

Universidade Federal da Bahia Instituto de Geociências Curso de Pós-Graduação em Geologia Área de Metalogênese

DISSERTAÇÃO DE MESTRADO

O FOSFORITO PROTEROZÓICO DA REGIÃO DE IRECÊ (BAHIA): CARACTERIZAÇÃO CRISTALOGRÁFICA E QUÍMICA

ANDREIA LIMA SANCHES

SALVADOR-BAHIA DEZEMBRO/97

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE GEOCIÊNCIAS

Curso de Pós-Graduação em Geologia

O FOSFORITO PROTEROZÓICO DA REGIÃO DE IRECÊ (BAHIA): CARACTERIZAÇÃO CRISTALOGRÁFICA E QUÍMICA

por

ANDREIA LIMA SANCHES

DISSERTAÇÃO DE MESTRADO

Submetida em satisfação parcial dos requisitos ao grau de

MESTRE EM CIÊNCIA GEOLOGIA

à

Câmara do Ensino de Pós-Graduação e Pesquisa da Universidade federal da Bahia

rovado: Comissão examin Dr. Aroldo Misi (orie	
	Gra
Data da aprovação:/	u conferido em://

RESUMO

Os fosforitos estudados ocorrem na região entre as cidades de Irecê e Lapão, no estado da Bahia, e apresentam-se encaixados nos sedimentos carbonáticos da Formação Salitre - Grupo Una, Neoproterozóico. A Companhia Baiana de Pesquisa Mineral (CBPM) estimou reservas em torno de 40 milhões de toneladas de rocha fosfática com teor médio de 14 % de P_2O_5 .

O minério fosfático é constituído principalmente de carbonato-fluorapatita onde é notória a associação dos mesmos a estruturas estromatolíticas colunares do tipo *Jurussania Krilov*, hospedadas em litofácies carbonáticas com estratos cruzados, o que indica que a mineralização foi gerada em zonas de alta energia equivalentes a regiões de submaré alta ou intermaré baixa, em ambientes de planície de maré. O fosforito primário ocorre em três tipos: colunar estromatolítico, laminar estromatolítico e intraclástico, este último derivado da ação erosiva de correntes e localizado nos espaços intercolunares e interlaminares. A presença desses clastos fosfáticos ressedimentados, dentre outras observações petrográficas, sugere que a fosfogênese foi precoce no processo diagenético.

Embora a tecnologia tenha tido um grande avanço nos últimos tempos, a determinação do percentual de CO_3 .² em apatitas sedimentares ainda continua sendo um problema a ser solucionado devido à natureza cripto a microcristalina do carbonato-fluorapatita e à associação freqüente com cimentos calcítico e dolomítico. A difratometria de raios-X é, sem dúvida, o método mais confiável para se calcular o percentual de CO_3^{-2} contido na estrutura da apatita. Além disso, este método é muito mais barato e rápido do que os métodos químicos convencionais.

A determinação dos parâmetros cristalográficos juntamente com análise química por fluorescência de raios-X, e análise de química mineral permitiram a caracterização do minério fosfático de Irecê, bem como forneceu subsídios para fazer uma comparação com outros depósitos de fosforitos, nacionais e mundiais.

Os parâmetros químicos e cristalográficos encontrados para as francolitas de Irecê indicam que, apesar de terem sofrido algum intemperismo, estas não mudaram a sua composição, ou seja, os processos intempéricos atuantes não chegaram a modificar a estrutura inrterna do carbonato-fluorapatita.

O fosforito de Irecê apresenta parâmetros químicos comparáveis aos melhores concentrados de rocha fosfática disponíveis no mundo, e em alguns casos até melhores: razão CaO/P_2O_5 de 1,71, baixo teor de urânio e baixos teores de Pb e Cd no concentrado final, dentre outros.

ABSTRACT

The proterozoic sedimentary phosphate deposits of Irecê are located between the towns of Irecê and Lapão, in the north-central part of the State of Bahia, Brazil. They are hosted by carbonate rocks of the Neoproterozoic Salitre Formation (Una Group). Companhia Baiana de Pesquisa Mineral (CBPM), a state hold mineral exploration company, has estimated the total ore reserve as 40 million tons, averaging 14 % P₂O₅.

The ore mineral is composed of carbonate-fluorapatite, mainly replacing columnar stromatolitic structures of the *Jurussania Krilov* type. Other types of mineralization are laminar stromatolitic and intraclastic, the latter was derived from the destruction of columns and laminae by currents. The presence of intraclastic phosphorite along with other petrographic evidences indicates that phosphatization has occurred very early, during the diagenetic evolution of the carbonate sediments.

 CO_3^{-2} investigation in sedimentary apatites is still a matter of discussion, despite the development of the advanced analytical techniques. This is due to the intricate relationships between the carbonate- fluorapatite and calcite and dolomite cements, normally observed in these deposits; the microcristalline nature of the apatite crystallites is also a source of problems in determining the CO_3^{-2} content of the sedimentary apatite. These facts make the X-ray diffratometry is the most reliable and cheap method. The application of the peak-pair X-ray diffratometric method along with X-ray fluorescence and microprobe analysis in carbonate-fluorapatite samples of Irecê permitted the characterization of the phosphorite deposits and their comparison with other deposits in Brazil and world wide.

Crystallographic and chemical parameters show that the Irecê phosphorite has undergone very low or imperceptible transformation due to weathering. The Irecê phosphorite shows chemical characteristics comparable to the best concentrates of world known phosphate rocks: CaO/P₂O₅ ratio of 1,71, very low uranium content and low Pb and Cd contents in the final concentrate.

ÍNDICE

RESUMO	
ABSTRACT	
AGRADECIMENTOS	i
DEDICATÓRIA	iii
ÍNDICE	iv
ÍNDICE DAS FIGURAS	vii
ÍNDICE DAS TABELAS	vii
ÍNDICE DOS QUADROS	ix
ÍNDICE DAS FOTOGRAFIAS	x
CAPÍTULO I - INTRODUÇÃO	1

I.1 - Apresentação e objetivos	1
I.2 - Localização e acesso	3
I.3 -Metodologia geral de trabalho	4

II.1 - Introdução	.6
II.2 - Formação Bebedouro	.11
II.3 - Formação Salitre	.12

CAPÍTULO III - GEOLOGIA LOCAL	20
III.1 - Introdução	20
III.2 - Subunidade 1	20
III.3 - Subunidade 2	21
III.3 - Subunidade 3	
CAPÍTULO IV - O FOSFORITO DE IRECÊ: CARACTERIZAÇÃO	26
IV.1- Petrografia das rochas fosfáticas	26
IV.1.1 - Carbonato fluorapatita	
IV.1.2 - Calcita	31
IV.1.3 - Dolomita	35
IV.1.4 - Quartzo e microclina detríticos	40
IV.1.5 - Quartzo microcristalino e mega quartzo	40
IV.1.6 - Pirita e esfalerita	40
IV.1.7 - Oxi-hidróxidos de ferro	43
IV.1.8 - Fluorita	43
IV.2- Caracterização cristalográfica	46
IV.2.1 - Estrutura da apatita e importância do CO ₃ ⁻²	46
IV.2.2 - Metodologia para a determinação do CO_3^{-2} em apatitas sedimentares	47
Problemas	47
Determinação por métodos químico-analíticos	
Determinação por difratometria de raios-X	49
IV.2.3 - Parâmetros cristalográficos das apatitas estudadas	50
IV.3 - Caracterização química	59
IV.3.1 - Química mineral	59

IV.3.2 - Química total	62
IV.3.2.1 - Elementos maiores	66
IV.3.2.2 - Elementos-traço	70
CAPÍTULO V - DISCUSSÕES	75
V.1 - Tipo de apatita	75
V.2 - Química substitucional	76
V.3 - Relações com intemperismo	77
V.4 - Processos petrogenéticos e ambientes de formação	78
V.5 - Comparação com outros depósitos	79
V.6 - Reatividade da rocha	81

CAPÍTULO VI - CONCLUSÕES	
CAPÍTULO VII - REFERÊNCIAS BIBLIOGRÁFICAS	84

ANEXO (Tabelas e gráficos de raios-X)

INDICE DAS FIGURAS

FIGURA 1 - Mapa de localização e acesso	3
FIGURA 2 - Mapa esquemático mostrando as plataformas carbonáticas Bambuí e Salitre	7
FIGURA 3 - Mapa geológico da Bacia de Irecê	8
FIGURA 4 - Localização das bacia de Irecê, São Francisco e Utinga no Cráton do São Francisco	9
FIGURA 5 - Coluna estratigráfica e ciclos de sedimentação do Grupo Una na Bacia de Irecê	19
FIGURA 6 - Feições diagenéticas e sucessão de eventos diagenéticos	19
FIGURA 7 - Mapa geológico do alvo Fazenda Três Irmãs	21
FIGURA 8 - Perfil esquemático de alteração da rocha fosfática	27
FIGURA 9 - Ilustração esquemática mostrando as diversas gerações de cimento calcítico	35
FIGURA 10 - Estrutura da fluorapatita	47
FIGURA 11 - Padrão de raios X do carbonato-fluorapatita	50
FIGURA 12 - Janela de abertura do programa CarFap	51
FIGURA 13 - Tabela do programa CarFap mostrando os parâmetros cristalográficos calculados	52
FIGURA 14 - Padrão de raios X desenhado pelo programa CarFap	52
FIGURA 15 - Variação do parâmetro a_0 da francolita com a idade geológica	56
FIGURA 16 - Gráfico F x CO3/PO4 para as amostras de Irecê	58
FIGURA 17 - Gráfico $a_0 \ge CO_3^{-2}$	58
FIGURA 18 - Gráfico $c_0 \ge CO_3^{-2}$	58
FIGURA 19 - Gráficos de dispersão P2O5 x elementos maiores	68
FIGURA 20 - Gráficos de dispersão P2O5 x Elementos-traço	72

ÍNDICE DAS TABELAS

TABELA 1 - Parâmetros cristalográficos das apatitas de Irecê, Rocinha e Alhandra	54
TABELA 2 - Fórmula química das apatitas estudadas	55
TABELA 3 - Comparação entre a composição da fluorapatita e da francolita	57
TABELA 4 - Parâmetros cristalográficos e análise química pontual	61
TABELA 5 - Análises químicas por fluorescência de raios X	63
TABELA 6 - Dados químicos e cristalográficos de amostras do Precambriano	65

ÍNDICE DOS QUADROS

QUADRO 1 - Correlações entre as unidades lito-estratigráficas definidas para os Grupos Bambuí e Una	10
QUADRO 2 - Comparação entre as unidades lito-estratigráficas	10
QUADRO 3 - Fórmula estrutural da apatita	60

ÍNDICE DAS FOTOGRAFIAS

FOTO 1 - Diamictitos da Formação Bebedouro	14
FOTO 2 - Dolomito argiloso vermelho da Unidade C	14
FOTO 3 - Dolomito argiloso vermelho da Unidade C, com greta de ressecamento	14
FOTO 4 - Calcário dolomítico cinza laminado, da Unidade B	14
FOTO 5 - Dolarenitos laminados da Unidade B	14
FOTO 6 - Dolarenitos laminados com nódulos de sílica	14
FOTO 7 - Calcário dolomíticos da Unidade B1, com estruturas teepee e nódulos de sílica	16
FOTO 8 - Estromatolitos colunares (Unidade B1)	16
FOTO 9 - Calcilutitos Negros (Unidade A1)	16
FOTO 10 - Dolossiltitos cinza-claros com estratificação cruzada (Unidade B1 - subunidade 1)	22
FOTO 11 - Intraclastos fosfáticos em dolossiltitos da subunidade 1	22
FOTO 12 - Estromatolitos colunares da subunidade 1, Unidade B1	23
FOTO 13 - Estromatolitos colunares da subunidade 1. Porções menos alteradas	23
FOTO 14 - Limite entre a fácies "rocha fresca" e "casa de abelha" do perfil de alteração da rocha	29
FOTO 15 - Fotomicrografia de coluna estromatolítica formada por agregados microcristalinos de carb	onato-
fluorapatita	29
FOTO 16 - Fotomicrografia mostrando a intercalação de níveis estromatolíticos fosfáticos, com quartzo de	etrítico
associado, e níveis carbonáticos	29
FOTO 17 - Fotomicrografia de níveis estromatolíticos fosfáticos com quartzo e microclina detríticos asso	ciados
	29
FOTO 18 - Fotomicrografia mostrando cristais de dolomita sobre o agregado fosfático	29
FOTO 19 - Fotomicrografia de colunas estromatolíticas intercaladas com material carbonático	29
FOTO 20 - Fotomicrografia mostrando cristais de dolomita truncando o fosfato, com limonita associada	32
FOTO 21 - Idem a anterior -luz refletida	32
FOTO 22 - Fotomicrografia de dolomita truncando agregados e intraclastos fosfáticos. Proces	sso de
dedolomitização parcial da rocha	32
FOTO 23 - Fotomicrografia de intraclastos fosfáticos na rocha encaixante	32
FOTO 24 - Fotomicrografia de intraclastos fosfáticos e pelóides carbonáticos	32
FOTO 25 - Fotomicrografia de um intraclasto fosfático com fragmentos da rocha encaixante dentro	32

FOTO 26 - Fotomicrografia mostrando diversas gerações de cimento carbonático	
FOTO 27 - Fotomicrografia mostrando quatro gerações de cimento calcítico	
FOTO 28 - Fotomicrografia de venulações de calcita espática cortando o agregado fosfático	
FOTO 29 - Fotomicrografia do arcabouço da rocha encaixante dolomitizada	
FOTO 30 - Fotomicrografia mostrando duas gerações de cimento cimentando intraclastos fosfáticos	
FOTO 31 - Fotomicrografia de cimento carbonático parcialmente dolomitizado	
FOTO 32 - Idem a anterior, com aumento de 10x e cunha de quartzo	
FOTO 33 - Fotomicrografia mostrando a dedolomitização na rocha carbonática	
FOTO 34 - Fotomicrografia de quartzo microcristalino associado à rocha carbonática e aos sulfetos da Unidade	
B1 - Formação Salitre	
FOTO 35 - Fotomicrografia de mega quartzo associado às colunas estromatolíticas e carbonatos41	
FOTO 36 - Fotomicrografia de quartzo microcristalino em fraturas, cortando a excaixante	
FOTO 37 - Fotomicrografia de pirita radial parcialmente limonitizada associada à encaixante41	
FOTO 38 - Idem à anterior - luz refletida41	
FOTO 39 - Fotomicrografia de pirita parcialmente limonitizada associada a quartzo detrítico41	
FOTO 40 - Idem à anterior - luz refletida41	
FOTO 41 - Fotomicrografia de mega quartzo preenchendo fraturas, associado a sulfetos	
FOTO 42 - Fotomicrografia de limonita disseminada na rocha carbonática44	
FOTO 43 - Fotomicrografia de limonita disseminada e preenchendo o espaço intergranular da encaixante44	
FOTO 44 - Fotomicrografia de limonita disseminada, acompanhando os níveis fosfáticos44	
FOTO 45 - Fotomicrografia de fluorita em bolsões, associada aos níveis fosfáticos	
FOTO 46 - Fotomicrografia de fluorita preenchendo fraturas na rocha fosfática	

AGRADECIMENTOS

Durante a minha caminhada profissional tive o imenso prazer de encontrar amigos e colegas que se puseram à minha disposição nos momentos de "sufoco". A colaboração de todas estas pessoas foi de fundamental importância. Agradeço muito a todos pela dedicação e paciência.

Agradecimentos especiais aos meus pais, Ruth e Wilson Sanches, pelas oportunidades dadas e pelo nosso eterno amor ; a meu noivo Dinho Oliveira e às minhas irmãs Pate e Cris, pelo apoio, carinho e compreensão.

A meu grande mestre e amigo Tersandro Monteiro pelo exemplo profissional e humano, pelo incentivo e imenso carinho a mim dedicados durante toda a nossa amizade. Agradeço-o também pelos ensinamentos em mineralogia e cristalografia. A minha querida Cordélia, que sempre esteve presente em todo processo, me estimulando e aconselhando nos tantos momentos difíceis que passei. Felizmente encontrei na minha vida esses dois amigos maravilhosos.

Ao meu orientador, Aroldo Misi, que desde a iniciação científica me apoiou e me deu a grande oportunidade de trabalhar com os meus queridos fosfatos. Agradeço também pelo exemplo profissional e carinho.

Aos meus colegas, professores e funcionários do IGEO/UFBa que direta ou indiretamente me incentivaram aconselharam e ajudaram na elaboração desta dissertação.: às minhas amigas e colegas Adriana Gomes, Ivana Pinho e Ioná Cunha, pelo carinho e presteza em todos os momentos; a Liana Barbosa, Washington Rocha, Eliane Almeida, Denise Savinni, Débora Rios, Maria de Lourdes, Prof. Hebert Conceição, Paulo Fernandes, Paulo Accioly, Ana Cláudia, Geraldo Leahy e Edilma, pela ajuda com as tabelas, apresentações e outras de natureza diversas; a André Fornari e Manoel Jerônimo pela ajuda na Microssonda; à Cícero Paixão Pereira e à Profa. Zelinda Leão pela orientação e ajuda na petrografia; à Profa. Maria da Glória, pelas consultas e pelas gargalhadas; à Profa. Tereza Rocha pelo incentivo e ajuda nos tempos do CEGEO; aos três mosqueteiros Miguel, Aurélio e Fábio pela ajuda no campo; ao Coordenador do Curso de Pós-Graduação em Geologia, José Maria Landim Dominguez, pela boa disposição em me ajudar sempre; a Gilsélio e Nilton, secretários do Curso de Pós-Graduação em Geologia, pela ajuda prestada em todos os momentos. A Gilberto e Neves, servidores da biblioteca, pela ajuda dispensada na localização de bibliografias.

Agradeço também às seguintes pessoas e Instituições pelo apoio técnico e financeiro:

- Ao Curso de Pós-Graduação em Geologia da Universidade Federal da Bahia

 - Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), pela concessão da bolsa de Mestrado e pelo apoio financeiro através do projeto Integrado " Metalogênese da Coberturas Proterozóicas" coordenado pelo Prof. Aroldo Misi.

- Ao Dr. Moacir Moura Marinho, diretor-técnico da Companhia Baiana de Pesquisa Mineral (CBPM) e aos geólogos Icalmar Viana e Mario Monteiro, que deram todo o apoio necessário para o uso das informações sobre a área e autorizaram a confecção, no laboratório da CBPM, das seções delgadas e polidas.

- Ao Dr. Onildo Marini, Coordenador do Projeto Caracterização de Minérios e Rejeitos de Depósitos Minerais
 Brasileiros - PADCT/FINEP/DNPM. Através deste projeto foram realizadas algumas análises químicas e algumas viagens de campo, além de outras despesas de consumo no laboratório.

- A Cibrafértil, especialmente aos engenheiros Laerte Nascimento da Conceição, Antonio Carlos Muhana Moreira e Alexandre Pinheiro, pelas discussões e pelo material fornecido.

- À Companhia de Pesquisa de Recursos Minerais (CPRM), pela hospedagem no Centro Integrado de Estudos em Geologia (CIEG), em Morro do Chapéu.

- Ao Instituto de Geociências da UFBa, que durante todo esse tempo de estudo de geologia foi uma extensão da minha casa, e ao CPGG (Centro de Pesquisa em Geofísica e Geologia), pela utilização dos laboratórios e equipamentos.

- Ao Prof. Marcel Auguste Dardenne, da Universidade de Brasília, que providenciou transporte e nos acompanhou durante uma das viagens de campo à mina de Rocinha, em Minas Gerais.

DEDICATÓRIA

Dedico este trabalho àqueles que sempre me acompanharam e me incentivaram em todas as etapas e, acima de tudo, me compreenderam nos meus momentos mais difíceis:

Meus queridos pais Ruth e Wilson Meu companheiro, Dinho Oliveira Meu mestre e amigo Tersandro Monteiro

A vocês, todo o meu carinho e eterna gratidão.

iii

Capítulo I INTRODUÇÃO

I.1. APRESENTAÇÃO E OBJETIVOS

Desde épocas remotas, quando o homem iniciou o cultivo de vegetais, vem-se utilizando substâncias fertilizantes como esterco, farinhas de ossos, cinzas, restos de lã e resíduos de peixe, como fonte de nutrientes para as plantas. Somente no século XIX, a utilização racional das substância fertilizantes se difundiram devido ao desenvolvimento da Bioquímica, o que permitiu uma melhor compreensão dos fenômenos que ocorrem nos vegetais, tornando possível o conhecimento das necessidades nutricionais das plantas. Com a comercialização de fertilizantes fosfatados, a partir do início do século XIX, os minerais fosfáticos assumiram um papel importante na agricultura e na indústria química. Daí, deu-se o desenvolvimento da indústria de fertilizantes, uma das primeiras, em grandes proporções, estabelecidas pelo homem. Vários tipos de fertilizantes fosfatados encontram-se correntemente em uso. Em qualquer situação, o passo inicial é o tratamento da rocha fosfática, de solubilidade extremamente baixa, com ácido, tendo como produto final o superfosfato simples, o superfosfato triplo

Dentre os depósitos de fosfato, os de origem sedimentar se constituem nas mais importante fontes de fósforo que existem. Eles fornecem cerca de 82 % do total da produção fosfática mundial e contém 95 % ou mais das reservas de fosfato do mundo (Howard, 1979).

O fosforito de Irecê foi descoberto em 1985 pela Companhia de Pesquisa de Recursos Minerais (CPRM), a partir dos projetos Bacia de Irecê I e II (Bonfim et al. 1985), contratados pela Superintendência de Geologia e Recursos Minerais (SGM) do Governo do Estado . Tais projetos, visavam o mapeamento geológico da Bacia de Irecê. No mesmo ano, a Companhia Baiana de Pesquisa Mineral (CBPM), detentora das áreas de pesquisa, conduziu os trabalhos de avaliação do depósito, através do Projeto Irecê- Lapão. Estes trabalhos indicaram reservas que totalizam cerca de 40 milhões de toneladas de rocha fosfática, com teor médio de 14% de P₂O₅ para o minério primário e de até 38% de P₂O₅ para o minério secundário ou intemperizado. Do ponto de vista econômico, assim como do científico, a importância da descoberta desses depósitos foi muito grande, visto que poucos depósitos similares eram, até então, conhecidos no mundo. Existe hoje uma empresa sediada no Polo Petroquímico de Camaçari, a CIBRAFERTIL, que foi implantada em função da existência dessas reservas de

rocha fosfática. A CIBRAFERTIL está produzindo atualmente 60.000 toneladas/ano de Superfosfato Simples (SSP), abastecendo cerca de 50% do mercado baiano. Apesar de utilizar hoje concentrado importado do Togo, Marrocos e Israel, a sua implantação na Bahia atendeu a dois requisitos:

• A existência de ácido sulfúrico disponível, proveniente da metalurgia da Caraíba Metais

• A existência de uma reserva de rocha fosfática no Estado, uma vez que, mudadas as regras financeiras que hoje favorecem a importação de concentrado, não haveria prejuízo para a continuidade da empresa.

Este trabalho está vinculado aos Projetos de Pesquisa "Metalogênese das Coberturas Proterozóicas do Cráton do São Francisco" - CNPq, e "Caracterização de Minérios e Rejeitos de Depósitos Minerais Brasileiros" -PADCT/FINEP/DNPM. Ele tem como objetivos principais os seguintes:

- Caracterizar cristalográfica e quimicamente o fosforito de Irecê- Lapão, Bahia, visando o conhecimento de parâmetros que permitam uma melhor valorização da matéria prima, tanto do ponto de vista tecnológico quanto comercial.
- Conhecer melhor o ambiente de formação da concentração, permitindo assim a descoberta de outros depósitos similares.
- Promover um estudo comparativo dos fosforitos de Irecê com outros importantes depósitos de origem sedimentar do Brasil, também Proterozóicos. Algumas análises foram realizadas no fosforito cretácico de Alhandra (Bacia Pernanbuco-Paraíba), objetivando a aferição de dados, assim como em concentrados de Togo, Marrocos e Israel.

I.2. LOCALIZAÇÃO E ACESSO

A área de ocorrência dos fosforitos está situada nos municípios de Irecê e Lapão, entre as latitudes 11⁰ 19' e 11⁰ 24' sul e 41⁰ 48' e 41⁰ 52' oeste (fig. 1). Parte desta área foi selecionada para estudos detalhados, sendo o acesso à mesma feito pela rodovia BR-324 de Salvador até Feira de Santana, e daí até Irecê pela rodovia BA-052 (Estrada do Feijão), ambas inteiramente pavimentadas, totalizando o percurso em 476 Km. Localmente a área é de fácil acesso.

Fig. 1 - Mapa de localização e acesso.

I.3. METODOLOGIA GERAL DE TRABALHO

O presente trabalho foi desenvolvido segundo a metodologia que será descrita a seguir:

- Levantamento bibliográfico dos trabalhos geológicos realizados na região de Irecê, e em outras ocorrências de fosforito de origem sedimentar do Brasil e de outras localidades, com ênfase aos depósitos de idade proterozóica, e sobre a mineralogia, química e gênese desses depósitos
- Levantamento dos dados analíticos, acervo de amostras e outros dados relacionados ao fosforito de Irecê.
- Trabalho de campo na área de Irecê e em Patos de Minas MG, para reconhecimento geológico e amostragem.
- Trabalhos de laboratório, compreendendo:
 - Seleção das amostras coletadas no campo para análises petrográficas, difratométricas e químicas
 - Separação manual do fosforito utilizando lupa binocular
 - Estudo petrográfico de lâminas delgadas das amostras selecionadas (40 amostras)
 - Preparação de amostras de fosforito para análise mineralógica por difratometria de raios X, e análises químicas por fluorescência de raios-X e microssonda eletrônica.
- Análise e interpretação por difratometria de raios-X dos fosforitos de Irecê, Rocinha e Alhandra, realizadas no laboratório do CEGEO UFBa. O equipamento utilizado foi um RIGAKU Geigerflex IIA, com monocromador de carbono. O material catado manualmente foi levado ao difratômetro de raios-X para verificação do grau de cristalinidade e concentração da apatita em relação a outros minerais presentes. Nessa primeira etapa foi utilizada uma radiação CuKα a 40 kv e 20mA, com velocidade de varredura de 2⁰ por minuto. As melhores amostras foram então selecionadas e novamente analisadas no difratômetro de raios-X, só que utilizando uma varredura de 9⁰ a 75⁰ (2θ) e velocidade angular de 0,25/min. Para cada amostra foram obtidos de 3 a 5 difratogramas. A determinação da posição individual dos picos foi feita com um escalímetro, obtendo-se na leitura uma precisão da ordem de 0,01⁰ 2θ. Para algumas amostras se utilizou o quartzo como

padrão interno.

Obtidos os valores de 20 e I (intensidade do pico), as devidas correções foram feitas, e os dados foram então lançados em um software, em linguagem Pascal, desenvolvido pelo Prof. Tersandro Monteiro para o Projeto "Metalogênese da Coberturas Proterozóicas", onde os parâmetros cristalográficos e o valor do % de CO_3^{-2} foram então determinados. O cálculo do % CO_3^{-2} feito pelo programa utiliza o método desenvolvido por Gulbrandsen (1970) e aperfeiçoado por Schuffert et al. (1990). Além dos parâmetros cristalográficos o programa também calcula a fórmula química da francolita, baseado no modelo desenvolvido por McClellan e Lehr (1969).

- Seleção e análise para determinação da química mineral de 5 amostras da apatita de Irecê. As análises foram realizadas no Laboratório de Microssonda Eletrônica (LME) da UFBa, por uma microssonda eletrônica CAMECA SX-50. Os minerais foram submetidos à sonda diretamente em lâminas delgadas/ polidas, metalizadas com carbono. As lâminas foram previamente fotografadas em microscópio ótico em seus diferentes campos, sendo as microfotos utilizadas na localização dos pontos analisados. Em cada lâmina foram analisados em torno de 20 a 25 pontos, onde determinou-se P₂O₅, MgO, CaO, MnO, FeO, SrO, Na₂O, K₂O, F e Cl.
- Análise química de elementos maiores e traços por Fluorescência de raios X de 29 amostras, 21 de Irecê, 2 de Alhandra, 2 de Rocinha e 1 de Lagamar, além de 3 amostras de concentrado de Marrocos, Israel e Togo, gentilmente cedidas pela Cibrafertil. As análises foram realizadas em laboratórios da GEOSOL. As amostras de Irecê constituem, na maior parte, amostras de fosforito primário em furos de sondagem, além de amostras do minério secundário e concentrado. As amostras de outras localidades são de fosforito primário.

Capítulo II GEOLOGIA REGIONAL

II.1. Introdução

Uma extensa plataforma carbonática se desenvolveu no Cráton do São Francisco durante o Proterozóico Superior. Segundo o modelo evolutivo para as Coberturas do Meso e Neoproterozóico no Estado da Bahia proposto por Dominguez (1993), a implantação de importantes plataformas carbonáticas ocorreu no estágio VI (fig. 2), após a glaciação Bebedouro-Macaúbas, associada a uma subida generalizada do nível do mar.

A Bacia de Irecê é uma bacia relativamente pequena dentro deste terreno sedimentar que é preenchido pelos carbonatos do Grupo Una (fig. 3). O Grupo Una e seus correlatos, como o Grupo Bambuí, representam a sedimentação da plataforma carbonática do Neoproterozóico. Esta cobertura carbonática ocupa uma área de aproximadamente 300.000 km² dentro do Cráton do São Francisco que é bordejado pelos cinturões dobrados de Araçuaí, Brasília e Sergipano. A Figura 4 mostra o posicionamento das Bacias de Irecê, São Francisco e Utinga no Craton do São Francisco.

A Bacia de Irecê e do São Francisco aparentemente foram formadas em ambientes tectônicos similares. Elas mostram seqüências estratigráficas correlacionáveis (Quadro 1), contendo uma seqüência siliciclástica basal composta principalmente de diamictitos, de origem predominantemente glacial, compreendidas pelas Formações Bebedouro e Macaúbas ou Jequitaí, sobrepostas por sedimentos dolomíticos vermelhos, possivelmente lacustrinos (Torquato & Misi, 1977). Na Bacia de Irecê, estes sedimentos são sobrepostos por seqüências marinhas, que foram divididas em quatro unidades informais (Misi 1979; Mascarenhas et al. 1984): unidades B, B1, A e A1 (da base para o topo), as quais serão descritas mais à frente. Bonfim et al. (1985), fizeram o mapeamento geológico da folha de Irecê e propuseram uma subdivisão estratigráfica mais complexa. O Quadro 2 mostra uma comparação entre as subdivisões estratigráficas propostas por Misi (1979) e por estes autores, de acordo com Misi e Silva (1996).

A Bacia de Irecê é um sinclinório com *plunge* para norte, destacando-se na região central dobramentos com eixos de direção leste-oeste (fig. 3). Bonfim *et al.* (1985) reconheceram duas fases de deformação. A primeira

resultou em dobras abertas, direção NNW com mergulho dos flancos para leste e para oeste. A segunda fase, responsável pela configuração atual da bacia, transportou as seqüências carbonáticas para o sul (Chemale *et al.* 1991), sendo este evento possivelmente relacionado com a orogênese Brasiliana, que resultou em dobras com *trend* leste-oeste, que marcam a parte central da bacia.

Fig. 2 - Mapa esquemático mostrando as plataformas carbonáticas Bambuí e Salitre, implantadas após o fim da glaciação do Bebedouro-Jequitaí. O Espinhaço permaneceu separando a plataforma do Bambuí do resto do cráton (simplificado de Dominguez, 1993).

Fig. 3 - Mapa Geológico da Bacia de Irecê. (Misi e Silva, 1996).

Fig. 4 - Localização da bacias de Irecê, São Francisco e Utinga no Cráton do São Francisco. 1 = Plataformas carbonáticas do Neoproterozóico; 2 = Embasamento (modificado de Misi e Kyle, 1994b).

LOCAIS $ ightarrow$ LITOTIPOS \downarrow	GOIÁS E M.GERAIS (GRUPO BAMBUÍ)	S.RAMALHO, BA (GRUPO BAMBUÍ)	IRECÊ, BA (GRUPO UNA)
Arcósios, siltitos	Formação Três Marias	Formação Três Marias	(Ausente)
Siltitos, argilitos	Formação Serra da Saudade	Formação Serra da Saudade	(Ausente)
Calcários pretos, o olíticos e siltitos	Formação Lagoa do Jacaré	Formação Inhandutiba	Unidade A1
Folhelhos, margas, siltitos	Formação Serra de Santa Helena	Formação Serra de Santa Helena	Unidade A
Dolomitos, calcários argilosos	Formação Sete Lagoas	Formação Januária	Unidades B 1, B e C
Diamictitos	Formação Jequitaí Formação Macaúbas	(Ausente)	Formação Bebedouro

Quadro 1: Correlações entre as unidades lito-estratigráficas definidas para os Grupos Bambuí e Una (*in* Mascarenhas *et al.* 1984, modificado de Dardenne *et al.* 1978b).

UNIDADES (1)	UNIDADES (2)	AMB.DEP.DOMINANTE	CICLOS (1)	CICLOS (2)
A1	Irecê Jussara sup. Jussara med. e inf.	Intermarés	R	т
А	Irecê Gabriel	Submarés	т	R
B1	Lapão Nova América Sarandi	Supramarés	R	R
В	Irecê	Intermarés	Т	т
?	Jussara sup. Jussara med. e inf.		т	Т
С	-	Lacustre	Т	-
1) = Projetos Chumb (PPPG/BNDE (2) = Projetos Bacia d	o-Zinco no Bambui e Depósitos :/FINEP de Irecê I e II (CPRM/SME)	Minerais da Chapada Diamantin	a	
T = Transgressivo				

Quadro 2 - Comparação entre as unidades lito-estratigráficas que compõem a Fm. Salitre, propostas por Misi (1979) (1) e por Bonfim et *al* (1985) (2), de acordo com Misi e Silva (1996).

II.2. A Formação Bebedouro

A Formação Bebedouro é posicionada na base do Grupo Una, sendo recoberta pelos sedimentos carbonáticos da Formação Salitre. Acompanha quase toda a borda da bacia de Irecê. Ela possui espessura que varia de 1 m até cerca de 70 m. A natureza do contato entre a Formação Bebedouro e a Formação Salitre ainda é muito controversa. Montes (1977) e Misi (1979) sugerem uma relação discordante erosiva entre as duas Formações. Guimarães (1996), através de uma pesquisa mais minuciosa, considerou a presença de uma grande superfície irregular de natureza erosiva separando a Formação Bebedouro da Formação Salitre. Esse contato discordante erosivo, segundo Guimarães (1996), é evidenciado principalmente por:

- Presença de um possível nível de paleossolo separando localmente as duas Formações;
- Variações litológicas no contato entre as duas unidades;
- A presença de carbonatos da Formação Salitre ora sobre a Formação Bebedouro ora sobre o Grupo Chapada Diamantina, e até sobre as rochas do Pré-Espinhaço, evidenciando uma transgressão marinha, com invasão da sedimentação marinha carbonática da Formação Salitre;
- Mudança brusca no tipo de sedimentação (Bebedouro totalmente terígena e Salitre totalmente carbonática);
- O fato da duas Formações constituírem seqüências deposicionais distintas (Salitre → Seqüência carbonática transgressiva; Bebedouro → Sedimentação glácio-marinha regressiva);
- Os dados radiométricos, bio-estratigráficos e de isótopos disponíveis das duas Formações, apontando para a existência de um intervalo de tempo sem deposição entre os sedimentos das duas unidades.

A Formação Bebedouro é correlacionável com as Formações Jequitaí, Macaúbas e Carrancas, em Minas Gerais e Goiás.

Litologicamente, a Formação Bebedouro é composta por diamictitos, com matriz grauváquica, arcosiana e quartzo arenítica, na qual flutuam grânulos, seixos e matacões de composições variadas, arenitos, com ou sem clastos associados (Guimarães, 1996). Os clastos são angulosos e são compostos principalmente por gnaisses, granitos, pegmatitos, rochas de composição básica, xistos, quartzitos verdes e brancos, filitos e calcários (foto 1).

A origem da Formação Bebedouro é controversa e muito discutida. Montes (1977) apresentou algumas evidências para a origem glacial, dentre elas a presença de clastos de composição, tamanho e formas variadas; a presença de estrias e facetas nos clastos; além de da presença de *dropstones*, varvitos e seixos orientados.

II.3. A Formação Salitre

As unidades basais desta Formação repousam discordantemente sobre os siliciclastos da Formação Bebedouro, enquanto que no topo as fácies predominantemente carbonáticas passam para fácies predominantemente siliciclásticas (metargilitos, metassiltitos e margas), presentes apenas no extremo norte da bacia (Brito Neves,1967). Os sedimentos carbonáticos da Formação Salitre podem alcançar espessuras superiores a 1.000m (Misi, 1993). Nas descrições a seguir, baseadas principalmente no trabalho de Misi e Silva (1996), adota-se a subdivisão informal proposta por Misi (1979). As unidades são descritas da base para o topo.

<u>Unidade C</u>: Unidade basal, constituída por dolomitos e calcários dolomíticos vermelhos e argilosos (foto 2). Na base podem se desenvolver dolomitos rosados com estruturas estromatolíticas circulares, não classificadas. A Unidade C é lateralmente persistente ao longo de quase toda a borda leste, onde repousa sobre o quartzito arcósico do topo da Formação Bebedouro. Na parte sul, esta unidade não foi observada e na borda oeste apresenta-se distribuída de forma descontínua. Portanto, a espessura é bastante variável, entre 0 a 60 m. É comum estruturas como gretas de ressecamento, evidenciando a exposição aérea do material, quando da sua formação (foto 3)

Misi e Silva (1996), destacam que esta Unidade não foi registrada nos trabalhos de Bonfim *et al.* (1985) e de Souza *et al.* 1993), tendo sido provavelmente englobada na Unidade estratigraficamente superior. Segundo os autores supracitados, ela representa, possivelmente, um episódio sedimentar lacustre, ocorrido após a deglaciação, conforme sugerido por Torquato & Misi (1977), apoiados em dados isotópicos de carbono e oxigênio.

<u>Unidade B</u>: Fácies constituída por calcários cinza-claros, por vezes dolomíticos, finamente laminados e interestratificados com leitos argilosos (foto 4). Em direção ao topo essa fácies passa para outra inteiramente dolomítica, parcialmente silicificada (Unidade B1). Observa-se também intercalações de calcário preto oolítico, em bancos métricos. Na Bacia de Irecê esta unidade possui continuidade lateral, com espessura variando de 100 a 200 m.

A Unidade B resulta de uma sedimentação relativamente profunda, porém com uma nítida tendência regressiva.

Unidade B1: Esta unidade é representada por dolomitos silicosos, dolomitos oolíticos (dolarenitos) e dololutitos, com nódulos e lentes individualizadas de sílica e de calcita (fotos 5 e 6). São observadas freqüentemente estruturas sedimentares do tipo tee-pee (foto 7), características de exposição subaérea em clima árido, além de brechas intraformacionais, possivelmente formadas pela dissolução de sulfatos (Misi e Kyle, 1994). Estes mesmos autores observaram que, ao microscópio, os nódulos de sílex são constituídos por quartzo microcristalino do tipo lenght slow, ou seja, os agregados cristalinos mostram disposição radial e são fibrosos, apresentando cores de interferência de ordem baixa ao longo do eixo C, uma característica diagnóstica de formação de sílica em ambiente evaporítico, por substituição de sulfato (Folk & Pitman, 1971). Foi observado também a presença de barita e pirita, com galena e esfalerita subordinadas, com formas nodulares ou associadas a nódulos de sílica. Misi e Monteiro (1990) assinalam também a presença de pirita pseudomórfica de gipsita, além de gipsita, em associação com fácies dolomíticas desta mesma unidade. São comuns estruturas estromatolíticas laminares e colunares (foto 8), sendo que as laminares estão freqüentemente associadas às zonas de exposição subaérea, enquanto que as colunares são, em geral, ricas em carbonato-fluorapatita (> 5% P_2O_5), e associam-se a zonas relativamente mais profundas, de alta energia, onde estão presentes marcas de ondas, estratificações cruzadas por ondas e intraclastos. Pode ocorrer também nesta unidade corpos lenticulares e de espessuras métricas de calcário preto, rico em matéria orgânica, pseudo-oolítico e pisolítico, que passam lateral e verticalmente para os dolomitos com estruturas estromatolíticas colunares.

Não parece haver dúvidas de que esta unidade representa uma sedimentação muito rasa, com exposições freqüentes da lama carbonática, equivalente à zona planície de maré, inclusive com a presença de prováveis canais de maré, conforme salientado por Misi e Kyle (1994a).

As unidades B e B1, representariam, portanto, uma típica seqüência do tipo "shallowing upward".

<u>Unidade A</u> : Esta unidade é caracterizada por siltitos, argilitos calcíferos e margas, de coloração cinzaescuros quando não alterados, cinza-claros ou avermelhados de maneira geral. Observa-se em alguns locais a

FOTO 1- Diamictitos, com clastos de tamanhos, formas e composições diferentes - Formação Bebedouro.

FOTO 2 - Dolomito argiloso vermelho da Unidade C - Fm. Salitre.

FOTO 3 - Dolomito vermelho da Unidade C. Gretas de ressecamento formadas por exposição subaérea - Fm. Salitre.

FOTO 4 - Calcário dolomítico cinza-claro, laminado, da Unidade B - Fm. Salitre.

FOTO 5 - Dolarenitos laminados da Unidade B - Fm. Salitre.

FOTO 6 - Dolarenitos laminados da unidade B1, com nódulos de sílica (Q_n) e calcita (C_n) .

FOTO 7 - Calcários dolomíticos da Unidade B1, com estruturas *teepee* e nódulos de sílica -Fm. Salitre.

FOTO 8 - Estruturas estromatolíticas colunares presentes na Unidade B1 - Fm. Salitre.

FOTO 9 - Calcilutitos negros, dobrados da Unidade A1, ricos em matéria orgânica - Fm. Salitre.

presença de agregados de cristais cúbicos de pirita, com até 1cm de diâmetro. De uma forma geral, a espessura desta unidade varia de 0 a 100m.

Esta unidade parece representar um aprofundamento da lâmina d'água, provavelmente devido a uma nova transgressão marinha, iniciando um novo ciclo transgressivo-regressivo.

<u>Unidade A1</u>: Esta unidade é formada por calcilutitos pretos e calcários oolíticos e pisolíticos, ricos em matéria orgânica. São comuns horizontes com estratificações cruzadas ou com abundantes intraclastos de calcário, em geral de pequena espessura e com grande continuidade lateral. Misi e Kyle (1994a) observaram, através de microscopia, zonas micríticas bem preservadas nas fácies oolíticas e pisolíticas, constituindo halos em torno de oolitos e pisolitos recristalizados na parte central, e cujos espaços inter-oolitos são cimentados por calcita espática.

A unidade A1 está bem representada na Bacia de Irecê, principalmente a norte da cidade homônima, onde sua espessura é maior que 150m. Os calcilutitos desta unidade ocorrem freqüentemente bastante dobrados e cavalgados (foto 9), com dobras deitadas com vergência para sul, indicando esforços compressivos a partir de norte. De acordo com Misi e Silva (1996) esses dobramentos e cavalgamentos estariam relacionados à tectônica Brasiliana, ou seja, seriam reflexo da tectônica da faixa Rio Preto sobre a cobertura.

As características desta unidade indicam condições rasas de sedimentação, em ambiente agitado e rico em matéria orgânica. Ela provavelmente representa o final de um novo ciclo transgressivo-regressivo.

A figura 5 sintetiza a estratigrafia previamente apresentada do grupo Una na Bacia de Irecê e os ciclos de sedimentação interpretados, com indicação das posições onde ocorrem as mineralizações de sulfetos e de fosfato, de acordo com Misi e Silva (1996).

De acordo com Misi (1992), os sedimentos carbonáticos da Formação Salitre passaram por uma longa e complexa evolução diagenética. A figura 6 representa esta evolução, bem como a posição das mineralizações de sulfeto e de fosfato.

Fig. 5 - Coluna estratigráfica e ciclos de sedimentação do Grupo Una na Bacia de Irecê, com indicação do posicionamento das mineralizações de fosfato e de sulfetos (Misi e Silva, 1996).

Fig. 6 - Feições diagenéticas e sucessão de eventos diagenéticos. O sentido da seta indica a evolução da diagênese no tempo (Misi, 1992).

Capítulo III GEOLOGIA LOCAL

III.1. Introdução

O fosforito de Irecê está associada a fácies dolomíticas e calcíticas da Unidade B1, sumariamente descritas anteriormente. A associação predominante com estruturas estromatolíticas colunares e com fácies carbonáticas com estratos cruzados, indica que foram geradas em zonas de alta energia na planície de maré, provavelmente equivalentes a zonas de intermaré inferior a submaré superior (Misi e Silva, 1996).

O mapeamento geológico detalhado e as sondagens realizadas pela CBPM (Monteiro *et al.*,1987), demonstraram a existência de três subunidades carbonáticas dobradas com dois eixos orientados na direção E-W, e com *plunge* para W (fig. 7). A partir desse estudo, e de trabalhos complementares realizados pela UFBa, essas subunidades foram redefinidas (Misi e Kyle, 1994a), fazendo parte do final do primeiro ciclo transgressivo-regressivo (unidades B e B1). Segue abaixo as descrições das subunidades da Unidade B1, de acordo com os autores supracitados:

III.2. Subunidade 1

Constituída por três diferentes fácies, bem distintas nos furos de sondagem realizados pela CBPM na área, particularmente no furo IL-53. A porção superior do perfil estratigráfico do furo IL-53, é constituída por dolossiltitos laminados claros a cinza, com concentrações variáveis de quartzo e microclina detríticos, distribuídos irregularmente numa massa dolomítica. A porção intermediária da Subunidade 1 é constituída por dolossiltito laminado, com laminações paralelas e regulares, com calcita e barita ausentes. A porção inferior da Subunidade é constituída de dolossiltitos cinza a avermelhados, de caráter maciço, possuindo estratificações cruzadas e marcas de ondas (foto 10), aos quais se associam abundantes intraclastos (foto 11). A principal característica desta fácies é a presença de estruturas estromatolíticas colunares ricas em fosfato (fotos 12 e 13). Os intervalos nos quais ocorrem as estruturas estromatolíticas colunares estão invariavelmente associados, acima e abaixo, às estruturas sedimentares referidas anteriormente, indicativas de alta energia na época da sedimentação. Estromatolitos laminares são menos comuns.

III.3. Subunidade 2

É constituída principalmente de calcilutitos cinza-escuros e calcarenitos peloidais com estratificação paralela. A fácies dominante é formada por calcarenitos peloidais e oncolíticos, parcialmente neomorfisados (Misi, 1992). A Subunidade 2 não mostra grande continuidade lateral na área estudada.

III.4. Subunidade 3

É formada por calcário dolomítico laminado, com laminações milimétricas a decimétricas constituídas por carbonatos escuros finos e mais grossos intercalados. Em muitos locais, as laminações parecem representar estruturas estromatolíticas, e estão freqüentemente truncadas por estilolitos subparalelos. Algum enriquecimento em fluorapatita pode ser observado eventualmente associado às estruturas estromatolíticas dessa Subunidade.

Fig. 7 - Mapa geológico do alvo Três Irmãs, Bacia de Irecê, com a localização dos furos de sondagem selecionados para estudo. Geologia de acordo com Monteiro (1985) (modificado).

FOTO 10 - Dolossiltitos cinza claros, com estratificações cruzadas da subunidade 1 - Unidade B1 - formados em ambientes de alta energia, por correntes.

FOTO 11 - Intraclastos fosfáticos em dolossiltitos da subunidade 1 - Unidade B1 - Fm. Salitre.

FOTO 12 - Estromatolitos colunares fosfáticos da subunidade 1, Unidade B1. As colunas são compostas de carbonato fluorapatita e o espaço poroso intercolunar, provocado pela dissolução do carbonato, é parcialmente preenchido por material argiloso, e intraclastos fosfáticos provenientes da destruição das colunas estromatolíticas.

FOTO 13 - Estromatolitos colunares fosfáticos da subunidade 1, Unidade B1, com porções menos alteradas que as observadas na foto anterior. À direita da foto nota-se uma maior dissolução do carbonato.

Monteiro (1989) descreveu dois tipos de fosforito ocorrentes na área: o fosforito primário ou não intemperizado, com teores de variáveis de P2O5 (podendo chegar a 15%) e o secundário ou intemperizado, com teores elevados de P2O5 (alcançando até 38%).

Misi (1992) descreveu três tipos de fosforito primário:

1. ♠ Colunar estromatolítico, com as concentrações de carbonato-fluorapatita associadas a estromatolitos colunares do tipo "*Jurussania krilov*" (Srivastrava, 1986).

2. A Laminar estromatolítico, associados a camadas estromatolíticas milimétricas e de ocorrência mais localizada.

3.☆ Intraclástico, associados a intraclastos fosfáticos derivados da ação erosiva de correntes, localizado nos espaços intercolunares e interlaminares. Os tipos 1 e 3 são mais importantes e ocorrem sempre associados no depósito.

Na área da Fazenda Três Irmãs (fig. 7), o fosforito ocorre em três intervalos diferentes, onde as camadas estromatolíticas ricas em carbonato-fluorapatita estão associadas a dolomitos e calcários com estratificações cruzadas, marcas de onda e intraclastos, podendo alcançar espessuras de 2 a 10 metros. Estratigraficamente acima, ocorrem fácies dolomíticas muito rasas ou que sofreram exposição subaérea, com estruturas "*teepee*"(foto 7) , nódulos de sulfatos substituídos por calcita e quartzo fibroso, microcristalino, além de gipsita e barita, mineralizadas em sulfetos de ferro, zinco e chumbo.

Conforme demonstrado por Misi (1992) e Misi e Kyle (1994a), a fosfatização, em Irecê, precede a dolomitização, sendo portanto um fenômeno muito precoce no processo diagenético. Estes mesmos autores salientaram que esta observação contraria o conceito de Martens e Harris (1970), segundo o qual os íons Mg⁺⁺ inibem a formação da apatita. Desta forma, o carbonato-fluorapatita deveria se formar após a dolomitização precoce que afetou os sedimentos, quando o magnésio já teria sido removido para a formação da dolomita. Porém, como foi demonstrado por Lucas & Prévôt (1984), na presença de microrganismos o efeito inibidor do magnésio cessa.

Assim, é possível admitir que o fosforito primário de Irecê tem sua origem relacionada aos microrganismos formadores das estruturas estromatolíticas. Uma parcela desses microrganismos teria ação destrutiva ou anaeróbica, agindo no sentido de destruir a matéria orgânica, liberando o PO₄, e permitindo a

precipitação da fluorapatita, conforme o modelo de Compton (1989). Segundo Misi e Kyle (1994a), o ambiente em torno desse meio teria de ser anóxico, o que efetivamente foi comprovado pelos estudos isotópicos de carbono, oxigênio e enxofre, feitos pelos mesmos autores, em Irecê.

Capítulo IV O FOSFORITO DE IRECÊ: CARACTERIZAÇÃO

IV.1. PETROGRAFIA DAS ROCHAS FOSFÁTICAS

O estudo petrográfico complementar das rochas fosfáticas da Região de Irecê-Lapão foi feito com base na seleção de seis furos de sondagem realizados pela CBPM, no decorrer do Projeto Irecê-Lapão, como indicado na figura 7. Este estudo teve como finalidade maior, caracterizar o minério fosfático, quanto à associação mineralógica e sua relação com a rocha encaixante. As descrições petrográficas das lâminas delgadas foram realizadas no Laboratório de Metalogênese do Instituto de Geociências da UFBa, Curso de Pós-Graduação em Geologia, em um microscópio Petrográfico Nikon, modelo Opt-Phot.

Os furos selecionados para estudo (IL-66; IL-39; IL-77; IL-97; Il-103 e IL-108) situam-se nas proximidades da Fazenda Três Irmãs, entre os municípios supracitados. É nesta localidade que ocorrem os níveis fosfáticos mais ricos em P_2O_5 , bem como as mineralizações de sulfetos. Nesta área afloram principalmente as litofácies carbonáticas correspondentes à unidade B1.

Como já foi abordado anteriormente, as concentrações fosfáticas ocorrem em estromatolitos colunares (principalmente) e laminares, onde os níveis, enriquecidos em carbonato-fluorapatita encontram-se intercrescidos com níveis carbonáticos (dolomíticos e calcíticos). Além dos estromatolitos, ocorrem também intraclastos fosfáticos, principalmente nos espaços intercolunares, provenientes da destruição dos estromatolitos colunares, por correntes.

As rochas fosfáticas economicamente mais importantes, são resultantes de processos de alteração intempérica. Ferrari (1994) descreveu detalhadamente os processos de alteração que resultaram no enriquecimento da mineralização fosfática de Irecê e demonstrou que o perfil de alteração apresenta, pelo menos, três estágios de alteração, denominados fácies, da base para o topo: fácies "casa de abelha", fácies "cascalho com estrutura preservada" e fácies "cascalho sem estrutura preservada" (fig. 8), além de uma fácies fora do perfil de alteração, denominada fácies "rolados", constituída por seixos e blocos arredondados de fragmentos

estromatolíticos e dolomíticos, que ocorre em depressões próximas aos níveis estromatolíticos. A foto 14 mostra a passagem da fácies "rocha fresca" para a fácies "casa de abelha" do perfil de alteração. A autora demonstrou também que não existem transformações mineralógicas significativas em função do processo intempérico. As apatitas residuais conservam-se praticamente inalteradas, ou seja, conservam a característica mineralógica original: são constituídos por carbonato-fluorapatita, concentrado na rocha pela saída do material carbonatico encaixante. Os espaços porosos, resultantes também do processo intempérico, são preenchidos por quartzo detrítico e argila (caulinita).

Fig. 8 - Perfil esquemático da alteração da rocha fosfática de acordo com Ferrari (1994).

A associação mineralógica encontrada nas rochas estudadas é a seguinte:

- Carbonato-fluorapatita
- Calcita
- Dolomita
- Quartzo (detrítico, mega quartzo, microcristalino e pseudo-fibroso)
- Microclina
- Pirita
- Esfalerita
- Oxi-hidróxidos de Fe (limonita)
- Fluorita (raro)

Os minerais supracitados serão descritos a seguir:

IV.1.1. Carbonato-fluorapatita

O estudo microscópico mostra que, independente do tipo de ocorrência - estromatolítica laminar, estromatolítica colunar ou intraclástica intercolunar - os agregados cristalinos de carbonato-fluorapatita são sempre cripto a microcristalinos, de coloração amarronzada e mostram relevo baixo e birrefrigência muito baixa, dando, muitas vezes, a impressão de serem isotrópicos (fotos 15 e 16). Estão sempre associados ou intercrescidos com calcita e dolomita e, localmente, com quartzo e microclina detríticos (fotos 16 e 17).

Dentro do contexto microscópico, algumas interrelações podem ser salientadas:

- O carbonato-fluorapatita associa-se a agregados cristalinos de calcita microespática, aparentemente sendo invadidos pelo carbonato (fotos 18,19 e 22).
- Romboedros de dolomita, relacionados ao processo de dolomitização precoce que afetou os sedimentos, cortam ou truncam nitidamente os agregados de carbonato-fluorapatita (Fotos 18, 20 e 22), denotando o caráter precoce da fosfatização primária.

0,1mm

FOTO 14 - Limite entre as fácies "rocha fresca" e "casa de abelha" do perfil de alteração das rochas fosfáticas de Irecê. Observa-se material argiloso preenchendo as cavidades oriundas da dissolução do carbonato intercolunar.

FOTO 15 - Coluna estromatolítica formada por agregados cripto a microcristalinos de carbonato-fluorapatita (cor escura). O espaço intercolunar é preenchido por carbonato (calcita e/ou dolomita). Fotomicrografia em luz plana

FOTO 16 -Intercalação de níveis estromatolíticos fosfáticos (cor escura) com níveis carbonáticos. Fragmentos angulosos de quartzo detrítico associados aos níveis à fosfáticos rocha carbonática. e Fotomicrografia em nicóis cruzados.

FOTO 17 - Níveis estromatolíticos fosfáticos com quartzo e microclina detríticos, além de algum carbonato preenchendo espaço poroso e intercolunar dos estromatolitos. Fotomicrografia em nicóis cruzados.

FOTO 18 - Agregado cristalino de carbonato fluorapatita com carbonato preenchendo espaços porosos e intercolunares. Observa-se cristais de dolomita sobre a massa fosfática. Fotomicrografia em nicóis cruzados.

FOTO 19 - Colunas estromatolíticas fosfáticas intercaladas com material carbonático (calcita e dolomita). Fotomicrografia em nicóis cruzados.

- A presença de intraclastos fosfáticos, igualmente cortados por romboedros de dolomita (foto 23, 24 e 25), indica também a natureza precoce da fosfatogênese, conforme já salientado.
- A associação de níveis estromatolíticos fosfáticos com quartzo e microclina detríticos (foto 17), um fenômeno comum em zonas de planícies de marés. Este assunto voltará a ser comentado.

IV.1.2. Calcita

Pelo menos cinco gerações de calcita podem ser observadas, a partir do estudo microscópico das rochas encaixantes do fosforito de Irecê, conforme ilustrado nas fotos 26, 27, 28 e 29:

- Calcita microcristalina, constituindo os halos micríticos preservados em tornos dos pelóides carbonáticos (Foto 26).
- Calcita neomórfica, formando a parte central dos pelóides, ou constituindo, junto com a dolomita, o arcabouço principal da rocha carbonática encaixante (Fotos 26 e 27).
- Calcita drusiforme, do tipo *bladed*, de granulação média a grossa (neomórfica), em torno dos grãos peloidais e intraclastos fosfáticos (foto 30).
- Calcita espática, do tipo *random*, de granulação grossa, equigranular, que ocorre comumente cimentando os grãos peloidais (foto 27).
- Calcita espática, grossa, preenchendo as microfraturas e os veios (Foto 28).

Os diversos tipos de calcita observados, refletem uma complexa evolução diagenética, que foi descrita e interpretada por Misi (1992) e Misi e Kyle (1994a). A figura 9 é uma ilustração esquematica da foto 27, mostrando a posição e o possível significado dos quatro primeiros tipos de calcita descritos anteriormente.

FOTO 20 - Cristais de dolomita truncando a massa fosfática. Observa-se a presença de pirita (Py) limonitizada associada aos mesmos. Fotomicrografia em luz plana.

FOTO 21 - Ídem a anterior - Fotomicrografia em luz refletida.

FOTO 22 - Dolomita truncando agregados e intraclastos fosfáticos. Observa-se um processo de dedolomitização parcial da rocha carbonática. Fotomicrografia em nicóis cruzados.

FOTO 23 - Intraclasto fosfático na rocha carbonática encaixante, truncado por pequenos cristais de dolomita. Fotomicrografia em nicóis cruzados.

FOTO 24 - Intraclastos fosfáticos e pelóides carbonáticos apoiados no arcabouço carbonático da rocha encaixante. Fotomicrografia em nicóis cruzados

> FOTO 25 - Detalhe de um intraclasto fosfático com fragmentos da própria encaixante dentro, denotando o caráter precoce da fosfogênese na bacia. Fotomicrografia em nicóis cruzados

Fig.9- Ilustração esquemática da foto 27 mostrando as diversas gerações de calcita: 1 e 2= cimento calcítico equidimencional *random* (2 gerações diferentes); 3= cimento do tipo *bladed*; 4= halos micríticos preservados; 5= calcita neomórfica .

IV.1.3. Dolomita

A dolomitização que afeta as rochas carbonáticas encaixantes e o próprio fosforito, embora generalizada ou pervasiva, é parcial (Fotos 31 e 32). O cimento calcítico está sempre associado, seja através da preservação do cimento calcítico anterior, seja por processos de cimentação ou por calcitização da dolomita (dedolomitização) (fotos 22, 29 e 33). Os romboedros de dolomita se destacam na massa carbonática, mostrando-se com tamanhos variáveis, desde inferiores a 0,025 mm até 0,2 mm de diâmetro maior. O nítido e freqüente truncamento dos agregados de carbonato-fluorapatita por romboedros de dolomita (fotos 18, 19, 20, 22 e 23) sugere que o processo de dolomitização se deu após a fosfatização, conforme já salientado.

FOTO 26 - Diversas gerações de cimento carbonático, do centro do pelóide para fora: calcita recristalizada microesparítica que forma a parte central dos peloides e constitui o arcabouço principal da rocha carbonática encaixante (C_R); neomórfica (C_N); halo micrítico preservado da lama original (C_M) e calcita drusiforme do tipo *bladed* (C_B) em torno do grão peloidal. Fotomicrografia em nicóis cruzados

FOTO 27 - Gerações de cimento calcítico: halos micríticos em torno do grão peloidal (C_M); calcita recristalizada (C_R); calcita *bladed* (C_B) e equidimensional *random* (C_r). Fotomicrografia em nicóis cruzados

FOTO 28 - Venulações de calcita espática $(C_{\rm V})$ cortando o agregado fosfático. Fotomicrografia em nicóis cruzados

FOTO 29 - Arcabouço da rocha carbonática encaixante dolomitizada (D). Observa-se a calcitização (dedolomitização) (D_C) parcial da dolomita. Fotomicrografia em nicóis cruzados

FOTO 30 - Duas gerações de cimento calcítico cimentando intraclastos fosfáticos (a_I): *bladed* (C_B) e *random* (C_r). Fotomicrografia em nicóis cruzados

FOTO 31 - Cimento carbonático parcialmente dolomitizado, formando o arcabouço da rocha carbonática encaixante. Fotomicrografia em nicóis cruzados

FOTO 32 - Idem à anterior com aumento de 10 x e com cunha de quartzo inserida. O carbonato fluorapatita fica com coloração rosada ao inserir a cunha de quartzo.

FOTO 33 - Dedolomitização na rocha carbonática. No centro, destaque para um cristal de dolomita totalmente calcitizado (D_C). Fotomicrografia em nicóis cruzados

FOTO 34 - Quartzo microcristalino pseudofibroso (Q_m) associado à rocha carbonática e aos sulfetos (P_Y) da unidade B1 (Fm. Salitre). Fotomicrografia em nicóis cruzados

IV.1.4. Quartzo e microclina detríticos

Quartzo e microclina detríticos, com predominância do primeiro, estão sempre associados, às vezes mais dispersos, às vezes mais concentrados (foto 17). Formam níveis ou corpos lenticulares na massa carbonática ou estão associados aos níveis estromatolíticos fosfáticos. Os fragmentos são angulosos ou arredondados, com dimensões variáveis desde 0,04 mm a 0,3 mm de diâmetro maior. A sua presença sugere a entrada esporádica de fluxos de silte e areia no sistema, a partir de áreas continentais emersas próximas, um fenômeno muito comum em zonas de planícies de marés.

IV.1.5. Quartzo microcristalino e mega quartzo

A presença de quartzo microcristalino foi observada em poucas amostras, constituindo-se numa ocorrência relativamente rara, em associação com os horizontes carbonáticos ricos em fosfato da unidade B1. Nas amostras observadas, está associada a sulfetos (esfalerita e pirita) (foto 34). Nesses casos, mostra um aspecto fibroso, as vezes radial, e é do tipo lutecita, uma forma de quartzo característico de substituição de minerais evaporíticos (Folk e Pitman, 1971). O quartzo microcristalino ocorre também preenchendo microfraturas e microestilolitos (foto 36). A presença deste tipo de quartzo indica um processo de silicificação precoce, ocorrendo principalmente nas zonas mais rasas sujeitas à evaporação por exposição subaérea. Normalmente ele substitui sulfatos formados nessas zonas.

Ocorrem também quartzo do tipo mega-quartzo (foto 35), em forma de veios e lentes, e preenchendo fraturas na rocha carbonática e no próprio fosforito (foto 41). Este tipo de quartzo indica fenômenos de silicificação, possivelmente relacionados a fases diagenéticas tardias.

IV.1.6. Pirita e esfalerita

A ocorrência de sulfetos é muito rara, em associação com os horizontes fosfatados descritos. Nas poucas amostras onde se verificou a presença de sulfetos, estão presentes apenas pirita e esfalerita, disseminados na rocha

FOTO 35 - Mega quartzo (Q_M) associado às intercalações de colunas fosfáticas (a_c) e os carbonatos intercolunares (C_R) da unidade B1 (Fm. Salitre). Fotomicrografia em nicóis cruzados

FOTO 36 - Quartzo microcristalino pseudofibroso (Q_m) preenchendo fraturas que cortam a rocha carbonática encaixante. Fotomicrografia em nicóis cruzados

FOTO 37 - Pirita pseudo-fibrosa (P_Y) , parcialmente limonitizada, de forma radial, associada à rocha carbonática encaixante Fotomicrografia em nicóis cruzados

FOTO 38 - Idem à anterior, em luz refletida. Nota-se a limonitização quase total da pirita $\left(P_{Y}\right)$

FOTO 39 - Agregados de pirita (P_Y) parcialmente limonitizados, radialmente dispostos, e disseminada na rocha carbonática encaixante, associados com quartzo detrítico (Q_d) . Fotomicrografia em nicóis cruzados

FOTO 40 - Ídem à anterior, em luz refletida e aumento de 10 x.

carbonática e associados ao quartzo microcristalino (foto 34). A pirita pode ocorrer na forma de agregados cristalinos pseudo-fibrosos (provavelmente devido ao processo de substituição do sulfatos - gipsita - pelo sulfeto), às vezes radialmente organizados (foto 37, 39 e 40), normalmente parcial ou totalmente limonitizadas (fotos 17, 21, 37 e 38).

IV.1.7. Oxi-hidróxidos de ferro

Em muitas amostras estudadas, é comum a presença de limonita ocorrendo na forma de pequenas palhetas disseminadas na rocha carbonática (foto 42) ou preenchendo microfraturas (fotos 43 e 44). A rocha carbonática também é freqüentemente "manchada" por óxidos de ferro. A presença desses materiais está relacionada à oxidação dos sulfetos e à percolação de águas meteóricas, ricas em ferro, no sistema.

IV.1.8. Fluorita

A fluorita ocorre na forma de pequenos bolsões (foto 45) ou preenchendo microfraturas na rocha fosfática (foto 46). Tem cor azulada e mostra-se bem cristalizada. Embora não tenham sido encontradas muitas amostras com fluorita na área estudada, é comum a ocorrência desse mineral associado a rochas fosfáticas sedimentares.

Através da análise petrográfica, evidenciaram-se as seguintes relações, de interesse para os itens que se seguem:

- A natureza cripto a microcristalina do carbonato-fluorapatita
- O intercrescimento de calcita e dolomita com o carbonato-fluorapatita
- A associação de quartzo e microclina detríticos com o fosforito
- O caráter cedo-diagenético (precoce) da fosfogênese

FOTO 41 - Mega-quartzo (Q_M) preenchendo fraturas que cortam a rocha carbonática encaixante. Ocorrem sulfetos associados, na maioria das vezes limonitizados. Fotomicrografia em nicóis cruzados

FOTO 42 - Limonita disseminada e em pequenas palhetas, que ocorrem "manchando" o carbonato. Na maioria das vezes esta limonita é produto de alteração da pirita. Fotomicrografia em luz plana.

FOTO 43 - Limonita disseminada e preenchendo o espaço intergranular da rocha carbonática encaixante. Fotomicrografia em nicóis cruzados

FOTO 44 - Limonita disseminada na rocha carbonática e acompanhando os níveis estromatolíticos fosfáticos (a_c). Fotomicrografia em nicóis cruzados

FOTO 45 - Fluorita na forma de bolsões associada aos níveis fosfáticos. Fotomicrografia em luz plana.

FOTO 46 - Fluorita preenchendo fraturas na rocha fosfática. Fotomicrografia em luz plana.

IV.2. CARACTERIZAÇÃO CRISTALOGRÁFICA

IV.2.1. Estrutura cristalina da apatita e importância do CO₃-2

O carbonato-fluorapatita ou francolita é um mineral reconhecido como variedade de apatita presente em rochas sedimentares (Altschuller et al. 1952), sendo o principal constituinte mineral dos fosforitos. A composição química da francolita é representada por uma série de substituições, e sua fórmula empírica, proposta por McClellan e Lehr (1969), é a seguinte:

$$\begin{array}{rcl} Ca_{10} \ (PO_4)_6 \ F_2 \ \rightarrow \ Ca_{10\ x\ y} \ Na_x \ Mg_y \ (PO_4)_{6\ z} \ (CO_3)_2 \ F_{0,4\ z} \ F_2 \ , \\ (fluorapatita) \ & (francolita) \end{array}$$

onde x =7,173 (9,369 - a_0), y = 2,784 (9,369 - a_0) e z = n⁰ de moles CO₃⁻², estimando-se assim as principais substituições isomórficas simplesmente pela dimensão do parâmetro *a* da cela unitária, utilizando os modelos desenvolvidos por McClellan (1980), nos quais a composição da francolita pode ser determinada. Silverman et al. (1952) mostraram que as dimensões do parâmetro *a* da cela unitária podem ser usados para distingui-la de outras apatitas.

A estrutura cristalina da apatita foi determinada em 1930 por Mehmel e Naray-Szabó, e desde então tem sido aceita como correta, sofrendo apenas pequenas modificações por Sudarsanan e Young (1978). A fluorapatita se cristaliza no grupo espacial P₆ 3/m com a = 9,367 Å, c = 6,844 Å, e z = 2. A sua estrutura básica consiste de seis tetraedros de PO₄ na cela, quatro átomos de cálcio no eixo trigonal rodeados por seis átomos de oxigênio e seis átomos de Ca rodeados por um poliedro irregular de um átomo de F e seis de O. Os átomos de flúor estão localizados nos vértices do plano de reflexão, tocando três átomos de Ca cada (fig. 10). O arranjo dessas colunas de Ca-O com os tetraedros de PO₄ em combinação com os elementos de simetria, produz uma rede hexagonal com canais que passam através da estrutura em direção ao eixo c. O tamanho desses canais hexagonais é determinado pelo arranjo Ca-PO₄ (McClellan, 1980).

Através do cálculo do CO_3^{-2} é possível estabelecer o grau de substituição na estrutura interna da apatita, caracterizar o tipo de apatita, inferir a idade geológica e ambiente de formação, bem como os processos de transformação pelos quais a apatita passou. A fórmula estequiométrica pode ser também determinada, uma vez

que a substituição do CO_3^{-2} por PO₄ na estrutura cristalina comanda todas as outras substituições, no sentido de deixar espaço na estrutura, que precisam ser preenchidos para manter a eletroneutralidade da mesma.

A caracterização dos fosforitos sob o ponto de vista da sua estrutura cristalina e composição tem também uma grande aplicabilidade no que se refere a processos tecnológicos e comerciais, ou seja, para o beneficiamento do minério e para sua comercialização: é possível estabelecer o grau de solubilidade da apatita, e por conseguinte o quanto ela terá que ser acidificada para que esteja apta ao aproveitamento pelo solo.

Fig. 10 - Estrutura da fluorapatita (Klein e Hurlbut, Jr., 1993)

IV.2.2. Metodologia para determinação do CO3⁻² em apatitas sedimentares

Problemas

Embora a tecnologia tenha tido um grande avanço nos últimos anos, a determinação do conteúdo de CO_3^{-2} em apatitas sedimentares ainda continua sendo um problema a ser solucionado. A determinação do CO_3^{-2} pode ser feita através de vários métodos, dentre eles fluorescência de Raios-X e outros tipos de análises químicas, onde se mede a quantidade de gás CO_2 liberado pela calcinação (queima) do pó do mineral ou da liberação desse gás em célula eletroquímica. Entretanto, o grande problema é a associação freqüente de material carbonático ao fosforito, e a natureza criptocristalina de alguns tipos de apatita de origem sedimentar. É muito difícil conseguir pureza na amostragem dessas apatitas e, por conseguinte, os valores determinados para o CO_3^{-2}

podem não ser o do mineral, e sim da mistura (da apatita e do carbonato associado). Infelizmente, nenhum método confiável para extrair a francolita pura de depósitos sedimentares para análise química foi desenvolvido. A separação física por catação manual, muitas vazes é impraticável, porque nesses casos os fosforitos se formaram por precipitação autigênica do carbonato-apatita dentro de espaços porosos de sedimentos marinhos, e, como as partículas superficiais são preenchidas ou cimentadas com cristalitos submicroscópicos de francolita, o sedimento hospedeiro torna-se parte do fosforito. Algumas das partículas dos sedimentos primários podem ser substituídos por francolita durante a continuidade da diagênese, mas a substituição raramente se completa e os cristais individuais permanecem pequenos.

Gulbrandsen (1970) apresentou um método alternativo, no qual o conteúdo de CO_3^{-2} da francolita é determinado indiretamente através da medida da variação do 20 ($\Delta 2\theta$) para os pares de picos de reflexão na difratometria de raios-X. Este método será discutido posteriormente.

Determinações do CO₃⁻² por métodos químico- analíticos

Vários métodos analíticos podem ser utilizados para se calcular o percentual de CO_3^{-2} em apatitas, apesar de todos os problemas expostos no item anterior. Segundo Regnier et al. (1994), a menos que a amostra tenha um alto grau de pureza (não seja contaminada pelos carbonatos encaixantes), o verdadeiro percentual de CO_3^{-2} que substitui o íon PO_4^{-3} na estrutura da francolita só pode ser melhor analisado pelos métodos de difração de raios-X e espectroscopia de FTIR (Fourier Transform Infrared), pois, através de outros métodos o CO_3^{-2} calculado seria o contido na estrutura da francolita mais o do carbonato.

Desde que se tenha uma amostra pura de francolita, pode-se utilizar os métodos analíticos para se determinar o % de CO₃⁻² contido na estrutura da fluorapatita. Dentre os métodos químicos, os mais utilizados são fluorescência de raios-X, espectroscopia de ICP (Inductively Coupled Plasma-emission) e espectroscopia de FTIR, além da análise por coulometria, que consiste na medida do CO_2 liberado em uma célula eletroquímica. Vale ressaltar que as amostras analisadas tem que passar por uma série de procedimentos para que a calcita seja liberada, e mesmo assim o erro ainda é grande, devido aos resíduos insolúveis da amostra (por exemplo a dolomita). Assim, nas amostras de fosforito que contém dolomita, não é indicado análise de CO₂ por métodos químicos, pois CO_2 da francolita não pode ser distinguido do CO_2 da dolomita. 0

Determinação do CO3-2 por difratometria de raios-X

A difratometria de raios-X é, sem dúvida, o método mais confiável para se calcular o percentual de CO_3^{-2} na estrutura da apatita (Gulbrandsen, 1970; Schuffer et al. 1990), principalmente quando o material analisado não é puro o suficiente, a ponto de influenciar nos valores de CO_3^{-2} .

O método desenvolvido por Gulbrandsen (1970), conhecido como "Método do Par de Picos", é muito simples, necessitando apenas medir-se a diferença angular entre dois picos de difração de raios-X, o que torna desnecessário a utilização de padrões internos para correção angular. Devido à dimensão do parâmetro *c* ser muito menos afetada que a dimensão do parâmetro *a*, os picos cujos índices são do tipo 001 mudam menos que os outros tipos - hkl, kh0, h00 ou 0k0 - que incluem um componente de dimensão *a*. O par de picos mostra, portanto, uma diferença que é proporcional à quantidade de substituição do carbonato, e é geralmente expressa em % em peso de CO₂. Os valores obtidos podem ser convertidos em % em peso de CO₃⁻² multiplicando-se o valor encontrado para o CO₂ por 1,36 (Schuffert et al. 1990). Os pares de picos utilizados para a determinação do $\Delta 2\theta$ são 004 e 410 ou 300 e 002. De posse do $\Delta 2\theta$, utilizam-se as equações empíricas de McClellan (1980) para se chegar ao % em peso de CO₃⁻².

O par de picos selecionados, 410 e 004, são de intensidade média e ocorrem em torno de 51,6° e 53,1° (angulo 2 θ) respectivamente, no caso de se utilizar radiação de Cu (que normalmente é mais utilizado) (fig. 11). O outro par de picos, 002 e 300, ocorre em um 2 θ de 25,9° e 33,1° respectivamente. Como a resolução é menor nos ângulos mais baixos, este par não é o mais indicado para o cálculo do CO₃⁻², a não ser que os picos 004 e 410 não estejam bem definidos no difratograma.

Os Parâmetros cristalográficos a e c são obtidos através da expressão geral para cristais hexagonais:

$$d_{hkl} = 1/\sqrt{4(h^2 + kh + k^2)/3a^2 + l^2/c^2}$$

Fig. 11 - Padrão de raios X do carbonato-fluorapatita.

IV.2.3. Parâmetros Cristalográficos das apatitas estudadas

A caracterização cristalográfica foi realizada em cerca de 30 amostras, utilizando a metodologia descrita no item 5.2.2. Para a determinação dos parâmetros reticulares utilizou-se um *software* em linguagem Pascal, desenvolvido pelo Prof. Tersandro Monteiro, também vinculado aos Projetos que suportam este trabalho (figs. 12, 13 e 14). O *software*, além de calcular os parâmetros cristalográficos *a* e *c*, nos fornece também os valores dos espaçamentos (d), os valores de CO_3^{-2} e calcula a fórmula química da apatita. Os valores de d_{hkl} da equação de Bragg foram substituídos pela expressão que relaciona os espaçamentos interplanares aos índices hkl (equação ①), onde é possível a obtenção dos parâmetros cristalográficos *a* e *c*.

Os valores de CO_3^{-2} foram calculados a partir do método desenvolvido por Gulbrandsen (1970), posteriormente aperfeiçoado por Schuffert et *al.* (1990) e já descritos anteriormente. As tabelas e gráficos correspondentes a cada amostra se encontram anexos.

O valor médio de a_0 encontrado para as apatitas de Irecê (amostras com prefixo IL) foi de 9,3600. O % CO_3^{-2} varia bastante, abrangendo valores de 0,1250 a 2,1820, com um valor anômalo de 3,5090. Esses valores caracterizam as apatitas de Irecê como sendo do tipo carbonato fluorapatita.

A fórmula química calculada é baseada no modelo desenvolvido por McClellan e Lehr (1969), como indicado abaixo:

 $\begin{array}{ll} Ca_{10}\,(PO_4)_6\,F_2\,\rightarrow\,Ca_{10\text{-}x\text{-}y}\,Na_x\,Mg_y\,(PO_4)_{6\text{-}z}\,(CO_3)_2\,F_{0,4\,\,z}\,F_2\\ (fluorapatita) & (francolita) \end{array}$

A tabela 1 mostra os parâmetros cristalográficos para as apatitas estudadas. As intensidades (I) e os espaçamentos (d) para todas as amostras analisadas podem ser vistos nas tabelas e gráficos anexos. A tabela 2 mostra a fórmula química para as apatitas de Irecê a partir dos dados de raios X calculados.

Fig. 12 - Janela de abertura do Programa desenvolvido para calcular os parâmetros cristalográficos da

apatita.

Metalogênese das Coberturas Proterozóicas Caracterização e Origem da Fosforita de Irecê , Ba								
2 0	d(Å)	l/lo	hkl	2 0	d(Å)	l/lo	hkl	Amostra: IL-63
10.900	8.110	4	(100)	40.053	2.249	20	(310)	Nome : Carbonato Fluorapatita
16.870	5.251	3	(101)	40.668	2.217	2	(221)	c0 : 6.8907 ± 0.0117
18.937	4.682	1	(110)	42.229	2.138	5	(311)	c0/a0 : 0,7358
21.901	4.055	6	(200)	42.468	2.127	1	(302)	V : 523,285Ű
22.945	3.873	8	(111)	43.866	2.062	4	(113)	1,822 % de CO ₃ ² *
25.466	3.495	4	(201)	44.657	2.027	1	(400)	Radiação:CuKa1=1.54051
25.837	3.445	36	(002)	45.339	1.999	4	(203)	★ Schuffert et al.(1990). Carbonate-ion
28.116	3.171	11	(102)	46.880	1.936	23	(222)	substitution in francolite: A new equation.Geochimica et Cosmochimica
29.108	3.065	18	(210)	48.280	1.883	11	(312)	Acta.54.2323-2328.
31.928	2.801	100	(211)	48.914	1.860	2	(320)	
32.230	2.775	42	(112)	49.550	1.838	29	(213)	
33.110	2.703	56	(300)	50.787	1.796	13	(321)	
34.120	2.626	24	(202)	51.603	1.770	11	(410)	
35.646	2.517	4	(301)	52.312	1.747	10	(402)	
39.309	2.290	8	(212)	53.119	1.723	13	(004)	•

(Ca Mg Na) (PO4) (CO3) (SO4) F 9,953 0,013 0,034 5,842 0,15 0,008 2,06

Fig. 13 - Tabela com os parâmetros cristalográficos, angulo 20, intensidades e espaçamentos.

Fig. 14 - Padrão de raios X desenhado pelo programa.

McClellan e Lehr (1969) mostraram que todas as apatitas sedimentares tinham a mesma correlação das propriedades cristalográficas com a composição química. Os valores de *a* variam de 9,322 a 9,409 å e os de *c* de 6,876 a 6,901. Os valores de a_0 e c_0 encontrados para as apatitas de Irecê (Neoproterozóico) estão de acordo com os valores estimados por McClellan (1980) para o carbonato fluorapatita.

A fig. 15 mostra a variação do parâmetro *a* em função da idade geológica dos depósitos, segundo a classificação de Cook e McElhinny (1979). Através deste gráfico é notória a diminuição do valor de *a* com o tempo geológico, em função da variação na composição da francolita, que tende a se transformar em fluorapatita.

As variações em termos de composição das apatitas, expressas em moles por peso, e que podem ser tomados como referência para outros depósitos, segundo (McClellan e Lehr, 1969), são:

$Ca \rightarrow 9,326 a 10,102$	$F \rightarrow 1,210 a 2,858$	
$PO_4 \rightarrow 4,610 \text{ a } 5,872$	$Na \rightarrow 0,041 a 0,513$	
$CO_3 \rightarrow 0,024 \text{ a } 1,347$	$Mg \rightarrow 0,021 a 0,253$	

De acordo com a tabela 3, os valores encontrados para as amostras de Irecê são compatíveis com os valores estabelecidos para os fosforitos, segundo McClellan e Lehr (1969), como referido acima.

Os valores de CO_3^{-2} próximos de zero encontrados para algumas amostras de Rocinha podem estar associados a intemperismo e metamorfismo superimpostos. Segundo Da Rocha Araújo (1992), esses baixos valores de CO_3^{-2} nas apatitas de Rocinha podem ser interpretados como conseqüência do metamorfismo da apatita da fácies de transição (fácies xistosa com corpos fosfáticos e dolomitos metassedimentares fosfáticos laminados) e fácies relacionadas aos folhelhos.

O Gráfico da figura 16 mostra a correlação do flúor com a razão CO_3/PO_4 (segundo dados da tabela 2), evidenciando o aumento no conteúdo de flúor com o aumento no grau de substituição. Isto será discutido mais adiante, no capítulo 5.

№ da Amostra	a 0	C 0	c₀/a₀	%CO3 ⁻²	F
IL-09 (16,95)	9,3667	6,8929	0,7359	1,9160	2,03
IL-39 B (4,85)	9,3519	6,8828	0,7360	1,9850	2,20
IL-39 C (6,23)	9,3590	6,8884	0,7360	2,0720	2,12
IL-39 D (6,36)	9,3543	6,8803	0,7355	1,2700	2,18
IL-39 A (7,89)	9,3524	6,8788	0,7355	1,2540	2,20
IL-39 E (10,67)	9,3587	6,8840	0,7356	1,3760	2,13
IL-40 (19,16)	9,3621	6,8894	0,7359	1,8720	2,09
IL-41 (10,92)	9,3638	6,8920	0,736	2,1010	2,07
IL-48 (25,65)	9,3658	6,8860	0,7352	0,8720	2,04
IL-49 (15,69)	9,3002	6,8946 6,9770	0,7369	3,5090	2,10
IL-49A (13,40)	9,3301	6 8778	0,7349	0,3340	2,13
IL-51 (10,00) II -53 (43 42)	9,3673	6 8836	0,7349	0,1230	2,10
IL-62 (3.50)	9.3677	6,8894	0,7354	1,2070	2.02
II -63 (18 80)	9 3643	6 8907	0 7958	1,2010	2,06
IL-03 (10,00)	0,2511	6,0907	0,7950	1,0220	2,00
IL-00 (20,77)	9,3311	0,0002	0,7656	1,4000	2,10
IL-77R (10,23)	9,3303	0,0004 6 8856	0,7300	2,0040	2,10
IL-776 (10,33)	9,3323	6,8000	0,7302	2,3000	2,20
IL / / C (22,20)	9,3300	0,0909 6 8864	0,7303	2,7000	2,13
IL-103 (10,70) II -103∆ (25 33)	9,3047	6 8829	0,7353	0.9360	2,00
II -108 (27.89)	9,3603	6 8825	0,7353	0.9490	2,10
IM-AS-1	9.3600	6.8797	0.7350	0.5370	2.11
IR-AL-1	9.3587	6.8773	0.7349	0.2990	2.13
IR-AL-2	9,3590	6,8775	0,7349	0,2950	2,12
IR-AL-3	9,3587	6,8773	0,7349	0,3110	2,13
IR-AM-8	9,3526	6,8845	0,7361	2,1820	2,20
-					
IRECE - média	9,3593	6,8847	0,7396	1,3820	2,11
CF-IS	9,3393	6,8839	0,7371	3,7660	2,33
CE-MA	9 3302	6 8893	0 7384	6 0800	2 42
	5,500Z	0,0000	0,7004	0,0000	2,72
CF-TG	9,3434	6,8824	0,7366	2,9590	2,29
RO-AM	9.3646	6 8820	0 7349	0.3760	2.06
RO-AM-08	9 3694	6 8849	0 7348	0.3010	2,00
	0.3681	6 8847	0,7340	0,0010	2,00
RO-AM-11	9,3001	6 8887	0,7354	1 1860	2,01
RO-AM-12	9.3713	6,8849	0,7347	0.0950	2,00
RO-AM-13	9 3655	6 8861	0,7353	0,0000	2.05
PO-AM-16	0,3662	6 8835	0,7340	0,0000	2,00
	9,3002	6 8847	0,7349	0,4300	2,04
RO - média	9.3678	6.8849	0,7350	0.4931	2,00
	5,0010	0,0040	0,1000	0,4001	2,02
YH-386	9,3503	6,8916	0,7370	3,7410	2,22
YH-387	9,3473	6,8889	0,7370	3,6310	2,25
YH-402	9,3469	6,8829	0,7364	2,6060	2,26
YH-460	9,3556	6,8945	0,7369	3,5850	2,16
	9,3465	6,8948 6,8005	0,7377	4,8620	2,26
VH - média	9,0009 9,0009	0,0900 2005	0,7309	3,4010 3 6/77	∠,∠1 ງງ 2
in - meula	3,3430	0,0903	0,1310	3,0477	2,23

Tab. 1 - Parâmetros cristalográficos das apatitas de Irecê (IR;IL e IM), Rocinha (RO-AM) e Alhandra (YH).

	Fórmula Empírica da Francolita (a partir de dados de Difratometria de raios X)						
Amostra	Ca	Mg	Na	PO ₄	CO ₃	SO ₄	F
IL-09	9.977	0.006	0.017	5.921	0.074	0.004	2.030
IL-39A	9.834	0.046	0.119	5.476	0.495	0.030	2.198
IL-39B	9.829	0.048	0.123	5.461	0.509	0.031	2.203
IL-39C	9.900	0.028	0.072	5.674	0.308	0.018	2.123
IL-39D	9.854	0.041	0.105	5.533	0.441	0.026	2.176
IL-39E	9.898	0.029	0.074	5.666	0.316	0.018	2.126
IL-40	9.931	0.019	0.049	5.772	0.215	0.012	2.086
IL-41	9.949	0.014	0.037	5.828	0.163	0.009	2.065
IL-48	9.968	0.009	0.023	5.893	0.101	0.006	2.041
IL-49	9.873	0.036	0.092	5.590	0.387	0.023	2.155
IL-49A	9.892	0.030	0.087	5.647	0.333	0.019	2.133
IL-51	9.921	0.022	0.057	5.739	0.247	0.014	2.099
IL-53	9.983	0.005	0.012	5.941	0.056	0.003	2.022
IL-62	9.987	0.004	0.009	5.955	0.042	0.002	2.017
IL-63	9.953	0.013	0.034	5.842	0.150	0.008	2.060
IL-66	9.921	0.022	0.057	5.739	0.247	0.014	2.099
IL-77A	9.874	0.035	0.091	5.593	0.384	0.023	2.154
IL-77B	9.836	0.046	0.118	5.479	0.492	0.029	2.197
IL-77C	9.879	0.034	0.087	5.609	0.370	0.022	2.148
IL-103	9.957	0.012	0.031	5.856	0.136	0.008	2.054
IL-103A	9.920	0.022	0.058	5.736	0.250	0.014	2.100
IL-108	9.913	0.024	0.063	5.714	0.270	0.016	2.108
IR-AM-8	9.837	0.046	0.117	5.483	0.488	0.029	2.195
IM-AS-1	9.910	0.025	0.065	5.704	0.280	0.016	2.112
IR-AL-1	9.897	0.029	0.074	5.665	0.316	0.018	2.127
IR-AL-2	9.901	0.028	0.072	5.675	0.307	0.018	2.123
IR-AL-3	9.897	0.029	0.074	5.665	0.317	0.018	2.127

Tab. 2 - Fórmula química das apatitas estudadas, calculadas a partir dos dados de difratometria de raios X, calculados pelo programa CARFAP. Amostras de Irecê-Lapão.

Fig. 15 - Variação do parâmetro (a_0) da cela unitária da francolita em função da idade geologica (modificado de McClellan & Saavedra, 1986).

Constituinte (%)	Fluorapatita (z = 0)	Francolita z/6-z ≈ 30
CaO	55,6	55,1
P_2O_5	42,2	34,0
CO_2	0	6,3
F	3,77	5,04
Na ₂ O	0	1,4
MgO	0	0,7
CaO/P_2O_5	1,318	1,621
F/P ₂ O ₅	0,089	0,148

Tab. 3 - Comparação entre a composição da fluorapatita e a da francolita (McClellan, 1980)

Os valores obtidos foram locados nas figuras 17 e 18 que mostram as correlações entre o % CO_3^{-2} e os parâmetros a_0 e c_0 respectivamente, para os três conjuntos de amostras (IR/IL, RO e YH). Os valores de CO_3^{-2} e a_0 se correlacionam negativamente, mostrando que o percentual de CO_3^{-2} diminui com o aumento do valor de a_0 (fig. 17). A variação do parâmetro *a* na estrutura cristalina está intimamente relacionada com as variações químicas sofridas pela francolita, ou seja, variação do *a* com o grau de substituição do CO_3^{-2} pelo PO_4^{-3} (McClellan e Lehr, 1969).

Muitos trabalhos já realizados mostram que a francolita, embora tenha uma textura cripto a microcristalina, produz padrões de difração de raios X que são próximos aos da fluorapatita (McClellan e Lehr, 1969; McClellan, 1980). Altschuller et al. (1952) notaram algumas variações nos padrões de raios X do carbonato fluorapatita em relação aos da fluorapatita, e observaram que as dimensões da cela unitária eram menores que as registradas para a fluorapatita. Estudos posteriores realizados nas rochas fosfáticas da Flórida confirmaram os dados de raios X desses autores.

O parâmetro c_0 também se correlaciona com o CO_3^{-2} (fig. 18), aumentando com o aumento do % de CO_3^{-2} ² na estrutura do carbonato fluorapatita. Os valores encontrados para as amostras estudadas não mostram uma correlação muito boa, embora note-se este aumento. Segundo McClellan e Lehr (1969), a relação do aumento do parâmetro c_0 com o aumento da substituição provavelmente se dá em função da dimensão no qual o flúor é associado com o carbonato na estrutura, numa substituição acoplada.

Fig. 16 - Gráfico F x CO_3/PO_4 para as amostras de Irecê (mols por peso).

Fig. 17 - Gráfico a_0 (å) x CO₃⁻² (%).

Fig. 18 - Gráfico c_0 (å) x CO₃⁻² (%).

58
IV.3. CARACTERIZAÇÃO QUÍMICA

As características químicas encontradas para as rochas fosfáticas de Irecê basearam-se em determinações de diversos elementos maiores e traço por fluorescência de raios X, bem como a análise química pontual da francolita através de microssonda eletrônica, cujos resultados serão apresentados a seguir.

IV.3.1. Química Mineral

A média das análises de química mineral para as amostras de Irecê são apresentados na tabela 4. Os valores encontrados para o flúor não são confiáveis devido às limitações de detecção proporcionadas palas características cristaloquímicas do elemento. Para as interpretações, os valores de F e CO₃ (tab. 1) utilizados foram os obtidos por difratometria de raios X. Segundo Stormer et al. (1993) (apud Raudsepp, 1995) os íons de flúor são aparentemente difundidos para a superfície da amostra, sob a influência do campo elétrico produzido pelos feixes de elétrons primários. O CO₃ também não foi analisado, devido ao tipo de metalização (grafita) utilizada na preparação da lâmina bem como às limitações do aparelho em que foram feitas as análises. Além disto os efeitos de ligações (*bonding effects*) causam também alterações na forma e posição dos picos, e a análise por MSE de elementos leves (F, O, N, C, B e Be) é impedida por outros fatores como absorção da onda (*long-wave length - >*12 Å) e baixa energia da radiação X do mineral para o detector, ionização e interferências espectrais de linha de baixa ordem.

O quadro 3 mostra as fórmulas químicas encontradas para as amostras de Irecê, utilizando os dados de difratometria de raios X (DRX) e de microssonda eletrônica (MSE), onde o valor do CO_3^{-2} utilizado na fórmula gerada pelos dados da microssonda foi obtido por DRX. Os valores encontrados são similares, e as pequenas diferenças podem ter sido geradas pelos valores errôneos do flúor.

Os valores encontrados para o CaO e P_2O_5 são próximos aos valores da fluorapatita teórica (tab. 3), o que indica que, pelo menos nas amostras analisadas por microssonda eletrônica, estas sofreram modificações na composição em direção à composição da fluorapatita, ou seja, conversão da francolita em fluorapatita, pois o normal seria que os valores fossem o da francolita.

Amostra IL-62 (3,50)

MSE

 $(Ca_{9,946}Mg_{0,019}Na_{0,094}Mn_{0,001}Fe_{0,001}K_{0,002}Sr_{0,028})\ (PO_4)_{5,699}\ (CO_3)_{0,202}\ (F_{2,607}Cl_{0,006})_{1,000}$

DRX

 $Ca_{9,987}Mg_{0,004}Na_{0,009}(PO_4)_{5,955}(CO_3)_{0,042}(SO_4)_{0,002}F_{2,017}$

Amostra IL-48 (26,65)

MSE

 $(Ca_{9,901}Mg_{0,005}Na_{0,144}Mn_{0,001}Fe_{0,002}K_{0,002}Sr_{0,012}) (PO_4)_{5,772} (CO_3)_{0,122} (F_{2,662}Cl_{0,001})$

DRX

 $Ca_{9,968}Mg_{0,009}Na_{0,023}(PO_4)_{5,893}(CO_3)_{0,101}(SO_4)_{0,006}F_{2,041}$

Quadro 3 - Fórmula estrutural da apatita utilizando o CO_3^{-2} calculado por difratometria de raio X (DRX) e utilizando analises de Microssonda eletrônica (MSE).

	Análise Cristalográfica	Análise química mineral (*)														
AMOSTRA	%CO ₃ ⁻²	P2O5	MgO	CaO	MnO	FeO	SrO	Na2O	K2O	F	CI	SO ₂	Total	O=F	O=CI	TOTAL
IL-09 (16,95)	1,9160															
IL-40 (19,16)	1,8720															
IL-41 (10,92)	2,1010															
IL-48 (25,65)	0,8720	40,956	0,022	55,508	0,007	0,014	0,124	0,449	0,008	5,056	0,007	-	102,148	-2,128	-0,002	100,019
IL-49 (15,69)	3,5090	39,932	0,052	56,328	0,016	0,007	0,160	0,534	0,010	N.A.	N.A.	0,396	-	-	-	99,181
IL-53 (43,42)	0,3320															
IL-62 (3,50)	1,2070	40,343	0,077	55,628	0,006	0,008	0,286	0,294	0,006	4,939	0,022	-	101,608	-2,079	-0,005	99,523
IL-63 (18,80)	1,8220															
IL-66 (28,77)	1,4680															
IL-103 (10,70)	1,0680															

Tabela 4 - Parâmetros cristalográficos das apatitas e análise química pontual das amostras de Irecê/Ba. (*) Média de, pelo menos, 12 determinações em cada amostra. Valores fornecidos em pecentual (%).

IV.3.2. Química Total

As análises por fluorescência de raios X foram realizadas em cerca de 30 amostras da região de Irecê, além de amostras de Alhandra, Rocinha, Lagamar e de concentrados de Marrocos, Israel e Togo, realizadas para verificação e comparação com os dados de Irecê. Dentre as vinte e nove amostras analisadas, quinze foram provenientes de furos de sondagem realizados pela CBPM, nas proximidades das fazendas Três Irmãs - Rufino, seis amostras de concentrados (inclusive de outras localidades), e oito amostras de afloramentos. A figura 7 mostra a localização dos furos de sondagem selecionados para o estudo.

A preparação das amostras para as análises químicas consistiu na separação manual, sob lupa binocular, da apatita o mais pura possível. Para tanto, foram selecionadas amostras mais concentradas em apatita, ou seja, aqueles provenientes de locais onde ocorriam estruturas estromatolíticas muito ricas em fosfato, e que foram previamente analisadas pela CBPM para P_2O_5 .

Alguns elementos não foram analisados devido às dificuldades de separação da apatita pura, e, consequentemente, da obtenção de quantidade suficiente de material para a realização da análise. As amostras utilizadas para as análises químicas foram as mesmas utilizadas para a difratometria de raios X. A tabela 5 mostra os resultados de todas as amostras analisadas.

Fosforitos são rochas sedimentares enriquecidas em fósforo, com teores de P_2O_5 variando entre 10 a 15%, embora alguns autores considerem teores maiores (Bentor, 1980). O carbonato fluorapatita é o principal componente de fosforitos de origem marinha. A composição química dos fosforitos possui valores não muito variáveis, principalmente devido às condições específicas necessárias para a formação das mesmas. Isso fica evidenciando observando-se análises químicas de fosforitos marinhos de diversas localidades (tabela 6).

Amostra	P2O5	SiO2	A/2O3	Fe2O3	MgO	CaO	MnO	Na2O	K2O	S	F	P.F.	F/P205	Ca0/P205
					Em %									
IR-AL-02	38,6	2,1	0,66	0,62	0,62	52,5	<0,01	0,33	0,18	0,46	4,2	1,31	0,11	1,36
IR-AL-03	38,2	1,2	0,38	0,35	0,29	53,4	<0,01	0,47	0,03	0,51	4,2	2,25	0,11	1,40
IM-AS-01	38,4	1,25	0,955	0,22	0,15	53	<0,01	0,31	0,02	0,58	4,4	1,96	0,11	1,38
IR-AM-08	18,7	0,78	0,3	0,29	11	44,1	<0,01		0,04	0,076		24,57		2,36
IL-39 (7,89)	34,5	0,48	0,16	0,12	3,1	51,8	<0,01	0,38	0,05	0,34	3,8	7,3	0,11	1,50
IL-39 (4,85)	25,9	18	1,3	<0,1	1,2	41,8	<0,01		0,5			5,79		1,61
IL-77 (22,28)	31,5	0,35	0,13	0,1	3,6	51,35	<0,01		0,01	0,24		9,76		1,63
IL-39 (6,23)	27,4	1,4	0,43	0,13	6	48,2	<0,01	0,28	0,1	0,27		14,42		1,76
IL-39(6,36)	35,2	3,1	0,82	0,13	1	51,5	<0,01	0,17	0,3	0,36	4	3,68	0,11	1,46
IL-39(7,89)	36,8	0,38	0,15	<0,1	1,5	53,1	<0,01	0,24	0,07	0,33	4,2	3,83	0,11	1,44
IL-39(10,67)	34,2	0,65	0,21	0,13	2,9	51,3	<0,01	0,21	0,11	0,33	4	7,02	0,12	1,50
IL-49A(15,40)	36,4	0,45	<0,10	0,17	0,67	53,2	<0,01		0,04	0,68	4,3	3,79	0,12	1,46
IL-51(10,60)	33,1	2,6	0,58	0,12	2,8	50,5	<0,01	0,21	0,43	0,3	3,5	7,17	0,11	1,53
IL-77(18,53)	20	0,77	0,17	0,2	10,8	44,5	<0,01		0,01	0,19				2,23
IL-103(25,33)	35,7	2,9	0,16	0,24	0,66	52,3	<0,01	0,21	0,1	0,35	4,5	3,29	0,13	1,46
IL-108(27,89)	37,9	<0,10	<0,10	0,15	1,7	53,4	<0,01	0,22	<0,01	0,28	4,2	4,04	0,11	1,41
IL-53 (43,42)	24,20	0,75	2,10	<0,1	7,70	45,00	0,03	0,15	0,03	0,19	3,00	17,92	0,12	1,86
IL-66 (28,77)	31,00	1,00	1,20	<0,1	0,95	52,90	< 0,01	0,47	0,07	0,63	4,00	9,54	0,13	1,71
IL-103 (10,70)	28,40	1,90	3,00	<0,1	5,00	47,10	< 0,01	0,19	0,43	0,63	3,50	1,93	0,12	1,66
IR-AM-100	25,40	1,00	1,00	<0,1	6,90	46,40	< 0,01	0,16	0,20	0,24	3,10	16,78	0,12	1,83
Média	33,24	2,16	0,72	0,16	3,61	52,49	0,01	0,29	0,14	0,39	4,21	11,26	0,12	1,71
YH-568	37,60	1,00	0,47	0,12	0,21	53,90	< 0,01	0,11	0,05	0,12	-	2,88		1,43
YH-606	38,00	1,00	0,30	< 0,01	0,21	53,90	< 0,01	0,16	0,08	0,17	4,90	3,25	0,13	1,42
LG-2	37,4	2,5	0,6	0,34	0,17	53,2	<0,01	0,9	0,02		4,3	2,38	0,11	1,42
RO-AM	31,3	18,6	1,1	0,77	<0,10	43,7	<0,01		0,02			2,03		1,40
CONCENTRADOS														
No da Amostra	P2O5	SiO2	A/2O3	Fe2O3	MgO	CaO	MnO	Na2O	K2O	S	F	P.F.	F/P205	Ca0/P205
IR-AL-01	38,1	3,1	1,01	1,08	0,16	51,9	<0,01	0,2	0,13	0,27	3,9	1,38	0,10	1,36
RO-C	33,2	12,8	2,7	1,3	0,27	44,2	<0,01	0,11	0,5	0,026	2,3	1,89	0,07	1,33
CF-MA-01C	31,3	0,94	0,18	0,14	0,38	53,3	<0,01	0,74	0,04	1	4,3	8,5	0,14	1,70
CF-IS-01C	31,2	1,1	<0,10	<0,10	0,28	52,6	<0,01	0,37	0,02	1,6	4,2	8,43	0,13	1,69
CF-TG-01C	35,4	6,1	1	1,3	0,15	50,3	<0,01	0,17	0,02	0,26	2,6	3,16	0,07	1,42

Tab. 5 – Análises químicas por Fluorescência de raios-X para elementos maiores e traço dos fosforitos estudados. Amostras IL, IR e IM = Irecê/Lapão; YH = Alhandra; RO/LG = Rocinha / Lagamar; CF-MA = Marrocos; CF-IS = Israel; CF-TG = Togo.

Amostra	Sr	Ba	V	U	Cd	Cu	Со	Ni	Cr	Pb	Zn	As
Em ppm												
IR-AL-02	514	58	13	19	4	11	19	29	17	58	16	8
IR-AL-03	1091	94	<10	<15	4	9	16	29	17	36	14	2
IM-AS-01	830,5	108,5	<0,10	24	27,5	56	21	53	81	63,5	146,5	3,5
IR-AM-08	1269	117	16	26								7
IL-39 (7,89)	376	55	<10	22	5	10	18	31	52	82	27	6
IL-39 (4,85)					6	8	21	26	9	197	308	6
IL-77 (22,28)	372	33	<10	16								7
IL-39 (6,23)	348	56	11	19	5	12	19	25	19	110	88	6
IL-39(6,36)	446	38	13	19	7	8	22	32	11	202	311	5
IL-39(7,89)	397	45	14	18	4	6	14	24	15	121	121	6
IL-39(10,67)	432	637	<10	16	5	8	19	26	15	197	126	4
IL-49A(15,40)	1419	406	<10	27	6	9	22	28	11	239	588	3
IL-51(10,60)	423	103	10	16	4	7	18	24	11	68	54	4
IL-77(18,53)	269	57	10	16	4	5	15	25	17	47	24	5
IL-103(25,33)	719	81	<10	19	3	7	14	22	31	42	19	15
IL-108(27,89)	438	41	10	18	4	8	16	28	17	50	16	5
IL-53 (43,42)												
IL-66 (28,77)												
IL-103 (10,70)												
IR-AM-100												
Média	667,392857	137,821429	6,92857143	19,6428571	6,32142857	11,7142857	18,1428571	28,7142857	23,0714286	108,035714	132,75	6,60714286
YH-568												
YH-606												
LG-2					12	16	18	34	9	50	463	5
RO-AM												3
CONCENTRADOS												
No da Amostra	Sr	Ba	V	U	Cd	Cu	Со	Ni	Cr	Pb	Zn	As
IR-AL-01	436,5	71,5	32	22	4,5	16,5	22	30,5	31,5	69	22,5	11,5
RO-C	2488	186	20	16	nd	nd	nd	nd	nd	nd	nd	7
CF-MA-01C	987	81	65	131	4	21	22	46	35	50	71	17
CF-IS-01C	1647	219	63	136	20	61	18	44	91	53	222	8
CF-TG-01C	334	85	34	114	24	40	16	54	61	47	358	20

Tab. 5 – Continuação – elementos traço

	P ₂ O ₅	CaO	Na ₂ O	MgO	CO ₂	F (% peso)	Al ₂ O ₃	Fe ₂ O ₃	SiO ₂	K ₂ O	S _{total}	P.F.
Australia	25.3	32.7	0.14	0.08	0.60	2.1	5.2	7.4	21.3	0.54	0.03	5.7
EUA												
Michigan	12.6	16.6	0.04	0.11	0.32	1.1	1.6	2.8	58.3	0.46	0.06	3.5
Minnesota	15.5	19.95	0.04	0.05	0.24	2.25	0.9	1.3	56.2	0.28	0.20	2.3
Tennesse	31.6	42.2	0.65	0.03	0.81	2.9	2.1	0.48	19.2	0.02	0.04	4.0
Índia												
Rajasthan	33.0	51.0	0.03	0.23	5.8	2.8	0.23	0.40	6.6	0.03	0.01	8.9
Jhabua	27.6	36.8	0.23	0.26	0.71	2.95	0.35	0.24	30.4	0.07	0.01	3.2
Brasil	10.1	24.1	0.00	0.00	0.65	1.6	0.4	2.5	20 5	1.0	0.00	0.5
Rocinha	18.1	24.1	0.08	0.88	0.65	1.6	8.4	3.5	29.5	1.9	0.30	8.5
Lagamar	27.4	39.6 52.40	0.17	0.37	1.3	2.6	4.6	2.4	19.2	0.84	0.02	0.2
Ifece	33.24	52.49	0.29	5.01	1.02	4.21	0.72	0.10	2.10	0.14	0.39	11.20
AIrica Upper Volte	21.7	20.7	0.13	0.27	0.45	2.2	2.1	2.2	36.6	0.18	0.03	5.0
Vigéria (Parc W)	21.7	29.7	0.15	0.27	0.43	2.2	2.1	1.0	24.5	0.18	0.03	3.0
Nigeria (Faic W)	29.2	56.5	0.21	0.40	1.0	2.4	1.0	1.0	24.3	0.03	0.04	4.0
	0.0	7.0	01	NIO	MO	0 0	T 'O	D O			E/D ()	C 0/D
	SrO	ZnO	Ca	NIO	MnO	Cr_2O_3	T10 ₂	BaO	<i>α</i> ₀	с ₀	$\mathbf{F}/\mathbf{P}_2\mathbf{O}_5$	CaO/P_2
			0		(em ppm)				(21)	(11)		05
Australia	77	180	20	793	176	976	7600	320	9.375	6.889	0.084	1.29
EUA												
Michigan	180	120	50	3400	100	440	1400	340	9.372	6.883	0.087	1.32
Minnesota	560	135	50	3700	63	1200	650	360	9.384	6.889	0.145	1.29
Tennesse	160	250	40	1600	80	300	830	280	9.366	6.888	0.092	1.34
101110550	0	-00		1000	00	000	000	200	1000	0.000	0.00/2	110 1
Índia	Ū											
Raiasthan	353	100	35	400	352	37	100	460	9 372	6 891	0.084	1 55
Ihahua	565	125	35	1750	130	180	250	360	9 370	6 8 8 6	0.107	1.33
Bracil	505	125	55	1750	150	100	230	500	2.570	0.000	0.107	1.55
Rocinha	550	250	150	020	100	<30	330	370	0 371	6 800	0.088	1 33
Lagamar	110	230 <50	40	360	100	< 30	3600	180	9.371	6 802	0.088	1.55
Lagamar	0	< 50	40	217	470	40 50.6	3000	145.2	9.300	0.092	0.093	1.45
frece	719	131, Q	4,98	51,7	-	30,0	-	143,5	9.300	0.005	0,12	1,04
Africo	/1/	,										
Unner Volta	750	120	35	450	305	30	1800	500	0 355	6 800	0 101	1 37
Nigária (Dara	20 20	210	25	105	530	249	1550	520	9.555	6 000	0.101	1.37
W)	000	210	23	173	550	240	1550	550	9.303	0.000	0.082	1.31

Tab.6 - Dados químicos e cristalográficos de amostras do Precambriano (modificada de McClellan e Saavedra, 1986).

IV.3.2.1. Elementos maiores

A composição química média para a francolita, segundo McClellan (1980), é mostrada na tabela 3.

O teor médio de P_2O_5 encontrado nos fosforitos de Irecê foi de 33,4 %, variando de 18,7 % a 38,6 %. O valor médio para a razão F/P_2O_5 foi de 0,12. A razão F/P_2O_5 é um fator significativo, pois envolve dois componentes fundamentais do carbonato fluorapatita. Segundo Burnett (1977) a razão ideal para a fluorapatita é da ordem de 0,089, enquanto que para a francolita altamente substituída a razão ideal é 0,148 (McClellan e Kauwenbergh, 1990). A razão F/P_2O_5 para as rochas de Irecê são compatíveis com os valores encontrados para outros fosforitos Proterozóicos.

O conteúdo médio de flúor para as amostras analisadas é 4,21. Esse valor alto pode ser atribuído a erros analíticos, devido às limitações laboratoriais, não sendo portanto compatíveis com os valores encontrados para a francolita e fluorapatita teóricas (de acordo com Nriagu (1984) e Lucas (1980) - apud Nogueira (1993)).

Para os fosforitos de Irecê, os valores de CaO/P₂O₅ são, em média, 1,71, compatíveis com os valores estabelecidos por Lucas et al (1980) para a francolita, ou seja, acima de 1,50. Essa razões, quando são maiores que 1,31, indicam a substituição do PO_4^{-3} pelo CO_3^{-2} e/ou presença de calcita e dolomita (Gulbrandsen, 1970). Do ponto de vista comercial, pode-se dizer que os fosforitos de Irecê possuem reatividade regular a muito alta. A reatividade expressa o quanto a rocha reage durante o processo de acidificação para a produção de superfosfato simples. A reatividade implica numa maior ou menor aeração da rocha no processo de acidificação. Desta forma, quanto maior a relação CaO/P₂O₅, maior será o consumo de ácido na planta de fosfato. De maneira geral considera-se a reatividade muito alta, para valores superiores a 1.6; reatividade regular para valores entre 1.4 e 1.6 e reatividade muito baixa para valores inferiores a 1.4. Os fosfatos nacionais, em média, não ultrapassam valores de 1.5. Os fosfatos sedimentares de Marrocos e Israel possuem reatividade muito alta (tab. 5).

Os gráficos mostrados na figura 19 (A, B, C, D, E, F, G e H), evidenciam as relações do P₂O₅ com outros elementos maiores para as apatitas dos fosforitos de Irecê.

O flúor, CaO e o enxofre mostram correlações positivas com o P_2O_5 (A, B e C) enquanto que o magnésio mostra correlação negativa (D). Desta forma, os teores de F, CaO e S aumentam com o aumento do P_2O_5 , enquanto que o MgO diminui. O Na₂O mostra uma relação fracamente positiva com o P_2O_5 (E). O K₂O e o Al_2O_3 não mostram boa correlação com o fosfato (F e G), evidenciando, assim, o baixo grau de intemperismo a que as amostras foram submetidas. A figura 19 H mostra a correlação negativa do MgO com o CaO, evidenciando a entrada de magnésio no lugar do cálcio dentro da estrutura do carbonato fluorapatita, acompanhando também a substituição principal do CO_3^{-2} pelo PO_4^{-3} . Além de entrar na estrutura do carbonato fluorapatita substituindo o cálcio, o magnésio também se faz necessário à medida que ele permite que a estrutura seja fisicamente compensada devido às outras substituições que ocorrem no carbonato fluorapatita. Segundo

McClellan e Kauwenbergh (1990), o magnésio é necessário para admitir os altos níveis de substituição do CO_3^{-2} pelo PO_4^{-3} . Desta forma, o aumento do MgO com a diminuição do P_2O_5 nas amostras estudadas correspondem ao esperado em fosforitos marinhos.

Fig. 19 - Gráficos de dispersão mostrando a relação entre o P₂O₅ e outros elementos maiores das apatitas que ocorrem nos fosforitos da Região de Irecê- Lapão.

Fig. 19 - (continuação).

IV.3.2.2. Elementos-traço

Os fosforitos marinhos são capazes de concentrar elementos-traço na sua estrutura cristalina, e o enriquecimento das mesmas nesses elementos tem sido amplamente enfocado por diversos autores (Altschuler, 1980; Bentor, 1980 e Prévôt e Lucas, 1980). Segundo Tooms et al (1969) (apud Bentor, 1980) o padrão de distribuição dos elementos-traço é função da capacidade da estrutura da apatita de aceitar esses íons e da disponibilidade desses elementos no ambiente de formação da apatita.

As análises dos elementos-traço para o carbonato fluorapatita de Irecê não fogem aos padrões estabelecidos para os fosforitos marinhos de outras localidades. Como era de se esperar, as apatitas se mostraram enriquecidas em Sr, com valores médios de 608,1 ppm. O gráfico de correlação do Sr com o P_2O_5 (fig. 20 A) mostra uma correlação positiva razoável entre os dois elementos, indicando a associação do Sr com a apatita. Os valores altos de Sr indicam que a francolita guarda consigo suas características primárias . Normalmente o Sr é introduzido na estrutura do carbonato fluorapatita substituindo o Ca⁺², devido à semelhança de raio iônico dos dois elementos. Essa substituição do Ca pelo Sr se dá em função da substituição principal no carbonato fluorapatita do CO_3^{-2} pelo PO_4^{-3} . Além da facilidade de entrar na estrutura do carbonato fluorapatita, o enriquecimento do Sr é ainda facilitado devido à abundância do elemento na água do mar. Altschuler (1980) estabeleceu a concentração média de elementos-traço para fosforitos marinhos, considerando a média para vários tipos de fosforitos. Os valores de Sr encontrados para os fosforitos de Irecê são compatíveis (ou muito próximos) com o valor encontrado para o fosforito médio de Altschuler (1980).

Os valores de Ba encontrados para as amostras estudadas apresentam-se relativamente baixos, quando comparados com valores médios nos fosforitos (350 ppm). O bário não apresenta uma boa correlação com o P_2O_5 (fig. 20 B). Isso provavelmente se dá em função do seu raio iônico (bem maior do que o do cálcio), o que implica numa aceitação maior do Sr na estrutura do carbonato fluorapatita.

O cobre, cromo e vanádio são elementos de abundância normal nos fosforitos. O CrO_4^{-2} e o VO_4^{-3} entram na estrutura da apatita substituindo o PO_4^{-3} , compensando as discrepâncias dos raios iônicos dos elementos com outras substituições acopladas. As correlações desses elementos com o P_2O_5 são razoavelmente positivas, enfatizando a íntima relação dos mesmos em termos de química substitucional na estrutura da apatita (fig 20 C, D e E).

O Zn entra na estrutura da apatita substituindo cátions bivalentes como o Ca, juntamente com o Mn e o Fe. Ele é adsorvido em minerais de argila e óxidos de ferro e manganês. As apatitas marinhas normalmente são

enriquecidas em Zn, e os valores encontrados para as apatitas de Irecê são compatíveis com aqueles obtidos para o fosforito médio de Altschuler. Nenhum tipo de correlação foi observada entre o Zn e o P_2O_5 , nas amostras estudadas (fig. 20 F).

Os valores de Cd são baixos, considerando os valores encontrados para o fosforito médio. O Cd, juntamente com o Zn, são elementos abundantes nos fosforitos, e estão sempre juntos nas rochas mais comuns. A razão média Zn/Cd para as apatitas estudadas é de 21,04. A avaliação dos teores de Cd é muito importante pois ele, e o Pb, são elementos tóxicos perigosos que podem se acumular nos solos através da utilização freqüente de fertilizantes. O Pb apresenta valores relativamente altos, duas vezes mais alto que o fosforito médio. Tanto o Pb como o Cd mostram uma fraca correlação positiva com o P₂O₅ (fig. 20 G e I). Porém, como a rocha fosfática passa pelo processo de beneficiamento antes de se transformar em produto assimilável pelas plantas, teores de Cd, Zn e Pb altos nos fosforitos não implicam que estes vão ser totalmente liberados para o solo. Na amostra de concentrado de Irecê (IR-Al-01) observa-se que os valores de chumbo são diluídos com o processo de beneficiamento altos em Zn, Pb e Cd podem ser atribuídos à presença de mineralizações de sulfetos (esfalerita e galena), ricos em Cd, os quais podem ocorrer localmente associados, em pequena proporção, ao fosforito de Irecê.

O urânio ocorre freqüentemente em apatitas sedimentares. A sua presença em muitas apatitas pode ser explicada pela sua formação em um ambiente fortemente redutor. O urânio analisado para as apatitas de Irecê mostra uma correlação positiva baixa (fig. 20 H), sugerindo sua associação com o carbonato fluorapatita. Os valores de urânio são baixos comparados com os de Altschuler (1980), para o fosforito médio.

O arsênio faz parte de um grupo de elementos traço de abundância normal em fosforitos marinhos e, segundo Altschuler (1980), a fixação desse elemento em apatitas sedimentares e sulfetos parece estar relacionada à matéria orgânica associada aos mesmos, no ambiente de formação. As amostras de Irecê não mostram uma boa correlação do As com o P_2O_5 (fig. 20 J).

Os valores de Sr geralmente indicam o quanto o fosforito é primário, ou seja, ele reflete o grau de alteração a que a francolita foi submetida. Os valores altos indicam que a francolita foi preservada, refletindo, portanto, as condições ambientais na qual ela foi formada.

Fig. 20 - Gráficos de dispersão mostrando a relação entre o P_2O_5 (%) e os elementos traço das apatitas (ppm) que ocorrem nos fosforitos da Região de Irecê-Lapão.

Fig. 20 - (continuação).

Fig. 20 - (continuação).

Capítulo V DISCUSSÕES

V.1. Tipo de apatita

O estudo dos parâmetros cristalográficos da apatita de Irecê, bem como os dados químicos, permitiram a identificação das apatitas como sendo, predominantemente, do tipo carbonato fluorapatita, também conhecido como francolita, cuja fórmula química teórica, proposta por McClellan e Lehr (1969), é a seguinte:

Os parâmetros *a* e *c*, além de apontarem para a composição da francolita (são muito próximos dos valores encontrados para a francolita teórica) permitem o cálculo da fórmula química das mesmas. Os valores encontrados para o parâmetro a_0 nas amostras de Irecê caem na mesma faixa dos valores encontrados para os fosforitos de idade Proterozóica (ver fig. 15). Da mesma forma se dá o comportamento do CO_3^{-2} . As variações desses parâmetros cristalográficos são pequenas e, provavelmente, estão relacionadas a processos de alteração da francolita, bem como pequenas mudanças na composição, que não causaram grandes mudanças na estrutura cristalinas.

Esses fatores corroboram a idéia de que, mesmo quando submetidas à ação do intemperismo, as francolitas de Irecê não mudam significativamente a sua composição, já que a tendência normal das francolitas é de se aproximar da composição da fluorapatita, com a atuação dos processos intempéricos, pois tais processos provocam a perda do CO_3^{-2} da estrutura cristalina. Na tabela 1 observa-se que as amostras de minério secundário e algumas amostras mais intemperizadas apresentam teores mais baixos de CO_3^{-2} (amostras IM-AS-1, IR-AL-1, IR-AL-2, IR-AL-3, IL-49A, IL-51 e IL-53).

V.2. Química substitucional

A composição química da francolita é representada por uma série de substituições isomórficas, apresentadas por McClellan (1980) e McConnell (1973). Eles mostraram que a mineralogia de francolitas sedimentares é caracterizada por uma série de substituições sistemáticas de ânions e cátions. A substituição mais significativa nas francolitas é a do CO_3^{-2} pelo PO_4^{-3} . Junto com a substituição principal, uma série de cátions e ânions entram na estrutura cristalina da apatita (como, por exemplo, o Na⁺, Mg⁺², F⁻ e SO₄⁻²).

Segundo McClellan e Kauwenbergh (1990), a substituição fundamental de 1 mol do CO_3^{-2} por 1 mol de PO₄⁻³ provoca várias questões: Como a estrutura mantém a eletroneutralidade? Qual é o efeito da substituição do grupo planar do CO_3^{-2} pelo grupo tetraedrico do PO₄⁻³? Bornemann-Starinkevitch (1938) propôs a substituição do $(CO_3 + F)^{-3}$ ou $(CO_3 + OH)^{-3}$, como um grupo tetraedrico distorcido, pelo PO₄⁻³ como um método possível de preservar a eletroneutralidade da estrutura. Smith e Lehr (1966), McClellan e Lehr (1969) e McClellan (1980) chegaram à conclusão de que estas hipóteses estavam corretas. A associação do F⁻¹ com o CO_3^{-2} em um determinado local de substituição fornece uma explicação lógica para o excesso de flúor que ocorre em muitas francolitas naturais. Esse excesso de flúor nas francolitas pode ser 30% maior do que o flúor que ocorre nas fluorapatitas. Desta forma, a substituição do $(CO_3 + F)^{-3}$ por PO₄⁻³ pode tanto manter a eletroneutralidade na estrutura. Os teores de flúor obtidos nas francolitas de Irecê por análise de fluorescência de raios-X, embora devam ser tomados com reserva devido à possibilidade de erros analíticos, são também altos, com valores médios de 4,21. Estes valores são normais em carbonato-fluorapatitas onde atuaram processos intempéricos. O gráfico da figura 16 (pag.49) evidencia o aumento do teor de flúor com o aumento da relação CO_3/PO_4 .

Outra substituição sistemática nas francolitas é a do Ca^{+2} por Na^{+1} e Mg^{+2} . Lehr et al. (1968) e McClellan e Lehr (1969) estabeleceram que essas substituições de cátions estão diretamente relacionadas com a substituição dos ânions, ou seja, a substituição do CO_3^{-2} pelo PO_4^{-3} . Quando cerca de 25% do total de CO_3^{-2} permitido nas francolitas é substituído pelo PO_4^{-3} , então, em torno de 6% de Ca^{+2} é substituído por Na^{+1} e Mg^{+2} . Isso significa um aumento dos teores de Na e Mg quanto mais substituída for a francolita. A ocorrência de substituições sistemáticas de magnésio é um problema na francolita. Ele não é necessário como parte de uma substituição acoplada porque tem a mesma valência que o Ca^{+2} . No entanto, parece que ele é necessário para permitir que a estrutura seja fisicamente compensada devido às outras substituições. Como o raio iônico do Mg^{+2} é muito menor que o do Ca^{+2} (em torno de 40% menor), ele é necessário para admitir os altos níveis de substituição do CO_3^{-2} pelo PO_4^{-3} (McClellan e Kauwenbergh, 1990). O gráfico H da figura 19 mostra uma correlação negativa do CaO com o MgO, denotando a perda de cálcio e ganho simultâneo de magnésio, da mesma forma ocorrendo com o sódio.

Outra substituição de ânions importante é a do SO_4^{-2} pelo PO_4^{-3} . Vários autores registraram em algumas francolitas altos conteúdos de sulfatos associados (McClellan e Kauwenbergh, 1990). Gulbrandsen (1966) registrou esses teores nas francolitas de Phosphoria Formation (EUA), onde propôs uma substituição acoplada para preservar a eletroneutralidade da estrutura, ou seja, a substituição do Na⁻¹ ou REE⁺³ e SO_4^{-2} por Ca⁺² e PO_4^{-3} .

Desta forma, os dados obtidos para as amostras de Irecê são compatíveis com o esperado, confirmando sua composição próxima a do carbonato-fluorapatita. As correlações positivas entre o P_2O_5 e os outros elementos indicam que esses elementos acompanham a substituição principal, no carbonato fluorapatita, do CO_3^{-2} pelo PO_4^{-3} .

V.3. Relações com o intemperismo

Como pôde-se observar, uma das primeiras modificações verificadas, no carbonato fluorapatita, com a atuação de processos intempéricos, é a perda do CO_3^{-2} da estrutura, ou seja, descarbonatação. Paralelamente, há um aumento nos valores do parâmetro *a*. No gráfico da figura 15, observa-se um aumento nos valores do parâmetro *a* com o aumento da idade do depósito.

Têm sido registradas apatitas lixiviadas com teores de CO₂ entre 1,2 % e 4%, e parâmetro *a* maiores que 9,350 Å; Francolitas contém normalmente cerca de 4,5% a 6% de CO₂ (Lucas et al. 1980) e *a* menor do que 9,353 Å (Flicoteaux e Lucas, 1984 - apud Nogueira (1993)). A perda do CO_3^{-2} é acompanhada pela lixiviação de outros elementos. Simultaneamente, o teor relativo de flúor é aumentado em relação ao do íon carbonato.

Isso tudo indica que a composição da francolita desenvolve progressivamente características de fluorapatita. A transformação da francolita em fluorapatita ocorre até enquanto as fases carbonáticas estiverem presentes. Quando todo o carbonato é dissolvido, e consequentemente o ambiente se torna ácido, é que a apatita começa a ser lixiviada também. Isso geralmente ocorre em fosforitos que são altamente intemperizados. Após estes processos é que se dá a formação de fosfatos secundários (aluminosos).

Os valores altos de Sr das francolitas de Irecê indicam que as mesmas preservaram suas características primárias, mesmo sendo submetidas a algum intemperismo. Isto confirma que não houve mudanças significativas, a nível de estrutura, com a atuação do intemperismo, mesmo nas amostras mais alteradas

V.4. Processos petrogenéticos e ambientes de formação

As análises petrográficas feitas nos fosforitos de Irecê permitiram a definição da seguinte ordem de eventos: Sedimentação da lama carbonática; precipitação da apatita e transformação, por substituição, da micrita em apatita; cimentação calcítica; dolomitização; e venulação calcítica. As observações realizadas corroboram, portanto, a evolução diagenética proposta por Misi (1992) e Misi e Kyle (1994a), com base em estudos petrográficos, catodoluminescência e determinações isotópicas.

Dentre os vários modelos propostos para a formação do fosforito, dois deles parecem ser mais coerentes com o depósito fosfático da região de Irecê: o de precipitação química direta e o de substituição de material carbonático.

Os altos teores de magnésio permitem afirmar que o ambiente original de formação da rocha fosfática era rico em calcita de alto magnésio (Sisodia e Chauhan, 1990). O estudo petrográfico realizado evidencia a íntima associação das apatitas de Irecê com estruturas estromatolíticas de origem orgânica. A precipitação química da apatita poderia estar relacionada à ação de bactérias, que atuaram como agentes na decomposição da matéria orgânica, e que, através da sua atividade, produziram as condições químicas necessárias para a precipitação da apatita. A decomposição bacteriana da matéria orgânica originaria, então, diversos compostos fosfáticos, que seriam liberados em seguida para a água do mar.

Martens e Harris (1970) postularam que altos níveis de magnésio em solução na água do mar inibem a precipitação da apatita. O efeito inibidor do magnésio, entretanto, não ocorre na bacia de Irecê, visto que, como mostrado pelos dados petrográficos, apesar da dolomitização ser precoce na evolução diagenética, ela é posterior a fosfogênese. Lucas e Prevôt (1981, 1984) mostraram a importância da atuação dos microorganismos na formação da apatita, e que na presença destes, o efeito inibidor do magnésio cessa. A observação de que a dolomitização principal que afetou os sedimentos na bacia de Irecê é posterior à fosfatização corrobora esta hipótese.

Os dados isotópicos de C e O (δ^{18} O = -1.5‰ a -9.5 ‰ (PDB) ; δ^{13} C -15‰ a +9.5‰ (PDB)), obtidos em carbonatos e francolitas , e de S (δ^{34} S_{sulfato} = +25.2‰ a 31.4‰, δ^{34} S_{sulfeto} = +20.2‰ a +22.6‰), obtidos em sulfetos e sulfatos, registrados por Misi e Kyle (1994a), complementam as informações obtidas através dos dados petrográficos, químicos e cristalográficos. Esses dados indicam a existência de um ambiente anóxico, provavelmente devido à ação anaeróbica dos microrganismos associados aos tapetes e colunas de microorganismos que formaram os estromatolitos. Além disso, a depleção observada de δ^{13} C, de acordo com McArthur (1980), sugere que a apatita foi formada pela substituição de minerais carbonáticos.

Desta forma, pode-se concluir que ambos os mecanismos contribuíram para a formação do fosforito na Bacia de Irecê. A ação bacteriana seria responsável pelo enriquecimento de fosfato no ambiente marinho, seguido da formação do carbonato fluorapatita tanto por precipitação química direta como por substituição de minerais carbonáticos, mais provavelmente calcita de alto magnésio.

V.5. Comparação com outros depósitos

As mineralizações de fosfato da região de Irecê são muito similares aos outros depósitos Proterozóicos que ocorrem em ambientes sedimentares no mundo.

Os principais depósitos Proterozóicos e Cambrianos foram descobertos nas décadas de 70-80, inicialmente no Kazaquistão, Polônia, Coréia e China. Logo após, outros importantes depósitos foram descobertos na Mongólia, Austrália, Índia, Brasil e na África, além de outros depósitos menores na Escandinávia, Estados Unidos (centro-norte), França, Espanha, entre outros. A maioria dessas descobertas se deram ao longo de mapeamento Regional e exploração mineral direcionada a depósitos de metais-base, como é o caso do depósito de Irecê.

A fosfogênese Proterozóica é um fenômeno de âmbito global, que foi demonstrado por vários autores (Cook e McElhinny (1979); Bentor (1980) e Sheldon (1981)). Cook e McElhinny (1979) relacionaram os episódios fosfogenéticos com outros episódios globais importantes como glaciação, deposição de evaporitos, formações ferríferas e atividade orogenética.

Depósitos muito semelhantes aos de Irecê foram descobertos na Índia em 1967, pelo Geological Survey of India (Banerjee et al. 1980). Os fosforitos da Índia também estão associados a estruturas estromatolíticas

colunares e laminares intercalados com dolomicritas. Os depósitos possuem em média 15 a 30 % de P_2O_5 . Os fosforitos são do tipo estromatolítico e maciço, associados principalmente a calcários dolomíticos. Além dos fosforitos associados às estruturas estromatolíticas encaixadas em carbonatos, ocorrem também estromatolitos associados às camadas mais silicosas.

No Brasil, depósitos fosfáticos semelhantes aos de Irecê se localizam na região de Patos de Minas - MG, que são os depósitos de Rocinha e Lagamar. Estes se localizam nos sedimentos do Grupo Bambuí (Formação Vazante). Os depósitos de Rocinha e Lagamar consistem em lentes de fosforitos e folhelhos fosfáticos alongados na direção N-NE. Duas principais fácies fosforíticas podem ser distinguidas, uma onde o fosforito ocorre maciço, de coloração cinza a ocre, intercalado com finas bandas de folhelhos fosfáticos, e outra dominantemente argilosa, composta por laminações finas (milimétricas a centimétricas), dentro de folhelhos esverdeados, de coloração amarela-ocre a acinzentada. Os teores de P_2O_5 no minério primário de Rocinha variam de 11-13%, enquanto que em Lagamar os teores alcançam até 38% de P_2O_5 , (dados do DNPM, 1985).

Com relação aos parâmetros cristalográficos, o fosforito de Rocinha possui valores de CO_3^{-2} menores que os de Irecê (0,4931%). Esses baixos valores parecem estar relacionados ao metamorfismo que afetou a Faixa Brasília (Da Rocha Araújo, 1994). A figura 16 mostra o *trend* formado pelos fosforitos de Irecê e Rocinha (Neoproterozóico), e Alhandra (Cretáceo), onde confirma-se a diminuição no % CO_3^{-2} , e conseqüente aumento de a_0 , com o aumento do tempo geológico, devido a atuação de processos intempéricos. Este *trend* pode ser visto também na figura 15, para fosforitos de diversas localidades do mundo.

A tabela 6 mostra uma comparação para os principais depósitos sedimentares de fosfato de idade Precambriana do mundo. Nas linhas em destaque, os parâmetros químicos e cristalográficos para os três depósitos de idade proterozóica do Brasil. É notório os altos teores de SiO₂ nos depósitos de Rocinha e Lagamar e, em contrapartida, os altos teores de CaO e MgO no fosforito de Irecê. Estas diferenças podem estar relacionadas às associações mineralógicas de cada depósito.

V.5. Grau de reatividade

81

Os valores de reatividade de uma rocha fosfática são expressos através das relações CaO/P₂O₅. Eles são muito utilizados na Indústria de fertilizantes, pois esta relação tem implicação direta no processo de beneficiamento do minério fosfático. Quanto maior a reatividade da rocha, mais rápida é a transformação em material solúvel, através do processo de acidificação. As rochas de Irecê possuem, em média, reatividade regular a muito alta (1,71), que são valores mais altos do que a média dos fosfatos nacionais (1,5), e bem próximas dos valores das rochas de Marrocos e Israel (1,70 e 1,69), consideradas dentre as melhores rochas fosfáticas de origem sedimentar do mundo. O conjunto das amostras analisadas é proveniente tanto do minério não intemperizado como do minério intemperizado. Os valores da relação CaO/P₂O₅ obtidos para o concentrado de Irecê (IR-AL-01, tab. 5), obtido através do beneficiamento apenas do minério intemperizado, mostram-se mais baixos (da ordem de 1,36).

Capítulo VI CONCLUSÕES

Os trabalhos desenvolvidos permitiram um melhor conhecimento dos parâmetros petrográficos, químicos e cristalográficos do fosforito de Irecê. Os resultados têm implicação direta para a industria de fertilizantes e para o conhecimento da fosfogênese e do ambiente de formação das concentrações, necessários para a exploração e prospecção de novos depósitos.

Os estudos petrográficos evidenciaram a natureza cripto a microcristalina do carbonato-fluorapatita bem como o seu intercrescimento com cimento calcítico e dolomítico. Evidenciaram também o caráter precoce da fosfogênese, através do truncamento da dolomita na massa fosfática. A associação das apatitas com estruturas estromatolíticas de origem orgânica indica que o ambiente de formação do carbonato-fluorapatita era anóxico, devido a ação bacteriana nessas colunas estromatolíticas, onde as bactérias seriam responsáveis tanto pelo enriquecimento de fosfato no ambiente marinho quanto pela formação do carbonato-fluorapatita por precipitação química e substituição.

Os parâmetros cristalográficos da apatita de Irecê caracterizam as mesmas como sendo do tipo carbonato-fluorapatita, conhecida também como francolita. O conteúdo de CO_3^{-2} das francolitas são baixos e variáveis (0,2852 a 1,8050), com alguns valores anômalos. Os valores obtidos tanto do parâmetro *a* quanto de CO_3^{-2} das apatitas, indicam que elas foram afetadas por substituições a nível de estrutura cristalina, que resultaram na formação do carbonato fluorapatita. Além disso, indicam também que as mesmas perderam CO_3^{-2} durante os processos de diagênese e intemperismo. Os valores encontrados são compatíveis com os de outras francolitas do Proterozóico, como as dos depósitos da Índia. O valor anomalamente alto de CO_3^{-2} obtido para a amostra IL-49 (15,69) de Irecê (3,5090% CO_3^{-2}), indica que a amostra tem um baixo grau de alteração, com características mais próximas daquela que tinha na época da sua formação. Isto é confirmado pelo alto valor de Sr desta amostra (1419 ppm). Os valores encontrados para as apatitas estudadas permitem a distinção entre os fosforitos de Alhandra (Cretácicas), com alto % de CO_3^{-2} (média de 3,65 %), as de Irecê, com valores moderados (média de 1,39%) e as de Rocinha, com valores muito mais baixos (0,49%), sendo os dois últimos valores relacionadas ao metamorfismo que afetou a Faixa Brasília.

Os dados químicos obtidos a partir das amostras estudadas predominantemente constituídas por minério não intemperizado, mostram-se coerentes com a química substitucional da francolita, modernamente demonstrada por diversos pesquisadores. Deve-se aqui destacar alguns aspectos de importância para a indústria de fertilizantes e para a interpretação da fosfogênese:

- O grau de reatividade medido pela relação CaO/ P_2O_5 (da ordem de 1,71), mostra-se bem próximo dos valores obtidos para os concentrados de rocha fosfática de Marrocos e Israel, considerados dentre as melhores rochas fosfáticas do mercado mundial.

- Os valores de urânio no fosforito de Irecê são baixos e não mostram correlações positivas com o P_2O_5 nas amostras analisadas. Os valores são quase 7 vezes mais baixos que os obtidos para os concentrados de Marrocos, Israel e Togo, conferindo-lhe uma melhor qualidade devido à não existência de contaminantes radioativos, tão comuns em associação com apatitas marinhas. Os valores de Pb, também contaminante do solo e impróprio para o consumo humano, podem ser localmente elevados, devido à presença eventual de sulfetos na zona fosfática. No entanto, após o beneficiamento, observa-se que o concentrado obtido mostra valores da ordem de 60 ppm, compatíveis com os melhores concentrados mundiais.

 - A correlação positiva do P₂O₅ com o S e negativa com o MgO, corroboram as interpretações anteriores sobre o ambiente anóxico de formação dos fosforitos, bem como sobre sua formação precoce, anterior à dolomitização, demonstrada através da petrografia.

Do ponto de vista metodológico, o estudo realizado permitiu demonstrar a validade do método do "par de picos" para a determinação da composição química das apatitas sedimentares, considerando o elevado grau de intercrescimento das amostras estudadas com calcita e com dolomita. A comparação entre as fórmulas estruturais obtidas a partir de determinações da química mineral por microssonda eletrônica e por difratometria de raios X (quadro 3), mostra um razoável grau de aproximação entre as duas fórmulas obtidas. O método difratométrico é muito mais simples, mais barato e mais rápido, podendo por isso ser usado pela indústria de fertilizantes, com o objetivo de conhecer melhor a rocha fosfática e os seus concentrados. O uso da metodologia torna-se ainda mais prático a partir da utilização do *software* CarFap, desenvolvido durante a realização da presente pesquisa.

Capítulo VII REFERÊNCIAS BIBLIOGRÁFICAS

- ALTSCHULER, Z.S. 1980. The Geochemistry of trace elements in marine phosphorites: part 1. Caracteristic abondances and enrichment. *Soc. Econ. Paleontologists, Spec. Pub.*, **29:** 19-30.
- ALTSCHULER, Z.S.; CISNEY, E.A. e BARLOW, I.H. 1952. X-ray of the nature of carbonate apatite. Geological Society of America Bulletin, 63, 1230-1231.
- BANERJEE, D.M.; BASU, P.C. e SRIVASTAVA, N. 1980. Petrology, mineralogy, geochemistry and origin of the Precambrian Aravalian phosphorite deposits of Udaipur and Jhabua, India. Economic geology, 75: 1181-1189.
- BENTOR, Y.K. 1980. Phosphorites the unsolved problems. In: Y. K. BENTOR (ed.). Marine Phosphorites. Geochemistry, Occurrence, Genesis. Society of Economic Paleontologists and Mineralogists, Special Publication. 29: 3-18.
- BLISSKOVSKIY, V.Z. 1969. Molybdenium, chromium and vanadium in phosphorites. Geochemistry Inter., 9: 878-887.
- BONFIM, L.L.C.; ROCHA, A.J.D.; MORAES FILHO, J.C.R.; GUIMARÃES, J.T.; TESCH, N.A.; MOTTA, A.C.; SOUZA, G.V.V. e BARRAL, S.M.Q. 1985. Projeto Bacia de Irecê, SME/SGM/CPRM, vol. 3 (Relatório final).

- BORNEMAN-STARINKEVITCH, I. e BELOV, N. 1938. On some isomorphic substitutions in apatite. Comptes Rendus (Doklady) de l'Académie des Sciences de l'URSS, XIX, 253-255.
- BRITO NEVES, B.B. de, 1967. Geologia das folhas de Upamirim e Morro do Chapéu. CONESP; Relatório no 17, 53 p.
- BURNETT, W.C. 1977. Geochemistry and origin of phosphorite deposits from Peru and Chile: G.S.A. Bull.,v.88, p.813-823.
- CHEMALE Jr., F.; ALKMIM, F.F. e ENDO, I. 1991. Late Proterozoic tectonism in the interior of the São Francisco craton, Departamento de Geologia, Univ. Federal de Ouro Preto, 24p. (Relatório inédito).
- COMPTON, J.S. 1989. Sediment composition and precipitation of dolomite and pyrite in the Neogene Monterey and Sisquoe Formations, Santa Maria Basin Area, California In: Schulh,V. and Baker, P.A., eds., Sedimentology and Geochemistry of Dolostones: SEPM Special Publication, 43: 53-64.
- COOK, P.J. e McELHINNY, M.W. 1979. A re-evaluation of the spatial and temporal distribution of sedimentary phosphate deposits in the light of plate tectonics. Economic Geology.74: 315-330.
- DA ROCHA ARAÚJO, P.R. 1992. Phosphorites of Rocinha Mine Patos de Minas (Minas Gerais, Brazil); Genesis and evolution of a Middle Proterozoic deposit tectonized by the Brasiliano Orogeny. Economic Geology. 87 : 332-351.

- DA ROCHA ARAÚJO, P.R. 1994. Les phosphotites d'age Proterozoique moyen de Rocinha (Minas Gerais -Bresil). Genèse et évolution d'un gisement de phosphate tectonisé et metarmophisé au Brésilien (≅ 600 Ma). Aix Marseille. 232p. Thèse Doct., Univ. de Droit, D'Economie et Des Sciences D'Aix-Marseille.
- DARDENNE, M.A. 1978b. Síntese sobre a estratigrafia do Grupo Bambuí no Brasil central. In: Congresso Bras. Geol., 30, Recife. Anais. Recife, SBG, Vol. 2, p. 597-610.
- DNPM (Departamento Nacional de Produção Mineral) 1975. Fosfatos Lagamar. Relatório de Pesquisa n⁰⁸ 807795, 807753, 805072 e 805073. DNPM - Brasília.
- DOMINGUEZ, J.M.L. 1993. As coberturas do Cráton do São Francisco: uma abordagem do ponto de vista da análise de bacias. In: Dominguez, J. M. L.& Misi, A., eds, O Craton do São Francisco, SBG/BA-GM/CNPq, Salvador. P. 137-159.
- FERRARI, V.C. 1994. Estudo mineralógico e geoquímico dos minerais fosfatados de Irecê- Ba. São Paulo. 70 p. (Dissertação de Mestrado), Universidade de São Paulo
- FLICOTEAUX, R. e LUCAS, J., 1984. Weathering of phosphate minerals. In: NRIAGU, J.O. e MOORE, P.B. (Edit's): Phosphate Minerals, Springer-Verlag, Berlin. p. 292-317.
- FOLK, R.L. e PITTMAN, J.S. 1971. Lenght-slow chalcedony: a new testament for vanished evaporites. Journal of Sedimentary Petrology, 41: 1045-1058.

- GUIMARÃES, J.T. 1996. A Formação Bebedouro no Estado da Bahia: Faciologia, estratigrafia e ambientes de sedimentação. Salvador. 155 p. (Dissertação de Mestrado). Instituto de Geociências da Universidade Federal da Bahia.
- GULBRANDSEN, R.A. 1966. Chemical composition of phosphorites of the Phosphoria Formation. Geochim. Cosmichim. Acta. 30: 769-778.
- GULBRANDSEN, R.A. 1970. Relation of carbon dioxide content of apatite of the Phosphoria Formation to regional facies. U.S. Geological Survey. Professional Paper, 700-B, 9-13.
- HOWARD, P.F. 1979. Phosphate. Economic Geology. 74: 192-194.
- HOWARD, P.F. e HOUGH, M.J. 1979. On the geochemistry and origin of the D Tree, Wonarah and Sherrin Creek phosphate deposits of the Georgina Basin, Northern Australia. Economic geology, 74: 260-284.
- KLEIN, C. e HURLBUT Jr., C.S., 1993. Manual of mineralogy. 21 st. ed., after James D. Dana. Williams and sons inc. 432 p.
- LEHR, J.R.; McCLELLAN, G.H.; SMITH, J.P. e FRASIER. A.W. 1968. Characterization of apatites in commercial phosphate rocks. In: Colloque International sur les Phosphate Mineraux Solides, Tolulouse 1967, 2, 29-44, Masson, Paris.
- LONGMAN, M.W. 1980. Carbonate diagenetic textures from nearsurface diagenètic environments. Am. Assoc. Petrol. Geologists. 64: 461-485.

- LUCAS, J. e PRÉVÔT, L. 1981. Synthèse d'apatite à partir de matière organique phosphoríe (ARN) et calcite par voie bactérienne. Académie des Sciences (Paris), Comptes Rendus, séries II, 292: 1203-1208.
- LUCAS, J. e PRÉVÔT, L. 1984. Synthèse de l'apatite par voie bactérienne a partir de matière organique phosphorée et de divers-carbonates de calcium dans des eaux douce et manne naturelles: Chemical Geology. 42: 101-118.
- LUCAS, J.; FLICOTEAUX, R.; NATHAN, Y.; PRÉVÔT, L. e SHAHAR,Y. 1980. Different aspects of phosphorite weathering. In: SEPM Special Publication, Tulsa, n⁰ 29: 41-51.
- MARTENS, C.S. e HARRISS, R.C. 1969. Inhibition of apatite precipitation in the marine environment by magnesium ions: Geochimica et Cosmochimica Acta, 34: 612-615.
- MASCARENHAS, J.F.M.; PEDREIRA, A.J.; MISI, A.; MOTTA, A.C. e SÁ, J.H.S. 1984. Provincia São Francisco, in Almeida, de F.F.M., and Hasui, Y., eds., O Precambriano do Brasil: São Paulo, Ed. Edgard Blücher, 46-122.
- McCLELLAN, G.H. 1980. Mineralogy of carbonate fluorapatites. Journal of the Geological Society, London, 137: 675-681.
- McCLELLAN, G.H. e LEHR, J.R. 1969. Cristal chemical investigation of natural apatites. American Mineralogist, 54: 1374-1391.

- McCLELLAN, G.H. e SAAVEDRA, F.N. 1986. Proterozoic-Cambrian phosphorites specialist studies: chemical and mineral characteristics of some Cambrian and Precambrian phosphorites. In: Cook, P.J.& Shergold, J. H. (eds.) Phosphate deposits of the world, 1 : Proterozoic and Cambrian phosphorites. Cambridge University Press, Cambridge, 244-267.
- McCLELLAN, G.H. e VAN KAUWENBERGH, S.J. 1990. Mineralogy of sedimentary apatites. In :NOTHOLT, A. J. G. e JARVIS, I. (eds.) Phosphorite Research and Development. Geological Society, London, Special Publication, 51: 23-31.

McCONNELL, D. 1973. Apatite. Springer, Wien-New York, 103 p.

MEHMEL, M. 1930. The structure of apatite. Z Kristallogr. Mineral. 75: 323-331.

- MISI, A. 1993. A sedimentação carbonática do Proterozóico Superior no Cráton do São francisco: Evolução diagenética e estratigrafia isotópica. In: SIMPÓSIO SOBRE O CRÁTON DO SÃO FRANCISCO, 2, Salvador, 1993. Anais... Salvador, SBG/SGM, p. 192-194.
- MISI, A. e KYLE, R. 1994b. Positive δ13C excursions in the Upper Proterozoic of the Una Group, Brazil, and the genesis of phosphorite deposits: a global phenomenon? In: 14th International Sedimentological Congress, Recife, PE, Brazil, Abstracts Volume, pp. G55-G56.
- MISI, A. e KYLE, R., 1994a. Upper Proterozoic carbonate stratigraphy, diagenesis and stromatolitic Phosphorite Formation, Irecê Basin, Bahia, Brazil. Journal of Sedimentary Research, A64(2): 299-310.

- MISI, A. e MONTEIRO, T.P.R. 1990. Ocorrência de pirita pseudomórfica de gipsita e de gipsita em mineralizações de sulfetos do Grupo Una, Proterozóico Superior, Bahia. In: CONGRESSO BRASILEIRO DE GEOLOGIA, Natal, 1990. Boletim de Resumos...Natal. SBG, p. 228.
- MISI, A. e SILVA, M.G. 1996. Chapada Diamantina Oriental Bahia: geologia e depósitos. Série Roteiros Geológicos SGM / Salvador. 194 p.
- MISI, A., 1979. 0 Grupo Bambuí no Estado da Bahia. In: INDA, H.V., ed., Geologia e Recursos Minerais do Estado da Bahia, Textos Básicos, SME/CPM, Salvador, 1: 120-154.
- MISI, A., 1992. Geologia e gênese da fosforita de Irecê. Rev. Bras. Geoc., 22 (4): 399-406.
- MISI, A.; MONTEIRO, T.P.R.; SANCHES, A. L. e CRUZ, M. J. M. da, 1996. A fosforita Proterozóica do Grupo Una, Bacia de Irecê (Bahia): Caracterização química e cristalográfica e estudo comparativo com a fosforita de Rocinha (Grupo Bambuí, Minas Gerais) e de Alhandra (Formação Gramame, Paraíba). Relatório técnico do Projeto Caracterização de Minérios e Rejeitos de Minas Brasileiras FINEP/DNPM. 12 p.
- MISI, A.; MONTEIRO, T.P.R. e SANCHES, A.L. 1994. Caracterização química e cristalográfica da fosforita de Irecê, Proterozóico Superior (Bahia). In: CONGRESSO BRASILEIRO DE GEOLOGIA, 38, Balneário de Camboriú, 1994. Boletim de Resumos Expandidos... Balneário de Camboriú, SBG, p. 22-23.

MONTEIRO, M.D. 1989. Projeto Irecê-Lapão, 2a etapa, reprogramação. SME/CBPM, 2 vol. (Relatório final).

- MONTEIRO, M.D.; SILVA, A.B.; CARVALHO, M.P.; FRÓES, R.J.B. e SOUZA, S.L. 1987. Projeto Irecê-Lapão, CBPM, Salvador, 1 v. (Relatório inédito).
- MONTES, A.S.L. 1977. O Contexto Estratigráfico e Sedimentológico da Formação Bebedouro na Bahia. Um Possível Portador de Diamantes. Brasília. (Dissertação de Mestrado). Instituto de Geociências da Universidade de Brasília.
- NARAY-SZABÓ, S. 1930. The structure of apatite. Z Kristallogr. Mineral. 75: 387-398.
- NOGUEIRA, G.M.S. 1993. Enquadramento litoestratigráfico, sedimentologia e evolução geoquímica do Depósito Fosfático de Lagamar, MG - Formação Vazante - Proterozóico Médio. Brasília.134 p. (Dissertação de Mestrado n0 89), Universidade de Brasília.
- NRIAGU, J.O. 1984. Phosphate minerals: their properties and general modes os ocurrence. In: NRIAGU, J.O. e MOORE, P.B. (Edit's): Phosphate Minerals, Springer-Verlag, Berlin, p. 1-5.
- PRATT, B.R. e JAMES, N.P. 1986. The St. George Group (Lower Ordovician) of western Newfoundland: tidal flat island model for carbonate sedimentation in shallow epeinc seas: Sedimentology. 33: 313-343.
- PRÉVÔT, L. e LUCAS, J. 1980. Behavior of some trace elements in phosphatic sedimentary formation. In: SEMP Special Publication, Tulsa, n0 29, p. 31-39.
- REGNIER, P.; LASAGA, A.C.; BERNER, R.A.; HAN, O.H. e ZILM, K.W. 1994. Mechanism of CO3-2 substitution in carbonate fluorapatite: Evidence from FTIR spectroscopy, 13C NMR, and quantum mechanical calculations. American Mineralogist. 79: 809-818.

- REGNIER, P.; LASAGA, A.C.; BERNER, R.A.; HAN, O.H. e ZILM, K.W. 1994. Mechanism of CO3-2 substitution in carbonate-fluorapatite: Evidence from FTIR spectroscopy, 13C NMR, and quantum mechanical calculation. American mineralogist, 79: 809-818.
- SCHUFFERT, J.D.; KASTNER, M.; EMANUELLE, G. e JAHNKE, R.A. 1990. Carbonate-ion substitution in francolite: A new equation. Geochimica et Cosmochimica Acta. 54: 2323-2328.

SHELDON, R.P. 1981. Ancient marine phosphorite. Ann. Rev. Earth Planet. Sci., 9: 251-284.

- SILVERMAN, S.R.; FUYAT, R.K. e WEISER, J.D. 1952. Quantitative determination of calcite associated with carbonate-being apatites: American Mineralogist. 37: 211-222.
- SISODIA, M.S. e CHAUHAN, D.S. 1990. The influence of magnesium ions during the formation of stromatolitic phosphorites of Udaipur, Rajasthan, India. In: NOTHOLT, A. J. G. E JARVIS, I. (eds), 1990: Phosphorite Research and Development. Geological Society Special Publication, 52: 313-320.
- SMITH, J.P. e LEHR, J.R. 1966. An x-ray investigation of carbonate apatites. J. Agric. Food Chem., 14: 342-349.
- SOUZA, S.L.; BRITO, P.C.R. e SILVA, R.W.S. 1993. Estratigrafia, sedimentologia e recursos minerais da Formação Salitre na Bacia de Irecê, Bahia. CBPM, Série Arquivos Abertos nº 2, Salvador, 36 p.

- SRIVASTAVA, N.K. 1986. Os estromatolitos da Formação Salitre, Bahia: relatório preliminar de viagem. Salvador, CBPM.
- STORMER, J.C.; PIERSON Jr., M.L. e TACKER, R.C. 1993. Variation of F and Cl x-ray intensity due to anisotropic diffusion in apatite during eletron microprobe analysis. American Mineral. 78: 641-648.
- SUDARSANAN, K. e YOUNG, R.A., 1978. Structural interaction of F, Cl and OH in apatites. Acta Crist., B34: 1401-1407.
- TOOMS, J.S.; SUMMERHAYES, C.R. e CRONAN, D.S. 1969. Geochemistry of marine phosphate and manganese depósits. Oceanogr. Mar. Biol. Ann. Rev. 7: 49-100.
- TORQUATO, J.R.F. e MISI, A. 1977. Medidas isotópicas de carbono e oxigênio em carbonatos do Grupo Bambuí a região Centro-Norte do Estado da Bahia: Rev. Bras. Geoc. 7: 14-24.

ANEXOS

(Tabelas e gráficos de raios-X)
20	d(Å)	Ию	hkl	20	d(Â)	Ию	hkl	Amostra: IL-09 (16,95)
10.897	8.112	5	(100)	40.042	2.250	21	(318)	Nome : Carbonato Fluorepatita 9.3667 ± 0.0058
16.865	5.253	3	(101)	40.656	2.217	2	(221)	c0 : 6.8929 ± 0.0168
18.933	4.683	1	(110)	42.218	2.139	6	(311)	c0/a0 : 0,7359
21.895	4.056	6	(200)	42.455	2.127	2	(302)	V : 523,728Å*
22.938	3.874	7	(111)	43.852	2.063	5	(113)	1,916 % de CO3 *
25.459	3.496	12	(201)	44.645	2.028	2	(400)	Radiação:CuKa1=1.54051
25.828	3.446	36	(002)	45.324	1.999	4	(203)	* Schuffert et al.(1990). Carbonate-ion
28.107	3.172	11	(102)	46.865	1.937	24	(222)	substitution in francoite: A new
29.100	3.065	18	(210)	48.265	1.884	11	(312)	Acta.54.2323-2328.
31.919	2.801	100	(211)	48.900	1.861	2	(320)	
32.220	2.776	41	(112)	49.534	1.839	29	(213)	
33.102	2.704	54	(308)	50.773	1.797	15	(321)	
34.189	2.626	25	(202)	51.588	1.770	10	(410)	
35.637	2.517	4	(301)	52.296	1.748	11	(402)	
39.297	2.291	1	(212)	53.100	1.723	12	(004)	4

. .

. 1

45

50

1

55

[Ca Mg Na] [PO4] [CO3] [SO4] F 3,977 0,006 0,017 5,921 0,074 0,004 2,03

ı

30

28

25

Projeto Integrado de Pesquisa

Metalogênese das Coberturas Proterozóicas Caracterização e Origem da Fosforita de Irecê, Bahia 1/10 Amostra: IL-09 100 **Carbonato Fluorapatita** 90 Cuke1=1.54051 a0 = 9,3667±0,0068 80 c0 6,8929±0,0168 c0/s0 = 0.735970 = 523,7284Å Y 1,916 % de CO 2--3 60 훐 50 12 . 40 30 넍 5 20 12 ā g 258 10 ğ ŝ 8 2 d (Å) 3

35

40

20	d(Å)	l/lo	hkl	20	d(Å)	I/lo	hkl	Amostra: IL-39-A (7,89)
10.914	8.099	6	(100)	40.106	2.246	24	(310)	Nome : Carbonato Fluorapatita a0 · 9.3524 ± 0.0105
16.896	5.243	5	(101)	40.724	2.214	4	(221)	c0 : 6.8788 ± 0.0122
18.962	4.676	3	(110)	42.288	2.135	8	(311)	c0/a0 : 0,7355
21.929	4.050	7	(200)	42.532	2.124	5	(302)	V : 521,058Å ^a
22.977	3.867	7	(111)	43.942	2.059	8	(113)	1,254 % de CO ₃ ²⁻ *
25.502	3.490	2	(201)	44.717	2.025	4	(480)	Radiação:CuKa1=1.54051
25.882	3.439	33	(002)	45.416	1.995	7	(203)	* Schuffert et el.(1990). Carbonate-ion
28.164	3.166	12	(102)	46.950	1.934	31	(222)	substitution in francoite: A new equation Geochimica et Cosmochimica
29.146	3.061	16	(210)	48.352	1.881	18	(312)	Acta 54.2323-2328.
31.972	2.797	100	(211)	48.980	1.858	6	(320)	
32.282	2.771	41	(112)	49.632	1.835	39	(213)	
33.154	2.700	60	(300)	50.858	1.794	20	(321)	
34.174	2.622	26	(202)	51.673	1.767	17	(410)	\sim
35.695	2.513	6	(301)	52.390	1.745	18	(402)	
39.369	2.287	8	(212)	53.218	1.720	21	(004)	1

[Ca Mg Na] (PO4) (CO3) [SO4] F 9,834. 0,046 0,119 5,476 0,495 0,03 2,198

20	d(Â)	l/lo	hkl	20	d(Â)	l/lo	hkl	Amostra: IL-39-B (4,85)
10.915	8.099	7	(100)	40.108	2.246	24	(310)	Nome : Carbonato Fluorapatita a0 · 9.3519 ± 0.0152
16.890	5.245	6	(101)	48.723	2.214	5	(221)	c0 : 6.8828 ± 0.0059
18.963	4.676	3	(110)	42.287	2.135	9	(311)	c0/a0 : 0,736
21.930	4.849	10	(200)	42.524	2.124	8	(302)	V : 521,306Ű
22.974	3.868	14	(111)	43.921	2.060	8	(113)	1,985 % de CO3 *
25.499	3.490	6	(201)	44.728	2.025	4	(400)	Radiação:CuKc1=1.54051
25.867	3.441	34	(002)	45.395	1.996	7	(203)	* Schuffert et al (1990). Carbonate-ion
28.150	3.167	12	(102)	46.943	1.934	32	(222)	substitution in francolite: A new equation Geochimica et Cosmochimica
29.147	3.061	32	(210)	48.345	1.881	38	(312).	Acta 54 2323-2328.
31.970	2.797	100	(211)	48.983	1.858	7	(320)	· · · · · · · · · · · · · · · · · · ·
32.270	2.772	42	(112)	49.614	1.836	40	(213)	
33.156	2.700	59	(300)	50.858	1.794	23	(321)	
34.162	2.622	28	(202)	51.676	1.767	17	(410)	
35.694	2.513	7	(301)	52.384	1.745	14	(482)	
29.147	3.061	27	(210)	53.185	1.721	19	(884)	for the second s

[Ca Mg Na) [PO4] [CO3] [SO4] 9,829 0,048 0,123 5,461 0,509 0,0 F

5,461 0,509 0,031 2,203

Projeto Integrado de Pesquisa

20	d(Å)	l/lo	hkl	20	d(Â)	l/lo	hkl	Amostra: IL-39-C (6,23)
10.905	8.105	1	(100)	40.076	2.248	28	(310)	Nome : Carbonato Puorapatita a0 · 9.359 ± 0.0093
16.877	5.249	4	(101)	40.691	2.215	7	(221)	c0 : 6,8884 ± 0,0077
18.948	4.679	3	(110)	42.253	2.137	8	(311)	c0/a0 : 0,736
21.913	4.053	8	(200)	42.489	2.126	3	(302)	V : 522,524Ű
22.956	3.871	7	(111)	43.884	2.061	11	(113)	2,072 % de CO3 *
25.479	3.493	4	(201)	44.684	2.026	5	(400)	Radiação:CuKa1=1.54051
25.846	3.444	38	(002)	45.357	1.998	7	(203)	 Schuffert et al.(1990). Carbonate-ion
28.126	3.170	13	(102)	46.904	1.935	33	(222)	substitution in trancolte: A new equation Geochimica et Cosmochimica
29.125	3.063	18	(210)	48.306	1.882	18	(312)	Acta.54.2323-2328.
31.945	2.799	100	(211)	48.943	1.859	6	(320)	
32.244	2.774	47	(112)	49.572	1.837	42	(213)	
33.130	2.702	59	(300)	60.817	1.795	28	(321)	
34.135	2.624	27	(202)	61.634	1.769	20	(410)	
35.666	2.515	3	(301)	62.340	1.746	21	(402)	
39.328	2.289	9	(212)	53.138	1.722	20	(004)	1 Antes

[Ca Mg Na] [PO4] [CO3] [SO4] F 9,9 0,028 0,072 5,674 0,308 0,018 2,123

20	d(Å)	l/lo	hkl	20	d(Â)	l/lo	hkl	Amostra: IL-39-D (6,36)
10.912	8.101	8	(190)	40.097	2.247	26	(310)	Nome : Carbonato Fluorapatita a0 · 9.3543 ± 0.01
16.892	5.244	5	(101)	40.715	2.214	6	(221)	c0 : 6.8803 ± 0.0054
18.958	4.677	3	(118)	42.278	2.136	8	(311)	c0/a0 : 0,7355
21.924	4.051	17	(200)	42.523	2.124	4	(382)	V : 521,389Å*
22.973	3.868	10	(111)	40.859	2.207	8	(103)	1,27 % de CO3 *
25.497	3.491	6	(201)	44.707	2.025	3	(400)	Radiação:CuKa1=1.54051
25.877	3.440	39	(882)	45.406	1.996	6	(203)	* Schuffert et al.(1990). Carbonate-ion
28.157	3.166	15	(102)	46.940	1.934	33	(222)	substitution in francoite: A new equation Geochimica et Cosmochimica
29.140	3.062	27	(210)	48.342	1.881	16	(312)*	Acta.54.2323-2328.
31.965	2.797	100	(211)	48.969	1.859	5	(320)	
32.275	2.771	42	(112)	49.621	1.836	38	(213)	
33.147	2.700	56	(308)	50.846	1.794	21	(321)	
34.166	2.622	29	(202)	61.661	1.768	18	(410)	
35.688	2.514	6	(301)	62.378	1.745	20	(402)	
39,360	2.287	11	(212)	53.206	1.720	17	(004)	and the second s

[Ca Mg Na] (PO4) (CO3) (SO4) F 9,854 0,041 0,05 5,533 0,441 0,026 2,176

	Me	talog	ênes Caracter	e das l Ização e Or	Cober igem da F	turas	de Irece	terozóicas
20	d(Â)	Ию	hki	20	d(Â)	Ию	hkl	Amostra: IL-39-E (10,67)
10.907	8.105	6	(100)	40.078	2.248	25	(310)	Nome : Carbonato Fluorapatita
16.883	6.247	4	(101)	40.694	2.215	5	(221)	c0 : 6.884 + 0.0074
18.949	4.679	2	(110)	42.257	2.137	1	(311)	c0/a0 : 0.7356
21.914	4.052	7	(200)	42.500	2.125	6	(302)	V : 522,166Å*
22.961	3.870	7	(111)	43.907	2.060	9	(113)	1,376 % de CO3 *
25.484	3.492	6	(201)	44.685	2.026	3	(400)	Radiação:CuKc1=1.54051
25.862	3.442	34	(002)	45.380	1.997	6	(203)	* Schuffert et al.(1990). Carbonate-Ion
28.142	3.168	13	(102)	46.915	1.935	28	(222)	substitution in francolte: A new equation.Geochimica et Cosmochimica
29.126	3.063	17	(210)	48.316	1.882	16	(312)	Acta 54,2323-2328.
31.949	2.799	100	(211)	48.944	1.859	5	(320)	
32.258	2.773	42	(112)	49.593	1.837	36	(213)	
33.131	2.702	57	(300)	50.820	1.795	20	(321)	
34.148	2.623	26	(202)	51.635	1.769	17	(418)	X
35.670	2.515	6	(301)	52.351	1.746	18	(402)	
39.340	2.288	9	(212)	53.174	1.721	19	(884)	•

(Ca Mg Na) (PO4) (CO3) (SO4) F 9,898 0,029 0,074 5,666 0,316 0,018 2,126

Projeto Integrado de Pesquisa

20	d(Â)	Ию	hkl	20	d(Â)	I/lo	hkl	Amostra: IL-40 (19,16)
10.903	8.108	5	(100)	40.062	2.249	22	(310)	Nome ; Carbonato Fluorapatita a0 · 9.3621 ± 0.0058
16.873	5.260	3	(101)	40.677	2.216	3	(221)	c0 : 6.8894 ± 0.0076
18.942	4.681	2	(110)	42.239	2.138	6	(311)	c0/a0 : 0.7359
21.906	4.054	6	(200)	42.477	2.126	2	(302)	V : 522.952Ű
22.950	3.872	1	(111)	43.875	2.062	5	(113)	1,872 % de CO3 *
25.472	3.494	5	(201)	44.668	2.027	2	(408)	Radiação:CuKa1=1.54051
25.842	3.445	37	(002)	45.348	1.998	4	(203)	* Schuffert et al.(1990). Carbonate-ion
28.121	3.170	14	(102)	46.890	1.936	24	(222)	substitution in francoite: A new equation Geochimica et Cosmochimica
29.115	3.064	17	(210)	48.291	1.883	11	(312)	Acta.54 2323-2328.
31.935	2.800	100	(211)	48.925	1.860	2	(320)	- Loo
32.237	2.774	41	(112)	49.560	1.838	29	(213)	
33.118	2.703	58	(300)	50.799	1.796	14	(321)	· ·
34.127	2.625	24	(202)	51.615	1.769	11	(410)	
35.655	2.516	9	(301)	52.324	1.747	14	(402)	
39.317	2.290	6	(212)	53.130	1.722	13	(004)	1 August

Matalagânaca das Cabarturas Drotorozáisas

(Ca Mg Na) (PO4) (CO3) (SO4) F 9,931 0,019 0,049 5,772 0,215 0,012 2,086

20	d(Å)	1/Io	hkl	20	d(Å)	1/lo	hkl	Amostra: IL-41 (10,92)
10.901	8.109	4	(100)	40.055	2.249	21	(310)	Nome : Carbonato Fluorapatita a0 · 9.3638 ± 0.0068
16.868	5.252	3	(101)	40.669	2.217	5	(221)	c0 : 6.892 ± 0.0102
18.938	4.682	1	(110)	42.230	2.138	7	(311)	c0/a0 : 0.736
21.902	4.055	8	(200)	42.466	2.127	2	(302)	V : 523,339Ű
22.944	3.873	8	(111)	43.860	2.062	13	(113)	2,101 % de CO3 *
25.466	3,495	3	(201)	44.659	2.027	3	(400)	Radiação:CuKa1=1.54051
25.832	3.446	30	(002)	45.332	1.999	6	(203)	* Schuffert et al.(1990). Carbonate-ion
28.111	3.172	13	(102)	46.878	1.936	27	(222)	substitution in francoite: A new equation Geochimica et Cosmochimica
29.109	3.065	23	(210)	48.279	1.883	14	(312)	Acts.54.2323-2328
31.928	2.801	100	(211)	48.916	1.860	2	(320)	
32.227	2.775	40	(112)	49.544	1.838	33	(213)	
33.112	2.703	56	(300)	50.789	1.796	56	(321)	
34.116	2.626	25	(202)	51.605	1.770	16	(418)	
35.647	2.516	15	(301)	52.311	1.747	12	(402)	
39.306	2.290	11	(212)	53.108	1.723	15	(004)	é-

(Ca Mg Na) (PO4) (CO3) (SO4) 3,943 0,014 0,037 5,828 0,163 0,1 F

0,009 2,065

Projeto Integrado de Pesquisa

20	d(Â)	l/lo	hki	20	d(Â)	l/lo	hki	Amostra: IL-48 (25,65)
10.898	8.111	4	(100)	40.046	2.250	22	(310)	Nome : Carbonato Fluorapatita a0 · 9.3658 ± 0.0073
16.875	5.249	3	(101)	40.664	2.217	2	(221)	c0 : 6.886 ± 0.0125
18.934	4.683	1	(110)	42.226	2.138	6	(311)	c0/a0 : 0,7352
21.897	4.056	6	(200)	42.475	2.126	2	(302)	V : 523,103Ű
22.947	3.872	7	(111)	43.890	2.061	4	(113)	0,872 % de CO3 *
25.467	3.494	16	(201)	44.649	2.028	1	(400)	Radiação:CuKa1=1.54051
25.855	3.443	40	(002)	46.361	1.998	3	(203)	* Schuffert et al.(1990). Carbonate-ion
28.132	3.169	12	(102)	46.885	1.936	24	(222)	eguation.Geochimica et Cosmochimica
29.103	3.066	16	(210)	48.285	1.883	11	(312)	Acta.54.2323-2328.
31.927	2.801	100	(211)	48.905	1.861	2	(320)	
32.243	2.774	45	(112)	49.570	1.837	38	(213)	7
33.105	2.704	53	(300)	50.781	1.796	13	(321)	
34.131	2.625	24	(202)	51.593	1.770	10	(410)	
35.644	2.517	3	(301)	52.315	1.747	11	(402)	8
39.317	2.290	6	(212)	53.158	1.721	13	(004)	1 total

(Ca Mg Na) (PO4) (CO3) (SO4) F 9,968 0,009 0,023 5,893 0,101 0,005 2,041

	Me	talog	Caracter	e das l ização e Or	igem da F	osforita	de Irecé	Ba
20	d(Å)	Vio	hkl	20	d(Â)	l/lo	hkl	Amostra: IL-49 (15,69)
10.910	8.103	4	(100)	40.089	2.247	21	(310)	a0 • 9,3562 ± 0.0077
16.870	5.251	3	(101)	40.638	2.215	2	(221)	c0 : 6.8946 ± 0.0165
18.954	4.678	1	(110)	42.261	2.137	0	(311)	c0/a0 : 0,7369
21.920	4.051	17	(200)	42.482	2.126	0	(302)	V : 522,685Ű
22.954	3.871	7	(111)	43.853	2.063	0	(113)	3,509 % de CO3 *
25.479	3.493		(201)	44.698	2.026	2	(400)	Radiação:CuKa1=1.54051
25.822	3.447	4	(002)	45.328	1.999	4	(203)	* Schuffert et al.(1990). Carbonate-ion
28.105	3.172	13	(102)	46.900	1.936	23	(222)	substitution in francoite: A new equation Geochimica et Cosmochimica
29.134	3.063	16	(210)	48.302	1.883	11	(312)	Acta.54.2323-2328.
31.948	2.799	100	(211)	48.958	1.869	0	(320)	
32.228	2.775	44	(112)	49.547	1.838	0	(213)	
33.140	2.701	53	(300)	50.828	1.795	13	(321)	
34,121	2.625	25	(202)	51.650	1.768	10	(410)	
35.671	2.515	4	(301)	52.340	1.746	10	(402)	
39.318	2.290	6	(212)	53.087	1.724	13	(004)	
	1	1						· ·

(Ca Mg Na) (PO4) (CO3) (SO4) F 3,873 0,036 0,092 5,59 0,387 0,023 2,155

Amostra: IL-49-A (15,4	hki	Ию	d(Â)	20	hki	l/lo	d(Å)	20
Nome : Carbonato Fluorapa a0 · 9.3581 ± 0.0076	(310)	25	2.248	40.080	(100)	8	8.104	10.907
c0 : 6.8772 ± 0.011	(221)	8	2.215	40.701	(101)	7	5.244	6.894
c0/a0 : 0,7349	(311)	1	2.137	42.264	(110)	5	4.679	8.950
V : 521,58Å*	(302)	4	2.124	42.519	(200)	7	4.052	21.915
0,354 % de CO3"*	(113)	1	2.059	43.945	(111)	8	3.869	22.969
Radiação:CuKa1=1.54051	(400)	3	2.026	44.688	(201)	5	3.491	25.492
Schuffert et al.(1990). Carbonate-	(203)	6	1.995	45.417	(002)	34	3.439	25.888
substitution in francolite: A new equation Geochimica et Cosmochin	(222)	26	1.934	46.933	(102)	13	3.165	28.165
Acta.54.2323-2328.	(312)	14	1.881	48.334	(210)	19	3.063	29.128
	(320)	7	1.859	48.948	(211)	100	2.798	31.957
	(213)	38	1.835	49.628	(112)	46	2.771	32.280
	(321)	19	1.795	50.827	(300)	59	2.701	33.133
X	(418)	17	1.769	51.639	(202)	26	2.622	34.169
	(402)	14	1.746	52.368	(301)	7	2.514	35.877
	(804)	17	1.719	53.231	(212)	8	2.287	39.359

[Ca Mg Na] [PO4] [CO3] [SO4] F 9,892 0.03 0.078 5,647 0,333 0,019 2,133

Projeto Integrado de Pesquisa

20	d(Å)	Ию	hkl	20	d(Å)	l/lo	hkl	Amostra: IL-51 (10,60)
10.904	8.107	9	(100)	40.067	2.248	26	(310)	Nome : Carbonato Fluorapatita a0 • 9.3611 ± 0.0068
16.891	5.245	6	(101)	48.689	2.216	5	(221)	c0 : 6.8778 ± 0.0122
18.944	4.681	4	(110)	42.251	2.137	7	(311)	c0/a0 : 0,7347
21.908	4.053	6	(200)	42.589	2.125	4	(302)	V : 521,955Ű
22.964	3.870	9	(111)	43.939	2.059	1	(113)	0,125 % de CO3 *
25.485	3.492	4	(201)	44.673	2.027	3	(400)	Radiação:CuKa1=1.54051
25.886	3.439	33	(002)	45.410	1.996	6	(203)	* Schutfert et al.(1990). Cerbonate-ion
28.163	3.166	11	(102)	46.921	1.935	34	(222)	substitution in francoite: A new equation Geochimica et Cosmochimica
29.118	3.064	20	(210)	48.321	1.882	18	(312)	Acta.54.2323-2328.
31.947	2.799	100	(211)	48.931	1.860	1	(320)	
32.274	2.771	46	(112)	49.619	1.836	44	(213)	
33.122	2.702	67	(388)	50.811	1.795	22	(321)	
34.163	2.622	26	(202)	51.621	1.769	15	(410)	X
35.666	2.515	6	(301)	52.353	1.746	16	(402)	
39.350	2.288	8	(212)	53.226	1.719	20	(004)	1 total

Metalogênese das Coberturas Proterozóicas Caracterização e Origem da Fosforita de Irecê , Ba

[Ca Mg Na] [PO4] [CO3] [SO4] F 9,921 0,022 0,057 5,739 0,247 0,014 2,099

	Met	talog	lênes Caracter	e das i ização e Or	Cober igem da F	turas	de Irece	terozóicas
20	d(Å)	Ию	hkl	20	d(Â)	Ио	hki	Amostra: IL-53 (43,42)
10.897	8.112	7	(100)	40.039	2.250	25	(310)	Nome : Huorapatra
16.878	6.249	4	(101)	40.660	2.217	6	(221)	c0 : 6.8836 ± 0.0095
18.931	4.684	3	(110)	42.221	2.139	6	(311)	c0/a0 : 0.7349
21.894	4.056	9	(200)	42.476	2.126	5	(302)	V : 523,083Ű
22.947	3.872	5	(111)	43.902	2.061	12	(113)	0,332 % de CO3 *
25.467	3.495	13	(201)	44.642	2.028	5	(400)	Radiação:CuKa1=1.54051
25.864	3.442	35	(002)	45.372	1.997	7	(203)	* Schuffert et al.(1990). Carbonate-ion
28.140	3.168		(182)	46.885	1.936	26	(222)	substitution in francolite: A new equation Geochimica at Cosmochimica
29.098	3.066	13	(210)	48.284	1.883	12	(312)	Acta 54.2323-2328.
31.925	2.801	100	(211)	48.897	1.861	6	(320)	
32.249	2.773	36	(112)	49.578	1.837	33	(213)	
33.099	2.704	45	(300)	60.774	1.797	18	(321)	
34.136	2.524	18	(202)	51.585	1.770	8	(410)	X
35.641	2.517	6	(301)	62.313	1.747	13	(402)	
39.320	2.289	7	(212)	53.178	1.721	13	(004)	4-1-24
	1	1						

[Ca Mg Na] [PO4] [CO3] [SO4] F 9,983 0,005 0,012 5,941 0,056 0,003 2,022

Projeto Integrado de Pesquisa

Metalogênese das Coberturas Proterozóicas

20	d(Â)	llo	hkl	20	d(Â)	l/lo	hkl	Amostra: IL-62 (3,50)
10.896	8.113	6	(100)	40.038	2.250	19	(310)	Nome : Fluorapatita a0 • 9,3677 ± 0.011
16.869	5.251	3	(101)	40.655	2.217	4	(221)	c0 : 6.8894 ± 0.0124
18.930	4.684	2	(110)	42.216	2.139	6	(311)	c0/a0 : 0,7354
21.893	4.056	7	(200)	42.461	2.127	2	(382)	V : 523,571Å*
22.940	3.873	8	(111)	43.870	2.062	7	(113)	1,207 % de CO3 *
25.460	3.495	15	(201)	44.648	2.028	4	(400)	Radiação:CuKa1=1.54051
25.842	3.445	37	(002)	45.341	1.998	3	(203)	* Schuffert et al.(1990). Carbonate-ion
28.119	3.171	12	(102)	46.870	1.937	24	(222)	substitution in francolite: A new equation Geochimica at Cosmochimic
29.097	3.066	17	(210)	48.270	1.884	11	(312)	Acta 54.2323-2328.
31.919	2.801	100	(211)	48.894	1.861	1	(320)	L
32.230	2.775	37	(112)	49.549	1.838	29	(213)	
33.098	2.704	54	(300)	50.769	1.797	24	(321)	
34.118	2.626	23	(202)	51.582	1.770	8	(410)	
35.636	2.517	3	(301)	52.299	1.748	11	(402)	
39.384	2.290	6	(212)	53.130	1.722	13	(004)	1

(Ca Mg Na) (PO4) (CO3) (SO4) F 9,987 0,004 0,009 5,955 0,042 0,002 2,017

-- - - - - - - -

.

.

	1	T						
20	d(Å)	I/lo	hkl	20	d(Å)	Ию	hkl	Amostra: IL-63 (18,80)
10.900	8.110	4	(100)	40.053	2.249	20	(310)	Nome : Carbonato Fluorapatita a0 : 9,3643 ± 0.0066
16.870	5.251	3	(101)	40.668	2.217	2	(221)	c0 : 6.8907 ± 0.0117
18.937	4.682	1	(110)	42.229	2.138	5	(311)	c0/a0 : 0,7358
21.901	4.055	6	(200)	42.468	2.127	1	(302)	V : 523,285Ű
22.945	3.873	8	(111)	43.866	2.062	4	(113)	1,822 % de CO ₃ ² *
25.466	3.495	4	(201)	44.657	2.027	1	(400)	Radiação:CuKa1=1.54051
25.837	3.445	36	(002)	45.339	1.999	4	(203)	* Schutfert et al.(1990). Carbonate-ion
28.116	3.171	11	(102)	46.880	1.936	23	(222)	substitution in francoite: A new
29.108	3.065	18	(210)	48.280	1.883	11	(312)*	Acta 54.2323-2328.
31.928	2.801	100	(211)	48.914	1.860	2	(320)	
32.230	2.775	42	(112)	49.550	1.838	29	(213)	
33.110	2.703	56	(300)	50.787	1.796	13	(321)	
34.120	2.626	24	(202)	51.603	1.770	11	(410)	
35.646	2.517	4	(301)	52.312	1.747	10	(402)	
39.309	2.290	8	(212)	53.119	1.723	13	(004)	

(Ca Mg Na) (PO4) (CO3) (SO4) F 9,953 0,013 0,034 5,842 0,15 0,008 2,06

20	d(Å)	Иo	hkl	20	d(Â)	Иo	hki	Amostra: IL-66 (28,77)
10.904	8.107	11	(108)	40.067	2.248	18	(310)	Nome : Carbonato Fluorapatita
16.878	5.248	9	(101)	40.683	2.216	9	(221)	c0 : 6,8862 ± 0,0085
18.944	4.681	3	(110)	42.246	2.137	7	(311)	c0/a0 : 0,7356
21.908	4.053	10	(200)	42.488	2.126	5	(382)	V : 522,592Å*
22.955	3.871	12	(111)	43.893	2.051	6	(113)	1,463 % de CO ² **
25.477	3.493	10	(201)	44.673	2.027	3	(400)	Radiação:CuKa1=1.54051
25.854	3.443	39	(002)	45.366	1.997	6	(203)	* Schuffert et al.(1990). Carbonate-ion
28.133	3.169	13	(102)	46.982	1.936	24	(222)	equation.Geochimica et Cosmochimica
29.118	3.064	29	(210)	48.302	1.883	12	(312)	Acta.54,2323-2328.
31.941	2.799	100	(211)	48.931	1.860	2	(320)	
32.248	2.774	40	(112)	49.578	1.837	28	(213)	
33.122	2.702	48	(300)	50.807	1.796	11	(321)	
34.138	2.624	21	(202)	51.621	1.769	11	(410)	
35.668	2.515	3	(301)	52.336	1.747	8	(482)	
39.328	2.289	11	(212)	53.156	1.722	11	(004)	

Cohorturas Brotorozóicas

[Ca Mg Na] [PO4] [CO3] (SO4) F 9,921 0,022 0,057 5,739 0,247 0,014 2,099

Bd atala

. .

1-

Projeto Integrado de Pesquisa

20	d(Å)	l/lo	hki	20	d(Â)	l/lo	hkl	Amostra: IL-77-A (16,23)
10.910	8.103	11	(100)	40.088	2.247	30	(310)	a0 • 9.3563 ± 0.0109
16.882	5.247	8	(101)	40.703	2.215	1	(221)	c0 : 6,8864 ± 0.0065
18.954	4.678	4	(110)	42.266	2.136	7	(311)	c0/a0 : 0,736
21.920	4.051	12	(200)	42.502	2.125	6	(302)	V : 522,076Ű
22.963	3.870	10	(111)	43.897	2.061	13	(113)	2,054 % de CO3 *
25.486	3.492	7	(201)	44.697	2.026	5	(400)	Radiação:CuKa1=1.54051
25.853	3.443	32	(002)	45.371	1.997	9	(283)	* Schutfert et al.(1990). Carbonate-ion
28.135	3.169	13	(102)	46.918	1.935	34	(222)	equation.Geochimica et Cosmochimica
29.133	3.063	17	(210)	48.320	1.882	17	(312)	Acta.54,2323-2328
31.955	2.798	100	(211)	48.958	1.859	7	(320)	
32.254	2.773	44	(112)	49.587	1.837	42	(213)	
33.139	2.701	56	(300)	50.832	1.795	38	(321)	
34.145	2.624	28	(202)	51.649	1.768	40	(410)	X
35.676	2.514	8	(301)	52.356	1.746	17	(482)	
39.339	2.288	9	(212)	63.165	1.722	23	(004)	-

[Ca Mg Na] [PO4] (CO3) [SO4] F 9,874 0,035 0,091 5,593 0,384 0,023 2,154

Projeto Integrado de Pesquisa

20	d(Å)	1/lo	hki	20	d(Â)	Ию	hki	Amostra: IL-77-B (18,53)
10.914	8.099	9	(180)	40.105	2.246	25	(310)	Nome : Carbonato Fluorapatita a0 9.3525 ± 0.0047
16.886	5.246	8	(101)	40.719	2.214	6	(221)	c0 : 6.8856 ± 0.0093
18.962	4.676	4	(110)	42.283	2.136	8	(311)	c0/a0 : 0,7362
21.929	4.050	11	(200)	42.515	2.124	4	(302)	V : 521,584Ű
22.970	3.868	9	(111)	43.905	2.060	12	(113)	2,38 % de CO ₃ ² *
25.495	3.491	7	(201)	44.717	2.025	3	(400)	Radiação:CuKa1=1.54051
25.857	3.443	33	(002)	45.380	1.997	8	(203)	* Schuffert et al.(1990). Cerbonate-ion
28.140	3.168	11	(102)	46.934	1.934	29	(222)	substitution in francoite: A new equation.Geochimica et Cosmochimica
29.145	3.061	18	(210)	48.337	1.881	15	(312)	Acte 54 2323-2328
31.966	2.797	100	(211)	48.979	1.858	6	(320)	
32.261	2.772	42	(112)	49.599	1.836	43	(213)	1
33.153	2.780	57	(300)	50.853	1.794	35	(321)	
34.153	2.623	26	(202)	51.672	1.767	17	(410)	*
35.690	2.514	13	(301)	52.375	1.745	20	(402)	8
39.351	2.288	3	(212)	53.162	1.721	17	(004)	

[Ca Mg Na] (PO4) (CO3) (SO4) F 3,836 0,046 0,118 5,479 0,492 0,029 2,197

Metalogênese das Coberturas Proterozóicas Caracterização e Origem da Fosforita de Irecê, Bahia

	Me	talog	ênes Caracter	e das (ização e Or	Cober igem de F	turas	de Irece	terozóicas ^B , Ba
20	d(Â)	l/lo	hkl	20	d(Â)	l/lo	hkl	Amostra: IL-77-C [22,28]
10.909	8.103	8	(100)	40.086	2.247	26	(318)	Nome : Carbonato Fluorapatita
16.875	5.249	6	(101)	40.698	2.216	8	(221)	c0 : 6,8909 + 0,0404
18.953	4.678	4	(110)	42.261	2.137	7	(311)	c0/a0 : 0.7365
21.918	4.052	8	(200)	42.489	2.126	11	(302)	V : 522.474Å*
22.957	3.871	9	(111)	43.872	2.052	13	(113)	2,768 % de CO3 *
25.481	3.493	5	(201)	44.695	2.026	7	(400)	Radiação:CuKa1=1.54051
25.836	3.445	33	(002)	45.347	1.998	9	(203)	* Schuffert et al.(1990). Carbonate-ion
28.119	3.171	11	(102)	46.906	1.935	29	(222)	substitution in francolite: A new equation Geochimica et Cosmochimica
29.132	3.063	24	(210)	48.308	1.882	16	(312)	Acta 54.2323-2328.
31.949	2.799	100	(211)	48.955	1.859	9	(320)	
32.239	2.774	52	(112)	49.564	1.838	41	(213)	
33.137	2.701	55	(300)	50.827	1.795	35	(321)	
34.131	2.625	25	(202)	51.646	1.768	19	(410)	
35.672	2.515	13	(301)	52.345	1.746	14	(402)	
39.326	2.289	12	(212)	53.118	1.723	19	(804)	

(Ca Mg Na) (PO4) (CO3) (SO4) F 9,879 0,034 0,087 5,609 0,37 0,022 2,148

Projeto Integrado de Pesquisa

Metalogênese das Coberturas Proterozóicas

Amostra: IL-103 (10,7	hkl	I/lo	d(Â)	20	hkl	Ио	d(Å)	20
Nome : Carbonato Fluorapat a0 : 9,3647 ± 0.0116	(310)	22	2.249	40.051	(100)	8	8.110	10.900
c0 : 6.8864 ± 0.0108	(221)	4	2.217	40.669	(101)	4	5.249	16.875
c0/a0 : 0,7354	(311)	4	2.138	42.230	(118)	4	4.682	18.937
V : 523,011Ű	(382)	4	2.126	42.477	(200)	9	4.055	21.900
1,068 % de CO3 *	(113)	7	2.061	43.889	(111)	7	3.872	22.948
Radiação:CuKa1=1.54051	(400)	4	2.028	44.655	(201)	8	3.494	25.469
* Schuffert et al.(1990). Carbonate-i	(203)	6	1.998	45.361	(002)	34	3.443	25.853
substitution in francoite: A new equation Geochimica et Cosmochim	(222)	29	1.936	46.888	(102)	13	3.169	28.131
Acta 54,2323-2328.	(312)	12	1.883	48.288	(210)	16	3.065	29.107
· · · · · · · ·	(320)	3	1.861	48.911	(211)	100	2.800	31.930
	(213)	32	1.837	49.570	(112)	40	2.774	32.243
	(321)	18	1.796	58.787	(300)	49	2.703	33.109
×	(410)	10	1.770	51.600	(202)	24	2.625	34.132
	(402)	14	1.747	52.319	(301)	4	2.516	35.648
	(004)	14	1.722	53.155	(212)	8	2.289	39.319

[Ca Mg Na) [PO4] [CO3] [SO4] 9,957 0.012 0.031 5,856 0,136 0,1 F

0,008 2,054

Projeto Integrado de Pesquisa

20	d(Å)	l∕lo	hkl	20	d(Â)	l/lo	hki	Amostra: IL-103A (25,33)
10.904	8.107	9	(100)	40.068	2.248	26	(310)	Nome : Carbonato Fluorapatita
16.883	5.247	1	(101)	40.686	2.216	4	(221)	c0 : 6,8829 ± 0,0075
18.944	4.680	5	(110)	42.248	2.137	8	(311)	c0/a0 : 0,7353
21.909	4.053	7	(200)	42.497	2.125	4	(302)	V : 522,331Ű
22.958	3.870	9	(111)	43.911	2.060	6	(113)	0,936 % de CO3 *
25.480	3.493	5	(201)	44.674	2.027	6	(480)	Radiação:CuKa1=1.54051
25.867	3.441	38	(002)	45.383	1.997	6	(203)	* Schuffert et al.(1990). Carbonate-ion
28.145	3.168	15	(102)	46.909	1.935	31	(222)	substitution in francolite: A new equation.Geochimica et Cosmochimica
29.118	3.064	18	(210)	48.310	1.882	18	(312)	Acta.54.2323-2328.
31.944	2.799	100	(211)	48.932	1.868	7	(320)	
32.259	2.773	47	(112)	49.594	1.837	41	(213)	
33.122	2.702	56	(300)	50.809	1.795	17	(321)	
34.148	2.623	28	(202)	51.622	1.769	14	(410)	
35.663	2.515	6	(301)	62.343	1.746	17	(402)	
39.337	2.288	8	(212)	53.184	1.721	19	(004)	

(Ca Mg Na) (PO4) (CO3) (SO4) 9.92 0.022 0.058 5.736 0.25 0. F

0,014 2,1

Projeto Integrado de Pesquisa

20	d(Å)	١/lo	hkl	20	d(Â)	l/lo	hkl	Amostra: IL-108 (27,89)
10.905	8.106	6	(100)	40.071	2.248	26	(310)	Nome : Carbonato Fluorapatita a0 · 9.3603 ± 0.0059
16.884	5.247	4	(101)	40.689	2.216	4	(221)	c0 : 6,8825 ± 0.0131
18.946	4.680	3	(110)	42.251	2.137	8	(311)	c0/a0 : 0,7353
21.910	4.053	7	(200)	42.500	2.125	4	(302)	V : 522,223Ű
22.960	3.870	6	(111)	43.914	2.060	6	(113)	0,949 % de CO3 *
25.482	3.493	3	(201)	44.677	2.027	3	(400)	Radiação:CuKa1=1.54051
25.868	3.441	32	(002)	45.386	1.997	5	(203)	* Schuffert et al.(1990). Carbonate-ion
28.147	3.168	10	(102)	46.913	1.935	27	(222)	equation.Geochimica et Cosmochimica
29.121	3.064	15	(210)	48.314	1.882	16	(312)	Acta.54.2323-2328.
31.946	2.799	100	(211)	48.936	1.860	4	(320)	
32.261	2.772	39	(112)	49.598	1.836	40	(213)	
33.125	2.782	61	(300)	50.813	1.795	18	(321)	
34.150	2.623	26	(202)	51.626	1.769	15	(418)	
35.666	2.515	5	(301)	52.347	1.746	17	(402)	
39.340	2.288	8	(212)	53.187	1.721	16	(884)	é

(Ca Mg Na) (PO4) (CO3) (SO4) 9,913 0,024 0,063 5,714 0,27 0,0 F

0,016 2,108

20	d(Å)	I/lo	hkl	20	d(Â)	l/lo	hkl	Amostra: IM-AS-1
10.905	8.106	6	(100)	40.072	2.248	26	(310)	a0 : 9,36 ± 0.0073
16.889	5.245	5	(101)	40.692	2.216	4	(221)	c0 : 6,8797 ± 0,0086
18.946	4.680	3	(110)	42.255	2.137	7	(311)	c0/a0 : 0,735
21.911	4.053	6	(200)	42.507	2.125	4	(302)	V : 521,973Å*
22.964	3.870	6	(111)	43.930	2.059	7	(113)	0,537 % de CO3**
25.485	3.492	4	(201)	44.679	2.026	4	(408)	Radiação:CuKa1=1.54851
25.879	3.440	36	(002)	45.482	1.996	6	(203)	* Schuffert et al.(1990). Carbonate-ion
28.157	3.167	12	(102)	46.920	1.935	32	(222)	equation.Geochimica et Cosmochimica
29.122	3.064	17	(210)	48.321	1.882	17	(312)	Acta,54,2323-2328.
31.949	2.799	100	(211)	48.937	1.860	1	(320)	
32.270	2.772	45	(112)	49.612	1.836	45	(213)	
33.126	2.702	69	(300)	50.816	1.795	18	(321)	
34.159	2.623	31	(202)	51.628	1.769	17	(410)	
35.669	2.515	8	(301)	52.354	1.746	16	(402)	
39.348	2.288	8	(212)	63.211	1.720	17	(084)	•

[Ca Mg Na] [PO4] (CO3] (SO4) F 9,91 0,025 0,065 5,704 0,28 0,016 2,112

20	d(Â)	١/lo	hkl	20	d(Å)	Ию	hki	Amostra: IR-AM-8
10.914	8.100	11	(100)	40.105	2.246	28	(310)	Nome : Carbonato Fluorapatita a0 • 9,3526 ± 0,0061
16.887	5.246	7	(101)	48,719	2.214	10	(221)	c0 : 6.8845 ± 0.0066
18.961	4.576	4	(110)	42.283	2.136	1	(311)	c0/a0 : 0,7361
21.928	4.050	11	(200)	42.517	2.124	5	(302)	V : 521,52Å*
22.971	3.868	10	(111)	43.911	2.068	21	(113)	2,182 % de CO3 *
25.496	3.491	7	(201)	44.716	2.025	4	(400)	Radiação:CuKa1=1.54051
25.861	3.442	34	(002)	45.386	1.997		(203)	* Schuffert et al.(1990). Carbonate-ion
28.143	3.168	15	(102)	46.936	1.934	35	(222)	equation Geochimica et Cosmochimica
29.145	3.061	62	(210)	48.339	1.881	18	(312)	Acta.54.2323-2328.
31.967	2.797	100	(211)	48.978	1.858	8	(320)	· · · · · ·
32.264	2.772	43	(112)	49.604	1.836	49	(213)	
33.153	2.700	64	(300)	58.853	1.794	44	(321)	
34.156	2.623	26	(202)	51.671	1.767	22	(410)	X
35.690	2.514	7	(301)	52.377	1.745	20	(402)	
39.353	2.288	11	(212)	53.171	1.721	20	(004)	· ····································

Metalogênese das Coberturas Proterozóicas Caracterização e Origem da Fosforita de Irecé , Ba

(Ca Mg Na) (PO4) (CO3) (SO4) F 9,837 0,046 0,117 5,483 0,488 0,029 2,195

20	d(Â)	1/lo	hki	20	d(Â)	VIo	hkl	Amostra: IR-AL-1
10.907	8.105	7	(100)	40.078	2.248	30	(310)	Nome : Carbonato Fluorapatita a0 • 9.3587 ± 0.006
16.893	5.244	5	(101)	31.955	2.798	7	(211)	c0 : 6.8773 ± 0.0169
18.949	4.679	4	(110)	42.261	2.137	6	(311)	c0/a0 : 0,7349
21.914	4.052	5	(200)	42.517	2.124	3	(302)	V : 521,65Ű
22.968	3.869	6	(111)	43.944	2.059	6	(113)	0,299 % de CO3 *
25.490	3.491	4	(201)	44.685	2.026	3	(400)	Radiação:CuKa1=1.54051
25.888	3.439	35	(002)	45.416	1.995	3	(283)	Schuffert et al.(1990). Carbonate-ion
28.166	3.165	13	(102)	46.931	1.934	29	(222)	substitution in francoite: A new equation.Geochimica et Cosmochimica
29.126	3.063	15	(210)	48.331	1.882	15	(312)	Acta.54.2323-2328
31.955	2.798	100	(211)	48.944	1.859	4	(320)	
32.279	2.771	41	(112)	49.627	1.835	38	(213)	
33.131	2.702	57	(300)	50.824	1.795	18	(321)	
34.168	2.622	26	(282)	51.635	1.769	16	(410)	X
35.675	2.515	3	(301)	52.365	1.746	15	(402)	
39.358	2.287	8	(212)	53.231	1.719	20	(004)	4-1

[Ca Mg Na] (PO4) (CO3) (SO4) F 9,897 0,029 0,074 5,665 0,316 0,018 2,127

Projeto Integrado de Pesquisa

Metalogênese das Coberturas Proterozóicas

Metalogênese das Coherturas Proterozóicas

20	d(Â)	l/lo	hkl	20	d(Â)	l/lo	hkl	Amostra: IR-AL-2
10.906	8.105	7	(100)	40.076	2.248	25	(310)	Nome : Carbonato Fluorapatita a0 · 9.359 ± 0.0097
16.893	5.244	4	(101)	40.697	2.215	6	(221)	c0 : 6.8775 ± 0.0148
18.948	4.680	2	(110)	42.260	2.137	8	(311)	c0/a0 : 0,7349
21.913	4.053	5	(200)	42.516	2.124	5	(302)	V : 521,699Ű
22.968	3.869	6	(111)	43.943	2.059	5	(113)	0,295 % de CO3"*
25.490	3.491	4	(201)	44.684	2.026	3	(400)	Radiação:CuKa1=1.54051
25.887	3.439	32	(002)	45.415	1.995	5	(203)	* Schuffert et al.(1990). Carbonate-ion
28.165	3.166	10	(102)	46.929	1.934	30	(222)	equation.Geochimica et Cosmochimica
29.125	3.063	16	(210)	48.330	1.882	15	(312)	Acta.54.2323-2328.
31.954	2.798	100	(211)	48.943	1.859	5	(320)	
32.278	2.771	47	(112)	49.625	1.835	36	(213)	
33.129	2.702	55	(300)	50.822	1.795	18	(321)	
34.167	2.622	26	(202)	51.634	1.769	16	(410)	
35.674	2.515	4	(301)	52.363	1.746	14	(402)	
39.356	2.287	7	(212)	53.229	1.719	0	(084)	

(Ca Mg Na) (PO4) (CO3) (SO4) F 9,901 0,028 0,072 5,675 0,307 0,018 2,123

20	d(Â)	l/lo	hki	20	d(Â)	l/lo	hkl	Amostra: IR-AL-3
10.907	8.105	6	(100)	48.078	2.248	25	(310)	Nome : Carbonato Fluorapatito a0 • 9.3587 ± 0.0077
16.893	6.244	4	(101)	48.699	2.215	4	(221)	c0 : 6.8773 ± 0.0103
18.949	4.679	3	(110)	42.261	2.137	6	(311)	c0/a0 : 0,7349
21.914	4.052	6	(200)	42.517	2.124	3	(302)	V : 521,651Ű
22.968	3.869	6	(111)	43.944	2.059	6	(113)	0,311 % de CO3"*
25.490	3.491	5	(201)	44.685	2.026	3	(400)	Radiação:CuKal=1.54051
25.888	3.439	29	(882)	45.416	1.995	2	(203)	* Schutfert et al.(1990). Carbonate-ion
28.166	3.166	11	(102)	46.931	1.934	29	(222)	substitution in francoite: A new equation Geochimica et Cosmochimica
29.126	3.063	19	(210)	48.331	1.882	15	(312)	Acta.54.2323-2328.
31.955	2.798	100	(211)	48.945	1.859	6	(320)	
32.279	2.771	45	(112)	49.627	1.835	35	(213)	
33.131	2.702	56	(300)	50.824	1.795	19	(321)	
34.168	2.622	24	(202)	51.636	1.769	16	(410)	
35.675	2.515	2	(301)	52.365	1.746	15	(402)	A CONTRACT
39.358	2.287	6	(212)	53.230	1.719	16	(004)	6

[Ca Mg Na] [PO4] [CO3] [SO4] F 9,897 0.029 0.074 5,665 0.317 0.018 2,127

Projeto Integrado de Pesquisa

l/lo	hkl	20	d(Å)	l/lo	hkl	Amostra: LG-2
2	(100)	40.155	2.244	29	(310)	Nome : Carbonato Fluorapatita
1	(101)	40.763	2.212	1	(221)	c0 : 6.887 ± 0.0093
1	(110)	42.329	2.133	8	(311)	c0/a0 : 0.7372
8	(200)	42.544	2.123	4	(302)	V : 520,456Ű
3	(111)	43.908	2.060	5	(113)	4,056 % de CO ₃ ² *
1	(201)	44.772	2.022	2	(400)	Radiação:CuKa1=1.54051
27	(082)	45.387	1.997	1	(203)	* Schuffert et al.(1990). Carbonate-ion
10	(102)	46.971	1.933	30	(222)	substitution in francoite: A new equation Geochimica et Cosmochimica
18	(210)	48.377	1.880	16	(312)-	Acta.54.2323-2328.
180	(211)	49.041	1.856	1	(320)	
41	(112)	49.614	1.836	36	(213)	
70	(380)	50.913	1.792	16	(321)	1
24	(202)	51.738	1.765	16	(410)	X
5	(301)	62.422	1.744	15	(402)	
8	(212)	53.150	1.722	14	(004)	Comment
1	10 2 1 1 8 3 1 27 10 18 100 41 70 24 5 8	IO Inkl 2 (100) 1 (101) 1 (110) 8 (200) 3 (111) 1 (201) 27 (002) 18 (210) 190 (211) 41 (112) 70 (380) 24 (202) 5 (301) 8 (212)	IO Fikl 20 2 (100) 40.155 1 (101) 40.763 1 (110) 42.329 8 (200) 42.544 3 (111) 43.908 1 (201) 44.772 27 (002) 45.387 10 (102) 46.971 18 (210) 48.377 100 (211) 49.641 41 (112) 49.514 70 (300) 50.913 24 (202) 51.738 5 (301) 52.422 8 (212) 53.150	Io hkl 20 d(A) 2 (100) 40.155 2.244 1 (101) 40.763 2.212 1 (101) 42.329 2.133 8 (200) 42.544 2.123 3 (111) 43.908 2.060 1 (201) 44.772 2.022 27 (002) 45.387 1.997 10 (102) 46.971 1.933 18 (210) 48.377 1.880 100 (211) 49.614 1.856 41 (112) 49.514 1.836 70 (300) 50.913 1.792 24 (202) 51.738 1.765 5 (301) 52.422 1.744 8 (212) 53.150 1.722	IO IKI 20 d(A) I/IO 2 (100) 40.155 2.244 29 1 (101) 40.763 2.212 1 1 (110) 42.329 2.133 8 8 (200) 42.544 2.123 4 3 (111) 43.908 2.060 5 1 (201) 44.772 2.022 2 27 (002) 45.387 1.997 1 10 (102) 46.971 1.933 30 18 (210) 48.377 1.880 16 100 (211) 49.614 1.836 36 70 (300) 50.913 1.792 16 24 (202) 51.738 1.765 16 5 (301) 52.422 1.744 15 8 (212) 53.150 1.722 14	Io hkl 20 d(A) l/lo hkl 2 (100) 40.155 2.244 29 (310) 1 (101) 40.763 2.212 1 (221) 1 (110) 42.329 2.133 8 (311) 8 (200) 42.544 2.123 4 (302) 3 (111) 43.908 2.060 5 (113) 1 (201) 44.772 2.022 2 (400) 27 (002) 45.387 1.997 1 (203) 10 (102) 46.971 1.933 30 (222) 18 (210) 48.377 1.880 16 (312) 41 (112) 49.614 1.836 36 (213) 70 (380) 50.913 1.792 16 (321) 24 (202) 51.738 1.765 16 (410) 5 (301) 52.422

(Ca Mg Na) (PO4) (CO3) (SO4) F 9,725 0,077 0,198 5,172 0,778 0,049 2,311

Projeto Integrado de Pesquisa

Amostra: RO-C	hkl	Ию	d(Å)	20	hkl	l/lo	d(Å)	20
Nome : Fluorapatita a0 · 9.3701 ± 0.0042	(310)	31	2.251	40.027	(100)	8	8.115	10.893
c0 : 6,8847 ± 0,0052	(221)	4	2.218	40.648	(101)	4	5.258	16.874
c0/a0 : 0,7348	(311)	9	2.139	42.208	(110)	2	4.685	18.926
V : 523,489Å ²	(302)	4	2.127	42.465	(200)	12	4.057	21.887
0,201 % de CO3**	(113)	6	2.061	43.893	(111)	9	3.873	22.941
Radiação:CuKa1=1.54051	(400)	3	2.029	44.628	(201)	4	3.496	25.460
 Schuffert et al.(1990). Carbonate- 	(203)	6	1.998	45.363	(002)	49	3.442	25.860
substitution in francoite: A new equation.Geochimica et Cosmochim	(222)	32	1.937	46.872	(102)	13	3.169	28.134
Acta.54.2323-2328.	(312).	20	1.884	48.271	(210)	19	3.067	29.089
	(320)	6	1.862	48.881	(211)	100	2.802	31.916
	(213)	41	1.837	49.567	(112)	44	2.774	32.242
	(321)	23	1.797	50.758	(300)	56	2.705	33.089
X	(410)	20	1.771	61.568	(202)	29	2.625	34.128
10	(402)	21	1.748	52.298	(301)	5	2.518	35.631
é de la companya de l	(084)	25	1.721	53.169	(212)	7	2.290	39.310

Ca (PO4) F

20	d(Â)	l/lo	hkl	20	d(Â)	Ию	hkl	Amostra: RO-AM
10.900	8.110	7	(100)	40.051	2.249	23	(310)	a0 : 9,3646 ± 0.0108
16.882	5.247	4	(101)	40.672	2.216	5	(221)	c0 : 6,882 ± 0,0093
18.937	4.682	2	(110)	42.233	2.138	6	(311)	c0/a0 : 0,7349
21.900	4.055	6	(200)	42.488	2.126	2	(302)	V : 522,662Ű
22.953	3.871	6	(111)	43.913	2.060	5	(113)	0,376 % de CO3**
25.474	3.494	4	(201)	44.656	2.027	4	(400)	Radiação:CuKa1=1.54051
25.870	3.441	29	(002)	45.384	1.997	6	(203)	* Schuffert et al.(1990). Carbonate-ion
28.147	3.168	11	(102)	46.898	1.936	27	(222)	equation.Geochimica et Cosmochimica
29.107	3.065	14	(210)	48.298	1.883	13	(312)	Acta.54.2323-2328.
31.934	2.800	100	(211)	48.912	1.861	5	(320)	
32.257	2.773	46	(112)	49.592	1.837	32	(213)	
33.109	2.703	54	(300)	50.790	1.796	16	(321)	
34.145	2.624	23	(202)	51.601	1.770	16	(410)	
35.661	2.616	6	(301)	52.329	1.747	13	(402)	
39.331	2.289	8	(212)	53.192	1.720	14	(004)	

[Ca Mg Na) [PO4] [CO3] [SO4] F 9,956 0,012 0,032 5,853 0,14 0,008 2,056

Projeto Integrado de Pesquisa

Amostra: RO-AM-8	hkl	l/lo	d(Â)	20	hkl	٧lo	d(Å)	20
Nome : Fluorapatita	(310)	26	2.250	40.030	(100)	5	8.114	10.894
c0 : 6.8849 ± 0.0152	(221)	7	2.218	40.650	(101)	5	5.250	16.874
c0/a0 : 0,7348	(311)	10	2.139	42.211	(110)	3	4.885	18.927
V : 523,425Å*	(302)	6	2.127	42.467	(200)	6	4.057	21.889
0,301 % de CO3 **	(113)	8	2.061	43.893	(111)	6	3.873	22.942
Radiação:CuKa1=1.54051	(400)	4	2.029	44.631	(201)	5	3.495	25.461
* Schuffert et al.(1990). Carbonate-	(203)	8	1.998	45.363	(002)	34	3.442	25.859
substitution in francoite: A new equation Geochimica et Cosmochin	(222)	29	1.937	46.874	(102)	10	3.169	28.134
Acta 54.2323-2328.	(312)	15	1.884	48.273	(210)	14	3.067	29.092
·	(320)	6	1.862	48.885	(211)	100	2.601	31.917
	(213)	40	1.837	49.568	(112)	47	2.774	32.242
1-1-1	(321)	16	1.797	50.762	(300)	56	2.705	33.092
	(410)	12	1.771	51.572	(202)	25	2.625	34.129
	(482)	14	1.748	52.301	(301)	6	2.517	35.633
44	(004)	16	1.721	53.167	(212)	10	2.290	39.311

Metalogênese das Coberturas Proterozóicas Caracterização e Origem da Fosforita de Irecê , Ba

Ca (PO4) F

Projeto Integrado de Pesquisa

20	d(Å)	Ию	hkl	20	d(Å)	Ию	hkl	Amostra: RO-AM09
10.896	8.113	4	(100)	40.036	2.250	27	(310)	Nome : Fluorapatita
16.875	5.249	4	(101)	40.656	2.217	5	(221)	c0 : 6.8847 + 0.0132
18.930	4.684	4	(110)	42.217	2.139	1	(311)	c0/a0 : 0.7349
21.892	4.057	7	(200)	42.471	2.127	2	(302)	V : 523,264Å*
22.944	3.873	7	(111)	43.895	2.061	6	(113)	0,421 % de CO3 *
25.464	3.495	5	(201)	44.638	2.028	3	(400)	Radiação:CuKa1=1.54051
25.860	3.442	35	(002)	45.365	1.997	4	(203)	* Schuffert et al.(1990). Carbonate-ion
28.135	3.169	13	(102)	46.879	1.936	32	(222)	substitution in francoite: A new
29.096	3.066	18	(210)	48.279	1.883	15	(312)	Acta.54.2323-2328.
31.921	2.801	100	(211)	48.892	1.861	6	(320)	
32.244	2.774	47	(112)	49.571	1.837	40	(213)	
33.096	2.704	55	(300)	50.769	1.797	18	(321)	
34.131	2.625	27	(202)	51.580	1.770	14	(410)	
35.638	2.517	6	(301)	52.307	1.747	14	(402)	a start
39.316	2.290	9	(212)	53.169	1.721	21	(004)	1

[Ca Mg Na] (PO4) (CO3) (SO4) F 9,991 0,003 0,006 5,969 0,029 0,002 2,012

	4(8)	1.0.		20	4(8)	1.00	Intel	Amostra: BO AM11
20	(A)	1010	пкі	20	(A)	11/10	nki	Amostra: RO-AWITI
10.897	8.112	7	(100)	40.041	2.250	23	(310)	a0 : 9,3669 ± 0.0125
16.870	6.251	4	(101)	40.658	2.217	5	(221)	c0 : 6.8887 ± 0.0119
18.932	4.683	2	(110)	42.219	2.139	8	(311)	c0/a0 : 0,7354
21.894	4.056	8	(200)	42.465	2.127	4	(302)	V : 523,438Å*
22.942	3.873	6	(111)	43.874	2.062	1	(113)	1,186 % de CO3 *
25.462	3,495	4	(201)	44.644	2.028	2	(400)	Radiação:CuKa1=1.54051
25.844	3.444	32	(002)	45.345	1.998	6	(203)	* Schuffert et el.(1990). Carbonate-ion
28.122	3.170	10	(102)	46.875	1.937	30	(222)	substitution in francolite: A new equation.Geochimica et Cosmochimica
29.099	3.066	15	(210)	48.274	1.884	16	(312)	Acta 54 2323-2328.
31.922	2.801	100	(211)	48.899	1.861	4	(320)	
32.233	2.775	5	(112)	49.554	1.838	37	(213)	
33.101	2.704	60	(300)	50.773	1.797	15	(321)	
34.121	2.625	28	(202)	51.587	1.770	14	(410)	
35.639	2.517	2	(301)	52.304	1.748	14	(402)	
39.307	2.290	9	(212)	53.135	1.722	18	(004)	
		1				1		· · ·

Metalogênese das Coberturas Proterozóicas da Eneforita da Iracá Da

[Ca Mg Na] (PO4) (CO3) (SO4) F 9,98 0,006 0,015 5,93 0,066 0,004 2,026

Projeto Integrado de Pesquisa

20	d(Â)	Ию	hkl	20	d(Â)	VIo	hkl	Amostra: RO-AM12
10.892	8.116	7	(100)	40.021	2.251	24	(310)	Nome : Fluorapatita
16.873	5.250	4	(101)	40.643	2.218	5	(221)	c0 : 6.8849 ± 0.0149
18.923	4.686	3	(110)	42.203	2.139	8	(311)	c0/a0 : 0.7347
21.884	4.858	7	(200)	42.461	2.127	9	(302)	V : 523,64Ű
22.939	3.874	7	(111)	43.891	2.061	8	(113)	0,095 % de CO3**
25.457	3.496	2	(201)	44.622	2.029	3	(400)	Radiação:CuKa1=1.54051
25.859	3.442	32	(082)	45.360	1.998	6	(203)	* Schuffert et al.(1990). Carbonate-ion
28.133	3.169	11	(182)	46.867	1.937	29	(222)	substitution in francolite: A new equation Geochimica et Cosmochimica
29.886	3.067	17	(210)	48.266	1.884	17	(312)	Acta 54.2323-2328.
31.912	2.802	100	(211)	48.874	1.862	6	(320)	
32.239	2.774	47	(112)	49.564	1.838	42	(213)	
33.885	2.705	54	(300)	50.762	1.797	17	(321)	
34.126	2.625	26	(202)	51.561	1.771	15	(410)	
35.626	2.518	7	(301)	52.293	1.748	15	(402)	
39.307	2.290	8	(212)	53.167	1.721	19	(004)	· · · ·

. .

Ca (PO4) F

- -

28	d(Å)	1/lo	hkl	20	d(Â)	Ию	hkl	Amostra: RO-AM13
10.899	8.111	8	(100)	40.047	2.250	28	(310)	Nome : Carbonato Fluorapatita a0 · 9.3655 ± 0.01
16.875	5.249	8	(101)	40.666	2.217	9	(221)	c0 : 6.8861 ± 0.01
18.935	4.683	7	(110)	42.227	2.138	13	(311)	c0/a0 : 0,7353
21.898	4.055	13	(200)	42.475	2.126	6	(302)	V : 523,076Ű
22.947	3.872	12	(111)	43.890	2.061	9	(113)	0,935 % de CO3 *
25.468	3.494	11	(201)	44.651	2.028	5	(400)	Radiação:CuKa1=1.54051
25.854	3.443	34	(002)	45.361	1.998	7	(203)	* Schuffert et al.(1990). Carbonate-ion
28.131	3.169	17	(102)	46.886	1.936	31	(222)	substitution in francoite: A new equation.Geochimica et Cosmochimica
29.104	3.066	20	(210)	48.286	1.883	15	(312)	Acta.54.2323-2328.
31.928	2.801	100	(211)	48.907	1.861	7	(320)	
32.243	2.774	48	(112)	49.570	1.837	35	(213)	
33.106	2.704	69	(300)	50.783	1.796	15	(321)	
34.131	2.625	27	(202)	61.595	1.770	16	(418)	
35.646	2.517	12	(301)	52.316	1.747	17	(402)	
39.318	2.290	15	(212)	53.157	1.722	15	(004)	é

(Ca Mg Na) (PO4) (CO3) (SO4) F 9,965 0,01 0,025 5,881 0,112 0,006 2,045

		T	1]			1	1	
9	d(A)	I/Io	hki	20	d(A)	INO	hki	Amostra: RO-AM16
898	8.111	6	(100)	40.044	2.250	23	(310)	Nome : Carbonato Fluorapatita a0 · 9.3662 ± 0.0144
879	5.248	2	(101)	40.664	2.217	1	(221)	c0 : 6.8835 ± 0.0168
933	4.683	1	(110)	42.225	2.138	8	(311)	c0/a0 : 0,7349
896	4.056	6	(200)	42.480	2.126	6	(302)	V : 522,961Ű
949	3.872	8	(111)	43.903	2.060	6	(113)	0,43 % de CO3 ² *
469	3.494	1	(201)	44.647	2.028	1	(400)	Radiação:CuKa1=1.54051
864	3.442	35	(002)	45.374	1.997	5	(203)	* Schuffert et al.(1990). Carbonate-ion
140	3.168	12	(102)	45.889	1.936	26	(222)	substitution in francoite: A new equation.Geochimica et Cosmochimica
102	3.066	16	(210)	48.289	1.883	16	(312)	Acta.54.2323-2328.
928	2.801	1	(211)	48.902	1.861	2	(320)	· · · · · ·
250	2.773	45	(112)	49.581	1.837	38	(213)	
103	2.704	61	(300)	50.780	1.796	17	(321)	
138	2.624	26	(202)	51.591	1.778	13	(410)	
645	2.517	8	(301)	52.318	1.747	13	(402)	
323	2.289	9	(212)	53.179	1.721	19	(004)	1 and the second

(Ca Mg Na) (PO4) (CO3) (SO4) F 9,973 0,008 0,02 5,907 0,088 0,005 2,035

Projeto Integrado de Pesquisa

Metalogênese das Coberturas Proterozóicas

20	d(Â)	VIo	hkl	20	d(Â)	i/lo	hkl	Amostra: YH-386
10.917	8.098	6	(100)	40.115	2.246	25	(310)	Nome : Carbonato Fluorapatita an · 9.3503 ± n nng3
16.879	5.248	3	(101)	40.724	2.214	2	(221)	c0 : 6.8916 ± 0.0066
18.966	4.675	3	(110)	42.289	2.135	7	(311)	c0/a0 : 0,737
21.934	4.049	11	(200)	42.507	2.125	4	(302)	V : 521,79Ű
22.967	3.869	9	(111)	43.875	2.062	8	(113)	3,741 % de CO3"*
25.494	3.491	54	(201)	44.728	2.024	1	(400)	Radiação:CuKa1=1.54051
25.834	3.446	42	(002)	45.351	1.998	5	(203)	* Schuffert et al.(1990). Carbonate-ion
28.119	3.171	16	(102)	46.929	1.934	25	(222)	eguation.Geochimica et Cosmochimica
29.153	3.061	22	(210)	48.332	1.882	13	(312)	Acta 54.2323-2328.
31.968	2.797	100	(211)	48.992	1.858	2	(320)	
32.245	2.774	51	(112)	49.574	1.837	38	(213)	
33.161	2.699	57	(300)	50.862	1.794	14	(321)	
34.139	2.624	27	(202)	51.686	1.767	14	(410)	X
36.694	2.513	6	(301)	53.112	1.723	16	(004)	
39.341	2.288	8	(212)					-
	· · · · · · · · · · · · · · · · · · ·	1						

.

.

. .

- -

.... -

(Ca Mg Na) (PO4) (CO3) (SO4) F 9,813 0,052 0,134 5,415 0,552 0,033 2,221

Projeto Integrado de Pesquisa

Amostra: YH-387	hkl	l/lo	d(Â)	20	hki	l/lo	d(Â)	20
Nome : Carbonato Fluorapat a0 · 9.3473 ± 0.0093	(310)	21	2.245	40.129	(100)	5	8.095	10.920
c0 : 6.8889 ± 0.0101	(221)	2	2.213	40.738	(101)	3	5.246	16.885
c0/a0 : 0.737	(311)	6	2.135	42.303	(110)	1	4.674	18.972
V : 521,252Ű	(302)	9	2.124	42.522	(200)	6	4.047	21.941
3,631 % de CO ₃ ²⁻ *	(113)	4	2.061	43.892	(111)	5	3.868	22.975
Radiação:CuKa1=1.54051	(400)	2	2.024	44.743	(201)	2	3.490	25.503
* Schutfert et al.(1990). Carbonate-k	(203)	4	1.997	45.369	(002)	37	3.444	25.844
substitution in francoite: A new equation Geochimica et Cosmochimi	(222)	22	1.934	46.946	(102)	9	3.169	28.130
Acte 54 2323-2328	(312)	12	1.881	48.350	(210)	14	3.060	29.162
	(320)	3	1.857	49.008	(211)	100	2.796	31.979
	(213)	31	1.837	49.593	(112)	46	2.773	32.257
1	(321)	13	1.793	50.880	(300)	51	2.698	33.172
X	(410)	10	1.766	51.703	(202)	23	2.623	34.152
2	(402)	11	1.745	52.392	(301)	5	2.512	35.706
	(004)	12	1.722	53.134	(212)	6	2.287	39.355

Motologânaco dos Coherturos Protorozóicos

(Ca Mg Na) (PO4) (CO3) (SO4) F 9,784 0,06 0,156 5,331 0,63 0,039 2,252

Projeto Integrado de Pesquisa

nostra: YH-402	hkl	Ию	d(Â)	20	hkl	Ию	d(Â)	20
ome : Carbonato Fluorapati 9,3469 ± 0.0135	(310)	23	2.245	40.131	(100)	6	8.095	10.921
: 6.8829 ± 0.0186	(221)	2	2.213	40.743	(101)	4	5.244	16.894
Va0 : 0,7364	(311)	6	2.134	42,309	(110)	2	4,673	18.973
: 520,756Ű	(302)	7	2.123	42.538	(200)	7	4.847	21.942
2,606 % de CO3**	(113)	5	2.059	43.925	(111)	12	3.866	22.982
diação:CuKa1=1.54051	(400)	1	2.024	44.745	(201)	3	3.489	25.509
Schuffert et al.(1990). Carbonate-io	(203)	4	1.996	45.401	(002)	42	3.441	25.867
substitution in francolite: A new quation Geochimica et Cosmochimi	(222)	26	1.933	46.961	(102)	15	3.167	28.152
Acta 54.2323-2328.	(312)	13	1.880	48.365	(210)	15	3.059	29.163
	(320)	2	1.857	49.010	(211)	108	2.796	31.985
	(213)	31	1.836	49.623	(112)	60	2.771	32.276
	(321)	13	1.793	50.885	(300)	54	2.698	33.174
X	(410)	12	1.766	51.706	(202)	28	2.622	34.170
	(402)	10	1.744	52.486	(301)	4	2.512	35.711
for the second s	(004)	15	1.721	53.184	(212)	8	2.287	39.372

Metalogênese das Coberturas Proterozóicas

(Ca Mg Na) (PO4) (CO3) (SO4) F 9,78 0,062 0,159 5,32 0,64 0,039 2,256

20	d(Å)	I/lo	hkl	20	d(Â)	l/lo	hkl	Amostra: YH-460
10.910	8.102	10	(100)	40.092	2.247	20	(310)	Nome : Carbonato Fluorapatita a0 · 9.3556 ± 0.0108
16.871	5.251	7	(101)	40.701	2.215	3	(221)	c0 : 6.8945 ± 0.0102
18.955	4.678	2	(110)	42.264	2.137	7	(311)	c0/a0 : 0.7369
21.921	4.051	13	(200)	42.484	2.126	3	(302)	V : 522,604Ű
22.955	3.871	13	(111)	43.854	2.063	7	(113)	3,585 % de CO3 *
26.480	3.493	6	(201)	44.701	2.026	2	(400)	Radiação:CuKc1=1.54051
25.822	3.447	43	(002)	45.329	1.999	7	(203)	* Schuffert et al.(1990). Carbonate-ion
28.107	3.172	19	(102)	46.903	1.935	24	(222)	substitution in francolte: A new equation Geochimica et Cosmochimica
29.136	3.062	21	(210)	48.305	1.882	12	(312)	Acta 54.2323-2328
31.950	2.799	100	(211)	48.962	1.859	3	(320)	
32.229	2.775	46	(112)	49.549	1.838	29	(213)	
33.142	2.701	56	(300)	58.832	1.795	15	(321)	
34.122	2.625	30	(202)	51.654	1.768	12	(410)	
35.673	2.515	8	(301)	52.343	1.746	13	(402)	
39.320	2.289	9	(212)	53.087	1.724	14	(004)	-

[Ca Mg Na] [PO4] [CO3] [SO4] F 9,866 0,037 0,036 5,569 0,407 0,024 2,163

20	d(Å)	l/lo	hki	20	d(Â)	I/lo	hkl	Amostra: YH-568
10.921	8.094	6	(100)	40.132	2.245	24	(310)	Nome : Carbonato Fluorepatita 30 · 9.3465 ± 0.0106
16.877	5.249	5	(101)	40.737	2.213	0	(221)	c0 : 6.8948 ± 0.0071
18.974	4.673	0	(110)	42.303	2.135	3	(311)	c0/a0 : 0.7377
21.943	4.047	5	(200)	42.510	2.125	3	(302)	V : 521,619Ű
22.970	3.868	7	(111)	43.861	2.062	3	(113)	4,862 % de CO ₃ ² *
25.499	3.490	9	(201)	44.747	2.024	3	(400)	Radiação:CuKa1=1.54051
25.821	3.447	33	(002)	45.339	1.999	2	(203)	* Schuffert et al.(1990). Carbonate-ion
28.110	3.172	15	(102)	46.935	1.934	26	(222)	substitution in francoite: A new equation.Geochimica et Cosmochimica
29.165	3.059	15	(210)	48.339	1.881	9	(312)	Acta.54.2323-2328.
31.977	2.796	100	(211)	49.013	1.857	2	(320)	
32.239	2.774	62	(112)	49.565	1.838	29	(213)	
33.175	2.698	54	(300)	50.881	1.793	13	(321)	
34.135	2.624	22	(202)	61.708	1.766	6	(410)	X
35.704	2.513	3	(301)	52.383	1.745	9	(402)	
39.341	2.288	3	(212)	53.085	1.724	14	(004)	é

(Ca Mg Na) (PO4) (CO3) (SO4) F 9,776 0,063 0,161 5,309 0,65 0,04 2,26

stra: YH-606	hkl	VIo	d(Â)	20	hkl	l/lo	d(Â)	20
 9,3509 ± 0.0104 	(310)	20	2.246	40.113	(100)	6	8.098	10.916
: 6.8905 ± 0.0129	(221)	3	2.214	40.722	(101)	5	5.248	16.880
0 : 0,7369	(311)	8	2.135	42.287	(110)	3	4.675	18.965
: 521,775Ű	(382)	2	2.125	42.508	(200)	5	4.049	21.933
3,461 % de CO3 *	(113)	8	2.862	43.880	(111)	4	3.869	22.968
iação:CuKα1=1.54051	(400)	4	2.025	44.725	(201)	5	3.491	25.494
nuffert et al.(1990). Carbonate-ior	(203)	4	1.998	45.356	(002)	37	3.445	25.838
substitution in francoite: A new ation.Geochimica et Cosmochimic	(222)	27	1.934	45.929	(102)	14	3.170	28.123
Acta 54.2323-2328	(312)	11	1.882	48.332	(210)	13	3.061	29.151
	(320)	3	1.858	48.988	(211)	100	2.797	31.967
	(213)	31	1.837	49.578	(112)	42	2.774	32.248
	(321)	12	1.794	50.860	(300)	48	2.699	33.159
X	(418)	12	1.767	51.682	(202)	23	2.524	34.141
	(482)	12	1.745	52.372	(301)	6	2.613	35.692
1	(004)	18	1.723	53.121	(212)	8	2.288	39.342

Metalogênese das Coberturas Proterozóicas

[Ca Mg Na) [PO4] (CO3] (SO4) F 9,819 0,05 0,13 5,432 0,536 0,032 2,214

Projeto Integrado de Pesquisa

20	d(Â)	I/lo	hki	20	d(Â)	l/lo	hkl	Amostra: CF-IS
10.930	8.088	1	(100)	40.165	2.243	21	(310)	Nome : Carbonato Fluorapatita a0 9,3393 + 0,0006
16.899	5.242	5	(101)	40.774	2.211	5	(221)	c0 : 6 8839 + 0 0050
18.989	4.670	4	(110)	42.341	2.133	8	(311)	c0/a0 : 0.7371
21.960	4.844	7	(200)	42.558	2.122	7	(302)	V : 519.984Ű
22.994	3.864	9	(111)	43.927	2.059	8	(113)	3,766 % de CO3 *
25.524	3.487	5	(201)	44.783	2.022	3	(400)	Radiação:CuKa1=1.54051
25.863	3.442	37	(002)	45.406	1.996	6	(203)	* Schuffert et al.(1990). Carbonate-ion
28.152	3.167	14	(102)	46.986	1.932	23	(222)	substitution in francoite: A new
29.188	3.857	17	(210)	48.392	1.879	16	(312)	Acta 54 2323-2328.
32.007	2.794	100	(211)	49.053	1.856	7	(320)	L.
32.283	2.771	41	(112)	49.634	1.835	32	(213)	+
33.202	2.696	49	(300)	50.926	1.792	16	(321)	
34.179	2.621	27	(202)	51.751	1.765	15	(418)	
35.737	2.510	6	(301)	52.438	1.743	13	(402)	
39.388	2.286	7	(212)	53.176	1.721	23	(004)	1 and the second

(Ca Mg Na) (PO4) (CO3) (SO4) F 9,704 0.083 0.213 5,116 0,831 0,053 2,332

20	d(Â)	1/lo	hki	20	d(Â)	l/lo	hkl	Amostra: CF-MA
10.940	8.080	9	(100)	40.206	2.241	22	(310)	Nome : Carboneto Fluorapetita 9.3302 + 0.0031
16.898	5.242	6	(101)	40.808	2.209	5	(221)	c0 : 6.8893 ± 0.0085
19.007	4.665	4	(110)	42.376	2.131	7	(311)	c0/a0 : 0,7384
21.982	4.040	6	(200)	42.572	2.122	5	(302)	V : 519,381Ű
23.004	3.863	7	(111)	43.906	2.060	8	(113)	6,08 % de CO ₃ ² *
25.638	3.485	6	(201)	44.829	2.020	4	(400)	Radiação:CuKa1=1.54051
25.842	3.445	41	(002)	45.388	1.996	5	(203)	* Schuffert et el.(1990). Carbonate-ion
28.137	3.169	13	(102)	47.007	1.931	23	(222)	substitution in francoite: A new equation Geochimica et Cosmochimica
29.217	3.054	23	(210)	48.415	1.878	18	(312)	Acta.54.2323-2328.
32.029	2.792	100	(211)	49.104	1.854	8	(320)	
32.277	2.771	51	(112)	49.626	1.835	37	(213)	
33.235	2.693	50	(300)	50.973	1.790	18	(321)	
34.178	2.621	29	(202)	51.805	1.763	15	(410)	
35.764	2.508	6	(301)	52.468	1.743	15	(402)	8
39.396	2.285	13	(212)	63.131	1.722	16	(004)	•

(Ca Mg Na) (PO4) (CO3) (SO4) F 9,513 0,108 0,279 4,89 1,041 0,069 2,415

- -

. .

-

-

.

. .

Projeto Integrado de Pesquisa

20	d(Å)	I/lo	hkl	20	d(Å)	l/lo	hkl	Amostra: CF-TG
10.925	8.092	9	(100)	40.146	2.244	24	(310)	Nome : Carbonato Fluorapatita
16.897	5.243	6	(101)	40.758	2,212	7	(221)	c0 : 6.8824 + 0.0152
18.980	4.672	4	(110)	42.324	2.134	6	(311)	c0/a0 : 0.7366
21.950	4.046	1	(200)	42.550	2.123	7	(302)	V : 520,336Å*
22.989	3.865	8	(111)	43.931	2.059	7	(113)	2,959 % de CO3 *
25.517	3.488	5	(201)	44.762	2.023	3	(408)	Radiação:CuKa1=1.54051
25.869	3.441	34	(002)	45.408	1.996	7	(203)	* Schuttert et al.(1990). Carbonate-ion
28.155	3.167	16	(102)	46.974	1.933	27	(222)	substitution in francoite: A new equation Geochimica et Cosmochimica
29.174	3.058	15	(210)	48.379	1.880	19	(312)	Acta 54,2323-2328.
31.995	2.795	100	(211)	49.030	1.856	8	(320)	1
32.282	2.771	50	(112)	49.633	1.835	40	(213)	
33.186	2.697	54	(300)	58.904	1.792	18	(321)	
34.177	2.621	28	(202)	51.726	1.766	17	(418)	
35.723	2.511	6	(301)	52.423	1.744	17	(402)	0
39.382	2.286	11	(212)	53.188	1.721	23	(004)	a comment

[Ca Mg Na] (PO4) (CO3) (SO4) F 9,746 0,071 0,183 5,226 0,728 0,046 2,291

