ≤ µTCovAH H13 : µTCovRP > µTCovAH

instead of performing tests in an ad-hoc fashion. This last one was answered after the ad-hoc
group was trained in process.

We used as project for this study an SPL project in the conference management systems
domain. The project is named X-Chair product line (XCPL), and it is targeted at the full man-
agement of papers submission in conferences, journals, etc. XCPL is an academic project,
developed by some of the Ph.D. and M.Sc. students from our research group, thus including the
author of this thesis. The project was conceived based on the commonality and variability analy-
sis of a series of known conference management systems, such as: JEMS-SBC4, EasyChair5

and CyberChair6. As an SPL, it enables the derivation of different products from a common
asset base. XCPL is composed of 41 features, identified in the domain analysis. The SPL was
implemented with the J2EE platform, with variability in 8 core components.

Participants. The subjects were chosen based on convenience. They were students taking
the “Systems Verification and Validation” course at Federal University of Bahia, Brazil. They
were upper-level Computer Science majors and all were in good academic standing. All
these students had previously attended mandatory courses such as OOP, Java, and Software
Engineering-related courses as well.

5.2.2 Hypotheses

We set up three hypotheses that formed the basis for the design of this experimental study. Table
5.1 shows both the null (H0n) and alternative (H1n) hypotheses. The null hypothesis states that
there is no benefit of using the process (RP) if compared to ad-hoc testing (AH), in terms of
effectiveness.

4http://jems.sbc.org.br
5http://easychair.org
6http://www.borbala.com/cyberchair/

86

http://jems.sbc.org.br
http://easychair.org
http://www.borbala.com/cyberchair/

5.3. EXPERIMENT OPERATION

5.3 Experiment operation

Table 5.2: Experiment agenda.

Day Tasks Length

1
(A) Introduction to the experimental study 0:30

(B) Characterization / Consent Term 0:30

(C) Introduction to SPL 3:00

2 (D) JUnit training 4:00

3
(E) Ad-hoc Testing [Group 1] 4:00

(F) Feedback 1 [Group 1] 0:30

4 (G) Training in the SPL testing process 3:00

5
(H) Testing with the process [Group 2] 4:30

(I) Feedback 2 [Group 2] 0:30

Procedure. Table 5.2 shows the experiment design with training and execution schedule.
Initially the participants became aware of the experiment purpose and associated tasks, as well as
enrolled in an introductory session on SPL (Tasks A-C). Next, in order to balance the knowledge
on the tools required, training sessions were performed with practical exercises (Task D).

Group 1 performed the tests without following the process (Task E), by using their own
expertise. After this first testing session, the training in the SPL testing process was carried out
(Task G). Later on, Group 2 performed the tests following the process (Task H). In this case, the
participants were requested to perform test design, execution and reporting activities. Due to time
constraints, planning artifacts were available beforehand. In the experiment, it was simulated
that core assets had to be tested, in which participants should think of the forthcoming reuse of
test assets. We assumed testing only the core assets as they hold most variability implementation.
Due to time constraints, participants were not encouraged to test product-specific parts, as it
might not be relevant for the purpose of our investigation.

Every participant reported their valuable feedback on the experiment by filling out a ques-
tionnaire (Tasks F and I).

Operation. All participants were asked to fill out a background questionnaire, as the initial
task in the experiment. By gathering data about their preceding experience, we could perform
some correlations between obtained results and experience. The questionnaire comprised the

87

following items.

• English reading - Measures the participant’s English reading expertise. A value in a
three-level-scale, from basic to advanced, is used. As Portuguese is the main language in
Brazil, our initial assumption was that difficulties with English language could affect the
results, since all artifacts were designed in such a language;

• Participation in Industrial Development/ Testing - The answer was either yes or no, whether
they had already participated in software development and/or testing projects in industry
or not;

• Experience in Programming/ Java/ Testing/ SPL/ jUnit - Measures the level of participant
experience with: programming, Java, Testing, SPL, jUnit;

• Testing Tools - They could mention unit test tools/frameworks in which they had some
expertise, other than JUnit (e.g. NUnit, RSpec, Test::Unit, Selenium, etc). Our assumption
is that, if participants were familiar with any unit testing framework, she could easier
understand how jUnit works, and therefore achieve better results than ones who do not
have any experience.

The participants were said not to implement new features, but rather to analyze the available
components, design and implement the test cases. Their assigned tasks were: (1) to analyze the
available code and specifications; (2) to build test assets (test cases and suites); (3) to execute
them; and (4) the report the findings in the proper form. At the end of the experiment, each of
the 32 participants completed a feedback questionnaire.

Deviations from the planning. Data was collected from all the participants. However, data
from 2 participants were removed, since they either did not participate in all activities of the
experiment, or they did not complete the forms as requested at the beginning of the experiment.
Although we were counting on all participants, we believe that the absence of two of them does
not invalidate the work, in terms of statistical analysis and interpretation of results.

5.4 Data analysis

The analysis was performed based on descriptive statistics, hypothesis testing using t-test and
PCA (Abdi and Williams, 2010). PCA is appropriate when there are obtained measures on
a number of observed variables and there is a wish to develop a smaller number of artificial

88

5.4. DATA ANALYSIS

variables that will account for most of the variance in the observed variables. It is basically
a variable reduction procedure. PCA enabled us to statistically select valid parameters, in
order to identify which variables impact on the results (Yamamoto et al., 2007). The principal
components may then be used as predictor or criterion variables in subsequent analyses (Koch
and Naito, 2010). As we intended to extract score values from a data set, PCA was helpful.

5.4.1 Descriptive statistics

5.4.1.1 Test case effectiveness (M1)

In terms of valid defects found, in G1, the mean value was 6.188 with a standard deviation

(sd) of 3.187, while in G2, the mean value was 3.857, with a sd of 3.505. False positives
identified were considered invalid and were not included in the analysis. Regarding the amount
of designed test cases by participants per group, in G1, the mean was 10.380 with a sd of 5.137;
and 8.143 of mean with a sd of 3.670 in G2.

By applying the TCE formula, we obtained the following values. The mean in G1 was 0.725
with a sd of 0.540. In G2 the mean was 0.425 with a sd of 0.353. Median of G1 is slightly
higher than in G2, respectively 0.631 and 0.431.

5.4.1.2 Quality of defects found (M2)

Data from all defect reporting forms were tabulated and analyzed. The goal was to extract
similarities among the reported defects, since many of these expressed the same problems, but
they were rather described in different ways. Like in TCE, false positives were not considered in
the analysis.

We used a set of mutation operators to seed errors in the code, which represented five
valid errors the participants could find. We initially seeded five errors. During the experiment
execution, the participants reported an additional seven errors types. These twelve defects were
classified according to Difficulty and Severity, as can be seen in table 5.6, which denotes εi as
every valid defect.

Table 5.3: Amount of defects found in terms of difficulty and severity.

Difficulty Severity
Low Med High Low Med High

Group 1 66 12 19 21 7 70
Group 2 40 6 7 7 2 44

89

We combined the three variables in each class (low, medium and high) according to the
values from the data set (Table 5.3). Tables 5.4 and 5.5 shows the final results for both difficulty

and severity calculations, respectively.

Table 5.4: Difficulty ratings. Correlations on the PCA of the high/medium/low variables.

PC λ r(%)
Difficulty

di f _low di f _med di f _high
1 2.193 47.9% -0.91 -0.20 -0.35
2 1.869 34.8% 0.31 0.20 -0.93
3 1.319 17.3% 0.26 -0.96 -0.12

Table 5.5: Severity ratings. Correlations on the PCA of the high/medium/low variables.

PC λ r(%)
Severity

sev_low sev_med sev_high
1 2.622 75.6% -0.13 -0.13 -0.98
2 1.361 20.4% 0.98 -0.13 -0.12
3 0.604 4.0% 0.12 0.98 -0.15

Table 5.6: Difficulty and severity of defects found.

Difficulty Severity
Low Med High Low Med High

ε1, ε2, ε3, ε5,
ε6, ε11, ε12

ε4, ε7, ε8 ε9, ε10 ε4, ε7, ε10 ε11
ε1, ε2, ε3, ε5, ε6,
ε8, ε9, ε12

Coefficient (k) Coefficient (r)
0.91 0.20 0.35 0.13 0.13 0.98

When we consider the quality of valid defects, as a function of difficulty and severity, we
have an indicative that participants from G1 had better results. The mean value for G1 was
8.868, with a sd of 3.896, whereas in G2 the mean was 6.048, with a sd of 5.302. Median values
were 8.555 and 6.295, for G1 and G2, respectively.

The descriptive statistics for the QDF score are detailed in Table 5.7.

5.4.1.3 Test coverage (M3)

The mean value for G1 was 0.663, with a sd of 0.136. G2 achieved a mean value of 0.630, with a
sd of 0.364. Median values were 0.644 and 0.745, for G1 and G2 respectively. By analyzing the
the data, we can notice that participants from G2 had slightly better results. Table 5.8 presents
the descriptive statistics for this measure.

90

5.4. DATA ANALYSIS

Table 5.7: Descriptive statistics for QDF score.

Group 1 Group 2
Min. 1.040 0.000

1st. Quartile 7.288 0.120
Median 8.555 6.295

Mean 8.868 6.048
3rd. Quartile 10.080 10.350

Max. 19.990 15.160
Sd. 3.896 5.302

Table 5.8: Descriptive statistics for TCov score.

Group 1 Group 2
Min. 0.450 0.000

1st. Quartile 0.567 0.583
Median 0.644 0.745

Mean 0.663 0.630
3rd. Quartile 0.753 0.848

Max. 0.889 1.000
Sd. 0.136 0.364

5.4.2 Hypothesis testing

The first hypothesis regarding TCE is evaluated using a t-test (unpaired, two-tailed). Table 5.9
presents the results, in which a p-value higher than 0.05 was found, which indicates that the
Null Hypothesis H01 cannot be rejected. Hence, according to the values extracted from this
experiment, the group who did not follow the process had better results, regarding TCE.

The t-test was also applied to QDF. From the analysis, we can conclude that it was not
possible to reject the Null Hypothesis H02, since p-value was higher than 0.05, out of the
confidence interval of 95%. Thus, there was no gain using the process, regarding the QDF
metric.

T-test applied to Test Coverage (TCov) resulted in a very high p-value, showing that means
are extremely different. As a consequence, we can not draw conclusions on such measure.

Table 5.9: Results from the t-test applied to TCE, QDF and TCov measures.

Measures d f p− value t− value
TCE 28 0.08685 1.7746
QDF 28 0.1053 1.674
TCov 16.163 0.7483 0.3264

91

5.4.3 Exploring relationships among variables

With the expertise variables, we performed a set of correlations in order to understand how they
would behave when inserting and/or removing a new variable.

The set of independent variables, extracted from the background questionnaire is as
follows: group, English skill (Eng1-advanced; Eng2-intermediate; Eng3-basic), length ex-

perience in programming, Java, jUnit, testing, participation in industrial testing projects

(part_proj_ind_test), participation in industrial development projects (part_proj_ind_dev), cov-

erage;

Next, the dependent variables: total amount of valid and invalid defects found, score of

defects detection - both considering severity and difficulty measures.

Variables handling length experience were correlated and found no significant results. We
applied stepwise regression, in order to identify which elements could make influence on the
experimental study. It would be extracted from a model by AIC in a stepwise algorithm.

In terms of difficulty, Table 5.10 shows the resultant model. According to the results, there
is a strictly relationship among the results and the group the participant was. The results showed
that participants from G1 had positive influence on the results, meanwhile participants from
G2 had worse results (p-value: 0.01352). Moreover, participants who results were better were
directly influenced by their prior participation in industrial development projects. This is inferred
by a high confidence level (p-value: 0.03157). Another variable that does not influence the
results is the English reading. Based on the data, it is inferred that basic English knowledge
suffices to this kind of activity, although this evidence was not totally reliable (p-value: 0.10907).

Table 5.10: Significance of the regression estimation parameter values.

Parameters Estimate std.error t− value p− value
Intercept 0.6136 1.0088 0.608 0.54850
Group −1.6670 0.6273 −2.657 0.01352 ∗

coverage 3.7423 1.2318 3.038 0.00551 ∗∗

Part_proj_ind_dev 1.6706 0.7335 2.278 0.03157 ∗

Eng3 1.8701 1.1254 1.662 0.10907
Signif. codes: 0 ‘∗∗∗’ 0.001 ‘∗∗’ 0.01 ‘∗’ 0.05 ‘.’ 0.1 ‘ ’ 1
R2: 0.5028, Adjusted-R2: 0.4233, F-statistic: 6.321, Sig F: 0.001172

Table 5.11 shows the most significant parameter values of the model extracted form the
correlation among variables, in terms of severity. In this model, the inference aforementioned,
regarding the English reading level required to perform test activities, herein is ensured by a
high confidence level (p-value: 0.0365).

92

5.4. DATA ANALYSIS

Table 5.11: Significance of the regression estimation parameter values.

Parameters Estimate std.error t− value p− value
Intercept 0.3795 1.2596 0.301 0.7657
Group −1.7230 0.7832 −2.200 0.0373 ∗

coverage 3.5370 1.5380 2.300 0.0301 ∗

Part_proj_ind_dev 2.3586 0.9158 2.575 0.0163 ∗

Eng3 3.1055 1.4052 2.210 0.0365 ∗

Signif. codes: 0 ‘∗∗∗’ 0.001 ‘∗∗’ 0.01 ‘∗’ 0.05 ‘.’ 0.1 ‘ ’ 1
R2: 0.4578, Adjusted-R2: 0.3711, F-statistic: 5.278, Sig F: 0.003193

5.4.4 Threats to validity

Threats to internal validity come from how experiments were carried out. We used a process for
testing SPL projects, responsible for indicating which resources should be developed regarding
each test level, and the extent to which unit testing should be organized, as an important
task to improve the quality of the artifacts of an SPL project. Although the process was
systematically followed, there might be some internal flaws that compromised the validity of the
results. Furthermore, we could also observe a maturation effect, namely as the experiment was
performed in a continued 4-hour period, it is possible that participants were affected negatively
(boring/tiring) or positively (learning) during the experiment. Indeed, the scope was tied to the
course schedule. It might have influenced the overall results.

A possible threat to the construct validity is the under representation of the construct used
in the experiment. That is, although the chosen domain contains a large set of features, only a
sample scenario was selected to the experiment. On the one hand, it could not be possible to
have everything finished within the timetable. On the other hand, a larger SPL project could
yield a more reliable data set to support the analysis.

Regarding the conclusion validity, a likely threat refers to the reliability of measures. As
measures for SPL testing are not usually generalized, and when the study was performed, suitable
measures to employ in this experiment were not found in the literature (Neto et al., 2011a), we
applied some measures from traditional development, and also counted on statistics to define
coefficient values. We found PCA to be a suitable statistical technique aimed at analyzing the
variables that might have affected the results.

In light of what appears to be required for accurate measurements in the SPL testing field, our
recent investigation has pointed out some concerns about the use of commonly used measures
(Machado et al., 2014b). It is still hard to identify the measures the community use to show
value and focus improvements to the field. It might be explained for the observed heterogeneity

93

in studies’ design, interventions, and outcome measures.

External validity concerns generalisation of the experiment result to other enviroments
(Wohlin et al., 2012). The largest threat to the external validity is the use of students as subjects.
This might be not representative of the population. However, this threat was reduced by using
fourth-year students which are mostly familiar with the topics under investigation. In addition,
some training sessions on the topic were held, involving subjects in practical sessions, in which
they could become familiar with the tools used as well as the purpose of product lines, and so
on. Indeed, if subjects succeeded in using the proposed approach, it was not convincing that we
could generalize its use to SPL testing practitioners at all. Another threat to the external validity
is the effect of not having the experimental setting or material representative of, for example,
industrial practice. The experiment was conducted on a defined time according to the schedule
of the undergraduate course, which may have affected the overall results. The scope was tied
to the course schedule in order to make its completion feasible. Thus, although a big domain
involves the project in question, only a sample scenario was selected to this experiment.

5.5 Evaluation of results and implications

The results presented insights that enable us to consider that unit testing in SPL does not have
impressive differences if compared to traditional development, since practitioners which did not
have experience in SPL projects had slightly better results than others who followed a formalized
process. The model extracted from the multivariate regression analysis, which correlated all
dependent and independent variables used in the experiment, did not return satisfactory results,
in a sense that, much was collected but a very small amount of variables impacted the results.

Regarding the better results of the group which did not run the process, the amount of
formalism the process comprises might have influenced the results, since the participants had to
deal with a step-by-step process to be followed verbatim, in a very short period of time, which
might have influenced the learning effect. Instead of just conducting exploratory tests, which
could return better results within a same period, they had to follow the guidelines. Perhaps, as
participants gain confidence on the use of the process (but it obviously depend on time to try
different situations), the results might become better. But it is solely an assumption that should
be tested more and more, maybe applying in a larger context.

After concluding the experimental study, we have gathered useful information that can serve
as a guide to future replications of the experiment following the structure herein presented in
other SPL Testing projects. However, some important aspects should be considered, especially

94

5.6. CONCLUDING REMARKS

the ones seen as limitations in this initial experiment. The general impressions gathered from
the experiment are following listed:

Training. Subjects reported the lack of expertise in the tools used in the experiment,
especially JUnit Framework. It is very interesting to either have a sample of subjects who
have a certain knowledge on the tools or conduct more training sessions before conducting
the experiment. JUnit is indeed a complex framework for beginners acting as subjects in an
experiment which directly involves unit testing in the Java platform.

Questionnaires. After concluding the experiment, we noticed that useful information was
not collected, such as the subject’s impression of using the process, or even the points missed
by the approach, and so on. On the other hand, we have collected information that we did not
analyze, such as subjects’ satisfaction with the training sessions.

Project. We would select a project with more specification available in advance. Subjects
with large experience in industry complained about the lack of documentation in order to help
them to create the test assets. They asked for more test scenarios. Moreover, as we are dealing
with a SPL project, we really need a project containing many variation points and variants,
in order to analyze the impact of the process in such topic. In the project we used in this
experimental study, although the portion of code we chose contained variabilities, just a few
subjects reused the assets. Most subjects created everything from scratch than reused.

Measurement. We did not report on the reused artifacts since we did not establish a metric
to assess that. There were no evidences in the literature that would help us in defining such
metric. It is really necessary for next experiments. Furthermore, metrics such as DRE (Craig and
Jaskiel, 2002), defect removal efficiency, a very applied measure, but that can only be applied in
a whole project, to check its results in a valuable way, should be included when the whole test
levels were considered. Moreover, metrics to evaluate the ease of use should also be collected.

5.6 Concluding Remarks

The empirical evaluation presented in this Chapter was an initial effort towards gathering
evidence to support the ideas behind our fault model approach. Although employing a naive
approach to simulate the presence of problems in the source code implementation, as a means to
measure the effectiveness of the testing approach, the design applied in the experiment enabled
the comparison of effectiveness results, and identify, by employing some statistical models, what
experience profile could influence on the testing activity.

As a matter of fact, achieving better test results could not depend solely on the presence of a

95

systematic methods to guide test assets management. However, the results obtained so far cannot
be fully conclusive. Further studies are thus needed, either through replication of our experiment
or similar studies in other environments, involving a larger set of participants, with different
expertise, so that it will be possible to gather more empirical evidence to confirm or refute the
stated hypotheses. Indeed any difference may only become significant with more participants.

Much of the experimental material and the study design can be reused in future studies.
The experiment can be replicated and other experimental variations can be built on top of our
experimental package. As discussed earlier this type of material is much needed to gather more
empirical evidence in SPL research. The experiment defined measures and sketched models
using multivariate regression analysis for SPL. The results will also help defining baseline
values to support further investigations.

Next Chapter addresses the construction of the fault classification scheme for variability
testing. It discusses the common distribution of faults in variability mechanisms, as a means to
support the design of the fault modeling method.

96

6
Defining a Fault Classification Scheme

Towards Variability Testing

Documenting and analyzing faults is a common practice in most software development orga-
nizations (Mellegard et al., 2012). The use of historical data about commonly occurring fault
types might allow testers to choose testing methods that reveal a greater proportion of the faults
present in the software (Basili and Selby, 1987; Juzgado and Vegas, 2003; Nath et al., 2012).
In addition to choosing a suitable testing method, understanding the nature of faults may aid
testers in focusing their effort in the most fault-prone elements in the software under test. It
helps project management to decide which defects to correct first or at all.

There have been several approaches proposed on how to perform structured collection
and analysis of fault information, encompassing defect taxonomies, root cause analysis, and
defect/fault classification schemes, either restricted to a particular programming language, e.g.,
(Hayes, 1994), or general to any software development process, e.g., (Basili and Perricone, 1984;
Chillarege et al., 1992). Another set of studies have carried out empirical assessments on the
basis of such schemes, and others as well, to identify and classify domain specific faults, e.g.,
(Barbey and Strohmeier, 1994; Chou et al., 2001; Guo and Sampath, 2008; Palix et al., 2011;
Paul and Lau, 2012; Strecker and Memon, 2012).

Establishing a means to identify and classify the faults in a software is a key input for a
fault modeling approach. Hence, along this Chapter we investigate the existing support for
fault classifications, towards building general fault classification schemes to support variability
testing.

We investigated existing classification schemes, to identify their characteristics, such as fault
classes and associated faults. Next, to aid the collection of empirical knowledge, we gathered
data from three open source projects, as a means to associate errors to the use of variability

97

implementation mechanisms. The results of such investigations serves as the basis for our
proposal.

The remainder of this Chapter is organized as follows. Section 6.1 presents and discusses the
most commonly used fault classification schemes, available in the literature. Next, in Section 6.2
we discuss an empirical investigation of understanding the faults in variability mechanisms. This
conclusion of such an investigation leads to the proposal. Section 6.3 concludes the Chapter.

6.1 Fault classification schemes

Efforts to analyze and categorize software faults have a long history, and a number of different
general approaches have been tried. There are several fault categorization schemes available in
the literature, either by providing generic/language-independent classifications, or attending a
very specific demand, such as a specific technology or a given application domain. Alongside,
there is a strong knowledge basis that aims at generalizing those to a large domain application,
like faults in the C or Java language constructs.

Initial reports on classifying errors in software projects dates back to the 1980’s, where Glass
(1981) investigated what he coined as persistent errors, i.e., those which are not discovered
until late in developement, and proposed a classification of them based on the analysis of two
significant and mature software projects.

Later on, Basili and Perricone (1984) proposed some abstract, general-like, fault classifica-
tions, by analyzing the relationships between the frequency and distribution of errors uncovered
during a software development project, under a variety of environmental factors. Table 6.1
summarizes the proposed classification.

As a general-like errors classification, it encompasses those that might be originated from
several of the SDLC phases, ranging from the requirements specification up to maintenance.
Therefore, while analyzing a software project in the light of such a classification, it is possible
to draw inferences about, e.g., the most fault-prone sources of errors, or the most likely errors.
Roughly speaking, fault data can be used to predict later fault and failure data.

From a similar but subtly different perspective, Chillarege et al. (1992) proposed the
Orthogonal Defect Classification (ODC), a very famous and widely used process in both
industry and research studies. Being both language and domain-independent, ODC aims at
identifying the root cause of faults of a particular error type, in terms of the process life cycle
phase where the fault was introduced, so that the development process can be improved to
address such an identified problem.

98

6.1. FAULT CLASSIFICATION SCHEMES

Table 6.1: Classes of errors proposed by Basili and Perricone (1984).

• Requirements incorrect or misinterpreted.

• Functional specification incorrect or misinterpreted.

• Design error involving several components

– Mistaken assumption about value or structure of data.

– Mistake in control logic or computation of an expression.

• Error in design or implementation of single component.

– Mistaken assumption about value or structure of data.

– Mistake in control logic or computation of an expression.

• Misunderstanding of external environment.

• Error in the use of programming language/compiler.

• Clerical error*.

• Error due to previous miscorrection of an error.

* A clerical error stands for an usually minor, inadvertent negligence in computing a
figure, or recording or copying a fact or statement.

Faults of a specific type may be due to some cause in the process, as such the fault types
can be associated with the activities of different life cycle phases. This is the basic concept
of orthogonality applied in the ODC process. In this effect, ODC basically categorizes a fault
into classes that collectively point to the phase that needs attention. Table 6.2 summarizes the
relationship between faults types and the life cycle phases. In the ODC process, the reason for
such a small number of classes is that, having a small set to choose from makes classification
easier and less error-prone (Chillarege et al., 1992).

It is worth mentioning that, while a common software development process will include
phases like specification, design, code, and testing, in practice each organization can tailor such
a general process to fit their needs, thus including some variations. This explains why Chillarege
et al. (1992) considered a larger number of phases.

The main three categories of research employed towards understanding the differences of
defects and their nature, namely defect taxonomies, root cause analysis, and fault classification

schemes are usually based on one such a classification, each providing an in-depth view on the

99

Table 6.2: Defect types and their description based on ODC.

Fault type Process Associations (where
fault should be searched for) Description

Function Design
Error that affects significant capability, in-
terfaces (end-user, product, hardware), de-
manding a formal design change.

Interface Low-Level Design (LLD)
Errors interacting with other components,
modules, drivers etc., via macros, call state-
ments, control blocks, or parameter lists.

Checking LLD or code
Addressed program logic that has failed to
properly validate data and values before us-
ing them.

Assignment Code
Errors in the initialization of control blocks
or datastructure.

Timing/serialisation LLD
Errors concerning the management of
shared and real-time resources.

Build/package/merge Library code
Errors occurring due to mistakes in library
systems, management of changes, or ver-
sion control.

Documentation Publications
Errors affecting both publications and main-
tenance notes.

Algorithm LLD

Concerns to efficiency or correctness prob-
lems that may affect the task, and requires
(re)implementing either an algorithm or
data structure without requesting a design
change.

elements of interest.

From the perspective of source code implementation interest, Basili and Selby (1987) later
on adopted an abstract classification of errors classifying these in five categories, as Table 6.3
shows (Basili and Perricone, 1984). These categories basically represent all activities present
in any module of code. In addition, the categories are partitioned in errors of comission and
omission. The former are the result of including some incorrect executable statement or fact
(something incorrect), whereas the latter refers to the result of neglecting to include some entity
within a module (something missing).

Another general-like fault classification encompassing faults in source code is presented
in Burnstein (2003). Table 6.4 lists the defect classes, and give some examples, as the author
provides.

100

6.1. FAULT CLASSIFICATION SCHEMES

Table 6.3: Classification of errors from a source code perspective.

Class Description

Initialization Failure to (re)initialize a data structure properly upon a module’s input or output.

Control structure Errors causing an “incorrect path" in a module to be taken

Interface Errors associated with external structures the module depends on.

Data Errors that are a reulst of the incorrect use of a data structure.

Computation Errors that cause a computation to wrongly evaluate a variable’s value.

Table 6.4: Coding defect classes defined by Burnstein (2003).

Class Description

Algorithmic/Processing Adding levels of programming detail to design, code-related algorithmic
and processing defects.

Control, logic, sequence
Defect in decision logic, branching, sequencing, or computational algo-
rithm, as found in natural language specifications or in implementation
language.

Data Defect in data definition, initialization, mapping, access, or use.

Data flow Certain reasonable operational sequences that data should flow through.

Interface Defect in specification or implementation of an interface.

Typographical These are principally syntax errors.

More recently, Seaman et al. (2008) reported a defect categorization for source code, that
might also serve as the initial input for our investigation. They investigated a decade of varying
historical datasets containing, among others, design and source code inspection defect data.
Table 6.5 presents the categorization.

All these fault categorizations converge on intention as the determinant key of identifying
non-conformities in software behavior. By analyzing each of them we may notice a kind of
similar thought different authors have had, in different moments in time, and based on data from
different projects. However, despite the observed similarity, none of which is accepted as a basic
tool in software projects.

Two important aspects should be considered in order to make any of the classifications
above discussed useful nowadays. Firstly, it is necessary to have in mind that, due to modern
highly typed programming languages, with powerful IDEs to support source coding, it is likely
that a reasonable amount of errors found previously might not be evidenced today any longer.

101

Table 6.5: Source code defect types defined by Seaman et al. (2008).

Defect Type Description

Algorithm/method

An error in the sequence or set of steps used to solve a particular prob-
lem or computation, including mistakes in computations, incorrect
implementation of algorithms, or calls to an inappropriate function
for the algorithm being implemented.

Assignment/initialization
A variable or data item that is assigned a value incorrectly or is not
initialized properly or where the initialization scenario is mishandled
(e.g., incorrect publish or subscribe, incorrect opening of file, etc.)

Checking
Inadequate checking for potential error conditions, or an inappropriate
response is specified for error conditions.

Data
error in specifying or manipulating data items, incorrectly defined
data structure, pointer or memory allocation errors, or incorrect type
conversions.

External interface
Errors in the user interface (including usability problems) or the
interfaces with other systems.

Internal interface
Errors in the interfaces between system components, including mis-
matched calling sequences and incorrect opening, reading, writing or
closing of files and databases.

Logic

Incorrect logical conditions on if, case, or loop blocks, including
incorrect boundary conditions (“off by one” errors are an example) be-
ing applied, or incorrect expression (e.g., incorrect use of parentheses
in a mathematical expression).

Non-functional defects

Includes non-compliance with standards, failure to meet non-
functional requirements such as portability and performance con-
straints, and lack of clarity of the design or code to the reader both in
the comments and the code itself.

Timing/optimization
Errors thal will cause timing (e.g., potential race conditions) or per-
formance problems (e.g., unnecessarily slow implementation of an
algorithm).

Other
Anything that does not fit any of the above categories that is logged
during an inspection of a design artifact or source code.

For example, misplaced and unmatched brackets are considered one of the most common
syntax errors, however, IDEs usually provide developers with several mechanisms for finding
the matching brace for an if / for / do-while / while / try-catch code block, what
may prevent her to make such a mistake.

Thinking of implementing a feature in an ordinary programming language, it is all about

102

6.2. FAULTS IN VARIABILITY MECHANISMS

coding. To a certain extent, this is a correct statement. There is a piece of specification which
needs to be implemented, so that a program can be generated as an output. Hence, all these fault
categorizations, either process-oriented or source code-focused may be strongly relevant to SPL
engineering, as all of these problems are also inherent when implementing both a feature and a
combination of these. Nevertheless, this statement is partly true. In SPL engineering, features
interact with each other, not only in terms of models (e.g., feature models) but also, and more
importantly, in source code entities. Hence, a number of problems can either emerge or not
when implementing variable features in an SPL project.

Hence, establishing a general understanding of the common faults in variablity implemen-
tation serves as the main input to our proposed fault modeling support. Next section reports
on an empirical investigation aimed at gathering some evidence of defects found in variability
implementation. It is worth mentioning that we were by no means intended to provide an
exhaustive list of exactly what are the common defects found in variability implementation.
Instead, we limit our observations to the scope under analysis. However, it might provide some
insights for further investigations.

6.2 Faults in variability mechanisms

There have been some initiatives concerned about understanding the nature of errors/faults in
variability implementation, mainly covering C preprocessor issues (Nie et al., 2012; Medeiros
et al., 2013). Most research in the SPL engineering has been focused on the analysis of data from
projects implemented in the C language, where preprocessors are inherently good at enabling
product configuration in a straighforward manner.

However, by considering that SPL may also be implemented in other languages such as Java,
we devoted some effort to exploring the variability mechanisms available to this programming
language. Hence, our analysis encompasses Java-based variability implementation mechanisms.
From the commonly used variability mechanisms, as listed in (Svahnberg et al., 2005; Schnieders
and Puhlmann, 2006), we selected five of them, as Table 6.6 lists, that are usually implemented
as Java variability mechanisms. These are mechanisms we could, to a certain extent, observe
when analyzing the source code of open source software systems, next addressed in this Section.

Table 6.6 lists the origin of some faults found in each selected mechanism, and indicates the
binding time for each. We should have in mind that some of the listed faults can not be caught at
compile-time, but at runtime instead. In this effect, when designing test suites it is important not
to overlook the time to which faults should be searched for.

103

Table 6.6: Variability mechanisms in Java and likely source of errors

Variability mechanism Source of errors Binding time

Configuration files (pa-
rameterization)

• Setting of variant specific configuration file
entry

• Entries are not well-formed

• Detecting dependencies between configura-
tion parameters

Runtime

Dynamic class loading

• Variant-specific class loading

• Variant-specific typecast statement

• Variant-specific method call

Runtime

Interface implementation
• Variant-specific method body into method

header Compile-time

Polymorphism with sub-
classes

• Variant-specific subclass invocation

• Global variables statement
Compile-time/

Runtime

Static libraries
• Integration of variant-specific libraries during

compilation Link-time

Such a synthesized data was gathered from both the literature and informal talks with experts
in the field. Indeed, there is quite a few reports addressing typical variability implementation
issues other than those related to feature modeling.

By analyzing the widely used fault classification schemes, discussed in the preceding
Section, we employed the general categorization of faults defined by Burnstein (2003), to drive
the construction of the fault models for variability. Table 6.7 shows the classification scheme we
used in this investigation. The changes form the original scheme is that we merged the classes
data, data flow, and control flow, as in practice it is too hard to verify whether a problem is
more significant from either one of them (Thung et al., 2012). Besides, we removed from the
analysis the class typographical, given that the capability of the currently used IDEs prevent

104

6.2. FAULTS IN VARIABILITY MECHANISMS

programmers from making simple syntax errors. In most IDEs, when a syntax error is identified,
a warning message is usually displayed to the programmer. Examples of common syntax errors
include, but are not limited to: 1: missing semicolon; undeclared variable name; undefined class

name; unmatched parentheses; unterminated string constants; left-hand side of assignment does

not contain a variable; value-returning method has no return statement; mistyping the name of

a method when overriding; lines of code outside of methods; calling a method with the wrong

arguments; local variable not initialized. Special attention goes to error such as comparison

assignment, e.g., using = when == is intended. If the value is not a Boolean, this will cause a
syntax error. However, if it is not a Boolean, the compiler will not display any error message, for
the value of the assignment is exactly what the compiler expects. This case is clearly a semantic
error, that should be handled accordingly.

Such a classification scheme was designed based on the guidelines presented in the IEEE
Standard 1044:2009 (IEEE, 2009), which deals with the classification of software anomalies. In
the standard, an anomaly refers to both any condition that departs from the expected, and also
may indicate an enhancement. The term was employed for reasons of semantics, as a general
word that might represent the related words error, fault, failure, incident, flaw, problem, gripe,

glitch, defect or bug, that, in essence, conveys a more neutral conotation. Some of these were
defined earlier in Section 2.1.

Indeed, without clinging to semantic details, but the overall meaning of the word, and its
applicability in such a standard, we believe the underlying concept match our context and needs,
in terms of using a structured defect classification scheme. The standard offers a significant
process (step-by-step) to recognize, investigate, establish an action plan to handle such, up to its
disposition, in a form of a report.

6.2.1 Empirical study - Analysis of open source software systems

The SPL research community has far counted on the source code of open source projects, to
carry out investigation handling variability and feature issues. A recent large-scale investigation
(Liebig et al., 2010) consisted of analyzing the variability in forty preprocessor-based SPL,
around 30 million lines of C code. Authors analyzed the role of variability implementation in
cpp2, trying to understand the influence of variability and program size, as well as how cpp

handle extensions, that enable variability-awareness in software systems development.

1Information on common Java syntax errors are easily found in community websites, such as stackoverflow.
com. The literature is also another great source of such kind of issues.

2cpp is the macro preprocessor for the C and C++ programming languages.

105

stackoverflow.com
stackoverflow.com

Table 6.7: Coding defect classes

Coding Defect Classes Description

Algorithmic and processing Adding levels of programming detail to design, code-related algorithmic
and processing defects.

Control, logic, sequence
Defect in decision logic, branching, sequencing, or computational algo-
rithm, as found in natural language specifications or in implementation
language.

Data Defect in data definition, initialization, mapping, access, or use.

Interface Defect in specification or implementation of an interface.

We could take the set of systems reported in such a paper (Liebig et al., 2010). However, as
the authors only considered a single variability mechanism (conditional compilation), in a single
language (C), and the selected systems do not comprise access to their bug tracking systems,
so that we could track the reported bugs, we could not count on those software systems to the
purpose of our investigation.

Thus, the challenge was mainly about selecting some candidate projects, from which we
could identify the employed variability mechanisms. The task was to identify and classify the
faults which originate from the variability they implement.

6.2.1.1 Procedure

This activity consisted of the following steps:

1. Verify the reported issues. By analyzing the bug tracking systems of the selected open
source software, we could sketch a relationship between the reported entry (whether a
improvement, a defect, or a patch), and the source file. We only consider the defects-
related entries, and discarded the remainder. Besides, we analyzed the defects, attempting
to associate them with the existing classification.

2. Map defects/source files with variation points. As we leveraged the defects, we could
analyze their source files, in order to check whether they represented either a variation
point concern or not. Indeed, this work is not concerned about locating features in source
code (Dit et al., 2011), but instead, from the reported bugs, we attempted to identify
whether the associated source files represent a variation point.

3. Select and categorize bugs. As we identified the association variation point vs. bugs, we

106

6.2. FAULTS IN VARIABILITY MECHANISMS

Table 6.8: List of open source software systems.

Project Version Domain LOC Classes Packages

Apache Ant 1.8.4 Development toolkit 178,674 1,633 80

Apache JMeter 2.7 Measurement tool 110,031 1,159 124

Apache Log4J 1.2.17 Logging library for Java 37,891 413 37

could leverage the mechanism employed in that implementation. Therefore, we could have
an indication that the identified problem was associated to a given variability mechanism.

6.2.1.2 Datasets and empirical study settings

We aimed at identifying and classifying the faults which originate from the variability they
implement. We hypothesized that it was possible to define a fault dictionary by transposing the
effects of faults affecting the variability implementation.

We analyzed defects from three software systems:

• Apache Ant3 is a Java library and command-line tool aimed at driving processes described
in build files as targets and extension points dependent upon each other. The main known
usage of Ant is the build of Java applications. Ant supplies a number of built-in tasks
allowing to compile, assemble, test and run Java applications.

• Apache JMeter4 is an application designed to load test functional behavior and measure
performance. It may be used to test performance both on static and dynamic resources. It
can also be used to simulate a heavy load on a server, group of servers, network or object
to test its strength or to analyze overall performance under different load types.

• Apache log4j5 is a logging library for Java.

These are open source systems, mostly implemented in Java6. Table 6.8 provides some
measures for each software system7.

3http://ant.apache.org/
4http://jmeter.apache.org/
5http://logging.apache.org/log4j/docs/index.html
6The source code of most open source software systems contains source code in more than one language,

e.g., Apache Ant project contains 11 languages, from which about 70% was implemented in Java. Source:
http://www.ohloh.net/p/ant/analyses/latest/languages_summary.

7All metrics showed in Table 6.8 were collected with the Eclipse Metrics plugin. Available at http://
eclipse-metrics.sourceforge.net.

107

http://www.ohloh.net/p/ant/analyses/latest/languages_summary
http://eclipse-metrics.sourceforge.net
http://eclipse-metrics.sourceforge.net

All three projects use bugzilla as their bug tracking system. Every issue reported in bugzilla
is associated to a severity level (blocker, critical, regression, major, normal, minor, trivial,
and enhancement). Table 6.9 summarizes the number of valid issues from each repository
per severity level. The values include all entries within the status set: NEW, ASSIGNED,

REOPENED, NEEDINFO, RESOLVED, VERIFIED, CLOSED. Issues with UNCONFIRMED

status were discarded.

Table 6.9: Number of issues reported per severity.

Severity
Project

blocker critical regression major normal minor trivial enhancement

Apache Ant 188 203 66 521 2646 455 49 1706

Apache JMeter 53 60 30 247 1156 216 41 850

Apache Log4J 54 77 8 135 754 98 20 219

6.2.1.3 Study operation

We collected random bugs from the bugzilla repositories of the respective software systems: 500
from Apache Ant (from a total of 5834), 200 from Apache JMeter (from a total of 2653), and
100 from Apache Log4J (from a total of 1365). Thus, in total we have 800 randomly selected
defects. As earlier mentioned, as we discarded any enhancement labeled entry, all 800 entries
we selected are actual defects reported in bugzilla.

We manually carried out the categorization of issues, by associating them to the coding
defect classes presented in Table 6.7. There are some initiatives to propose automated defect
categorizations, mainly using machine learning models, such as the Suport Vector Machine
(SVM) (Thung et al., 2012), neural networks (Glazer and Sipper, 2008), naive bayes, decision
trees, etc. In order to increase the confidence on the results, we carried out a manual classification.
Table 6.10 shows our findings. The last column (N/C) shows the number of issues we could not
classify into any category, as those could not fit into any of the coding defect classes.

Next step was to identify, among the defects, the classes they were referring to. That is, if it
had been possible to make any association with the classes, then we could associate the defect
to a class. In case it was possible, we verified whether the class was subject to implementation
of one (or more) of the selected variability mechanisms. Then we could make an association
between the defect class and the mechanism implemented.

In practice, it might be hard to retrieve information whether a variability mechanisms found
when walking through the source code were used in the software development project with

108

6.2. FAULTS IN VARIABILITY MECHANISMS

Table 6.10: Defect statistics from the open source software systems

Project Algorithmic Control & Data Interface N/C

Apache Ant 105 (62) 280 (98) 30 (18) 85

Apache JMeter 43 (28) 113 (52) 12 (10) 32

Apache Log4J 18 (10) 59 (35) 5 (5) 18

N/C: Not classified.

the intent of expressing variability, or simply to benefit from the capabilities of the construct,
in a non-variability-related implementation. This is especially due to the common lack of
documentation to clarify such kind of specifications.

However, taking the perspective that, independently on the purpose, the faults introduced with
the use of a given mechanism might be experienced in both scenarios. Therefore, understanding
the common problems might be helpful both to use the mechanisms constructs with the intent of
either implementing variable entities or not.

There are some bugs in which it is easy to verify the class associated, e.g., Bug ID #509
from Log4J8, as the reported provides a stack trace of the problem. Hence, all involved files can
be traced back. See Figure 6.1 for a snapshot of the issue. However, this was not the average
case. In most reported issues it is impossible to trace with the file from which the problem was
identified. Whenever it was the case, we discarded the issue. In this particular case, one of the
associated class implements polymorphic methods. Hence, the issue could be associated to the
control & data class of defects.

In Table 6.10, the values between parentheses represent the among of defects we could
associate with the source files. Next Section summarizes the results.

6.2.1.4 Results

Table 6.11 shows the results of the analysis of the source code. We associated every variability
mechanism - dynamic class loading (M1), interface implementation (M2), polymorphism with

sub-classes (M3) - to the coding defect classes - algorithmic, control, data, interface. The Table
shows data for every system analyzed, as follows: Apache Ant (A), Apache JMeter (B), and
Apache Log4J (C), and the total amount of defects found per mechanism with respect to each
defect class.

From Table 6.6, the first and fifth selected mechanisms, respectively configuration files

8https://issues.apache.org/bugzilla/show_bug.cgi?id=509

109

https://issues.apache.org/bugzilla/show_bug.cgi?id=509

Figure 6.1: Snapshot of issue # 509 from Apache Log4J project.

Table 6.11: Results from the analysis of open source systems

M1 M2 M3

A B C Total A B C Total A B C Total

Algorithmic 28 12 4 44 10 3 2 15 24 13 4 41

Control & Data 39 25 18 82 8 6 5 19 51 21 12 84

Interface 0 0 0 0 14 8 3 25 4 2 2 8

and static libraries were left out from the analysis. We did not find problems associated to
configuration files. In the latter, we observed that problems associated to such a mechanism are
usually lack of calls to an external libraries, i.e., it is usually managed by the IDE, in project
settings (jars to be added to the project classpath). We only find a few issues reporting those
kind of problems, e.g., issue #385139 from Log4J project.

Table 6.12 provides detailed information on the kinds of errros found. Besides such kinds of
errors, there is another set of problems that may occur when implementing variable features, as
(Al-Hajjaji et al., 2014) states: independently on the mechanism chosen to implement variability,
a defect may occur whenever a specific feature is not selected. For example, if a feature initializes
a variable, when the feature is removed, a defect occurs. A defect may also occur whenever two
specific features are selected. For instance, one feature calls a method in another feature and the
retrieved value is wrong. Next, whenever a specific feature is selected while the another feature
is not selected. For instance, one feature calls a method from a feature that is not selected.

We should observe that each of these new listed problems, together with those listed in Table

9https://issues.apache.org/bugzilla/show_bug.cgi?id=38513

110

https://issues.apache.org/bugzilla/show_bug.cgi?id=38513

6.2. FAULTS IN VARIABILITY MECHANISMS

6.6, may be associated to any of the four defect classes analyzed.
Data from Table 6.11 enables deciding which parts test should be focused on, i.e., which

kind of defects a test strategy should be directed. For example, the mechanism M1 is more
associated to control & data issues, rather than interface issues. This is where the use of fault
models is encouraged. Once data about the most occurring kinds of defects is available, a test
strategy should prioritize the use of fault models intended to find those most recurring problems.
Although we have not considered the severity level of each reported defect, such an information
would be valuable to define a test prioritization strategy.

6.2.1.5 Limitations

By carrying out this empirical study, we understand that there are some limitations that prevent
us from generalizing the results. First, we understand that not all defects would be related to a
variation point, and also that this was a labor intensive and error-prone work. We attempted to
mitigate such a problem by involving another interested researcher, that could use such outcomes
to their investigations. It may, to a certain extent, reduce the bias, and strenghten the evidence
base.

The analysis only included three software projects, and only a few variability mechanisms.
Also, we did not validate the classification with external developers. It would be a good strategy
to strengthen the evidence base. Besides, for the small amount of data, we decided not to carry
out any statistical analysis based on the gathered data.

However, we have some indications on how defects are distributed in three important
variability mechanisms, that are widely used in practice, not only in the development of SPL
projects, but also variant-rich systems. The results may serve as an insight for those intended
to prioritize test design based on the most occurring problems faced when any of the given
variability mechanisms are employed in the construction of her variable software projects.

Table 6.12: Fault models for implementation issues

Fault type Fault list

Algorithmic and pro-

cessing

1. Unchecked overflow

2. Underflow conditions

Continued on next page. . .

111

Fault type Fault list

Algorithmic and pro-

cessing

3. Comparing inappropriate data types

4. Converting one data type to another

5. Incorrect ordering of arithmetic operators

6. Miunderstanding of operator precedence

7. Not using a block when one is required

8. Code that is inside a loop, but that does not belong there

9. Loops that iterates one more or one fewer time than it is supposed to

Data

10. Incorrect data initialization

(a) A variable should be initialized, before it is used.

(b) A variable should not be initialized twice before there is an

intermediate use.

(c) A variable should not be disregarded before it is used.

11. NULL object references

12. Incorrect data type or column size

13. Incorrect variable name

14. Valid range undefined

15. Incorrect relationship cardinality in data model

16. Missing or incorrect value in pick list.

Continued on next page. . .

112

6.3. CHAPTER SUMMARY

Fault type Fault list

Control, logic, se-

quence

17. Dangling else clause

18. Incorrect sequencing of operations

19. Incorrect operator or operand in expression

20. Missing logic to test for or respond to an error condition

21. Input value not compared with valid range

22. Missing system response in sequence diagram

23. Ambiguous definition of business rule in specification

Interface

24. Design incapable of supporting stated requirements - the module

interface is not coded as designed

25. Incorrect derivation of physical data model from logical data model

26. Incorrect application program interface design

6.3 Chapter summary

The underlying basis to build a fault model is to understand which kind of problems one should
meet in a given portion of the software development lifecycle. Those kind of problems will
serve as the basis to build fault models to support variability testing. Indeed, depending on the
application domain, a subset of a general fault model could be useful.

Hence, along this Chapter we presented the most common and widely used fault classification
schemes. From these, we tailored a classification scheme we believe to be useful to support
categorizing defects found in variability testing. We applied the scheme in the analysis of three
open source software systems, aiming at observing how faults are distributed, in terms of both
the fault categories and the variability mechanisms employed in the implementation of those
project entities.

The results from the analysis of open source software systems consist of an important input
for designing fault models to support variability testing. Those point our the classes of defects

113

that may occur when implementing a feature using a given mechanism.
Next chapter discusses our fault modeling proposal in details, that makes a wide use of the

fault classification scheme detailed in this current Chapter.

114

7
Fault Modeling for Variability Testing

A key goal in SPL testing is to maximize the quality of products delivered to customers while
reducing the cost of testing. As earlier discussed in this thesis, the presence of variability in the
features poses a special challenge to SPL testing.

The previous chapters were dedicated to understanding how the existing SPL testing strate-
gies might contribute to achieving such a goal, and also as errors constitute an unavoidable
aspect of software development, and this holds true for SPL engineering as well, we also inves-
tigated the common faults in variability implementation, as a means to define a suitable fault
classification scheme.

We hypothesize that understanding the nature and frequence of occurrence of errors works as
a good strategy to improve test effectiveness. This knowledge can be used to build suitable fault
models. Based on fault dictionaries, fault models guide the test case design and assessment, by
pointing out and prioritizing testing on the most fault-prone elements, attempting to demonstrate
that the set of prescribed faults are not present in the system. As a result, increased fault detection
rates, while avoiding wasting time and effort.

In this Chapter, we present the proposed approach to building fault models for variability
testing, that employs the knowledge acquired so far. The remainder of the Chapter is organized
as follows. In Section 7.1 we provide an overview of the fault model based support for SPL
testing. Sections 7.2 and 7.3 addresses the capability of the proposed approach to cope with test
case assessment and design, respectively. Section 7.4 reports on a controlled experiment aimed
at evaluating the effectiveness of the proposed approach, and Section 7.5 concludes the Chapter.

115

7.1 Overview of the approach

Software testing usually focuses on detecting differences between the observable behavior of a
system and its specification, by exploiting the concept of errors. The more errors are found, the
more effective the testing strategy employed is. Thus, the ultimate goal of a software testing
strategy is to find errors before delivering the final product to customers.

Fault modeling is an engineering model to capture the behavior of the system against faults.
A fault model relates faults that a programmer typically makes when implementing a set of
requirements to the observable errors they produce. Fault models specify, by means of a fault
dictionary, which kinds of faults have to be detected by a test. Hence, test case design and
assessment can be guided by fault models to improve test effectiveness. Test effectiveness
focuses on improving the quality of test inputs and test oracles (Xiao et al., 2012).

Considering an SPL product instance as a composition of features, the quality of each
product is strongly dependent on the quality of each individual feature, as well as on the quality
of the interaction among features. Recall the impact a single problem within a feature may have
on the set of products that make use of it. Feature implementation lies on the use of one or more
variability mechanisms, so that the variability modeled in the problem space can be materialized
into code artifacts in the solution space.

In this effect, we may weight the importance of keeping features, both individually and in
conjunction, at an adequate level of quality. A fault modeling approach may aid in the process
of improving the level of quality. Let us briefly discuss the role of fault modeling from a broader
perspective, thus taken into account the overall SPL engineering process.

Recall the generic fault model-based process earlier introduced in Section 2.6 (c.f. Figure
2.3). It consists of a common software development life cycle, in which an element, so called
fault model will be part of each life cycle phase.

We incorporated the two SPL processes, domain and application engineering, in an overall
fault model-based SPL development life cycle, as Figure 7.1 shows. In either process, the V&V
activities in each life cycle phase are the first line of defense. For example, employing proper
techniques for requirements verification (Corriveau et al., 2011) aid in the identification of
non-conformities before proceeding to the SPL design. In addition, an archictetural analysis
method, such as the ATAM method (Kazman et al., 2000) might be applied to identify and report
some types of inconsistency among design scenarios. Table 7.1 shows a list of strategies (line of
defense) for each software life cycle phase.

It is possible to incorporate fault models in each life cycle phase, in order to guide the

116

7.1. OVERVIEW OF THE APPROACH

Table 7.1: Testing strategies and the life cycle

Phase Line of defense

Requirements

• Observe completeness, consistency, feasibility, and testability

• Attempt to identify missing, wrong, and extra information

• Determine testing strategy, generate functional test cases and test
specification, perform reviews and the like

Design

• Functional and structural tests can be devised on the basis of the
decomposition

• The design itself can be tested - against the requirements, the
architecture can be evaluated (e.g., using the ATAM method)

• Formal verification techniques can be employed

Implementation

• Check consistency between implementation and previous docu-
ments

• Code-inspection and code-walthrough

• All kinds of functional and structural test techniques

• Formal verification techniques

Maintenance • Regression testing - either retest all, or a more selective retest

117

DOMAIN ENGINEERING
DOMAIN
REQUIREMENTS

DOMAIN
DESIGN

DOMAIN
IMPLEMENTATION

DOMAIN
TESTING

APPLICATION ENGINEERING

APPLICATION
REQUIREMENTS

APPLICATION
DESIGN

APPLICATION
IMPLEMENTATION

APPLICATION
TESTING

LEGEND:
Faults
Expected

Faults
Propagated

Faults
Introduced

Faults
Eliminated

Faults
Models

Figure 7.1: Fault Model-based SPL Process.

specification/design of the artifacts, having in mind the likely mistakes anyone can make, when
in charge of such a task. The goal is to minimize the amount of faults that are propagated from
one phase to another.

Indeed, later phases will also search for those faults that are expected to be propagated from
the earlier phases. However, this is where the exponential problem comes into play. Considering
that a specification has a problem that had not been identified before leaving to the design
phase, and such a problem was then modeled as an architectural design, and, the problem
earlier introduced in the specification phase had not been identified again. Proceeding in the
life cycle, the implementation is going to materialize such a problem, that much probably will
only be identified when testing is carried out. The cost to repair every single artifact, and
much probably another set of artifacts that have also been affected by the problem, will be

118

7.1. OVERVIEW OF THE APPROACH

exponentially increased.
As a single artifact built in domain engineering may be reused in a range of products,

observe from Figure 7.1 that not only inter-phases fault propagation but also inter-processes

fault propagation may also occur. That is, a single fault in a domain artifact may affect the
development life cycle of a range of products.

With fault modeling support, in each phase, a set of fault models can be associated to the
V&V activities, and expected fault types and introduced fault types are searched for. The fault
models represent the set of instructions to follow to proactively anticipate the problems in the
software project. Irrespective of their abstraction level, the whole range of development phases
enable to study and leverage its properties, serving as an input to build a fault model for that
particular phase.

While a complete fault modeling approach should consider all the software development life
cycle phases, the approach proposed in this thesis narrowed down the focus to investigate the
problems that are likely to occur when implementing either the source code or the test scripts.

The preceding phases, such as requirements and design, as well as other important SPL-
related concerns (product derivation, process and management aspects) are left aside in this
thesis. The literature on SPL engineering has provided researchers with a large set of explicit
activities and operations to follow in the formulation of both specifications - comprising features
and requirements, e.g., (Corriveau et al., 2011; Souza et al., 2013), and design - encompassing
activities to assess the quality of the product line architecture, e.g., (Matinlassi et al., 2002;
Thiel, 2002; Etxeberria and Sagardui, 2005; Kim et al., 2008; Etxeberria et al., 2008; Nakagawa
et al., 2011), just to name a few, that are relevant to build fault model specific to inspecting such
artifacts.

Figure 7.2 shows the overall variability testing workflow, enhanced by the fault modeling
support. It shows the relationship between the fault models and the test process. The solid
arrows (direct link) represents a relationship among test tasks (design, execution, and reporting),
and between test phases and other elements (design, source code, fault models, test cases, and
knowledge base), emphasizing which ones provide input to others. There are two more kinds of
relationships, represented by dashed arrows: (i) subjective link (produces), that particularly indi-
cates that test cases are produced by the task test design, and (ii) subjective link (uses/analyzes),
that indicates that some test phase/element makes use of any other element.

The fault models, by means of their associated fault dictionaries, will be mainly used to
support the design of test cases. The fault dictionaries pinpoint which faults are more likely to
occur, given a particular variability mechanism, involved in the source code implementation. To
this end, fault models should be aware of variability mechanisms used in the project.

119

Test CasesTest CasesTest Cases

Test CasesTest CasesSource Code

Variability
Information

Test Execution Test ReportingTest Design

Test CasesTest CasesFault Models Knowledge Base

Test CasesTest CasesDesign

LEGEND: Subjective Link (produces)Direct link (actual input) Subjective Link (uses/analyzes)

Figure 7.2: Overall variability testing workflow, enhanced by the fault modeling support.

The fault model is a living document so that, as new faults are found that have not been listed
in the model, an analysis on the problem should be undertaken, so as to enable its incorporation
into the model. For this reason there is a feedback arrow, from the test reporting task to the
knowledge base repository. The idea behind a knowledge base comes from the fact that all
fault models can evolve to include novel constructs. And test running can be the input of such
information. The repository specifications are not detailed herein, but in essence it comprises
the list of fault models, and their semantics, namely descriptions on which scenario it should be
applied to. The idea behind it might be compared to design patterns, where known problems
are modeled to avoid repeating the problem. Likewise the patterns, in which developers are
provided with usage scenarios, every fault model is expected to accomplish a real application
scenario.

Despite the capability of current technologies (both hardware and software) have reduced to
a minimum the effort of automatically generating the test sets, a huge subset of the generated
test cases may be useless. Hence, rather than generating huge sets of test cases, it seems to
be more important to sketch a strategy to aid in the understanding of how the program should
behave, under a set of cirscumstances, so that testing can be focused on uncovering the most
likely faults.

120

7.2. FAULT MODELING FOR TEST SUITE EVALUATION

A fault model contains historical data about commonly occurring errors, with data coming
from two main sources: (i) data from the same project under evaluation, in case past test runs has
provided the knowledge base (c.f. Fig. 7.2) with appropriate feedback, or (2) from a historical
database, which encompasses knowledge from other projects implemented in similar conditions,
in terms of project domain, size, programming language, etc. All such information might
influence the fault distribution and occurrence, and should be taken into account accordingly.

Inspired by the theory of fault-based testing by Morell (1990) and highlights from the work
of McGregor (2008), who first introduced the notion of fault modeling in SPL engineering, we
next describe how variability testing, key in SPL engineering, can benefit from a fault modeling
approach. The approach addresses two main perspectives: first, applying the fault model concept
towards assessing existing test sets, and second, aiding at designing test cases, by prioritizing
test effort according to fault-proneness of the elements in the source code.

It is worth mentioning that we are not concerned about generating test suites for SPL feature
models, but instead generating test suites for the actual source code of SPL features, in line with
the second known SPL interest, as discussed in (Machado et al., 2012b).

7.2 Fault modeling for test suite evaluation

For the purpose of this perspective, we can assume that an SPL project already comes with a
test suite. As a consequence, every product instance may comprise a subset of the SPL test suite.
Considering we are strictly working in testing variability mechanisms implemented in Java, we
could consider test suites as a set of test scripts, implemented in any ordinary test automation
framework such as the JUnit.

This first perspective is aimed at employing fault models to evaluate the effectiveness of the
existing test sets. Figure 7.3 illustrates the evaluation workflow.

Let an SPL be a tuple < F,T > where F is a feature set, and T is a test suite. Program
P ∈< F,T > is a runnable instance of the SPL. P is not an actual product instance, but it is rather
a valid subset of features Φ ⊆ F, or even a single feature fi ∈ F, that can be tested as an isolated
instance. Hereinafter, each P will be referred to as a Program Under Test (PUT).

Each feature f ∈ F may be associated to a set of tests t ∈ T . Let R be a subset of T , then there
is a function X : F → R, which represents the set of test cases that are suitable to a feature fi.
Each feature fi also holds information about the mechanisms M = {me0,me1, . . . ,men} employed
to implement variability in the feature. As we intend to take into account variability information,
we consider that a variability implementation mechanism m ∈ M can be associated to a set of

121

Test CasesTest CasesSource Code

Mutation
Operators

Test ReportingTest Execution

Test CasesTest CasesFault Models

Knowledge Base

Fault Injection

Measurement

Test CasesTest CasesTest Cases

Test CasesTest CasesDesign

LEGEND: Direct link (actual input) Subjective Link (uses/analyzes)

Figure 7.3: Overview of the evaluation workflow.

fault models FM = { f m0, f m1, . . . , f mp}, so that Y : M→ FM. Figure 7.4 illustrates how this set
relation could be in practice, namely there might be several fault model serving any variability
mechanism, and vice-versa.

A fault model f mi subsumes information about fault types to search for when testing a pro-
gram P which uses it. Building a fault model consists of analyzing historical data to understand
which fault types, and associated faults, are occurring in a given variability mechanism, and in
which frequency range.

Now, let S be the program specification represented schematically as S ` {∀inputs,∃output |

spec(input,output)}, where input is a vector of arguments, output is an expected result and
spec is a proposition function describing the required relation between them. Hence, a program
P under test (PUT) is a 3-tuple < X,Y,S >.

Testing P consists of checking that the behavior of an implementation, its actual output is
conform to its specification, namely its expected output (the output from function spec above),
given a set of inputs.

122

7.2. FAULT MODELING FOR TEST SUITE EVALUATION

m3

fm3

m4

m1

fm1

m2
fm4

fm2

fm7

fm5

fm6

Y: M → FM, {fm ∈ FM | ∃m ∈ M such that (m, fm) ∈ Y } ⊆ FM}

(m1, fm1), (m1, fm2), (m1, fm7)
are fault models suitable to the variability mechanism m1

(m2, fm1), (m2, fm3), (m2, fm4)
are fault models suitable to the variability mechanism m2

(m3, fm1), (m3, fm2), (m3, fm4), (m3, fm6)
are fault models suitable to the variability mechanism m3

(m4, fm1), (m4, fm2), (m4, fm3), (m4, fm7)
are fault models suitable to the variability mechanism m4

Figure 7.4: Set relation F→ FM illustrated.

Hence, to carry out test evaluation, a subset of features Φ will be selected. Each fi ⊆ Φ

is associated to a set R of test cases. These are developer tests, i.e., those developers design
to test their code as they write it, as opposed to the tests done by a separate quality assurance
organization. Developer testing, often in the form of unit testing, helps developers to both gain
high confidence in the program unit (e.g., a class) under test while they are writing it, and reduce
fault-fixing cost by detecting faults early when they are freshly introduced in the program unit
(Xiao et al., 2012). However, as we are dealing with features composed of one or more classes,
we also consider the integration test level. While a unit test is usually a sequence of method
calls on an object instance, therefore the main components are method and constructor calls, an
integration test involves interfaces between components, and, from a broader perspective, the
likely interaction between features, whenever a feature depends upon calling an external object.

Furthermore, as each fi ⊆ Φ holds information about the variability implementation mecha-
nism, then let f aultModels(m) be a function that returns a list containing the classes of errors of
the fault models that are appropriate to the mechanism m ∈ fi.

Besides, let τ(P,R) be a function that executes test cases tn ⊂ R on program P against the
specifications S and returns the outcome of the test execution. The actual output can be of one
of the following types:

1. Pass: The execution of P against ti succeeds.

123

2. FailCE: The execution of P against ti fails because a class or method accessed in t does
not exist in P.

3. FailRE: The execution of P against ti fails due to an uncaught runtime exception.

4. FailAE: The execution of P against ti fails due to an assertion violation.

Please notice in Figure 7.3 the presence of a task called fault injection, and a repository
called mutation operators. In mutation analysis terminology, a mutant is a version of a software
program which differs from the original by a single potential error (DeMillo et al., 1978). A
mutation operator is a function which is applied to the original program to generate a mutant
(Martin and Xie, 2007). Hence, we can use a set of mutation operators to describe all expected
errors, and therefore defines the behavioral fault model. The proposed approach does not make
distinctions, for the time being, between static and dynamic fault injection. Given that we
combine mutation analysis and fault injection, we could be inclined to narrow down the focus to
the former. However, it is important to mention that a wide variety of faults listed in the fault
models can be dynamically emulated as well.

Given a set of test cases T , the fault models may indicate some mutation operators to program
P to produce a modified version, a mutant P′. A set of representative faults, suggested by the
fault models, are injected into the code of P. Hence, let function τ(P,T) be executed.

Then, it will be possible to measure the adequacy of test cases, i.e., a test case is adequate if
it is effective at detecting faults in the program (Offutt et al., 2001).

The mutants are run with an input data input from a given test set T . If a test set can
distinguish a mutant P′ from the original program P, i.e., it produces a different output, the
mutant P′ is said to be killed. Otherwise, the mutant is called as a live mutant. That is, if after
modifying the source code, with the set of mutatns, the same output is observed, it means that
the test cases are not adequate enough. Conversely, a test set which can kill all non-equivalent
mutants is said to be adequate. That can be explained by the mutant score calculation, as follows.

The mutation score ms(P,T) is defined as the ratio between the number of mutants detected
and the total number of mutants minus the equivalent ones (Jia and Harman, 2011). A mutant is
said to be equivalent if it syntacticaly differs from the original program, but semantically the
mutation can not be detected. A test set T is mutation adequate if its mutation score is 100%.
The score ms can be calculated as follows:

ms(P,T) = 100∗
DM(P,T)

MT (P)

124

7.3. FAULT MODELING FOR TEST SUITE DESIGN

where:

• DM(P,T) is the number of mutants killed by T ;

• MT (P) is the total number of mutants generated from P;

Fault models are expected to increase the probability of finding a given fault as the associated
metric. However, this attribute should really reflect the percentage of faults that the technique
can detect.

7.3 Fault modeling for test suite design

The second perspective encompasses the fault modeling support for test design purposes. Relying
primarily on a prioritization strategy, test design seeks to identify what to look at prior to testing.

Test CasesTest CasesSource Code

Test ReportingTest Execution

Knowledge Base

MeasurementTest CasesTest CasesError Revealing
Test Cases

LEGEND: Subjective Link (produces)Direct link (actual input) Subjective Link (uses/analyzes)

Test Design

Test CasesTest CasesFault Models

Variability
Information

Prioritize Units

Figure 7.5: Overview of the test generation workflow.

There exists a bunch of formalized test prioritization techniques, as deeply discussed in
(Catal and Mishra, 2012). Most of them are concerned about establishing effective means
to improve test case selection aimed at regression testing. They are usually concerned about

125

analyzing past historical data about modules structure (e.g., size, coupling, etc), bugs reported,
bug fixing modifications, and general maintenance modifications. Based on such data, some
heuristics are calculated that enable prioritization.

Our goal is not to propose a novel test case prioritization strategy. Indeed, this perspective
aims at prioritizing the units for testing, not the test cases themselves, as they still do not exist.

Figure 7.5 shows an overview of the test design workflow. There is a task called prioritize

units. We followed the prioritization principles first introduced by (Rothermel et al., 2001).
The heuristic defines that each unit in the source code will be attributed to a weight, namely an
integer value. The prioritization strategy consists of analyzing every attribute and weighting
every unit. The principle is that the element with maximum weight is taken first, followed by
the element with the second highest weight, and so on.

A feature fi is composed of a set of units ui ∈ U. Following the ideas of generating unit
tests described in (Fraser and Zeller, 2012), and tailoring it to subsume integration concerns,
as it may illustrate how variable entities should interact with each other, let a unit be a 6-tuple
u =< cs,ms, f s, ps, δ,ε >, with all values of type integer, where:

• cs is the number of constructor statements in a unit;

• ms is the number of method statements;

• ps is the number of primitive statements;

• δ is the number of calls to internal units, i.e., units from the same feature;

• ε is the number of calls to external units, i.e., units from other features.

In order to simplify the understanding, let us assume that a unit is always a Java class, and
that every feature is associated to one or more Java classes. Conversely, one single class is
considered not to belong to more than one feature. Thus, testing an “unit” must concentrate on
the state of the objects and check that the state remains consistent when executing the operations
of an object.

For example, let us consider the feature model of the PL_SimElevator project (this is further
detailed in Section 7.4) Figure 7.7 shows. We analyzed the entities from such an SPL project.
Table 7.2 shows metrics of some of the classes, according to the prioritization strategy elements.

Although Table 7.2 includes a last column called weight. in which the sum of the values is
given, the prioritization depends on which elements the engineer consider as the most important
for the project. However, it is also possible to consider the sum of all value. For example, if the

126

7.3. FAULT MODELING FOR TEST SUITE DESIGN

Table 7.2: Data from the PL_SimElevator SPL.

Feature Class cs ms ps δ ε Weight (Σ) Mechanisms

A: ArrowButton 1 7 5 0 3 16

B: AuthorizeButton 1 1 0 0 0 2

C: DefaultButton 3 8 6 0 6 25
1. Buttons

D: EmergencyButton 1 4 7 0 0 12

m1, m2

E: SuperController 1 5 0 4 3 13

F: AbstractController* 1 20 10 0 5 36

G: DistanceEController 1 9 2 0 18 30
2. Controller

H: DefaultEController 1 7 0 0 10 18

m1, m3, m4

I: Elevator 0 10 5 0 0 15
3. Elevator

J: Target 2 6 3 0 0 11
m1

(*) Abstract class. Only concrete methods were considered.

prioritization strategy considers the total amount, the order of the units for which test cases will
be designed can be F-G-C-H-A-I-E-D-J-B.

Special attention should be paid to the presence of abstract classes. Notice from Table 7.2
that the abstract class (F: AbstractController) received the highest total weight. In order
to design a unit test for such a class, the test engineer should simply write a mock object1 and
use them just for testing (Freeman et al., 2004). They usually are very minimal (inherit from the
abstract class) and not more. Then, in the unit test she can call the abstract method she want
to test. Unless the abstract class does not contain some logic, it should be tested like all other
concrete classes.

Furthermore, the task prioritize units has as input the source code and the fault models.
The source code contains variability information to be consumed by the prioritization task in
order to select the most suitable fault models. From function Y : M→ FM, where M is a set of
variability mechanisms, and FM a set of faults models (f mi) | (f m ∈ FM) that can be suitable to
any m ∈ M.

It is expected that each unit has information about the variability mechanism employed in its
construction, so that the PUT can be associated to a set of fault models (c.f., Fig. 7.4). Hence, it
is important to know which mechanisms each feature (and its associated classes) implement, so

1A mock object is simply a debug replacement for a real-world object.

127

that proper fault models can be associated to it.

In the running example, the variable classes mostly implement the following mechanisms:
configuration files (m1), dynamic class loading (m2), interface implementation (m3) and poly-

morphism (m4).

We should mention some important facts about the variability implementation in this SPL
project. The use of configuration files is a capability of the EASy-Producer tool, we used to
handle this SPL project2. The tool enables the selection of features for a product instance
based on the use of configuration files. While we are not dealing with how the tool works,
as it is not the scope of our investigation, we are concerned about the way the features are
included or not given a selection. Other widely used variability engineering tools might work
differently, e.g., Feature IDE (Thüm et al., 2014), BigLever Gears (Krueger and Clements, 2013),
or pure::variants (Beuche, 2013). We worked with the EASy-Producer tool both for convenience
and easiness of mapping configuration files and features.

The general idea underlying the selection of features is to associate each configuration file
entry, disposed sequentially in a .ivml file (c.f. Figure 7.6 for an .ivml file sample), with
a Boolean global constant, and if-else blocks of code are called whenever such kind of
variability is requestes. Indeed, how the tool parses the code is not explicit.

Figure 7.6: Example of a .ivml file containing the selection of features.

In addition, in this project dynamic class loading was implemented using the Java Reflec-

2EASy-Producer is a tool for the development of Software Product Lines. It was developed by University of
Hildesheim, SSE, Germany. More information can be found at: http://www.sse.uni-hildesheim.de/en/
EASy-Producer

128

http://www.sse.uni-hildesheim.de/en/EASy-Producer
http://www.sse.uni-hildesheim.de/en/EASy-Producer

7.3. FAULT MODELING FOR TEST SUITE DESIGN

tion API. The remainder variability mechanisms were implemented like any ordinary Java
implementation.

In this particular project, it was not difficult to associate variability mechanisms with the
units, as this sample SPL project was designed for academic purposes, so that all documentation
is available. However, for legacy systems where there is no clear mapping between mechanisms
and software entities, it might be harder to select the fault models based on the variability
mechanisms. It is a scenario which demands the presence of both a domain expert and someone
with adequate knowledge on the software project architecture.

Figure 7.7: Feature model of the elevator simulator SPL.

Let us consider that there is no test suite available to the PUT, i.e., P ∈< F,∅ >. The goal
is to find all r ∈ R | R ⊆ T ∧F→ R. On the other hand, the goal of R is to encompass tests that
show that particular classes of faults, defined in the fault model, are in program P when τ(P,R)

129

is executed.
For the purpose of documentation, for each test case, an entity called test purpose, containing

some statements indicating what kind of errors the test case tries to detect, is suggested. It comes
from the observation that, although the fault models can be implicitly realized by observing
how their test cases are generated, the absence of explicitly stating so gives the impression that
having fault models beforehand is unnecessary.

It is important to be aware that, although most of the fault types are programming language-
independent, the language that is used might affect how the faults manifest.

In this approach, observe that instead of using fixed fault models to generate test cases, the
task of defining fault models is left to the users. Leaving the duty of specifying fault models
to the users provides more flexibility for generating test cases. That is, a general method is
proposed such that test cases can be generated by using any software suitable testing technique.

7.4 Empirical evaluation

This section describes a controlled experiment performed in an industrial setting that aimed
at evaluating the strength and significance of the proposed fault modeling approach. The
experiment involved seven experienced software engineers, all of them familiar with the devel-
opment of variant-rich software systems, but not familiar with SPL engineering. We analyzed
how the fault models could support the testing of variable features in an SPL project.

7.4.1 Experiment planning

This experimental study focused on the following research questions:

• RQ1. Does the use of fault models lead to best variability testing results? This
question aims at investigating whether the fault modeling solution is worthwhile to be
used by practitioners.

• RQ2. Is the fault modeling approach helpful to uncover the faults that the fault
models prescribed? Not only finding more errors, but finding those that were actually
pointed out by the fault models might be another measure of effectivenes. Hence, this
question aims to measure the precision, recall, and F-measure of the results, for assessing
accuracy.

This study was inspired by the preliminary evaluation reported in Chapter 5. We cannot
assume this as a replication study, but in practice they both share some elements. This holds true

130

7.4. EMPIRICAL EVALUATION

for the set of metrics used in this experiment. From the preliminary evaluation, we applied the
following two metrics:

• Test Case Effectiveness (TCE)

• Test Coverage (TCov)

We also calculated the ms score, as earlier defined in Section 7.2, to assess whether the fault
models help identifying the expected fault types.

7.4.1.1 Hypotheses

The use of fault models to anticipate hot spots for testing is assumed to yield better fault
coverage, improving the software testing activity. Thus, we formalized the definition of the null

and alternative hypotheses that drive this investigation. Table 7.3 shows both the null (H0n) and
alternative (H1n) hypotheses.

Table 7.3: Hypothesis formulation - PL_SimElevator SPL.

Null Hypothesis Alternative Hypothesis

H01 : µTCEFM ≤ µTCEAH H11 : µTCEFM > µTCEAH

H02 : µTCovFM ≤ µTCovAH H13 : µTCovFM > µTCovAH

H03 : µMS FM ≤ µMS AH H13 : µMS FM > µMS AH

Legend: AH - adhoc (without the support of fault mod-
els) | FM - fault model supported test design

7.4.1.2 Variables

Independent variables. The independent variables are those that we have the control when
executing the experiment (Wohlin et al., 2012). In this experimental evaluation, the independent
variables are designed test cases and background experience of the participants.

Dependent variables. The dependent variables are those that we observe in order to
understand the effects produced in the treatments (Wohlin et al., 2012). In this evaluation, the
dependent variables are the uncovered faults.

131

7.4.1.3 Selection of subjects

The subjects were chosen based on convenience (Wohlin et al., 2012). We randomly selected a
set of software engineers from a partner company from Salvador, Brazil3. The company has
had some interest in the software reuse field, and noticed that by introducing SPL engineering
practices into their software development, the company could yield better results. Hence, we
provided its software engineers with training sessions on the topic, in which they could learn
from us how to systematically reuse their developed software artifacts, and next, some of them
were selected to serve as subjects in this evaluation.

7.4.1.4 Instrumentation

The instruments of this experiment are the consent form, background and feedback question-
naires, and the source code and documentation of the SPL project under testing.

We used a Java-based SPL, called PL_SimElevator. The project consists of an SPL aimed at
simulating the operation of an elevator controller. Variability in the SPL was implemented using
inheritance, polymorphism and encapsulation. The project comprises 11 optional features. From
this SPL, distinct variants of elevator controllers can be generated, to meet different product
configurations. Some of the variants are bound at compile-time, while others necessarily at
runtime.

Figure 7.7, presented in the preceding section, shows the feature model of the PL_SimElevator

project. The SPL contains over 3,500 lines of code, 12 packages, and 32 classes. The class
diagrams and a package diagram, with the relationship between the entities, can be found in
Appendix C.

We generated three product instances with the aid of the Easy-Producer tool. They are:
(i) Simple Elevator, (ii) Enhanced Elevator, and Premium Elevator. Figure 7.8 shows their
configurations, generated with the FeatureIDE tool (Thüm et al., 2014).

7.4.1.5 Design

In this experiment, we employed a completely randomized design, with one factor with two

treatments. Alike the preliminary evaluation, we also compared the two treatments against
each other, namely test design with the support of fault models and test design without such a
support. The participants were randomly allocated to each group. The control group applied

3Recôncavo Institute of Technology. Available at: http://reconcavotecnologia.org.br/.

132

http://reconcavotecnologia.org.br/

7.4. EMPIRICAL EVALUATION

software testing techniques they are familiar with, and the experimental group used the fault
lists/dictionaries from the fault models available to them.

It is worth mentioning that for both treatments, the data used in the test design, i.e., the
source code and asssociated documents remained the same, as a means to avoid possible biases.

7.4.2 Experiment operation

The experiment was run late in 2013. The participants were all given a 1h introductory lecture
where an overview of the study was given. A background questionnaire was also used to
elicit information related to the demographic characteristics of the participants, as described in
Appendix B. Table B.1 shows raw data for all respondents. The anonymity of the participants
was guaranteed. Tha participants also had to take a a 3h introductory lecture on SPL engineering.

A 4h training session was held, where the participants could become familiar with the SPL
project. All participants had the opportunity to practising their own test design strategy. As
earlier stated in this Section, all software engineers involved in this study had some experience in
the development of variant-rich systems, thus involving commonly used variability mechanisms
for Java.

The participants were given the source code of every product instance (premium, enhanced,
and simple). The source code contained documentation comments so that JavaDoc could be
generated seamlessly.

The experiment session, hereinafter referred to as study section, was held one day later. The
participants had 4h to complete the task. The task consisted of designing and implementing JUnit
test cases for entities from the packages gui.buttons, simulator, simulator.controllers,
and simulator.model (Table 7.2 lists all classes involved in the testing activity, and Appendix
C details the project classes considered in this study). The participants had to analyze the
source code, and implement unit and integration test cases from the source code, using the JUnit
framework.

As our intention was to simulate a real testing environrment, the participants were told to
implement both unit and integration tests. These are usually tests a developer implement to
either execute a specific functionality in the code (unit) or test the behavior of a component or
the integration between a set of components (integration). The participants could implement
mocks whenever a method depends on other parts of the system.

Indeed, sometimes it might be hard for an average software developer to only implement a
single test level, especially when the code is already developed. Unit testing is a very common
strategy to follow in SPL engineering when the source code is to be developed, such as is

133

test-driven development (Ghanam et al., 2008). There are some other studies in the SPL field
that consider unit testing, but units are large-scale entities (Ganesan et al., 2012), rather than
single source code functionalities.

Some further instructions on how to proceed with the creation of packages to accomodate
the tests and other details were given during the study section.

The participants had to design test cases to handle variability testing. That is, their must
cover the more variation points they could, from the set of packages previously mentioned. The
idea was to design the test cases thinking of their further reusability. The test effectiveness would
be measured by considering the capability of a test case to be reused in other product instances,
and also its capability of uncovering defects.

134

7.4. EMPIRICAL EVALUATION

(a
)S

im
pl

e
el

ev
at

or
.

(b
)E

nh
an

ce
d

el
ev

at
or

(c
)P

re
m

iu
m

el
ev

at
or

Fi
gu

re
7.

8:
C

on
fig

ur
at

io
ns

of
th

e
th

re
e

pr
od

uc
ti

ns
ta

nc
es

ge
ne

ra
te

d
fr

om
th

e
PL

_S
im

E
le

va
to

rS
PL

pr
oj

ec
t.

135

7.4.2.1 Fault injection

As a means to measure the effectiveness of the test cases designed, we emulated faults in the
source code, by considering the types of faults listed in Table 6.6. They represent some of the
commonly occurring problems when implementing variability using Java constructs.

The modules selected to this experiment represented suitable locations for emulating some
of the desired types of faults. It means a fault was identified and classified according to an
operator library of type of faults. Indeed, the faults should only be emulated where they could
actually exist in the compiled code, considering the logic of programming structures.

It is worth mentioning that we avoided modifying statements representing syntax errors.
With the increasing power of IDEs, syntax errors cannnot be considered as realistic faults any
longer, since the compilers easily point these flaws and they would be corrected before the
program execution.

Fault emulation was manually performed. Hence, we left out modifications in the Java
bytecode files, although we believe such capability makes it possible to emulate some other
desired faults.

7.4.3 Analysis and interpretation

This section presents the statistical analysis of the gathered data. Each question stated in the
experiment definition is answered, along with some discussion on the presented results.

The data were collected from the test cases implemented by the participants, and the defect
log report they filled out during the experiment session. Each defect found in each subject’s
defect log was analyzed to check whether they represented an actual defect. False positives were
discarded from the final analysis.

7.4.3.1 Does the use of fault models lead to best variability testing results? (RQ1)

By applying a randomized design, we assigned the participants to two different groups: Group A

(ad-hoc testing): P3, P4, P5, P6; Group B (fault model support): P1, P2, P7. As we observed
an expertise homogeneity, and especially for the small number of participants, we did not make
effort to achieve an ideal calibration between the groups.

Table 7.4 shows raw results for each participant, in terms of TC (number of designed test
cases), and DF (number of defects found). Based on such values, it is possible to observe a
higher mean value for the TCE calculations for the group which employed the notion of fault
models for test case design: 0.504 with a sd of 0.182, against 0.343, with a sd of 0.078. Figure

136

7.4. EMPIRICAL EVALUATION

7.9a shows a boxplot plotting the effectiveness reached by each group.

Group A Group B

0.
3

0.
4

0.
5

0.
6

0.
7

E
ffe
ct
iv
en
es
s

(a) TCE

Group A Group B

5
10

15
20

m
s

sc
or

e

(b) ms score

Figure 7.9: Boxplots for TCE measures and the msscore.

Furthermore, Table 7.6 shows the statement coverage values (%) for each product instance.
When the participant designed/implemented a test case, he should have in mind the reuse
potential of it. That is, a test case aimed at a class c can be reused in any product configuration
containing such a class. Hence, the values presented in such a Table serve as an attempt to
demonstrate the reuse capability of the set of designed test cases.

Figure 7.10 shows the results for the TCov measurement. Each boxplot shows the TCov
values for each product instance. The descriptive statistics for each product is as follows.
Premium: Group A (mean: 29.525, sd: 19.145), Group B (mean: 36.500, sd: 22.035);
Enhanced: Group A (mean: 28.450, sd: 18.034), Group B (mean: 26.167, sd: 16.614); Simple:
Group A (mean: 22.000, sd: 14.288), Group B (mean: 23.833, sd: 37.302). Group B reached
better mean for the first two products, while Group A for the third one.

137

Group A Group B

10
20

30
40

50

C
ov

er
ag

e
(%

 o
f s

ta
te

m
en

ts
)

(a) Premium

Group A Group B

10
20

30
40

50

C
ov

er
ag

e
(%

 o
f s

ta
te

m
en

ts
)

(b) Enhanced

Group A Group B

0
10

20
30

40
50

60

C
ov

er
ag

e
(%

 o
f s

ta
te

m
en

ts
)

(c) Simple

Figure 7.10: Boxplots for TCov measures for each product instance.

7.4.3.2 Is the fault modeling approach helpful to uncover the faults that the fault models
prescribed? (RQ2)

The ultimate goal of a fault modeling method is to reduce the number of test cases designed.
Besides, the idea is to uncover the more defects with less test cases. In order to investigate
the effects of using a fault modeling approach, we calculated the accuracy of the fault models
at uncovering the fault types they were expected to. The last two lines from Table 7.4 show,
respectively, the number of mutants killed and the ms score calculations. By analyzing the mean

values of groups A and B, respectively 6.675 (sd: 2.735) and 17.800 (sd: 1.905), the group of
participants using a fault model had better results. Figure 7.9b shows a boxplot plotting the ms

scores.

7.4.3.3 Hypothesis testing

The hypotheses were tested using a standard paired t-test with a. 95% confidence level. We
calculated the t-test to compare the two treatments against all metrics. Table 7.5 shows the
results for all three metrics.

By analyzing the results, we observed a significant difference between the ms score of the
both groups A and B. It is an indication that programmers when using fault models can achieve
higher accuracy on finding the faults they are searching for, than when not employing such a
strategy. Such an observation enable us to refute the null hypothesis H03.

138

7.4. EMPIRICAL EVALUATION

Table 7.4: Number of designed test cases and defects found

Subject

P1 P2 P7 P3 P4 P5 P6

of TC 10 15 29 9 12 8 25

of DF 7 7 10 3 5 3 6

TCE 0.70 0.47 0.34 0.33 0.42 0.38 0.24

DM(P,R) 5 6 5 3 2 1 2

ms(P,R) 16.7 20.0 16.7 10.0 6.7 3.3 6.7

However, the same does not hold true for the remainder hypothesis. Although descriptive
statistics showed better results for the group undertaking the task with the fault model support,
we have not found evidence of a statistically significant difference for the hypotheses H01 and
H02, what prevent us to make any conclusions about such findings.

Table 7.5: t-test results.

metric t df p-value n

TCE 1.434 2.549 0.262

TCOV-Premium 0.438 4.042 0.684

TCOV-Enhanced 0.173 4.667 0.870

TCOV-Simple 0.081 2.445 0.942

ms 6.338 4.999 0.001

7

7.4.3.4 Threats to validity

In order to discuss the threats to the validity of this experimental study, we followed the advices
on validity analysis and threats given by Wohlin et al. (2012).

Conclusion validity focuses on how sure we can be that the treatment we used in an exper-
iment really is realted to the actual outcome we observed. Typically this concerns if there is
statistically significant effect on the outcome. A general threat to conclusion validity in this
experiment is the low number of samples, which may reduce the ability to reveal real patterns in
the data. The analysis and interpretation of the results of this experiment was described using
descriptive statistics, which are appropriate to the data type collected during the experiment.

139

Table 7.6: Test coverage (% of statements) per product instance

Participants

Tested classes P1 P2 P7 P3 P4 P5 P6

gui.buttons 33.0 50.2 15.9 35.6 33.4 20.6 21.8

gui.buttons.Default 22.5 59.0 0.0 24.4 22.5 0.0 28.3

gui.buttons.Authorize 58.7 58.7 0.0 58.7 58.7 0.0 0.0

gui.buttons.Emergency 53.6 63.6 0.0 53.6 56.4 67.3 67.3

gui.buttons.Arrow 32.4 33.5 42.8 37.4 32.4 28.8 0.0

simulator 71.8 78.0 0.0 24.9 21.5 0.0 0.0

simulator.controllers 74.1 33.0 0.0 80.2 57.6 0.0 0.0

simulator.model

PR
E

M
IU

M

86.1 65.3 47.5 86.1 80.2 0.0 47.5

Total Coverage 50.5 47.9 11.1 50.1 41.5 12.0 14.5

gui.buttons 29.4 23.3 13.0 35.6 29.8 20.6 20.5

gui.buttons.Default 22.5 18.7 0.0 24.4 22.5 0.0 28.3

gui.buttons.Authorize 0.0 0.0 0.0 0.0 0.0 0.0 0.0

gui.buttons.Emergency 53.6 37.4 0.0 53.6 56.4 67.3 56.5

gui.buttons.Arrow 32.4 27.7 37.1 37.4 32.4 28.8 0.0

simulator 15.6 78.0 0.0 24.9 21.5 0.0 0.0

simulator.controllers 64.0 30.1 0.0 80.2 57.6 0.0 0.0

simulator.model

E
N

H
A

N
C

E
D

73.7 58.4 0.0 86.1 80.2 0.0 47.5

Total Coverage 39.9 30.9 7.7 48.4 39.0 12.4 14.0

gui.buttons 0.0 62.7 0.0 7.4 35.3 16.5 36.4

gui.buttons.Default 0.0 55.4 0.0 0.0 0.0 0.0 27.7

gui.buttons.Authorize 0.0 74.3 0.0 58.7 0.0 0.0 0.0

gui.buttons.Emergency 0.0 75.4 0.0 0.0 51.5 73.3 73.3

gui.buttons.Arrow 0.0 0.0 0.0 0.0 0.0 0.0 0.0

simulator 0.0 0.0 0.0 0.0 0.0 0.0 0.0

simulator.controllers 0.0 32.0 0.0 10.2 0.0 0.0 0.0

simulator.model

SI
M

PL
E

27.7 42.6 47.5 0.0 64.4 0.0 47.5

Total Coverage 1.7 66.9 2.9 6.4 36.3 13.6 31.7

140

7.5. CHAPTER SUMMARY

Internal validity concerns matters that may affect the independent variable with respect to
causality, without the researcher’s knowledge. There is a main threat to internal validity in this
experiment, instrumentation. The SPL project used in this experiment might have affected the
results. The source code might contain an additional set of issues, other than those injected
(expected to be uncovered by the tests), so that those were also considered as valid defects. There
are other likely threats we consider as small, such as the maturation effect. As each participant
was allocated to a single treatment, hence there is not threat of maturation in this experiment.
Regarding selection, as we carried out the experiment inside a software company, with software
engineers we were not aware of, prior to the study, we mitigated such a likely threat.

Construct validity is concerned with the relation between theory and observation. It concerns
generalisation of the exepriment result to concept or theory behind the experiment. The construct
validity include two main threats. The first threat is that the measurements as defined may not
be appropriate. Besides, the pre-chosen fault models may not be representative or good enough
for the scenario under testing. These may limit the scope for the conclusions made to the use of
the fault modeling approach.

External validity is concerned with whether we can generalize the results outside the scope
of our study. Despite we counted on experienced software engineers as participants in this
experimental study, the small number of subjects may limit generalisations of findings. However,
the setting employed in the study resembled a real testing situation, what might strengthen the
inferences about the use of fault models for variability testing.

7.5 Chapter summary

As far as we know, the initial attempt to model the faults of an SPL was presented by McGregor
(2008). In such a study, the author proposed an initial version of a fault model for SPL
engineering. The model describes the set of known defects that can result from the application
of a SPL strategy, which leads to the test points, in the whole life cycle. The author argued that
a whole life cycle must comprise several test models, each matching a specific phase. Based on
a motivating example, a small SPL, he leveraged a set of common problems that can be faced
when employing an SPL strategy.

As earlier discussed in this document, the role of a fault model is to establish a prioritization
on test case design, i.e., the main idea behind a fault model is to design test cases that may
anticipate the likely faults a source code should contains. Besides, it is possible to use fault
models to assess existing test suites.

141

Roughly speaking, fault modeling entails an increase in fault detection rates. In order to
build such a model, it is necessary to have prior knowledge about the commonly occurring
faults that are likely to be present in the implementation. Therefore, the initial step towards
building a fault model for variability testing is to know which faults are common in variability
implementation, considering the problems emerging during implementation, as well as the set
of problems propagated from preceding phases.

This Chapter presented the approach we believe SPL engineers can achieve better results
in terms of fault detection. It describes how a fault modeling approach can be used in both
perspectives, namely designing more effective test cases, and assessing existing ones. While
even this approach can not guarantee the absence of a specific type of fault, it might be used in
assurance arguments that specific procedures have been used to search for specific faults.

142

8
Conclusions

SPL engineering has been applied in software industry to improve the quality of delivered
products, and reduce the overall development effort. Convincing results have been achieved in a
range of domains. Variability management is a key element in SPL engineering, as it controls
a myriad of products that share a set of functionalities and differ in another, enabling meeting
particular customer and/or market demands.

Software testing, as the most widely used approach for improving software quality in practice,
plays an important role for SPL engineering. The research in SPL testing has been growing
increasingly, addressing the inherent complex issues surrounding the field.

In this work, we proposed a contribution to SPL testing. We carried out in-depth analyses
of existing literature in this research field, and noticed a lack of evidence about how to handle
variability testing from a source code perspective. Hence, apart from most existing SPL testing
techniques, we are focused on handling variability issues emerging at source code level. That is,
instead of handling variability at a higher level of abstraction, such as in feature models, we cope
with variability testing at the lowest level of abstraction, where the implementation mechanisms
are used consistently.

The contribution consists of improving SPL testing by employing the concept of fault models.
Fault models, widely used in the development of physical devices and systems, such as the
design of integrated circuits and chips, is said to be an effective means of reducing effort in
software testing while improving, or at least not harming, the fault detection capabilities of the
test sets. Fault models can be merged into a SPL process to improve test effectiveness.

We designed an approach for using fault models to support variability testing, from two main
perspectives, namely test assessment, which focuses on the evaluation of the effectiveness of
existing test suites, and test design, which aims to aid the construction of test sets, by focusing
on fault-prone elements. We think of fault models as a strategy that provide software developers

143

with assistance, for anticipating fault-prone scenarios, and thus fostering improvements in test
effectiveness.

As a means to evaluate the capability of the proposed fault modeling approach, we carried
out an experimental study, in which experienced software engineers could make use a set of fault
models to design developer tests (unit and integration tests) for an SPL project. The evaluation
showed promising results. However, we understand that the approach can be improved in many
ways. In Section 8.1 we discuss future research directions. Next, in Section 8.2 we discuss
the main related work. Finally, we sketch the main contributions achieved so far with this
investigation in Section 8.3.

8.1 Future work

We have suggested the merge of fault models in the SPL process, an as improvement of testing
in such a field. However, there remain many improvements to explore. As future work, we plan
to investigate aspects of automation, addressing challenges of generating desirable test inputs
and checking the behavior of the features under test. In addition, we plan to carry out empirical
studies to better understand the role of fault models in other domains and scenarios. We next list
the main further research directions that arise from the work presented here:

• Automated generation of fault models. Building a set of faults models would encompass
the automated analysis of historical data, considering a range of sources, such as previous
versions of the project under analysis, previous projects from the same organizations,
project from similiar domains. Automating the construction of fault models is encouraged.
However, we understand this might not be a straightforward task, and might demand
knowledge from several fields. Hence, our next steps include the investigation of data

mining techniques, as a means to establish affordable and systematic means to retrieve
and analyze past historical data. Besides, we plan to explore machine learning techniques,
to support automated defect classifications, and increase precision as well. In this branch
of research, it is possible to explore the capabilities of a range of techniques, to analyze
which could fit together, to achieve better results. In a recent partnership, we have explored
the use of support vector machines to aid bug triage (Cavalcanti et al., 2014). Future
research direction includes exploring such a technique in the context of our proposed fault
modeling approach.

• Automated selection of fault models. In addition to the preceding research direction stated,
establishing a means to automatically select fault models, by taking into account data

144

8.1. FUTURE WORK

about the application under test might lead to reductions in effort. Taking a large-scale
SPL as an example, it is possible that, along the development of such a project, several
fault models can be built. Hence, it is important to investigate how to better associate a
given fault model to a given scenario. Besides, the choice of a fault model could influence
the outcome of the assessments. For instance, whether one fault model can be shown to
detect more errors with less effort, it is advisable to choose this model over less efficient
models for systematic errors detection. If, on the other hand, the evaluations of two
distinct models are highly similar, the less costly model (in terms of implementation, setup
and run time effort) can be justifiably substituted for the more expensive one. Furthermore,
a comparative evaluation of fault models could provide guidance on the selection of fault
models.

• Systematic analysis of past historical data. The goal should be a complete list of faults,
though we do not make this claim, due to the NP-hardness nature of fault analysis (Hu
et al., 2013). A big issue is that fault categorization task often involves much manual
effort, and time-consuming. Achieving good results with repository mining, with data
from, e.g., open source projects, would be very hard as many test-related activities do not
leave traces in the repositories. Besides, it is not easy to find large-scale SPL projects
available, so that we could make use open data. We are not aware of any effective and
general strategy to automatically categorize software faults. There are some initiatives,
such as (Huang et al., 2011; Thung et al., 2012), which yields good and reliable results,
but comprising a rather constrained scenario, with some threats that limits some inferences
concerning generalizability potential. In this context, we plan to investigate how such
initiatives could work in other scenarios, i.e., count on empirical evaluations of real-world
and large-scale ones. Besides, we intend to apply algorithms other than those used in such
investigations, to analyze their effectiveness.

• Fault models in the SDLC. In the context of the SDLC, it is possible to build fault models
for every SPL phase. A fault modeling approach to be considered useful and complete
should encompass all phases. Hence, a number of fault models can be built that anticipate
the likely problems. Although there is a number of studies investigating how to better
manage variability at the initial SPL phases, not every problem, especially regarding
different application domains, has been tackled yet. Hence, such a gap could be taken
as a starting point towards establishing a complete fault modeling approach for SPL
engineering.

145

• Empirical evaluations. This thesis presented the definition, planning, operation, analysis,
interpretation, presentation and packaging of two experimental studies. However, new
studies in different contexts, including more subjects and other domains are still necessary
in order to carry out more evaluations and calibrate the experimental plan.

• Measurement. We employed mutation testing as a technique to measure the effectiveness
of existing test sets. Although some of the mistakes a developer usually makes can be
simulated in a mutation model, we have to understand that mutation testing is not widely
used in industry, and as such many of the results obtained may not reflect the reality,
what hinders generalizations. Hence, we believe the approach should consider empirical
evalutions in real-world scenarios, so as to obtain more accurate and reliable measures.

8.2 Related work

In literature, there are several proposals to improve testing in SPL engineering. We systematically
analyzed the literature on the topic (Neto et al., 2011a; Machado et al., 2014b), as reported
in Chapter 4. The most important publications in the field, given their acknowledgement by
the research community, has been discussed in this thesis, as well as in both papers. However,
the key difference between this work and other is the attempt to take past historical data on
variability implementation issues, as a key driver for test prioritization. Most research in the
field is concerned about either proposing means to validate the combination of features to drive
product generation, or to design tests based on specifications, either formal or not.

8.3 Main contributions

We earlier described in the Section 1.4 the main contributions expected from this investigation.
Some of the results have been already published. Next, we list the set of papers resulting from
this investigation:

• Machado, I. C., Neto, P. A. M. S., Almeida, E. S., and Meira, S. R. L. RiPLE-TE: A
Process for Testing Software Product Lines. In Proceedings of the 23rd International

Conference on Software Engineering & Knowledge Engineering, SEKE, pages 711–716,
Miami Beach, FL, USA. KSI. (Machado et al., 2011)

• Machado, I. C. Towards a reasoning framework for software product line testing. In
16th International Software Product Line Conference, SPLC, Doctoral Symposium, pages

146

8.3. MAIN CONTRIBUTIONS

229–232. ACM. (Machado, 2012)

• Machado, I. C., Almeida, E. S., Gomes, G. S. S., Neto, P. A. M. S., Novais, R. L., and
Neto, M. G. M. A preliminary study on the effects of working with a testing process in
software product line projects. In IX Experimental Software Engineering Latin American

Workshop, ESELAW, Buenos Aires, Argentina. (Machado et al., 2012a)

• Machado, I. C., McGregor, J. D., and Almeida, E. S. (2012). Strategies for testing
products in software product lines. ACM SIGSOFT Software Engineering Notes, 37(6),
1–8. (Machado et al., 2012b)

• Machado, I. C., Neto, P. A. M. S., and Almeida, E. S. Towards an integration testing ap-
proach for software product lines. In 13th IEEE International Conference on Information

Reuse and Integration (IRI), 2012 , pages 616–623. (Machado et al., 2012c)

• Machado, I. C., Santos, A. R., Cavalcanti, Y. C., Trzan, E. G., Souza, M. M., and Almeida,
E. S. Low-level variability support for web-based software product lines. In Proceedings

of the Eighth International Workshop on Variability Modelling of Software-Intensive

Systems, VaMoS, pages 15:1–15:8, New York, NY, USA. ACM. (Machado et al., 2014a)

• Machado, I. C., McGregor, J. D., Cavalcanti, Y. C., and Almeida, E. S. (2014b). On
strategies for testing software product lines: A systematic literature review. Information

& Software Technology, 56(10), 1183–1199. (Machado et al., 2014b)

Other important publications from this thesis, in which there are other main(first) authors,
but still hold true importance for this work:

• Neto, P. A. M. S., Machado, I. C., McGregor, J. D., Almeida, E. S., and Meira, S. R. L.
(2011a). A systematic mapping study of software product lines testing. Information and

Software Technology, 53(5), 407–423. (Neto et al., 2011a)

• Neto, P. A. M. S., Runeson, P., Machado, I. C., Almeida, E. S., Meira, S. R. L., and
Engström, E. (2011b). Testing software product lines. IEEE Software, 28(5), 16–20.
(Neto et al., 2011b)

• Wohlin, C., Runeson, P., Neto, P. A. M. S., Engström, E., Machado, I. C., and Almeida,
E. S. (2013). On the reliability of mapping studies in software engineering. Journal of

Systems and Software, 86(10), 2594 – 2610. (Wohlin et al., 2013)

147

• Cavalcanti, Y. C., Machado, I. C., Neto, P. A. M. S., Almeida, E. S., and Meira, S. R. L.
(2014). Combining rule-based and information retrieval techniques to assign software
change requests. In 29th IEEE/ACM International Conference on Automated Software

Engineering (ASE), Västeras, Sweden. ACM. (Cavalcanti et al., 2014)

148

References

Abdi, H. and Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary

Reviews: Computational Statistics, 2(4), 433–459.

Aguillo, I. F. (2012). Is google scholar useful for bibliometrics? a webometric analysis.
Scientometrics, 91(2), 343–351.

Al-Hajjaji, M., Thüm, T., Meinicke, J., Lochau, M., and Saake, G. (2014). Similarity-based
prioritization in software product-line testing. In FOSD Meeting 2014, Schloss Dagstuhl.

Alford, D., Sackett, P., and Nelder, G. (2000). Mass customisation - an automotive perspective.
International Journal of Production Economics, 65(1), 99 – 110.

Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., and Lucena, C. (2006). Refactoring
product lines. In Proceedings of the 5th International Conference on Generative Programming

and Component Engineering, GPCE, pages 201–210, New York, NY, USA. ACM.

Alves, V., Calheiros, F., Nepomuceno, V., Menezes, A., Soares, S., and Borba, P. (2008). Flip:
Managing software product line extraction and reaction with aspects. In Proceedings of the

2008 12th International Software Product Line Conference, SPLC, Washington, DC, USA.
IEEE Computer Society.

Alves, V., Niu, N., Alves, C., and Valença, G. (2010). Requirements engineering for software
product lines: A systematic literature review. Information & Software Technology, 52(8),
806–820.

Ammann, P. and Offutt, J. (2008). Introduction to software testing. Cambridge University Press.

Anquetil, N., Kulesza, U., Mitschke, R., Moreira, A., Royer, J.-C., Rummler, A., and Sousa,
A. (2010). A model-driven traceability framework for software product lines. Software and

System Modeling, 9(4), 427–451.

Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and Merlo, E. (2002). Recovering trace-
ability links between code and documentation. IEEE Transactions on Software Engineering,
28(10), 970–983.

Apel, S., Batory, D., Kästner, C., and Saake, G. (2013). Feature-Oriented Software Product

Lines: Concepts and Implementation. Springer Publishing Company, Incorporated.

149

Arisholm, E., Briand, L., and Fuglerud, M. (2007). Data mining techniques for building fault-
proneness models in telecom java software. In The 18th IEEE International Symposium on

Software Reliability, ISSRE, pages 215–224.

Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr, C. (2004). Basic concepts and taxon-
omy of dependable and secure computing. IEEE Transactions on Dependable and Secure

Computing, 1(1), 11–33.

Babar, M., Chen, L., and Shull, F. (2010). Managing variability in software product lines.
Software, IEEE, 27(3), 89 –91, 94.

Babu, C. and Krishnan, H. R. (2009). Fault model and test-case generation for the composition
of aspects. SIGSOFT Software Engineering Notes, 34(1), 1–6.

Barbey, S. and Strohmeier, A. (1994). The problematics of testing object-oriented software. In
Proceedings of the Second Conference on Software Quality Management, pages 411–426.
Comp. Mech. Publications.

Basili, V. R. and Hutchens, D. H. (1983). An empirical study of a syntactic complexity family.
IEEE Transactions on Software Engineering, 9(6), 664–672.

Basili, V. R. and Perricone, B. T. (1984). Software errors and complexity: An empirical
investigation. Communications of the ACM, 27(1), 42–52.

Basili, V. R. and Selby, R. W. (1987). Comparing the effectiveness of software testing strategies.
IEEE Transactions on Software Engineering, SE-13(12), 1278–1296.

Basili, V. R., Caldiera, G., and Rombach, H. D. (1994). Goal question metric paradigm. In
Encyclopedia of Software Engineering, volume 2, pages 528–532. Wiley.

Bastos, J. F., Neto, P. A. M. S., Almeida, E. S., and Meira, S. R. L. (2011). Adopting software
product lines: A systematic mapping study. In 15th International Conference on Evaluation

and Assessment in Software Engineering, EASE, pages 11–20. IET.

Batory, D. (2003). A tutorial on feature oriented programming and product-lines. In Proceedings

of the 25th International Conference on Software Engineering, ICSE, pages 753–754.

Batory, D., Höfner, P., and Kim, J. (2011). Feature interactions, products, and composition.
In Proceedings of the 10th ACM International Conference on Generative Programming and

Component engineering, GPCE, pages 13–22, New York, NY, USA. ACM.

150

REFERENCES

Batory, D. S. (2006). Feature modularity in software product lines. In 10th International

Conference on Software Product Lines, SPLC, page 230. IEEE Computer Society.

Benavides, D., Segura, S., and Ruiz-Cortés, A. (2010). Automated analysis of feature models
20 years later: A literature review. Information Systems, 35(6), 615–636.

Bengtsson, T. and Kumar, S. (2005). A survey of high level test generation methodologies and
fault models. Technical Report Research Report 04:5, School of Engineering, Jönköping
University, Jönköping, Sweden.

Beuche, D. (2012). Modeling and building software product lines with pure::variants. In
Proceedings of the 16th International Software Product Line Conference - Volume 2, SPLC,
pages 255–255, New York, NY, USA. ACM.

Beuche, D. (2013). Modeling and building product lines with pure::variants. In Proceedings

of the 17th International Software Product Line Conference Co-located Workshops, SPLC
Workshops, pages 147–149, Tokyo, Japan. ACM.

Binder, R. V. (1999). Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Boehm, B. and Basili, V. R. (2001). Software defect reduction top 10 list. IEEE Computer,
34(1), 135–137.

Boehm, B. W. (1979). Guidelines for verifying and validating software requirements and design
specifications. In P. A. Samet, editor, Euro IFIP 79, pages 711–719. North Holland.

Boehm, B. W. and Papaccio, P. N. (1988). Understanding and controlling software costs. IEEE

Transactions on Software Engineering, 14(10), 1462–1477.

Bosch, J. and Capilla, R. (2013). Systems and Software Variability Management, chapter
Variability Implementation, pages 75–86. Springer-Verlag Berlin Heidelberg.

Bosch, J., Florijn, G., Greefhorst, D., Kuusela, J., Obbink, J. H., and Pohl, K. (2002). Variability
issues in software product lines. In Revised Papers from the 4th International Workshop on

Software Product-Family Engineering, PFE ’01, pages 13–21, London, UK, UK. Springer-
Verlag.

151

Botaschanjan, J. and Hummel, B. (2009). Specifying the worst case: orthogonal modeling of
hardware errors. In Proceedings of the 18th International Symposium on Software Testing

and Analysis, ISSTA, pages 273–284, New York, NY, USA. ACM.

Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M., and Khalil, M. (2007). Lessons from
applying the systematic literature review process within the software engineering domain.
Journal of Systems and Software, 80(4), 571–583.

Briand, L. C. and Wüst, J. (2002). Empirical studies of quality models in object-oriented systems.
volume 56 of Advances in Computers, pages 97 – 166. Elsevier.

Briand, L. C., Basili, V. R., and Thomas, W. M. (1992). A pattern recognition approach for
software engineering data analysis. IEEE Transactions on Software Engineering, 18(11),
931–942.

Burger, S., Hummel, O., and Heinisch, M. (2013). Airbus cabin software. IEEE Software, 30(1),
21–25.

Burnstein, I. (2003). Practical Software Testing: A Process-Oriented Approach. Springer-Verlag
New York, Inc.

Catal, C. and Mishra, D. (2012). Test case prioritization: a systematic mapping study. Software

Quality Journal, pages 1–34.

Cavalcanti, R. O., Almeida, E. S., and Meira, S. R. L. (2011a). Extending the riple-de process
with quality attribute variability realization. In 7th International Conference on the Quality of

Software Architectures, QoSA 2011 and 2nd International Symposium on Architecting Critical

Systems, ISARCS 2011, pages 159–164. ACM.

Cavalcanti, Y. C., Machado, I. C., Neto, P. A. M. S., Lobato, L. L., Almeida, E. S., and Meira, S.
R. L. (2011b). Towards metamodel support for variability and traceability in software product
lines. In Proceedings of the 5th Workshop on Variability Modeling of Software-Intensive

Systems, VaMoS, pages 49–57, Namur, Belgium. ACM.

Cavalcanti, Y. C., Machado, I. C., Neto, P. A. M. S., Almeida, E. S., and Meira, S. R. L. (2014).
Combining rule-based and information retrieval techniques to assign software change requests.
In 29th IEEE/ACM International Conference on Automated Software Engineering (ASE),
Västeras, Sweden. ACM.

152

REFERENCES

Chen, L. and Babar, M. A. (2011). A systematic review of evaluation of variability management
approaches in software product lines. Information & Software Technology, 53(4), 344–362.

Chernak, Y. (2001). Validating and improving test-case effectiveness. IEEE Software, 18(1),
81–86.

Chillarege, R., Bhandari, I. S., Chaar, J. K., Halliday, M. J., Moebus, D. S., Ray, B. K., and
Wong, M.-Y. (1992). Orthogonal defect classification-a concept for in-process measurements.
IEEE Transactions on Software Engineering, 18(11), 943–956.

Chou, A., Yang, J., Chelf, B., Hallem, S., and Engler, D. (2001). An empirical study of operating
systems errors. SIGOPS Operating Systems Review, 35(5), 73–88.

Clements, P. and McGregor, J. D. (2012). Better, faster, cheaper: Pick any three. Business

Horizons, 55(2), 201–208.

Clements, P. and Northrop, L. (2001). Software Product Lines: Practices and Patterns. Addison-
Wesley, Boston, MA, USA.

Corriveau, J.-P., Bashardoust, S., and Radonjic, V. (2011). Requirements verification in the
presence of variability. In Model-Driven Requirements Engineering Workshop, MoDRE,
pages 74–78. IEEE Computer Society.

Craig, R. D. and Jaskiel, S. P. (2002). Systematic Software Testing. Artech House, Inc., Norwood,
MA, USA.

Cristian, F. (1991). Understanding fault-tolerant distributed systems. Communications of the

ACM, 34(2), 56–78.

Cruzes, D. S. and Dybä, T. (2011). Research synthesis in software engineering: A tertiary study.
Information & Software Technology, 53(5), 440 – 455.

Czarnecki, K. and Eisenecker, U. W. (2000). Generative programming: methods, tools, and

applications. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA.

Czarnecki, K., Helsen, S., and Eisenecker, U. W. (2005). Formalizing cardinality-based feature
models and their specialization. Software Process: Improvement and Practice, 10(1), 7–29.

Dashofy, E. M., van der Hoek, A., and Taylor, R. N. (2002). An infrastructure for the rapid
development of xml-based architecture description languages. In Proceedings of the 24th

153

International Conference on Software Engineering, ICSE ’02, pages 266–276, New York, NY,
USA. ACM.

Deelstra, S., Sinnema, M., and Bosch, J. (2009). Variability assessment in software product
families. Information & Software Technology, 51(1), 195–218.

Delamaro, M. E., Maldonado, J. C., and Jino, M. (2007). Introdução ao teste de software.
Elsevier, Rio de Janeiro.

DeMillo, R. A., Lipton, R. J., and Sayward, F. G. (1978). Hints on test data selection: Help for
the practicing programmer. Computer, 11(4), 34–41.

Denaro, G., Morasca, S., and Pezzè, M. (2002). Deriving models of software fault-proneness. In
Proceedings of the 14th International Conference on Software Engineering and Knowledge

Engineering, SEKE, pages 361–368, New York, NY, USA. ACM.

Dhungana, D., Grünbacher, P., and Rabiser, R. (2011). The dopler meta-tool for decision-
oriented variability modeling: A multiple case study. Automated Software Engineering, 18(1),
77–114.

Dit, B., Revelle, M., Gethers, M., and Poshyvanyk, D. (2011). Feature location in source code:
a taxonomy and survey. Journal of Software Maintenance and Evolution: Research and

Practice.

Dordowsky, F., Bridges, R., and Tschope, H. (2011). Implementing a software product line for a
complex avionics system. In Proceedings of the 15th International Conference on Software

Product Lines, SPLC, pages 241–250, Munich, Germany. ACM.

Dreyfus, S. E. and Dreyfus, H. L. (1980). A Five-Stage Model of the Mental Activities Involved
in Directed Skill Acquisition. Technical report, University of California, Berkeley.

Dybå, T. and Dingsøyr, T. (2008a). Empirical studies of agile software development: A
systematic review. Information & Software Technology, 50(9–10), 833–859.

Dybå, T. and Dingsøyr, T. (2008b). Strength of evidence in systematic reviews in software
engineering. In Proceedings of the Second International Symposium on Empirical Software

Engineering and Measurement, ESEM, pages 178–187. ACM.

Dybå, T., Kitchenham, B. A., and Jorgensen, M. (2005). Evidence-based software engineering
for practitioners. IEEE Software, 22(1), 58–65.

154

REFERENCES

Elish, K. O. and Elish, M. O. (2008). Predicting defect-prone software modules using support
vector machines. Journal of Systems and Software, 81(5), 649–660.

Engström, E. and Runeson, P. (2011). Software product line testing - a systematic mapping
study. Information & Software Technology, 53(1), 2–13.

Engström, E., Runeson, P., and Skoglund, M. (2010). A systematic review on regression test
selection techniques. Information & Software Technology, 52(1), 14–30.

Etxeberria, L. and Sagardui, G. (2005). Product-line architecture: New issues for evaluation. In
H. Obbink and K. Pohl, editors, Software Product Lines, volume 3714 of Lecture Notes in

Computer Science, pages 174–185. Springer Berlin Heidelberg.

Etxeberria, L., Sagardui, G., and Belategi, L. (2008). Quality aware software product line
engineering. Journal of the Brazilian Computer Society, 14, 57 – 69.

Fazal-Amin, Mahmood, A. K., and Oxley, A. (2011). An analysis of object oriented variability
implementation mechanisms. SIGSOFT Software Engineering Notes, 36(1), 1–4.

Feigenspan, J., Kästner, C., Apel, S., Liebig, J., Schulze, M., Dachselt, R., Papendieck, M.,
Leich, T., and Saake, G. (2013). Do background colors improve program comprehension in
the #ifdef hell? Empirical Software Engineering, 18(4), 699–745.

Fenton, N. E. and Neil, M. (1999). A critique of software defect prediction models. IEEE

Transactions on Software Engineering, 25(5), 675–689.

Frankl, P. G. and Iakounenko, O. (1998). Further empirical studies of test effectiveness. SIGSOFT

Software Engineering Notes, 23(6), 153–162.

Fraser, G. and Zeller, A. (2012). Mutation-driven generation of unit tests and oracles. IEEE

Transactions on Software Engineering, 38(2), 278 –292.

Freeman, S., Mackinnon, T., Pryce, N., and Walnes, J. (2004). Mock roles, objects. In
Companion to the 19th Annual ACM SIGPLAN Conference on Object-oriented Programming

Systems, Languages, and Applications, OOPSLA, pages 236–246, Vancouver, BC, CANADA.
ACM.

Fritsch, C., Lehn, A., and Strohm, T. (2002). Evaluating variability implementation mechanisms.
In International Workshop on Product Line Engineering The Early Steps: Planning, Modeling,

and Managing, PLEES, pages 59–64.

155

Gacek, C. and Anastasopoules, M. (2001). Implementing product line variabilities. SIGSOFT

Software Engineering Notes, 26(3), 109–117.

Ganesan, D., Lindvall, M., McComas, D., Bartholomew, M., Slegel, S., Medina, B., Krikhaar,
R., and Verhoef, C. (2012). An analysis of unit tests of a flight software product line. Science

of Computer Programming.

Ghanam, Y., Park, S., and Maurer, F. (2008). A test-driven approach to establishing & managing
agile product lines. In Proceedings of the 5th International Workshop on Software Product

Line Testing, SPLiT, pages 46–51, Limerick, Ireland. Hochschule Manheim CS Reports.

Gill, G. K. and Kemerer, C. F. (1991). Cyclomatic complexity density and software maintenance
productivity. IEEE Transactions on Software Engineering, 17(12), 1284–1288.

Gittens, M., Kim, Y., and Godwin, D. (July). The vital few versus the trivial many: examining
the pareto principle for software. In 29th Annual International Computer Software and

Applications Conference, 2005, COMPSAC, pages 179–185.

Glass, R. L. (1981). Persistent software errors. IEEE Transactions on Software Engineering,
SE-7(2), 162–168.

Glazer, A. and Sipper, M. (2008). Evolving an automatic defect classification tool. In Proceed-

ings of the 2008 Conference on Applications of Evolutionary Computing, Evo, pages 194–203.
Springer-Verlag, Naples, Italy.

Gomaa, H. (2005). Designing Software Product Lines with UML 2.0: From Use Cases to

Pattern-Based Software Architectures. Addison-Wesley.

Gomaa, H. and Eonsuk Shin, M. (2002). Multiple-view meta-modeling of software product lines.
In Eighth IEEE International Conference on Engineering of Complex Computer Systems,
pages 238–246.

Gonzalez-Sanchez, A., Piel, E., Gross, H.-G., and van Gemund, A. (2010). Prioritizing tests
for software fault localization. In 10th International Conference on Quality Software, QSIC,
pages 42 –51.

Graves, T. L., Harrold, M. J., Kim, J.-M., Porter, A., and Rothermel, G. (2001). An empirical
study of regression test selection techniques. ACM Transaction on Software Engineering

Methodology, 10(2), 184–208.

156

REFERENCES

Greenfield, J. and Short, K. (2003). Software factories: assembling applications with patterns,
models, frameworks and tools. In Companion of the 18th annual ACM SIGPLAN conference

on Object-oriented programming, systems, languages, and applications, OOPSLA, pages
16–27, New York, NY, USA. ACM.

Greiler, M., Deursen, A. v., and Storey, M.-A. (2012). Test confessions: a study of testing
practices for plug-in systems. In Proceedings of the 2012 International Conference on

Software Engineering, ICSE, pages 244–254, Piscataway, NJ, USA. IEEE Press.

Griss, M. L. (2000). Implementing product-line features by composing aspects. In Proceedings

of the First International Conference on Software Product Lines: Experiences and Research

Directions, SPLC, pages 271–289. Kluwer.

Guo, Y. and Sampath, S. (2008). Web application fault classification - an exploratory study.
In Proceedings of the Second ACM-IEEE International Symposium on Empirical Software

Engineering and Measurement, ESEM, pages 303–305, New York, NY, USA. ACM.

Haidry, S. and Miller, T. (2013). Using dependency structures for prioritization of functional
test suites. IEEE Transactions on Software Engineering, 39(2), 258–275.

Harrold, M. J. (1998). Architecture-based regression testing of evolving systems. In International

Worshop on Role of Architecture in Testing and Analysis, ROSATEA 1998, pages 73–77,
Marsala, Sicily, Italy.

Harrold, M. J. (2000). Testing: a roadmap. In Proceedings of the Conference on The Future of

Software Engineering, ICSE, pages 61–72, Limerick, Ireland. ACM.

Harzing, A.-W. (2013). A preliminary test of google scholar as a source for citation data: A
longitudinal study of nobel prize winners. Scientometrics, 94(3), 1057–1075.

Hayes, J. (1994). Testing of object-oriented programming systems (oops): A fault-based
approach. In E. Bertino and S. Urban, editors, Object-Oriented Methodologies and Sys-

tems, volume 858 of Lecture Notes in Computer Science, pages 205–220. Springer Berlin
Heidelberg.

Hervieu, A., Baudry, B., and Gotlieb, A. (2011). PACOGEN: Automatic generation of pairwise
test configurations from feature models. In 22nd IEEE International Symposium on Software

Reliability Engineering, ISSRE, pages 120 –129, Hiroshima, Japan. IEEE Computer Society.

157

Hesse-Biber, S. N. (2010). Mixed methods research: merging theory with practice. The Guilford
Press, New York, NY, USA.

Howden, W. E. (2011). Error-based software testing and analysis. In Proceedings of the 2011

IEEE 35th Annual Computer Software and Applications Conference Workshops, COMP-
SACW, pages 161–167, Washington, DC, USA. IEEE Computer Society.

Hu, Y.-P., Zhang, F.-R., and Zhang, W.-Z. (2013). Hard fault analysis of trivium. Information

Sciences, 229, 142–158.

Huang, L., Ng, V., Persing, I., Geng, R., Bai, X., and Tian, J. (2011). Autoodc: Automated
generation of orthogonal defect classifications. In Proceedings of the 2011 26th IEEE/ACM

International Conference on Automated Software Engineering, ASE, pages 412–415, Wash-
ington, DC, USA. IEEE Computer Society.

IEEE (1998). IEEE Standard for Software Test Documentation.

IEEE (2009). IEEE Standard Classification for Software Anomalies.

Jansen, D. (2010). The Electronic Design Automation Handbook. Springer Publishing Company,
Incorporated, 1st edition.

Jaring, M. and Bosch, J. (2004). Expressing product diversification – categorizing and classi-
fying variability in software product family engineering. International Journal of Software

Engineering and Knowledge Engineering, 14(5), 449–470.

Jedlitschka, A., Ciolkowski, M., and Pfahl, D. (2008). Reporting experiments in software
engineering. In F. Shull, J. Singer, and D. Sjøberg, editors, Guide to Advanced Empirical

Software Engineering, pages 201–228. Springer London.

Jia, Y. and Harman, M. (2011). An analysis and survey of the development of mutation testing.
IEEE Transactions on Software Engineering, 37(5), 649 –678.

Johansen, M., Haugen, O., and Fleurey, F. (2011). A survey of empirics of strategies for
software product line testing. In IEEE Fourth International Conference on Software Testing,

Verification and Validation Workshops, ICSTW, pages 266–269, Berlin, Germany. IEEE
Computer Society Press.

Jones, C. (2010). Software Engineering Best Practices. McGraw-Hill, Inc., New York, NY,
USA, 1 edition.

158

REFERENCES

Juran, J. M., Gryna, F. M., and Bingham, R. S. (1979). Quality Control Handbook. McGraw-Hill,
New York, 3rd edition.

Juristo, N., Moreno, A. M., and Vegas, S. (2004). Reviewing 25 years of testing technique
experiments. Empirical Software Engineering, 9(1-2), 7–44.

Juzgado, N. J. and Vegas, S. (2003). Functional testing, structural testing, and code reading:
What fault type do they each detect? In ESERNET , volume 2765 of Lecture Notes in Computer

Science, pages 208–232. Springer.

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., and Peterson, A. S. (1990). Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute - Carnegie Mellon University, Pittsburgh, PA, USA.

Kästner, C., Apel, S., and Kuhlemann, M. (2008). Granularity in software product lines. In
Proceedings of the 30th International Conference on Software Engineering, ICSE, pages
311–320, New York, NY, USA. ACM.

Kazman, R., Klein, M., and Clements, P. (2000). Atam: Method for architecture evaluation.
Technical Report CMU/SEI-2000-TR-004, Software Engineering Institute.

Khoshgoftaar, T. M., Lanning, D. L., and Pandya, A. S. (2006). A comparative study of pattern
recognition techniques for quality evaluation of telecommunications software. IEEE Journal

on Selected Areas in Communications, 12(2), 279–291.

Kim, S. D., Her, J. S., and Chang, S. H. (2005). A theoretical foundation of variability in
component-based development. Information & Software Technology, 47(10), 663–673.

Kim, T., Ko, I. Y., Kang, S. W., and Lee, D. H. (2008). Extending atam to assess product
line architecture. In Computer and Information Technology, 2008. CIT 2008. 8th IEEE

International Conference on, pages 790–797.

Kitchenham, B. and Charters, S. (2007). Guidelines for performing Systematic Literature
Reviews in Software Engineering. Technical Report EBSE 2007-001, Keele University and
Durham University Joint Report.

Kitchenham, B., Brereton, P., Budgen, D., Turner, M., Bailey, J., and Linkman, S. G. (2009). Sys-
tematic literature reviews in software engineering - a systematic literature review. Information

& Software Technology, 51(1), 7–15.

159

Kitchenham, B. A., Brereton, P., Turner, M., Niazi, M., Linkman, S. G., Pretorius, R., and
Budgen, D. (2010). Refining the systematic literature review process - two participant-observer
case studies. Empirical Software Engineering, 15(6), 618–653.

Koch, I. and Naito, K. (2010). Prediction of multivariate responses with a selected number of
principal components. Computational Statistics & Data Analysis, 54(7), 1791 – 1807.

Kolb, R. and Muthig, D. (2003). Challenges in testing software product lines. In Proceedings

of the 7th Conference on Quality Engineering in Software Technology, CONQUEST, pages
81–95. Fraunhofer Publica.

Krueger, C. (2004). Product line binding times: What you don’t know can hurt you. In R. Nord,
editor, Software Product Lines, volume 3154 of Lecture Notes in Computer Science, pages
305–306. Springer Berlin Heidelberg.

Krueger, C. and Clements, P. (2013). Systems and software product line engineering with
biglever software gears. In Proceedings of the 17th International Software Product Line

Conference Co-located Workshops, SPLC Workshops, pages 136–140, Tokyo, Japan. ACM.

Krueger, C. W. (2001). Easing the transition to software mass customization. In Revised Papers

from the 4th International Workshop on Software Product-Family Engineering, PFE, pages
282–293, London, UK. Springer-Verlag.

Kumaresh, S. and Baskaran, R. (2012). Experimental design on defect analysis in software
process improvement. In Recent Advances in Computing and Software Systems (RACSS),

2012 International Conference on, pages 293–298.

Lamancha, B. P., Usaola, M. P., and Velthius, M. P. (2009). Software product line testing - a
systematic review. In Proceedings of the 4th International Conference on Software and Data

Technologies, ICSOFT, pages 23–30, Sofia, Bulgaria. INSTICC Press.

Le, D., Walkingshaw, E., and Erwig, M. (2011). #ifdef confirmed harmful: Promoting under-
standable software variation. In IEEE Symposium on Visual Languages and Human-Centric

Computing (VL/HCC), pages 143–150.

Lewis, W. E. (2008). Software Testing and Continuous Quality Improvement, Third Edition.
Auerbach Publications, Boston, MA, USA, 2nd edition.

160

REFERENCES

Liebig, J., Apel, S., Lengauer, C., Kästner, C., and Schulze, M. (2010). An analysis of the
variability in forty preprocessor-based software product lines. In Proceedings of the 32nd

ACM/IEEE International Conference on Software Engineering, ICSE, pages 105–114, Cape
Town, South Africa. ACM.

Linsbauer, L., Lopez-Herrejon, E. R., and Egyed, A. (2013). Recovering traceability between
features and code in product variants. In Proceedings of the 17th International Software

Product Line Conference, SPLC, pages 131–140, New York, NY, USA. ACM.

Lisboa, L. B., Garcia, V. C., Lucrédio, D., Almeida, E. S., Meira, S. R. L., and Fortes, R. P. M.
(2010). A systematic review of domain analysis tools. Information & Software Technology,
52(1), 1–13.

Lobato, L. L., Neto, P. A. M. S., Machado, I. C., Almeida, E. S., and Meira, S. R. L. (2012).
Risk management in software product lines: An industrial case study. In Software and System

Process (ICSSP), 2012 International Conference on, pages 180–189.

Machado, I. C. (2012). Towards a reasoning framework for software product line testing. In
16th International Software Product Line Conference, SPLC, pages 229–232. ACM.

Machado, I. C., Neto, P. A. M. S., Almeida, E. S., and Meira, S. R. L. (2011). RiPLE-TE:
A Process for Testing Software Product Lines. In Proceedings of the 23rd International

Conference on Software Engineering & Knowledge Engineering, SEKE, pages 711–716,
Miami Beach, FL, USA. KSI.

Machado, I. C., Almeida, E. S., Gomes, G. S. S., Neto, P. A. M. S., Novais, R. L., and Neto,
M. G. M. (2012a). A preliminary study on the effects of working with a testing process in
software product line projects. In IX Experimental Software Engineering Latin American

Workshop, ESELAW, Buenos Aires, Argentina.

Machado, I. C., McGregor, J. D., and Almeida, E. S. (2012b). Strategies for testing products in
software product lines. ACM SIGSOFT Software Engineering Notes, 37(6), 1–8.

Machado, I. C., Neto, P. A. M. S., and Almeida, E. S. (2012c). Towards an integration testing
approach for software product lines. In Information Reuse and Integration (IRI), 2012 IEEE

13th International Conference on, pages 616–623.

Machado, I. C., Santos, A. R., Cavalcanti, Y. C., Trzan, E. G., Souza, M. M., and Almeida, E. S.
(2014a). Low-level variability support for web-based software product lines. In Proceedings

161

of the Eighth International Workshop on Variability Modelling of Software-Intensive Systems,
VaMoS, pages 15:1–15:8, New York, NY, USA. ACM.

Machado, I. C., McGregor, J. D., Cavalcanti, Y. C., and Almeida, E. S. (2014b). On strategies
for testing software product lines: A systematic literature review. Information & Software

Technology, 56(10), 1183–1199.

Madeyski, L. (2010). Test-Driven Development - An Empirical Evaluation of Agile Practice.
Springer Berlin Heidelberg.

Malaiya, Y. K. and Su, S. Y. H. (1982). A New Fault Model and Testing Technique for CMOS
Devices. In Proceedings International Test Conference, ITC, pages 25–34, Philadelphia, PA,
USA. IEEE Computer Society.

Marick, B. (1999). New models for test development. Testing Foundations.

Martin, E. and Xie, T. (2007). A fault model and mutation testing of access control policies. In
Proceedings of the 16th international conference on World Wide Web, WWW, pages 667–676,
Banff, Alberta, Canada. ACM.

Mathur, A. P. (2002). Mutation Testing. John Wiley Sons, Inc.

Matinlassi, M., Niemelä, E., and Dobrica, L. (2002). Quality-driven architecture design and
quality analysis method: a revolutionary initiation approach to a product line architecture.
Technical Report VTT-PUBLICATIONS-456, VTT - Technical Research Centre of Ireland.

McGregor, J. D. (2001). Testing a software product line. Technical Report TR-022, CMU
Software Engineering Institute.

McGregor, J. D. (2008). Toward a fault model for software product lines. In Proceedings of the

12th International Conference on Software Product Lines, SPLC, pages 157–162, Limerick,
Ireland. IEEE Computer Society.

McGregor, J. D., Sodhani, P., and Madhavapeddi, S. (2004). Testing variability in a software
product line. In Proceedings of the International Workshop on Software Product Line Testing,
SPLiT, pages 45–50, Boston, MA, USA. Avaya Labs.

Medeiros, F., Ribeiro, M., and Gheyi, R. (2013). Investigating preprocessor-based syntax errors.
In Proceedings of the 12th international conference on Generative programming: concepts

experiences, GPCE, pages 75–84, Indianapolis, Indiana, USA. ACM.

162

REFERENCES

Meek, B. and Siu, K. K. (1989). The effectiveness of error seeding. ACM SIGPLAN Notices,
24(6), 81–89.

Mellegard, N., Staron, M., and Torner, F. (2012). A light-weight defect classification scheme for
embedded automotive software and its initial evaluation. In Software Reliability Engineering

(ISSRE), 2012 IEEE 23rd International Symposium on, pages 261–270.

Mendonca, M., Branco, M., and Cowan, D. (2009). S.p.l.o.t.: Software product lines online
tools. In Proceedings of the 24th ACM SIGPLAN Conference Companion on Object Oriented

Programming Systems Languages and Applications, OOPSLA, pages 761–762, New York,
NY, USA. ACM.

Mohan, K. and Ramesh, B. (2007). Tracing variations in software product families. Communi-

cations of the ACM, 50(12), 68–73.

Moraes, M. B. S., Almeida, E. S., and Meira, S. R. L. (2011). An agile scoping process for
software product lines. In Proceedings of the 23rd International Conference on Software

Engineering & Knowledge Engineering, SEKE, pages 717–722. Knowledge Systems Institute
Graduate School.

Morell, L. (1990). A theory of fault-based testing. IEEE Transactions on Software Engineering,
16(8), 844–857.

Myers, G. J., Badgett, T., and Sandler, C. (2011). The Art of Software Testing. John Wiley &
Sons, 3rd edition.

Naik, K. and Tripathy, P. (2008). Software Testing and Quality Assurance Theory and Practice.
John Wiley & Sons, Inc.

Nakagawa, E. Y., Antonino, P. O., and Becker, M. (2011). Reference architecture and product line
architecture: A subtle but critical difference. In Proceedings of the 5th European Conference

on Software Architecture, ECSA’11, pages 207–211, Berlin, Heidelberg. Springer-Verlag.

Nath, S. K., Merkel, R., and Lau, M. F. (2012). On the improvement of a fault classification
scheme with implications for white-box testing. In Proceedings of the 27th Annual ACM

Symposium on Applied Computing, SAC, pages 1123–1130, New York, NY, USA. ACM.

Neiva, D. F. S., Almeida, F. C., Almeida, E. S., and Meira, S. R. L. (2010). A requirements
engineering process for software product lines. In 11th IEEE International Conference on

163

Information Reuse and Integration, IRI, pages 266–269, Las Vegas, USA. IEEE Systems,
Man, and Cybernetics Society.

Neto, P. A. M. S., Machado, I. C., McGregor, J. D., Almeida, E. S., and Meira, S. R. L. (2011a).
A systematic mapping study of software product lines testing. Information & Software

Technology, 53(5), 407–423.

Neto, P. A. M. S., Runeson, P., Machado, I. C., Almeida, E. S., Meira, S. R. L., and Engström, E.
(2011b). Testing software product lines. IEEE Software, 28(5), 16–20.

Neto, P. A. M. S., Machado, I. C., Cavalcanti, Y. C., Almeida, E. S., Garcia, V. C., and Meira,
S. R. L. (2012). An experimental study to evaluate a SPL architecture regression testing
approach. In 13th IEEE International Conference on Information Reuse and Integration, IRI,
pages 608–615.

Nie, K., Wang, G., and Zhang, L. (2012). On the relationship between preprocessor-based
software variability and software defects. In Proceedings of the 12th International Conference

on Quality Software, QSIC, Xi’an, Shaanxi, China. IEEE.

Offutt, J., Alexander, R., Wu, Y., Xiao, Q., and Hutchinson, C. (2001). A fault model for
subtype inheritance and polymorphism. In Proceedings of the 12th International Symposium

on Software Reliability Engineering, ISSRE, Washington, DC, USA. IEEE Computer Society.

Oliveira, T. H. B. (2009). RiPLE-EM: A Process to Manage Evolution in Software Product
Lines.

Palix, N., Thomas, G., Saha, S., Calvès, C., Lawall, J., and Muller, G. (2011). Faults in linux:
Ten years later. SIGPLAN Not., 47(4), 305–318.

Passos, L., Novakovic, M., Xiong, Y., Berger, T., Czarnecki, K., and Wąsowski, A. (2011). A
study of non-boolean constraints in variability models of an embedded operating system. In
Proceedings of the 15th International Software Product Line Conference, Volume 2, SPLC,
pages 2:1–2:8, New York, NY, USA. ACM.

Paul, T. K. and Lau, M. F. (2012). Redefinition of fault classes in logic expressions. In
Proceedings of the 2012 12th International Conference on Quality Software, QSIC, pages
144–153, Washington, DC, USA. IEEE Computer Society.

164

REFERENCES

Perrouin, G., Sen, S., Klein, J., Baudry, B., and le Traon, Y. (2010). Automated and scalable
t-wise test case generation strategies for software product lines. In Proceedings of the

Third International Conference on Software Testing, Verification and Validation, ICST, pages
459–468, Paris, France. IEEE Computer Society.

Perrouin, G., Oster, S., Sen, S., Klein, J., Baudry, B., and le Traon, Y. (2011). Pairwise testing
for software product lines: comparison of two approaches. Software Quality Journal, pages
1–39.

Petersen, K., Feldt, R., Mujtaba, S., and Mattsson, M. (2008). Systematic mapping studies in
software engineering. In Proceedings of the 12th International Conference on Evaluation and

Assessment in Software Engineering, EASE, Bari, Italy. University of Bari.

Petticrew, M. and Roberts, H. (2006). Systematic Reviews in the Social Sciences: A practical

guide. Oxford: Blackwell Publishing.

Pohl, K., Böckle, G., and van der Linden, F. J. (2005). Software Product Line Engineering:

Foundations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus, NJ,
USA.

Pohl, R., Lauenroth, K., and Pohl, K. (2011). A performance comparison of contemporary
algorithmic approaches for automated analysis operations on feature models. In Proceedings

of the 26th IEEE/ACM International Conference on Automated Software Engineering, ASE,
pages 313–322, Washington, DC, USA. IEEE Computer Society.

Pomeranz, I. and Reddy, S. M. (2009). Selection of a fault model for fault diagnosis based
on unique responses. In Proceedings of the Conference on Design, Automation and Test

in Europe, DATE, pages 994–999, 3001 Leuven, Belgium, Belgium. European Design and
Automation Association.

Porter, A. A. and Selby, R. W. (1990). Empirically guided software development using metric-
based classification trees. IEEE Software, 7(2), 46–54.

Rapps, S. and Weyuker, E. (1985). Selecting software test data using data flow information.
IEEE Transactions on Software Engineering, SE-11(4), 367–375.

Rashid, A., Royer, J.-C., and Rummler, A. (2011). Aspect-Oriented, Model-Driven Software

Product Lines - The AMPLE Way, chapter 1. Cambridge University Press.

165

Reinecke, P., Wolter, K., and Malek, M. (2010). A survey on fault-models for qos studies
of service-oriented systems. Technical Report B-2010-02, Freie Universität Berlin, Berlin,
Germany.

Rincón, L., Giraldo, G., Mazo, R., and Salinesi, C. (2014). An ontological rule-based approach
for analyzing dead and false optional features in feature models. Electronic Notes in Theo-

retical Computer Science, 302, 111 – 132. Proceedings of the {XXXIX} Latin American
Computing Conference (CLEI 2013).

Roos-Frantz, F. (2009). A preliminary comparison of formal properties on orthogonal variabil-
ity model and feature models. In Third International Workshop on Variability Modelling

of Software-Intensive Systems,, VaMoS, pages 121–126. Universität Duisburg-Essen, ICB
Research Report.

Rothermel, G. and Harrold, M. J. (1996). Analyzing regression test selection techniques. IEEE

Transactions on Software Engineering, 22(8), 529–551.

Rothermel, G. and Harrold, M. J. (1997). A safe, efficient regression test selection technique.
ACM Transactions on Software Engineering and Methodology, 6(2), 173–210.

Rothermel, G., Untch, R. H., Chu, C., and Harrold, M. J. (2001). Prioritizing test cases for
regression testing. IEEE Transactions on Software Engineering, 27(10), 929–948.

Salinesi, C. and Mazo, R. (2012). Software Product Line - Advanced Topic, chapter Defects in
Product Line Models and How to Identify Them, pages 97–122. InTech.

Santos, W., Almeida, E., and de L Meira, S. (2012). Tirt: A traceability information retrieval
tool for software product lines projects. In 38th EUROMICRO Conference on Software

Engineering and Advanced Applications, SEAA, pages 93–100.

Schaefer, I., Bettini, L., Damiani, F., and Tanzarella, N. (2010). Delta-oriented programming
of software product lines. In Proceedings of the 14th International Conference on Software

Product Lines, SPLC, pages 77–91, Berlin, Heidelberg. Springer-Verlag.

Schmid, K. and John, I. (2004). A customizable approach to full lifecycle variability management.
Science of Computer Programming, 53(3), 259–284.

Schnieders, A. and Puhlmann, F. (2006). Variability mechanisms in e-business process families.
In 9th International Conference on Business Information Systems, BIS, pages 583–601,
Klagenfurt, Austria. GI.

166

REFERENCES

Seaman, C. B., Shull, F., Regardie, M., Elbert, D., Feldmann, R. L., Guo, Y., and Godfrey,
S. (2008). Defect categorization: making use of a decade of widely varying historical data.
In Proceedings of the Second ACM-IEEE international symposium on Empirical software

engineering and measurement, ESEM, pages 149–157, New York, NY, USA. ACM.

Selby, R. W. and Porter, A. A. (1988). Learning from examples: Generation and evaluation of
decision trees for software resource analysis. IEEE Transactions on Software Engineering,
14(12), 1743–1757.

Shaw, M. (2002). What makes good research in software engineering? International Journal on

Software Tools for Technology Transfer, 4(1), 1–7.

Sinnema, M. and Deelstra, S. (2007). Classifying variability modeling techniques. Information

& Software Technology, 49(7), 717–739.

Sommerville, I. (2011). Software Engineering. Pearson Addison-Wesley, 9th edition.

Souza, I. S., Gomes, G. S. S., Neto, P. A. M. S., Machado, I. C., Almeida, E. S., and Meira, S.
R. L. (2013). Evidence of software inspection on feature specification for software product
lines. Journal of Systems and Software, 86(5), 1172 – 1190.

Strecker, J. and Memon, A. M. (2012). Accounting for defect characteristics in evaluations
of testing techniques. ACM Transactions on Software Engineering Methodology, 21(3),
17:1–17:43.

Svahnberg, M., van Gurp, J., and Bosch, J. (2005). A taxonomy of variability realization
techniques: Research articles. Software Practice & Experience, 35(8), 705–754.

Tevanlinna, A., Taina, J., and Kauppinen, R. (2004). Product family testing: a survey. ACM

SIGSOFT Software Engineering Notes, 29(2), 12.

Thiel, S. (2002). On the definition of a framework for an architecting process supporting product
family development. In F. Linden, editor, Software Product-Family Engineering, volume
2290 of Lecture Notes in Computer Science, pages 125–142. Springer Berlin Heidelberg.

Thörn, C. (2007). A quality model for evaluating feature models. In 11th International

Conference on Software Product Lines, SPLC, Second Volume (Workshops), pages 184–190,
Kyoto, Japan.

167

Thüm, T., Batory, D., and Kastner, C. (2009). Reasoning about edits to feature models. In
Proceedings of the 31st International Conference on Software Engineering, ICSE, pages
254–264, Washington, DC, USA. IEEE Computer Society.

Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., and Leich, T. (2014). Featureide:
An extensible framework for feature-oriented software development. Science of Computer

Programming, 79, 70–85.

Thummalapenta, S., Sinha, S., Singhania, N., and Chandra, S. (2012). Automating test automa-
tion. In Proceedings of the 2012 International Conference on Software Engineering, ICSE,
pages 881–891, Piscataway, NJ, USA. IEEE Press.

Thung, F., Lo, D., and Jiang, L. (2012). Automatic defect categorization. 2013 20th Working

Conference on Reverse Engineering (WCRE), 0, 205–214.

Tischer, C., Muller, A., Mandl, T., and Krause, R. (2011). Experiences from a large scale software
product line merger in the automotive domain. In Proceedings of the 15th International

Conference on Software Product Lines, SPLC, pages 267–276, Munich, Germany. ACM.

Trujillo, S., Batory, D., and Diaz, O. (2007). Feature oriented model driven development: A
case study for portlets. In 29th International Conference on Software Engineering, ICSE,
pages 44–53.

Tseng, M. M. and Jiao, J. (2001). Mass customization. In G. Salvendy, editor, Handbook of

industrial engineering: technology and operations management, chapter 25, pages 684–709.
John Wiley & Sons, Inc., 3rd edition.

Tsuchiya, R., Kato, T., Washizaki, H., Kawakami, M., Fukazawa, Y., and Yoshimura, K. (2013).
Recovering traceability links between requirements and source code in the same series of
software products. In Proceedings of the 17th International Software Product Line Conference,
SPLC, pages 121–130, New York, NY, USA. ACM.

van der Linden, F., Schmid, K., and Rommes, E. (2007). Software Product Lines in Action.
Springer-Verlag Berlin Heidelberg.

van Gurp, J., Bosch, J., and Svahnberg, M. (2001). On the notion of variability in software
product lines. In Working IEEE/IFIP Conference on Software Architecture, pages 45–54.

Vegas, S. and Basili, V. R. (2005). A characterisation schema for software testing techniques.
Empirical Software Engineering, 10(4), 437–466.

168

REFERENCES

Voelter, M. (2009). Variability patterns. In EuroPLoP 2009: 14th Annual European Conference

on Pattern Languages of Programming, Irsee, Germany, July 8-12, volume 566 of CEUR

Workshop Proceedings. CEUR-WS.org.

Webster, J. and Watson, R. T. (2002). Analyzing the past to prepare for the future: writing a
literature review. MIS Quarterly, 26(2), xiii–xxiii.

Weiss, D. M., Clements, P. C., Kang, K., and Krueger, C. (2006). Software product line hall of
fame. In Proceedings of the 10th International on Software Product Line Conference, SPLC,
pages 237–, Baltimore, Maryland. IEEE Computer Society.

Winter, S., Sârbu, C., Suri, N., and Murphy, B. (2011). The impact of fault models on software
robustness evaluations. In Proceedings of the 33rd International Conference on Software

Engineering, ICSE, pages 51–60, New York, NY, USA. ACM.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., and Regnell, B. (2012). Experimentation in

Software Engineering. Springer.

Wohlin, C., Runeson, P., Neto, P. A. M. S., Engström, E., Machado, I. C., and Almeida, E. S.
(2013). On the reliability of mapping studies in software engineering. Journal of Systems and

Software, 86(10), 2594 – 2610.

Wood, M., Roper, M., Brooks, A., and Miller, J. (1997). Comparing and combining software
defect detection techniques: A replicated empirical study. pages 262–277.

Wu, Y., Peng, X., and Zhao, W. (2011). Architecture evolution in software product line: an
industrial case study. In Proceedings of the 12th international conference on Top productivity

through software reuse, ICSR’11, pages 135–150, Berlin, Heidelberg. Springer-Verlag.

Xiao, X., Thummalapenta, S., and Xie, T. (2012). Advances on improving automation in
developer testing. Advances in Computers, 85, 165–212.

Yamamoto, M., Sugiyama, T., Murakami, H., and Sakaori, F. (2007). Correlation analysis of
principal components from two populations. Computational Statistics & Data Analysis, 51(9),
4707 – 4716.

Yoo, S. and Harman, M. (2012). Regression testing minimization, selection and prioritization: a
survey. Software Testing, Verification and Reliability, 22(2), 67–120.

169

Zhang, H., Babar, M. A., and Tell, P. (2011). Identifying relevant studies in software engineering.
Information & Software Technology, 53(6), 625–637.

170

Appendices

171

A
Systematic Literature Review - Primary

Studies

This appendix lists the primary studies analyzed in the Systematic Review of Testing Strategies
for SPL Engineering, earlier addressed in Chapter 4. We also lists the distribution of the final
list of included studies (forty-two) per venue.

A.1 Venues manually searched

Table A.1: Venues subject to manual search

Journals

ACM TOSEM - Transactions on Software Engineering and Methodology

ASE - Automated Software Engineering

IEEE SW - Software

IEEE TSE - Transactions on Software Engineering

IET SW - Software

IST - Information & Software Technology

JSEP - Software: Evolution and Process

JSS - Systems & Software

SPE - Software: Practice and Experience

Continued . . .

173

SQJ - Software Quality Journal

STVR - Software Testing, Verification & Reliability

Conferences

AOSD - Aspect-Oriented Software Development

ASE - Automated Software Engineering

CSMR - Software Maintenance and Reengineering

ENASE - Evaluation of Novel Approaches to Software Engineering

FASE - Fundamental Approaches to Software Engineering

ICSE - Software Engineering

ICSM - Software Maintenance

ICSR - Software Reuse

ICST - Software Testing

ICTSS - Testing Software and Systems

ISSRE - Software Reliability Engineering

ISSTA - Software Testing and Analysis

MODELS - Model-Driven Engineering and Software Development

SEFM - Software Engineering and Formal Methods

SPLC - Software Product Line Conference

QSIC - Quality Software

Workshops

A-MOST - Advances in Model Based Testing

AST - Automation of Software Test

FOSD - Feature Oriented Software Development

PLEASE - Product Line Approaches in Software Engineering

SPLiT - Software Product Lines Testing

VaMoS - Variability Modelling of Software-Intensive Systems

A.2 Quality assessment results

See Table A.2.

174

A.2. QUALITY ASSESSMENT RESULTS

Table A.2: Quality assessment.

Study QC1 QC2 QC3 QC4 QC5 QC6 QC7 QC8 QC9 QC10 QC11 Score

P01 1 1 1 0 1 0 0 1 1 1 0 7
P02 1 1 1 0 0 0 0 0 1 1 1 6
P03 1 1 0 0 0 0 0 0 1 1 1 5
P04 1 1 1 0 0 0 0 1 1 1 1 7
P05 1 1 1 1 0 1 0 0 0 0 0 5
P06 1 1 0 0 0 0 0 0 0 0 0 2
P07 1 1 0 0 0 0 0 0 0 1 1 4
P08 1 1 1 1 0 0 0 0 0 1 1 6
P09 1 1 1 0 0 0 0 0 0 1 0 4
P10 1 1 0 0 0 0 0 0 0 0 0 2
P11 1 1 1 1 0 0 0 0 1 1 1 7
P12 1 1 0 0 0 0 0 0 0 0 0 2
P13 1 1 1 0 0 0 0 1 0 0 0 4
P14 1 1 1 0 0 0 0 0 0 0 0 4
P15 1 1 0 0 0 0 0 0 0 0 0 2
P16 1 1 1 1 0 0 0 0 0 1 0 5
P17 1 1 1 1 0 1 0 1 1 1 1 9
P18 1 1 1 0 0 1 0 0 1 1 0 6
P19 1 1 1 1 1 1 0 0 1 1 0 8
P20 1 1 1 0 0 0 0 0 1 1 0 5
P21 1 1 0 0 0 0 0 0 1 1 0 4
P22 1 1 0 1 1 1 0 0 1 1 0 7
P23 1 1 1 1 1 1 0 0 1 1 0 8
P24 1 1 1 1 0 1 0 0 1 1 0 7
P25 1 1 1 1 0 0 0 0 1 1 0 6
P26 1 1 0 0 0 0 0 0 0 1 0 3
P27 1 0 0 0 0 0 0 0 0 0 0 1
P28 1 1 1 1 0 1 0 0 1 1 0 7
P29 1 1 1 1 0 1 1 0 1 1 0 8
P30 1 1 0 0 0 1 0 0 1 1 0 5
P31 1 1 1 1 1 1 1 0 1 1 0 9
P32 1 1 0 0 0 0 0 0 1 1 0 4
P33 1 1 1 1 1 1 0 0 1 1 0 8
P34 1 1 1 1 0 1 0 0 1 1 0 7
P35 1 1 1 0 0 1 0 1 1 1 1 8
P36 1 1 1 1 1 1 1 0 1 1 0 9
P37 1 1 1 0 0 0 0 0 1 1 0 5
P38 1 1 1 1 1 0 0 0 0 1 0 6
P39 1 1 1 1 1 1 1 1 1 1 0 10
P40 1 1 1 1 0 1 1 0 1 1 0 8
P41 1 1 1 0 1 0 0 0 0 1 0 5
P42 1 1 1 1 1 1 1 0 1 1 0 9
P43 1 1 1 1 1 1 1 0 1 1 0 9
P44 1 1 1 1 0 0 0 0 0 1 0 5
P45 1 1 1 0 0 1 0 0 1 1 0 6
P46 1 1 1 1 1 1 1 0 1 1 0 9
P47 1 1 0 0 1 0 0 0 1 1 0 5
P48 1 1 0 0 0 0 0 0 0 1 0 3
P49 1 1 1 1 0 0 0 0 1 1 0 6

175

A.3 Primary studies

Table A.3: Selected primary studies.

ID Title Author(s) Venue

P01 Testing software assets of framework-based product
families during application engineering stage J. Al-Dallal, P. G. Sorenson JSW 3 (5): 11–25,

2008

P02 On extracting tests from a testable model in the con-
text of domain engineering

S. Bashardoust-Tajali, J.-P.
Corriveau

ICECCS’08: 98–
107

P03 Product line use cases: Scenario-based specification
and testing of requirements

A. Bertolino, A. Fantechi,
S. Gnesi, G. Lami

Book Chapter:
425–445, 2006

P04 Towards generating acceptance tests for product lines B. Geppert, J. J. Li,
F. Roessler, D. M. Weiss ICSR’04: 35–48

P05 An approach for selecting software product line in-
stances for testing T. Gustafsson SPLC’07: 81–86

P06 Specification-based testing for software product lines T. Kahsai, M. Roggenbach,
B.-H. Schlingloff

SEFM’08: 149–
158

P07 Testing variabilities in use case models E. Kamsties, K. Pohl,
S. Reis, A. Reuys PFE’03: 6–18

P08 Reuse execution traces to reduce testing of product
lines

J. J. Li, B. Geppert,
F. Roessler, D. Weiss SPLiT’07: 1–8

P09 A reuse technique for performance testing of soft-
ware product lines A. P. K. Reis, S.; Metzger SPLiT’06: 5–10

P10 Specification based software product line testing: A
case study S. Mishra CS&P’06: 243–

254

P11 System testing of product lines: From requirements
to test cases

C. Nebut, Y. Traon, J.-M.
Jézéquel

Book Chapter:
447–477, 2006

P12 Model-based testing for applications derived from
software product lines E. M. Olimpiew, H. Gomaa A-MOST’05: 1–7

P13 Customizable requirements-based test models for
software product lines E. M. Olimpiew, H. Gomaa SPLiT’06: 17–22

P14 Reusable model-based testing E. M. Olimpiew, H. Gomaa ICSR’09: 76–85

P15 Towards software product line testing using story
driven modeling

S. Oster, A. Schürr,
I. Weisemöller

T.Report: 48–51,
2008

P16 Production-testing of embedded systems with aspects J. Pesonen, M. Katara,
T. Mikkonen HVC’05: 90–102

Continued on next page. . .

176

A.3. PRIMARY STUDIES

Table A.3: Continued.

ID Title Author(s) Venue

P17 The SCENTED method for testing software product
lines

A. Reuys, S. Reis, E. Kam-
sties, K. Pohl

Book Chapter:
479–520, 2006

P18
Optimizing the selection of representative configu-
rations in verification of evolving product lines of
distributed embedded systems

K. Scheidemann SPLC’06: 75–84

P19 Improving the testing and testability of software prod-
uct lines

I. Cabral, M. B. Cohen,
G. Rothermel

SPLC’10: 241–
255

P20 Model-based coverage-driven test suite generation
for software product lines

H. Cichos, S. Oster,
M. Lochau, A. Schürr

MODELS’11:
425–439

P21 Goal-oriented test case selection and prioritization
for product line feature models A. Ensan et al. ITNG’11: 291–

298

P22 Linking feature models to code artifacts using exe-
cutable acceptance tests Y. Ghanam, F. Maurer SPLC’10: 211–

225

P23 PACOGEN: Automatic generation of pairwise test
configurations from feature models

A. Hervieu, B. Baudry,
A. Gotlieb

ISSRE’11: 120 –
129

P24 Properties of realistic feature models make combina-
torial testing of product lines feasible

M. F. Johansen, Ø. Haugen,
F. Fleurey

MODELS’11:
638–652

P25 Reducing combinatorics in testing product lines C. H. P. Kim, D. S. Batory,
S. Khurshid AOSD’11: 57–68

P26 Testing product generation in software product lines
using pairwise for features coverage

B. P. Lamancha, M. P. Us-
aola

ICTSS’10: 111–
125

P27 A model based testing approach for model-driven
development and software product lines

B. P. Lamancha, M. P. Us-
aola, M. P. Velthius

ENASE’10: 193–
208

P28 Model-based pairwise testing for feature interaction
coverage in software product line engineering

M. Lochau, S. Oster,
U. Goltz, A. Schürr

SQJ 20(3): 567-
604, 2012

P29 Automated incremental pairwise testing of software
product lines

S. Oster, F. Markert, P. Rit-
ter

SPLC’10: 196–
210

P30 Pairwise feature-interaction testing for SPLs: poten-
tials and limitations

S. Oster, M. Lochau,
M. Zink, M. Grechanik SPLC’11: 1–8

P31 Automated and scalable t-wise test case generation
strategies for software product lines G. Perrouin et al. ICST’10: 459–

468

P32 Modelling requirements to support testing of product
lines C. Robinson-Mallett et al. A-MOST’10: 11–

18

P33 Integration testing of software product lines using
compositional symbolic execution

J. Shi, M. Cohen,
M. Dwyer

FASE’12: 270–
284

P34 A regression testing approach for software product
lines architectures P. A. M. S. Neto et al. SBCARS’10: 41–

50

P35 Avoiding redundant testing in application engineer-
ing

V. Stricker, A. Metzger,
K. Pohl

SPLC’10: 226–
240

Continued on next page. . .

177

Table A.3: Continued.

ID Title Author(s) Venue

P36 Incremental test generation for software product lines E. Uzuncaova, S. Khurshid,
D. Batory

TSE 36 (3): 309–
322, 2010

P37 Model-Driven Software Product Line Testing: An
Integrated Approach

A. Schürr, S. Oster,
F. Markert

SOFSEM’10:
112–131

P38 Combinatorial Testing for Feature Models Using Cit-
Lab

A. Calvagna, A. Gargantini,
P. Vavassori

IWCT’13: 338–
347

P39 Continuous test suite augmentation in software prod-
uct lines

Z. Xu, M. B. Cohen,
W. Motycka, G. Rothermel SPLC’13: 52–61

P40 Evolutionary Search-Based Test Generation for Soft-
ware Product Line Feature Models

F. Ensan, E. Bagheri, and
D. Gašević

CAiSE’12: 613–
628

P41 Incremental Model-Based Testing of Delta-Oriented
Software Product Lines

M. Lochau, I. Schaefer,
J. Kamischke, S. Lity TAP’12: 67–82

P42 Minimizing test suites in software product lines using
weight-based genetic algorithms S. Wang, S. Ali, A. Gotlieb GECCO’13:

1493–1500

P43 Multi-objective test generation for software product
lines C. Henard et al. SPLC’13: 62–71

P44 Practical pairwise testing for software product lines D. Marijan, A. Gotlieb,
S. Sen, A. Hervieu

SPLC’13: 227–
235

P45 Shared Execution for Efficiently Testing Product
Lines

C. H. Kim, S. Khurshid,
D. Batory

ISSRE’12: 221–
230

P46 SPLat: lightweight dynamic analysis for reducing
combinatorics in testing configurable systems C. H. Kim et al. ESEC/FSE’13:

257–267

P47 Towards efficient SPL testing by variant reduction M. Kowal, S. Schulze,
I. Schaefer

VariComp’13: 1–
6

P48 Requirements-based Delta-oriented SPL Testing M. Dukaczewski et al. PLEASE’13: 49–
52

P49 Automated Test Case Selection Using Feature Model:
An Industrial Case Study

S. Wang, A. Gotlieb, S. Ali,
M. Liaaen

MODELS’13:
237–253

178

B
Experimental Study - Materials

This appendix includes the support materials used in the empirical evaluation, as earlier discussed in Section 7.4. In
Section B.1 we show the questionnaire, applied to gather background information of every participant in the case
study. Next in Section B.2 we show raw data of background information.

B.1 Background questionnaire

A. What is your overall experience with software development in practice? Check the bottom-most item
that applies (by years of experience).

Less than 1 year 1-3 years 3-6 years 6-9 years More than 9 years

B. What is your previous experience with software development in practice? Check the bottom-most item
that applies (by area/years of experience).

No exp. < 1 year 1-3 years 4-6 years 7-9 years > 10+ years

Technical leader

Requirements engineering

Software design

Software implementation

Software testing

Quality assurance

Software maintenance

C. How many projects (per application domain) have you been involved in the development team? Check
the bottom-most item that applies.

179

No exp. 1 project 2-3 projects 4-5 projects 6-9 projects 10+ projects

Information systems

Embedded systems

Distributed systems

Scientific systems

Expert systems

Components (COTS)

D. What is your overall experience with software development in Java? Please rate your general skills
according to the novice-expert scale below (Dreyfus and Dreyfus, 1980).

Novice are still at a learning stage.
Advanced beginner uses learned procedures and rules to determine what actions are required for the immediate
situation.
Competent are task-oriented and deliberately structure their work in terms of plans for goal achievement.
Competent can respond to many situations but lack the ability to recognize situations in terms of an overall
picture.
Proficient perceive situations as a whole and have more ability to recognize and respond to changing circum-
stances.
Expert recognize unexpected project responses and can alert others to potential problems before they occur.
Experts have an intuitive grasp of whole situations and are able to accurately diagnose and respond without
wasteful consideration of ineffective possibilities. Because of their superior performance, expert developers are
often consulted by other developers and relied upon to be technical leaders.

Novice Advanced beginner Competent Proficient Expert

E. How many years of experience with Java development?

F. What is your overall experience with software testing? Check the bottom-most item that applies.

No exp. Novice Advanced beg. Competent Proficient Expert

Test management

Test specification gathering

Manual test design/execution

Automated test design/execution

Automated testing with JUnit

G. How many years of experience with software testing?

H. Please rate your skills with the development of Software Product Lines.

180

B.2. BACKGROUND QUESTIONNAIRE - RAW DATA

No exp. Novice Advanced beginner Competent Proficient Expert

Academy

Industry

I. How many years of experience with software product line engineering (if any)?

J. Please rate your skills with the development of variable/configurable systems (recall the notions of vari-
ability from the training session).

No exp. Novice Advanced beginner Competent Proficient Expert

Implementation

Testing

K. How many years of experience with the development of variable/configurable systems (if any)?

L. How do you consider your skills about identifying feature information from the source code, i.e., given
any project source code, are you able to identify its features?

No exp. Novice Advanced beginner Competent Proficient Expert

B.2 Background questionnaire - raw data
See Table B.1. The column item represents the items from the Background Questionnaire. Moreover, each item
B−n matches a subitem in the multiple-option grids, e.g., the item B-1 refers to the Project Management. Besides,
every option was attributed a value (from 1 to 5, to a 5-item set of options, or from 0 to 5, to a 6-item set of options,
especially when there is the option None/No experience). For instance, let a subject α has a 2-year experience in
Project Management, hence the item Project Management in the Table would be valued 2, as it fits into the third
column (1-3 years). See the example below.

No exp. < 1 year 1-3 years 3-6 years 6-9 years > 9 years
Project management

item value 0 1 2 3 4 5

181

Table B.1: Raw data of the background questionnaire applied in the case study.

Item
Subject ID

1 2 3 4 5 6 7

A 4 3 2 3 2 3 3

B-1 2 1 0 0 0 1 0

B-2 2 2 1 2 1 1 2

B-3 3 2 1 2 1 3 1

B-4 4 3 2 3 2 2 2

B-5 0 0 1 0 1 0 2

B-6 0 0 0 0 0 1 0

B-7 0 0 0 0 0 0 0

C-1 2 5 2 0 0 1 0

C-2 1 0 0 1 2 1 1

C-6 3 0 0 0 0 1 2

C-3 3 0 2 2 1 0 0

C-4 3 3 0 0 0 2 0

C-5 0 0 0 0 0 0 0

C-6 0 3 0 0 0 0 0

D 3 4 4 3 1 3 2

E 7 6 2 4 1 3 4

F-1 0 0 0 1 0 0 0

F-2 0 0 0 2 0 1 2

F-3 1 2 2 2 1 0 2

F-4 2 2 2 2 0 0 1

F-5 2 2 2 2 0 1 1

G 1 1 1 1 1 0 1

H-1 0 1 0 0 0 0 0

H-2 0 4 2 0 0 0 0

I 0 6 2 0 0 0 0

J-1 0 0 2 0 0 0 0

J-2 0 0 2 0 0 0 0

K 2 2 1 3 2 3 1

L 2 4 0 2 3 3 1

182

C
Experimental Study - SPL Architecture

This appendix shows the class diagrams and the relationship between classes of the SPL project used to evaluate
the proposed fault modeling approach, earlier addressed in Chapter 7.

Figure C.1: Classes of the package simulator model.

183

Figure C.2: Classes of the package simulator.

184

Figure C.3: Classes of the package simulator controllers.

185

Fi
gu

re
C

.4
:C

la
ss

es
of

th
e

pa
ck

ag
e

gu
ib

ut
to

ns
.

186

Figure C.5: Relationship between packages and classes.

187

Programa Multiinstitucional de

Pós-Graduação em Ciência da Computação – PMCC

PMCC-IM-UFBA, Campus de Ondina
Av. Adhemar de Barros S/N, Salvador – Bahia. CEP: 40.170-110

dmcc@ufba.br http://dmcc.dcc.ufba.br/

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Objectives
	Research Method
	Contributions
	Thesis outline

	Software Testing Fundamentals
	Fault-Error-Failure chain
	Software testing process
	Test specification
	Testing techniques
	Test case prioritization

	Test levels
	Regression testing
	Fault models
	Fault models in systems and software engineering
	Fault models in the software development life cycle

	Chapter summary

	Software Product Line Engineering
	Domain and application engineering processes
	Handling variability
	Variability modeling
	Variability implementation

	SPL adoption strategies
	Chapter summary

	Software Product Lines Testing
	Introduction
	The review method
	Research questions
	Identification of relevant literature
	Phase 1: analysis of existing reviews
	Phase 2 - gathering recent publications
	Primary study selection strategy

	Data extraction
	Quality assessment

	Results of the systematic review
	Characteristics of the studies
	Strategies to handle the selection of products to test (RQ1)
	Strategies to handle the test of end-product functionalities (RQ2)
	Strength of evidence in support of available strategies (RQ3)
	Implications for research and practice (RQ4)

	Analysis and discussion
	Limitations of this study

	Related work
	Chapter summary

	A Preliminary Evaluation of the Effects of Unit Testing in SPL Engineering
	SPL testing process
	Experiment planning
	Design, variables, materials and participants
	Hypotheses

	Experiment operation
	Data analysis
	Descriptive statistics
	Test case effectiveness (M1)
	Quality of defects found (M2)
	Test coverage (M3)

	Hypothesis testing
	Exploring relationships among variables
	Threats to validity

	Evaluation of results and implications
	Concluding Remarks

	Defining a Fault Classification Scheme Towards Variability Testing
	Fault classification schemes
	Faults in variability mechanisms
	Empirical study - Analysis of open source software systems
	Procedure
	Datasets and empirical study settings
	Study operation
	Results
	Limitations

	Chapter summary

	Fault Modeling for Variability Testing
	Overview of the approach
	Fault modeling for test suite evaluation
	Fault modeling for test suite design
	Empirical evaluation
	Experiment planning
	Hypotheses
	Variables
	Selection of subjects
	Instrumentation
	Design

	Experiment operation
	Fault injection

	Analysis and interpretation
	Does the use of fault models lead to best variability testing results? (RQ1)
	Is the fault modeling approach helpful to uncover the faults that the fault models prescribed? (RQ2)
	Hypothesis testing
	Threats to validity

	Chapter summary

	Conclusions
	Future work
	Related work
	Main contributions

	References
	Appendices
	Systematic Literature Review - Primary Studies
	Venues manually searched
	Quality assessment results
	Primary studies

	Experimental Study - Materials
	Background questionnaire
	Background questionnaire - raw data

	Experimental Study - SPL Architecture

