
Universidade Federal da Bahia
Escola Politécnica / Instituto de Matemática

Programa de Pós-Graduação em Mecatrônica

FLÁVIA MARISTELA SANTOS NASCIMENTO

A SIMULATION-BASED FAULT RESILIENCE

ANALYSIS FOR REAL-TIME SYSTEMS

DISSERTAÇÃO DE MESTRADO

Salvador
2009

FLÁVIA MARISTELA SANTOS NASCIMENTO

A SIMULATION-BASED FAULT RESILIENCE ANALYSIS FOR

REAL-TIME SYSTEMS

Dissertação apresentada ao Programa de Pós-Graduação

em Mecatrônica da Escola Politécnica e do Instituto de

Matemática, Universidade Federal da Bahia, como requi-

sito parcial para obtenção do grau de Mestre.

Orientador: Prof. Dr. George Marconi de Araújo Lima

Co-orientadora: Profa. Dra. Verônica Maria Cadena Lima

Salvador

2009

 Sistemas de Bibliotecas - UFBA

 Nascimento, Flávia Maristela Santos.
 A simulation-based fault resiliense analysis for real-time systems / Flávia Maristela
 Santos Nascimento. - 2009.
 104 f.

 Orientador: Prof. Dr. George Marconi Lima.
 Co-orientadora: Profa. Dra. Verônica Maria Cadena Lima.
 Dissertação (mestrado) - Universidade Federal da Bahia, Instituto de Matemática e
 Escola Politécnica, Salvador, 2009.

 1. Programação em tempo real. 2. Controle em tempo real. 3. Tolerancia a falha
 (Computação). 4. Distribuição (Probabilidades). I. Lima, George Marconi. II. Lima,
 Verônica Maria Cadena. III. Universidade Federal da Bahia. Instituto de Matemática.
 IV. Universidade Federal da Bahia. Escola Politécnica. V. Título.

 CDD - 004.33
 CDU - 681.3.014

A Romildo, pelo incentivo, paciência e amor constante.
A Avanir, Edgar e Flávio, pedras fundamentais.

Aprender é a única coisa de que a mente nunca se cansa, nunca tem

medo e nunca se arrepende.

—LEONARDO DA VINCI

AGRADECIMENTOS

Inicialmente, agradeço a Deus, por ter me guiado para superar todas as adversidades

que aconteceram nesta fase. Agradeço a minha mãe Avanir, porque há muito tempo ela

é a maior responsável por todas minhas conquistas. Para você, mãe, minha reverência.

A meu pai, Edgar, simplesmente por estar vivo. A Flávio, meu querido irmão, sempre

atento, sempre zeloso. À Romildo, um presente de Deus, pelos momentos indescrit́ıveis

de apoio, incentivo, cuidado, paciência e amor. Pelas madrugadas em que insistia em

ficar acordado para me fazer companhia, pelos códigos que me ajudou a depurar, pelos

mimos e surpresas, que vou guardar com especial carinho.

Agradeço aos amigos, que apesar da distância sempre se fizeram presentes, fosse para

me ouvir ou para não me deixar esquecer de minhas obrigações e objetivos: Fabiano

Almeida, Danuza Neiva, Marcos Camada, Ecivaldo Matos e Talmai Oliveira. Ao meu

amigo e padrinho, Pablo Vieira e àquele sempre disposto a tirar um sorriso a qualquer

custo, Flávio Campos.

A meu orientador, George Lima, pela forma com que conduziu o trabalho, sempre

encontrando algum tempo para me ouvir, mesmo diante de tantas atribuições. Sua

paciência, empenho e dedicação foram fundamentais para a realização deste trabalho.

Sempre vou guardar comigo seus ensinamentos, principalmente o cuidado em todas as

revisões de texto e artigos e a constante preocupação com a qualidade.

À Verônica Lima, pela paciência em me mostrar os viés da Estat́ıstica e pelo cuidado

especial nos detalhes finais.

A todos os professores e funcionários do PPGM pelo apoio na realização deste tra-

balho.

7

CONTENTS

Chapter 1—Introduction 3

Chapter 2—Real Time Systems and Fault Tolerance 7

2.1 Real-Time Systems Structure . 7
2.1.1 Tasks . 7
2.1.2 Scheduling Policies . 9

2.1.2.1 Fixed-Priority Scheduling Policies 10
2.1.2.2 Dynamic-Priority Scheduling Policies 11

2.1.3 Schedulability Analysis . 12
2.1.3.1 Processor Utilization Analysis 13
2.1.3.2 Response Time Analysis 15

2.2 Fault-Tolerant Real-Time Systems . 17
2.2.1 Fault Tolerance Overview . 17
2.2.2 Temporal Redundancy Techniques for Real-Time Systems 19

2.3 Summary . 23

Chapter 3—A Simulation-Based Approach 24

3.1 System Model and Notation . 24
3.2 On the Fault Resilience Metric . 25
3.3 Simulation Environment . 29
3.4 Simulation Scenarios . 31

3.4.1 The Concept of Simulation Scenarios 32
3.4.2 Useful Operations on Simulation Scenarios 34

3.5 Summary . 38

Chapter 4—Simulation Scenario Generation Procedures 39

4.1 Sequential Scenario Generation Procedures 39
4.1.1 A Simple Sequential Generation Procedure 40
4.1.2 A Better Sequential Generation Procedure 41

4.2 Random Scenario Generation Procedures 44
4.2.1 Random Choices to Generate Simulation Scenarios 45
4.2.2 A Simple Random Generation Procedure 49
4.2.3 A Better Random Generation Procedure 50

4.3 Summary . 53

8

contents 9

Chapter 5—Simulation Engine 55

5.1 Outline . 55
5.2 Backlog Computation . 56
5.3 Error Generator . 58

5.3.1 Simulation Procedure . 61
5.3.2 Illustrative Example . 64

5.4 Preliminary Results . 65
5.5 Summary . 66

Chapter 6—Statistical Analysis 67

6.1 Traditional Inference . 67
6.2 Bootstrap . 70
6.3 Results Discussion . 74

6.3.1 RM vs. EDF From Fault Resilience Viewpoint 75
6.3.2 Computing Confidence Intervals 82

6.4 Summary . 85

Chapter 7—Conclusion and Future Work 86

LIST OF FIGURES

1.1 General scheme of a mechatronic system 3

2.1 Illustration of a periodic task τi . 8
2.2 Illustration of an aperiodic task τi . 8
2.3 Illustration of a RM schedule for Example 2.1 10
2.4 Illustration of a DM schedule for Example 2.1 11
2.5 Illustration of a EDF schedule for Example 2.2 12
2.6 Schedulabity tests [22] . 13
2.7 RM schedule for Example 2.1 considering D = T 14
2.8 Maximum response time for τ2 in Example 2.1 considering D = T 15
2.9 Fault tolerance based on time redundancy 19
2.10 Illustration of Imprecise Computation . 21

3.1 Illustration of a RM schedule for the task set described in Example 3.1 . 26
3.2 Illustration of two different systems subject to errors within h 26
3.3 Illustration of two different tasks of Γ subject to errors within h 27
3.4 Simulation Environment . 29
3.5 Illustration of an EDF schedule for the task set described in Example 3.2 31

4.1 Generation of Ω∗i from Ui. 46
4.2 Partitioning U into disjunct subsets. 51

5.1 Two-step simulation procedure used by the Simulation Engine 56
5.2 Illustrative example of backlog computation 58
5.3 Illustrative example of a backlog job being discarded 59
5.4 Interference distance. 61
5.5 Illustrative simulation for Example 3.2 64

6.1 Illustration of the plug-in principle . 70
6.2 Illustration of bootstrap algorithm. 72
6.3 Fault resilience distribution for Γ and Γ′ 76
6.4 Fault resilience distribution for task sets with utilization U ∈ (80; 90] . . 77
6.5 Mean effort Ē∗

1
for τ1 regarding different processor utilization levels . . . 78

6.6 Mean effort Ē∗
2
for τ2 regarding different processor utilization levels . . . 78

6.7 Mean effort Ē∗
3
for τ3 regarding different processor utilization levels . . . 79

6.8 Mean effort Ē∗
4
for τ4 regarding different processor utilization levels . . . 80

6.9 Mean effort Ē∗
5
for τ5 regarding different processor utilization levels . . . 81

6.10 Mean effort Ē∗
6
for τ6 regarding different processor utilization levels . . . 81

10

LIST OF FIGURES 11

6.11 Mean effort Ē∗i for RM and EDF . 82

LIST OF TABLES

4.1 Results of Algorithm 1 for illustrative example. 40
4.2 Results of Algorithm 2 for Example 3.2 42
4.3 Scenarios generated by Algorithm 4 for Example 3.2 considering task τ1. 50
4.4 Illustration of Algorithm 5 for the illustrative example 53
4.5 Summary of simulation scenarios generation procedures 54

5.1 Summary of the mean backlog considering S′ = tsub(Γ,S, kTi) 57
5.2 Mean effort Ēi for Γ . 66

6.1 Sample size estimation for Example 6.1 68
6.2 Ēi with 95% of confidence . 69
6.3 Ēi with 95% of confidence according to bootstrap procedure 73
6.4 10th-percentile of Ei with 95% of confidence according to bootstrap pro-

cedure . 74
6.5 Mean effort for RM and EDF . 77
6.6 Ē∗

i
with 95% of confidence according to traditional inference 83

6.7 Ē∗
i
with 95% of confidence according to bootstrap procedure 83

6.8 25th-percentile with 95% of confidence according to bootstrap procedure 84
6.9 50th-percentile with 95% of confidence according to bootstrap procedure 85
6.10 75th-percentile with 95% of confidence according to bootstrap procedure 85

12

RESUMO

Sistemas de tempo real tem sido amplamente utilizados no contexto de sistemas mecatrônicos

uma vez que, para controlar entidades do mundo real, é necessário considerar tanto

seus requisitos lógicos quanto os temporais. Em tais sistemas, mecanismos para prover

tolerância a falhas devem ser implementados já que falhas podem implicar em perdas

consideréveis. Por exemplo, um erro em um sistema de controle de vôo pode incorrer em

perda de vidas humanas.

Várias abordagens de escalonamento com tolerância a falhas para sistemas de tempo

real foram derivadas. Entrento, a maioria delas restringe o modelo de sistema e/ou

falhas de modo particular, ou estão fortemente acopladas ao modelo de recuperação do

sistema ou a poĺıtica de escalonamento. Além disso, não existe uma métrica formal que

permita comparar as abordagens existentes do ponto de vista da resiliência a falhas. O

objetivo principal deste trabalho é preencher esta lacuna, fornecendo uma métrica de

resiliência a falhas para sistemas de tempo real, que seja o mais independente posśıvel

dos modelos do sistema e/ou de falhas. Para tanto, uma análise baseada em simulação

foi desenvolvida para calcular a resiliência de todas as tarefas de um sistema, através

da simulação de intervalos de tempo espećıficos. Em seguida, técnicas de inferência

estat́ıstica são utilizadas para inferir a resiliência do sistema. Os resultados mostraram

que a métrica desenvolvida pode ser utilizada para comparar, por exemplo, duas poĺıticas

de escalonamento para sistemas de tempo real sob a ótica de resiliência a falhas, o que

demonstra que a abordagem desenvolvida é razoavelmente independente do modelo de

sistema.

Palavras-chave: Sistemas de Tempo Real, Escalonamento, Tolerância a Falhas

1

ABSTRACT

Mechatronics systems are characterized by their ability of integrating components and

systems to control real world entities. To do so, real-time systems have increasingly

been used, since controlling real world objects requires considering both their logical and

timing constraints. In this context, fault tolerance mechanisms play an important role

since faults in such a system may imply in considerably losses. For example, an error in

a flight control system may incur in loss of human life.

Several fault-tolerant approaches for real-time systems have been derived. Most of

them restrict the system and fault model in a particular way or are strictly linked to

a specific recovery model or scheduling policy. Moreover, to the best of our knowledge,

there is no systematic metric, which enables an effective comparison among the existing

fault-tolerant approaches. The main goal of this work is to fill this gap by providing

a fault resilience comparison metric for different fault-tolerant scheduling approaches.

To do so, a simulation-based framework was derived to compute resilience values while

simulating specific time windows. Such values are then used to infer system resilience

based on statistical analysis techniques. Results have shown that the derived metric can

be used to compare, for example, two scheduling policies for real-time systems from fault

resilience viewpoint, which demonstrates that our approach is reasonably independent of

the system model.

Keywords: Real-Time System, Scheduling, Fault Tolerance

2

CHAPTER 1

INTRODUCTION

Mechatronics, as sub-area of automation, is gaining prominence due to its ability to

integrate components and systems (via hardware or software), in order to make cost-

saving products [36, 27]. The main components of a mechatronic system is shown in

Figure 1.1.

USER

HUMAN

MACHINE

INTERFACE

CONTROL

SYSTEM
CONTROLLED

OBJECT

command

monitor

actuators

sensor

COMPUTER

Figure 1.1. General scheme of a mechatronic system

The user is the entity that needs/wishes to manipulate a controlled object, which can

be an industrial plant or a robot, for example. The controlled object is a real-world

entity that has logical requirements, related to its functional correctness, and timing re-

quirements, usually defined as the maximum time to perform its operations. Controlled

objects are usually manipulated by the user through a Human Machine Interface (HMI),

which aims at monitoring the operation and commanding this object. In most applica-

tions the human machine interface interacts with controlled objects through a control

system, which is responsible for managing the entire operation flow of controlled objects.

Sensors and actuators are used by control systems to perform operations in controlled

objects. The former are devices responsible for informing the current state of the con-

trolled objects to control systems. The later represents the mechanisms that enable the

control system to interfere in controlled objects evolution [39].

3

introduction 4

Real-time systems have increasingly been used in mechatronics since these applications

necessarily need to consider both logical and timing requirements of controlled objects.

It is interesting to notice that there is an important difference between general purpose

systems and real-time systems. The former focus on assuring logical correctness and

minimizing task average response times. For real-time systems correctness depends not

only on the logical results but also on the time at which results are produced [50].

Real-time systems are usually defined based on a set of tasks, where each task repre-

sents an execution unit. Usually, each task has its own timing constraint. For example,

the task that runs a control algorithm should respond within a maximum predetermined

time interval. Thus, it is necessary to establish an execution order for tasks (or its op-

erations) considering its timing requirements. Generating such a sequence, also called

execution scale or schedule, is an attribution of the scheduling mechanism, a key compo-

nent for ensuring timeliness.

Usually, the schedule is generated based on heuristics, called scheduling policies, that

define which tasks will be executed at each time instant. Once the scheduling policy

is chosen, it is necessary to verify if there is a possibility that any task violates its

timing restriction. Thus, tasks execution order, generated by the scheduler, must be

validated to ensure timeliness. This activity is performed by the schedulability analysis,

which will evaluate the system temporal behavior, checking if all tasks will meet their

timing requirements. If this is true, the system is said to be schedulable according to the

considered scheduling policy.

In the context of real-time applications, we must also consider the possibility of error

occurrence. In some cases, upon the detection of an error, re-executing the faulty task can

be satisfactory for providing fault tolerance. In others, recovery tasks need to be executed

to ensure that the system is put in a safe state. These fault tolerance techniques are

characterized by using time redundancy and can be effective for several real-time systems

[24, 17, 32].

introduction 5

Indeed, on the assumption that all applications potentially fail [56], we must evalu-

ate if faults can prevent tasks from meeting their deadlines, particularly with regard to

applications in which time violation may lead to serious consequences. Actually, when

errors take place, the time available for fault tolerance is smaller than in scenarios where

there are no errors. Thus, not only the scheduler should cover such possibilities, but also

the analysis techniques must be suitable to consider errors consequences.

Several fault-tolerant scheduling approaches have been derived. In a nutshell, they ar-

tificially assume a given worst-case scenario for error occurrences and then adapt schedu-

lability analysis techniques accordingly. Also, the derived approaches are strictly linked

to specific system and/or fault model. For example, some approaches consider that errors

take place periodically [17, 8]. Others, fix a maximum number of errors per system task

[4, 32].

Although these techniques are important, because they give designers some sort of

timeliness assessment, they do not provide a measurement of system fault resilience.

Indeed, it is interesting to have some measurement of fault resilience for real-time systems,

which can be independent of the system and the assumed error pattern, issue not yet

satisfactorily addressed by the research community.

The main goal of this work is to fill this gap by providing a metric which allows the

comparison between different real-time systems from fault resilience point of view. To

do so, a simulation-based framework is derived to compute fault resilience values while

simulating specific time windows. Also, some statistical analysis is carried out to infer the

fault resilience of a given system based on a sample of such values. Results can then be

used to subsidize a quantitative comparison among real-time systems. Some preliminar

results has been presented recently [42, 34, 43] showing that the derived metric can be

used, for example, to compare two mostly used scheduling policies for real-time systems.

The remainder of this document is organized as follows. Chapter 2 presents basic

concepts on real-time systems in terms of task set, scheduling policies and feasibility

analysis approaches. Also, this chapter describes some scheduling approaches for dealing

introduction 6

with error occurrences. Chapter 3 presents the simulation-based approach, developed to

compute a fault resilience metric for real-time systems, and some important definitions

and properties. The main components in this environment are the scenario generator,

which helps to determine the simulation time interval, and the error generator which

effectively computes the fault resilience for each system task. These components are

described in Chapters 4 and 5, respectively. The statistical analysis of data is presented

in Chapter 6. Finally, conclusions and future work are presented in Chapter 7.

CHAPTER 2

REAL TIME SYSTEMS AND FAULT TOLERANCE

Real-time systems are usually described as a set of tasks, with logical and timing con-

straints, that need to be executed in some specific order so that such constraints are not

violated. Tasks execution order is determined by scheduling policies and timeliness re-

quirements are assessed by schedulability analysis techniques. When the system is subject

to unexpected events such as errors, both scheduling policy and schedulability analysis

must be adapted to consider fault tolerance aspects.

This chapter gives an overview of some concepts of a real-time system, the most

common scheduling policies and feasibility analysis techniques and then shows how fault

tolerance has been considered in such systems.

2.1 REAL-TIME SYSTEMS STRUCTURE

2.1.1 Tasks

Real-time systems are usually structured as a set of tasks Γ = {τ1, τ2, ..., τn}, where

each task τi represents an execution unit. Tasks are characterized by having precedence

relations, communication requirements and other attributes. For each task τi, some of

the most important attributes are computation time, period and deadlines [22]. Such

attributes are shown in Figure 2.1.

When task τi is released for execution it spends at most Ci time units executing,

which represents the worst-case execution time required by such a task. Also, each task

τi ∈ Γ must be executed within a specific time interval, which is called deadline and

is denoted by Di. Deadlines represent task timing constraints. Notice that τi can be

activated several times (three times in Figure 2.1) and each of these activations is called

7

2.1 real-time systems structure 8

Ci Ci

Di

Ti

Di

Ti

first activation second activation

i Ci

Di

Ti

third activation

Si

Figure 2.1. Illustration of a periodic task τi

a job. Each job is released at a time instant, illustrated by up arrows in the figure.

In general, tasks in real-time systems may have different criticality levels with respect

to their time constraints. “Critical” real-time systems may potentially cause serious

consequences if task deadlines are not met [22, 50]. They are also called hard real-time

systems and tasks are said to have hard deadlines. This is the case, of the robots in an

automobile production line or a flight control system, for example. On the other hand,

for “non-critical” real-time systems, violating task deadlines does not necessarily imply

in environmental risks or loss of human life. Such applications are also known as soft

real-time systems and tasks are said to have soft deadlines. This is the case of bank

processing systems and multimedia applications.

Also, observe in Figure 2.1 that τi is released at each Ti time units, which represents

its activation periodicity. Depending on its activation occurrence tasks can be classified

as periodic, when they are time-triggered on a regular basis as illustrated in Figure 2.1

or aperiodic, when they have random activation time instant as shown in Figure 2.2.

Ci Ci

Di Di

first activation second activation

i Ci

Di

third activation

Si

Figure 2.2. Illustration of an aperiodic task τi

It is also possible to describe sporadic tasks, which are aperiodic but have known

minimum interval between two consecutive activations. Consequently, the maximum

2.1 real-time systems structure 9

load a sporadic task τi may impose to the system is when it arrives periodically, since Ti

represents the lower bound between its successive activations [48].

Based on the described attributes, tasks are represented by four n-tuples, which give

their periods, deadlines, worst-case execution times and recovery times, respectively de-

noted as T = (T1, . . . , Tn), D = (D1, . . . , Dn), C = (C1, . . . , Cn) and C̄ = (C̄1, . . . , C̄n).

Tasks attributes described above represent an important parameter for the scheduler,

since based on them the tasks execution order is defined and timeliness assessment is car-

ried out. The execution order for each task is determined by heuristics, called scheduling

policies, which will be described in the following section.

2.1.2 Scheduling Policies

The schedule is defined by the scheduling policy and the component responsible for

generating the schedule is the scheduler, which can be preemptive, when a task execution

can be interrupted, and non-preemptive, otherwise [22]. A schedule that enables the

execution of all tasks without violating their timing constraints, is named feasible [35].

The most popular scheduling policies are priority-oriented. Under such policies each

task/job has a priority associated with it, which is responsible for establishing precedence

relations among those that are ready to execute. Thus, the scheduler chooses to run that

task/job ready for execution which has the highest priority. Although priority in real-

time systems can be associated according to several criteria, for priority-oriented policies,

the precedence between tasks is usually determined on the basis of its timing constraints,

since this favors the implementation of better performance scheduling algorithms [22].

Nonetheless, it is still possible to map priorities according to other attributes such as

degree of importance, for example [10].

Tasks priorities can be fixed, when it is established during the project (off line),

or dynamic, when the priority is defined during runtime (on line) [22]. When task

priorities are defined during runtime there is a gain in terms of flexibility and adaptability,

2.1 real-time systems structure 10

what allows greater adequacy to situations that cannot be predicted, such as errors

[37, 51]. In any case, the implementation of scheduling policies should be simple and

efficient, allowing timeliness validation through schedulability analysis. The most popular

scheduling policies are summarized in the following sections.

2.1.2.1 Fixed-Priority Scheduling Policies

Before presenting two of the most popular fixed-priority scheduling policies, consider

Example 2.1, which is used as illustration.

Example 2.1 Consider a periodic task set composed of two tasks Γ = {τ1, τ2}. Tasks

attributes are represented by tuples such that C = (3, 3), T = (8, 12) and D = (7, 5)

represent their worst-case execution time, period and deadline respectively.

Rate Monotonic (RM) is a fixed-priority scheduling policy according to which tasks

priorities are assigned in inverse order of their periods. Since these periods are fixed per

task, all jobs of a given task have the same priority. When a task deadline is equal to its

period (Di = Ti) and tasks are independent of each other, RM is considered an optimal

algorithm within the class of fixed priority algorithms, since it is able to schedule any task

set that can be scheduled by any other fixed priority scheduling policy [35, 6, 22]. Figure

2.3 shows the RM scheduling for Example 2.1. Down arrows represents task deadlines.

0 8 12 16 24

2

1

Figure 2.3. Illustration of a RM schedule for Example 2.1

Observe that both tasks are released together at time instant 0, however, since τ1 has

the highest priority it executes first and τ2 waits until it finishes. This is represented by

the dotted lines. Also, notice that the first job of τ2 misses its deadline, which is not

2.1 real-time systems structure 11

desired, in the general case. The scheduling for Γ is carried out during the hyperperiod

h, which is the least common multiple of task periods. In this case, h = lcm(T1, T2) = 24.

As mentioned before, RM optimality considers that task periods are equal to their

deadlines and this represents a restriction for some applications [22]. The Deadline Mono-

tonic (DM) scheduling policy can be seen as an extension of RM. Actually, DM is another

fixed priority scheduling policy in which the highest priority task is the one with lowest

relative deadline. Figure 2.4 shows a DM scheduling for Example 2.1.

0 8 12 16 24

2

1

Figure 2.4. Illustration of a DM schedule for Example 2.1

When task deadlines are less than or equal to their period (Di ≤ Ti), Deadline Mono-

tonic is considered to be an optimal algorithm among those fixed-priority scheduling

policies [22, 6, 47].

2.1.2.2 Dynamic-Priority Scheduling Policies

One of the most usual scheduling policies based on dynamic priorities is known as

Earliest Deadline First (EDF). According to EDF, jobs with the shortest deadline have

the highest priority, and therefore are executed first. This means that different jobs from

the same task may have different priorities. In the context of priority-oriented scheduling

policies (fixed or dynamic), EDF is considered optimal for preemptive systems with one

processor [35, 6, 47].

While fixed-priority policies assume constant deadlines for each job, EDF requires an

extra computation to update such priorities. Furthermore, EDF presents a better perfor-

mance than RM, when context switches are considered, since the number of preemptions

made by a RM scheduler is greater than the one considering EDF [10]. To understand

2.1 real-time systems structure 12

EDF scheduling, consider the following example as illustration.

Example 2.2 Consider a periodic task set composed of two tasks Γ = {τ1, τ2}. Tasks

attributes are represented by tuples such that C = (1, 4.5), T = (3, 8) and D = (2, 7)

represent their worst-case execution times, periods and deadlines respectively. Figure 2.5

shows an EDF schedule for Γ.

0 8 12 16 242 6

2

4 10 14 18 20 22

1

Figure 2.5. Illustration of a EDF schedule for Example 2.2

Observe that if RM was being considered, at time instant 6 τ1 would preempt τ2

since its period is smaller. However, when EDF is considered τ2 is not preempted. The

decision about which scheduling policy should be used for an application depends on its

purpose. Each approach has advantages and disadvantages that should be considered in

the context of the system model and the application criticality.

2.1.3 Schedulability Analysis

As mentioned before, schedulability analysis is a means of checking whether tasks

meet their deadlines considering a given scheduling policy. Intuitively, it is possible to

verify if all tasks in a given a periodic task set Γ will meet their deadlines simulating

an execution scale for them during the hyperperiod. However, depending on the relation

between task periods, the generated execution scale can be too large. Moreover, such

method is static and not flexible since if a task needs to be added or removed from the

task set, the hyperperiod value needs to be recalculated and execution scale has to be

generated again.

It is worth mentioning that in some cases, because of the large number of tasks in

the task set, it is difficult to make a simulation encompassing all possible combinations

2.1 real-time systems structure 13

for tasks. In practice, schedulability analysis techniques look forward to defining system

schedulability in terms of mathematical functions. Three kinds of feasibility analysis are

described in literature [22, 37]:

• Sufficient tests: used to determine a schedulability upper bound. For values beyond

this upper bound there are no schedulability guarantees;

• Necessary tests: used to determine unschedulability bounds, identifying unschedu-

lable task sets;

• Exact tests: they are both sufficient and necessary. In other words, this kind of

test can identify schedulable and unschedulable task sets, and consequently both

schedulability and unschedulability bounds are known.

Figure 2.6 illustrates the tests described previously.

schedulable task sets unschedulable task sets

sufficient tests

exact tests

necessary tests

Figure 2.6. Schedulabity tests [22]

In general, two approaches to schedulability tests are common: Processor Utilization

Analysis and Response Time Analysis. Such techniques are described in Sections 2.1.3.1

and 2.1.3.2, respectively.

2.1.3.1 Processor Utilization Analysis

Suppose a set of n independent, periodic tasks Γ = {τ1, . . . , τn}, scheduled by a

uniprocessored system. Each task τi ∈ Γ is activated periodically and executes at most

Ci time units. Thus, each task uses at most Ui = Ci/Ti of the processor total capacity.

In other words, the processor maximum utilization factor to this task set is given by:

2.1 real-time systems structure 14

U =
n∑

i=1

Ci

Ti

(.)

The schedulability analysis is given in terms of a simple mathematical function, taking

into consideration the processor utilization factor. Considering a task set with n tasks

scheduled by RM the system is said to be schedulable if [35]:

U ≤ n(2
1

n − 1) (.)

Note that for large values of n this bound approaches to ln 2 ≈ 69%. This implies that

for systems with U > 69%, it may not be possible to determine the system schedulability.

Hence, fixed-priority scheduling policies, this analysis is characterized as sufficient,

since it is not able to identify all schedulable task sets. As illustration, consider that

D = T in Example 2.1. In this case, according to Equation ., U = 0.625. Also, since

U ≤ n(2
1

n −1) the task set can be considered as schedulable. This is illustrated in Figure

2.7. Observe that no task miss its deadline. Down arrows are suppressed since they

coincides with up arrows.

0 8 12 16 24

2

1

Figure 2.7. RM schedule for Example 2.1 considering D = T

For dynamic priorities scheduling policies such as EDF, the schedulability analysis

can be exact [35] if task periods are equal to their deadlines (D = T). In this case the

task set is said to be schedulable if and only if:

U ≤ 1 (.)

2.1 real-time systems structure 15

2.1.3.2 Response Time Analysis

Response Time Analysis, as the name describes, is based on deriving the maximum

response time Ri that a task τi can achieve, considering a certain scheduling policy. The

basic idea of such an analysis is to calculate, for each system task, the maximum time

elapsed from its release time until the end of its execution, taking into consideration the

maximum interference that such a task may suffer from others, with priority greater than

or equal to its own priority. To make things clear, observe Figure 2.8, a fixed priority

system with two tasks.

0 8 12 16 24

2

1

R2 R2

Figure 2.8. Maximum response time for τ2 in Example 2.1 considering D = T

Observe that the first job of τ2 is released at time 0 and finishes its execution by

time 6. Thus, the response time in this case is 6. The second job of τ2 is released at

time 12 and finished its execution by time 15. Considering all jobs released during the

hyperperiod h, the maximum response time for τ2 is R2 = 6. Also, notice that the first

job suffers an interference from τ1, which have an execution priority greater than that

of τ2. Since D = T, R2 ≤ D2 and τ2 is schedulable. The same reasoning is used to

compute the maximum response time for τ1, which is R1 = 3. Hence, since both tasks

are schedulable, the task set Γ is considered schedulable.

It is important to observe that the maximum response time for a task τi ∈ Γ must be

calculated considering the worst-case interference for each system task. To do so, Ri is

usually computed during the critical instant, which is defined as the time instant in which

a task will have the largest response time [35]. Considering a task set with n independent

tasks Γ = {τ1, . . . , τn} scheduled according to some fixed priority scheduling policy where

tasks deadlines can be smaller than or equal to their periods (D ≤ T) [22], the maximum

2.1 real-time systems structure 16

response time for each task τi ∈ Γ is given by:

Ri = Ci +
∑

j∈hp(i)

Ij

where hp(i) is the set of tasks with priority greater than that of τi and Ij is the

greatest interference caused by a higher priority task. The worst-case interference a task

τj ∈ Γ can cause in τi can be computed by

Ij =

⌈
Ri

Tj

⌉
Cj

where ⌈Ri/Tj⌉ is the number of activations of τj during Ri. The maximum response

time for a task τi can be then written as [2, 37, 22]:

Ri = Ci +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj (.)

Also, the task set Γ is considered schedulable if ∀τi ∈ Γ, Ri ≤ Di [2]. Response

time calculation is iterative, converging to a finite value if the system utilization is not

greater than one. Also, such a method is not so simple when EDF scheduled systems are

considered. Indeed, since this is an exact schedulability analysis, it is able of determining

all schedulable task sets for any priority oriented scheduling policy.

In the following section fault tolerance aspects for real-time systems are considered.

Also, some scheduling approaches to dealing with error occurrences are presented. Most

of them either adapt or extend their scheduling policies and analysis techniques to comply

with such events.

2.2 fault-tolerant real-time systems 17

2.2 FAULT-TOLERANT REAL-TIME SYSTEMS

2.2.1 Fault Tolerance Overview

When it comes to computer applications, faults are inevitable and can have several

causes such as specification or implementation problems, components malfunctioning,

defects or fatigue, manufacturing imperfections as well as external disturbances, such

as electromagnetic interference and environmental variations [56]. Before addressing the

formal definition of fault it is necessary to understand the concepts of error and failure.

Considering any computational system, a failure occurs when there is a transition

from an expected behavior (correct) to a behavior that is not expected (incorrect). That

is, a failure represents a deviation from system specification. The system state whose

processing could lead to a failure is called error state. Formally, faults are physical or

algorithmic causes of errors [56, 3].

Despite the occurrence of faults, a computational application must provide confidence

in the executed operations (dependability). This confidence is an integrated concept that

involves some attributes, such as availability, reliability, safety, integrity and maintainabil-

ity [3]. Faults, errors and failures pose a threat to dependability. Real-time applications,

for example, may have their schedulability affected by fault occurrence. Hence, such

threats should be considered and addressed appropriately in order to avoid undesirable

consequences. In this case, fault tolerance mechanisms should be implemented since they

aim at keeping system correctness even in the presence of faults [3]. It is important to

mention that fault tolerance mechanisms do not exclude fault preventing and fault re-

moval techniques, specially for systems that require high dependability, such as critical

real-time systems [56].

Faults can be classified according to certain criteria [3], however this work will con-

sider the persistence criterion, according to which they can be transient or permanent.

Transient faults are those that occur only during a given time, then disappear. This is

the case, for example, of faults caused by electromagnetic interference. When transient

2.2 fault-tolerant real-time systems 18

faults occur repeatedly they are called intermittent faults. Permanent faults are caused

by a permanent defect in a computing unit, such as the lack of connectivity between two

nodes of a network.

Most techniques used for providing fault tolerance are based on spatial or time re-

dundancy. The former implements hardware replication and therefore is more used to

tolerate permanent faults [56]. The later consists of repeating the computation in time

and is used in the case of permanent software faults and transients faults, which has

been pointed out as the most frequent ones [24] and is the focus of this work. Thus, the

usual approach for dealing with transient faults in real-time systems is based on time

redundancy. This means that upon the detection of an error, an extra code is executed

to provide the actions necessary to keep system correctness. Such actions, defined by the

system recovery scheme, can be the re-execution of the faulty task or the execution of an

alternative version.

In general, two techniques for recovery, based on execution of alternative tasks, stand

out: Recovery Blocks and Exception Handlers. Recovery blocks are execution blocks that

detect an error by acceptance tests and backward error recovery to avoid system failures.

Basically, each recovery block consists of three elements: (1) a primary module (2) an

acceptance test and (3) at least one alternate module, which implements different task

versions [8, 1]. Exception handlers try to undo the effects of a faulty execution, switching

the execution to a specific subroutine, rather than re-executing the entire computation

[8].

In the following section some scheduling approaches for fault-tolerant real-time sys-

tems are detailed. Also, their shortcomings are presented and discussed as a motivation

to the following chapter.

2.2 fault-tolerant real-time systems 19

2.2.2 Temporal Redundancy Techniques for Real-Time Systems

Based on the assumption that any application potentially fails [3] fault tolerance

techniques need to be used to ensure that the system will keep its correct behavior even

in the presence o faults. For several real-time systems providing fault tolerance via time

redundancy is effective [17, 32]. According to this approach, whenever an error is detected

a recovery task is scheduled to recover the system from an incorrect state. This recovery

task can be either the faulty task or any other extra code. As illustration, consider the

following example.

Example 2.3 Consider a task set Γ = {τ1, τ2} composed of two independent periodic

tasks scheduled by RM. Also, assume C = (1, 1), T = (2, 3), D = T and that τ1 is

affected by an error at time 3. Figure 2.9 shows this schedule.

1 2 3 4 5 60

1

2

(a) Recovery based on re-execution

1 2 3 4 5 60

1

2

(b) Recovery based on alternative task version

Figure 2.9. Fault tolerance based on time redundancy

Observe that in Figure 2.9(a) fault tolerance is achieved through the re-execution of

the faulty task. In this case, the recovery execution cost C̄1 = C1 = 1. Also, the priority

of the recovery task is the same as that of the faulty task and for this reason the recovery

task preempted the execution of τ2. In Figure 2.9(b) recovery is implemented through

the execution of an alternative task version which has the same priority of the faulty

task. In this case, the recovery execution cost can be smaller than the execution cost of

the faulty task. In other words, C̄1 < C1.

Clearly, if fault tolerance techniques are considered both scheduling policy and schedu-

lability analysis need to be adapted to take them into account. In general, schedulability

analysis is built up on the assumption that the system behavior is known in worst case

and this has also been true when fault tolerance aspects are considered. Nonetheless,

2.2 fault-tolerant real-time systems 20

incorporating fault tolerance aspects into schedulability is not straightforward, since er-

rors are random events which occurrence cannot be predicted. The usual approach to

taking the effects of recovery tasks into schedulability analysis is to artificially assume a

worst-case pattern for errors and the derive schedulability analysis accordingly.

Several schedulability analysis for fault-tolerant real-time systems have been derived

based on specific system and/or fault model. Although such approaches are important

since they provide some sort of timeliness assessment, they do present some shortcomings,

which will be discussed in this section. First, they are based on worst-case scenarios

and do not consider the system overall behavior. Also, the derived analysis assume

deterministic error patterns that may not occur and finally, most approaches are strictly

linked to specific system and/or fault models which does not allow them to be compared to

each of them. For example, fault tolerant approaches designed for fixed-priority scheduled

systems cannot be used for dynamic-priority ones and vice versa.

For fixed-priority real-time systems, some authors fixed an upper bound on processor

utilization factor for a given system Γ when it is subject to a single fault during the

hyperperiod [44]. Others, considered response time analysis and fixed a minimum time

between two consecutive errors [8, 17, 28]. EDF-scheduled systems have also been con-

sidered. For example, some authors assume a maximum number of errors per system

task and then compute systems resilience values [32, 4, 33].

Although such approaches are important since they allow to consider error occurrence

in real-time systems, they assume a worst-case error pattern which may not reflect the

real system capacity to tolerate faults because they are strictly linked to the system

and/or fault model. This is shown in Figure 2.9.

Observe that in Figure 2.9(a) the fault-tolerant approach is based on the re-execution

and only a single fault can be tolerated in the worst case. However, if an alternative

version of the faulty task is used to recover the system, two faults could be tolerated, as

shown in Figure 2.9(b).

2.2 fault-tolerant real-time systems 21

Some other authors extended schedulability analysis to consider specific fault-tolerant

approaches. Sieh et. al. [49] assumed that different system tasks may cause different

levels of injury to systems when affected by errors. Based on that the scheduler must

choose to execute those jobs which bring the greatest benefit to the system as a whole.

Other approaches are characterized for pre-allocating time slices (called slack or

backup) for recovery tasks, if there is an error occurrence. Han et. al. [25] define

a solution based on Rate Monotonic and reserves slacks for alternative task versions.

Ghosh et. al. [24] carry out schedulability analysis as suggested by Lehoczky et. al [31]

and propose the use of extra time slices in specific time instants so that schedulability

can be guaranteed. This solution can be implemented so that the most important system

tasks have a time slice to be re-executed if an error occur. However, this solution may

be too pessimistic, considering that worst-case scenarios hardly occur. For example, in

Figure 2.9(a) one could assume that the time slice between times 5 and 6 is reserved for

recovery.

The Imprecise Computation model was described by some authors [5, 52, 38, 41, 23]

as an attempt to reducing the pessimism of worst-case analysis. In such an approach,

each task τi can be decomposed in two parts: a mandatory part (mi), which must be

executed and is responsible for producing logically correct and accurate results, and an

optional part (pi), whose execution can be done or not. Thus, the execution cost of each

task τi is given by Ci = mi + pi. In the case of recovery, only mandatory parts have

the obligation of being executed while optional parts could be discarded. As illustration,

consider the task set scheduled by RM shown in Figure 2.10 in which mi = pi = 0.5 for

each task.

1 2 3 4 5 60

1

2

Figure 2.10. Illustration of Imprecise Computation

2.2 fault-tolerant real-time systems 22

At time instant 5 the system begins the recovery for τ1 according to its priority.

When m1 finishes executing, the scheduler realizes that another recovery task is ready

for execution and then p1 is discarded so that m2 is executed.

Another approach, called Skippable Instances, was derived [11]. This solution is

characterized by having a hybrid task set, in which the scheduler can skip executing

some task instances (skippable) and the unused execution time can be reclaimed for re-

covery. Aperiodic nature of errors can also lead to an approach where some tasks are

scheduled by a fixed-priority policy while others are treated by dynamic-priority ones

[18, 19].

For each mentioned solution timeliness assessment is done by means of deterministic

analysis techniques, which can be safely used as long as the assumptions under which

such systems are designed can be predicted (eg. periodic tasks, worst-case execution

time, etc.). However, such techniques may not be suitable when random events as errors

are taken into consideration [45, 15]. Indeed, it can be shown that violating the assumed

error pattern does not necessary imply in system failure [33].

Some probabilistic analysis methods have also been derived. However, they has not

addressed fault tolerance aspects. Some authors associated a probability distribution

function to tasks execution time [15, 16]. Also, based on such a distribution function,

other authors determined the deadline miss probability for periodic system tasks [21, 29].

In the context of fault tolerance, response time analysis has been extended to provide

probabilistic guarantees for specific fault models [7, 9], but only fixed priority scheduled

systems were considered.

Despite the large number of approaches, to the best of our knowledge, there is no

systematic way of comparing them. Indeed, most solutions addressed here are scheduling

dependent, which means that if one is deciding to implement a given system, he/she

might not be able to choose the better approach because they are not comparable. For

example, solution for fixed-priority systems can not be used for dynamic-priority ones

and vice-versa. Based on these shortcomings, a simulation-based approach was derived

2.3 summary 23

to compute a fault resilience metric for real-time systems. Such an approach is as inde-

pendent of the system and/or fault model as possible. Also, it is able to represent the

system overall behavior based on tasks resilience individually. Moreover, the described

simulation-based analysis can be used to subsidize the system designer decisions when

choosing the fault tolerant mechanisms that best suit their systems. Although other

simulation-based scheduling analysis have been developed as an attempt to achieving

more realistic models [55, 26], fault tolerance aspects have not been considered.

2.3 SUMMARY

This chapter presented the basic structure for real-time systems, the most used sche-

duling policies and schedulability analysis techniques. Also, some approaches to deal-

ing with error occurrences in such systems were described. Although numerous, such

fault-tolerant approaches for real-time system present some shortcomings which were

also discussed. Based on them, a simulation-based approach was derived to compute

fault resilience values for real-time systems, without taking into consideration the system

and/or fault models. This approach is the focus of the following chapter.

CHAPTER 3

A SIMULATION-BASED APPROACH

This chapter derives a metric which can be used to compare different real-time systems

from fault resilience viewpoint. Such a metric is reasonably independent of the system

model or assumed error pattern. Also, it is capable of determining the system overall

behavior based on each task. Indeed, the derived fault resilience metric must be in

accordance with some desirable assumptions and requirements, which are also described

here.

In order to compute such a metric, a simulation environment was built, which simu-

lates the system during specific time windows and then compute, for each of them, the

fault resilience metric. Such time windows are defined based on the concept of simulation

scenarios, which is also presented in this chapter.

The system model and notation used to describe the simulation environment is de-

tailed in Section 3.1. The fault resilience metric, some important requirements and as-

sumptions are presented in Section 3.2. The developed simulation framework is presented

in Section 3.3. The concept of simulation scenarios, based on which the simulation time

interval is determined is detailed in Section 3.4. Finally, a summary of this chapter is

presented in Section 3.5.

3.1 SYSTEM MODEL AND NOTATION

In the derived simulation-based approach it is considered uniprocessor and preemptive

real-time systems composed of n periodic and independent tasks Γ = {τ1, . . . , τn}. It is

assumed that ∀τi ∈ Γ, Di ≤ Ti, Ci ≤ min(Ti, Di).

System schedulability can be assessed in fault-free scenarios using traditional analysis

24

3.2 on the fault resilience metric 25

techniques (Section 2.1.3) and so only schedulable systems are considered. Fault tolerance

is provided by executing an extra code upon error detection, which can be the re-execution

of the faulty task or the execution of an alternative task. If errors are detected during

the recovery of a task, other recovery actions can be released. Also, only transient or

permanent software errors are assumed to occur. More severe types of errors, which

require spatial redundancy usually implemented with a distributed/parallel architecture

are not considered.

As tasks in Γ are periodic, the k-th job of task τi is released at time φi+(k−1)Ti, k ≥ 1,

where φi is the phase of τi. For the sake of notation simplicity, it is assumed that φi = 0

for all tasks in Γ, although the proposed analysis can be easily adapted to take fixed

values of φi > 0 into consideration. Aperiodic jobs are considered for error recovery only.

We restrict ourselves to systems whose scheduled jobs have fixed priorities. If J is

a job of some task, p(J) denotes its priority. Note that considering fixed-priority per

job includes scheduling policies such as EDF, RM or DM. Hence, the proposed analysis

covers a large spectrum of scheduling policies for real-time systems.

To simplify notation we define the functions min(X) and max(X), which return the

minimum and maximum values of any tuple X. For example, min(T) = minn
i=1(Ti).

3.2 ON THE FAULT RESILIENCE METRIC

A suitable fault resilience metric must be able to measure the system resilience for

different systems and fault models so that different real-time systems can be compared

from resilience view point. In order to give some intuition on the need for a fault resilience

metric, consider the following example.

Example 3.1 Let Γ be a task set composed of two periodic tasks Γ = {τ1, τ2}. Assume

that T = (2, 5), C = (1, 1), D = T and C̄ = (1, 1). Also, consider that Rate Monotonic

is used to schedule the tasks and so τ1 is the highest priority task. Figure 3.1 shows the

schedule for this task set.

3.2 on the fault resilience metric 26

2 4 6 8 100

1

2

1 3 5 7 9

Figure 3.1. Illustration of a RM schedule for the task set described in Example 3.1

The hyperperiod for this task set is given by h = lcm(T1, T2) = 10. Notice that τ1

has five jobs within h, which are released at times 0, 2, 4, 6 and 8, while τ2 has two jobs

released at times 0 and 5. Because of its priority, the first job of τ2 begins to execute

at time 1. The dotted line indicates that τ2 awaits until higher priority jobs finishes

executing.

Assume that recovery is based on the re-execution of the faulty jobs. Figure 3.2 shows

two systems that are subject to different number of errors and still meet their deadlines.

Notice that right after the error takes place (at time 2 in Figure 3.2(a) and times 2 and 3

in Figure 3.2(b)), the recovery job (shown in gray) executes to keep system correctness.

Figure 3.2(a) shows the schedule for the task set shown in Example 3.1 and considers a

single error occurrence. Figure 3.2(b) shows the schedule for the same task set presented

in Example 3.1 assuming that T1 has changed to 4. Observe that within the first 5 time

units, τ2 can tolerate just one error in Figure 3.2(a), while this same task in Figure 3.2(b)

can tolerate two.

2 4 6 8 100

1

2

1 3 5 7 9

(a) System Γ subject to a single error

2 4 6 8 100

1

2

1 3 5 7 9

(b) System Γ′ subject to two errors

Figure 3.2. Illustration of two different systems subject to errors within h

The schedules shown in Figure 3.2 give the intuition that the fault resilience metric

must reflect the number of errors the system can tolerate. Thus, assuming that one

wishes to analyze the behavior of a given system Γ = {τ1, τ2, . . . , τn} when it is subject to

faults, the analysis method must use some fault resilience metrics. We understand that

such metrics must take the following assumption into consideration.

3.2 on the fault resilience metric 27

Assumption 3.2.1 The fault resilience of a system is proportional to the number of

errors it tolerates.

Indeed, fault resilience metrics must reflect the system ability to survive, or keep its

correct behavior, after error occurrences. Most authors are aware of that [17, 44, 32, 41],

despite assuming specific error patterns. Also, from designers’ view point it is important

to determine how many errors can occur before a system failure.

In several situations, the number of error occurrences accounted for when analyzing

a system must be a function of time. The intuition is that the expected number of errors

increases with time assuming that they are not co-related. Although some authors do

not consider such assumption [44, 25], some fault models in real-time systems that are in

line with this observation can be mentioned, as for example Poisson distribution [7] and

minimum time between errors [8, 9]. Based on that, we assume the following:

Assumption 3.2.2 The expected number of error occurrences increases with time.

Since the system we are considering is composed of n tasks and each of them may

have a different level of criticality, the fault resilience metric must be determined for each

individual task so that system designers can deal with the peculiarities of each of them.

Figure 3.3 shows the maximum number of errors that two different tasks from the same

system can cope with.

2 4 6 8 100

1

2

1 3 5 7 9

(a) Maximum number of errors for τ1 ∈ Γ

2 4 6 8 100

1

2

1 3 5 7 9

(b) Maximum number of errors for τ2 ∈ Γ

Figure 3.3. Illustration of two different tasks of Γ subject to errors within h

Considering Example 3.1, τ1 can timely recover from at most 1 errors within 2 time

units, while τ2 can deal with one or two errors within 5 time units. This is shown in

Figures 3.3(a) and 3.3(b), respectively. Note that in the figure errors take place at the

end of the job execution, the worst-case scenario. Thus, as tasks may have different

3.2 on the fault resilience metric 28

criticality levels, it is interesting to consider the following requirement:

Requirement 3.2.1 Fault resilience must be given for individual tasks of the analyzed

system.

Further, the resilience of a given task τi ∈ Γ depends on how its jobs behave when

errors take place. For example, two jobs of τi might be capable of tolerating different

number of error occurrences during their executions, due to the different interferences

they suffer. Observe in Figure 3.3(b) that the first instance of τ2 can tolerate only a

single error. Since τ1 interferes in its execution, there is not enough time to recover the

system from two errors. On the other hand, the second job of τ2 can tolerate two errors,

since the interference it suffers from τ1 is smaller. Indeed, scheduling decisions or the

set of interfering jobs may not be the same for all jobs of τi. In order to capture the

behavior of τi as a whole, therefore, different jobs of the analyzed task must be taken into

consideration. This motivates the following requirement:

Requirement 3.2.2 The fault resilience of a task must account for the overall behavior

of its jobs.

Based on the assumptions and requirements stated above, we give the following defi-

nition of fault resilience metric:

Definition 3.1 The fault resilience of a job is measured as the minimum number of

errors that makes it miss its deadline divided by its relative deadline. The fault resilience

distribution of a task is given by the fault resilience of its jobs.

According to the above definition, error occurrences are considered for each task in a

per-job basis, which is in line with Requirements 3.2.1 and 3.2.2. Also, the time windows

in which jobs execute (relative deadlines) are taken into consideration. Indeed, the longer

the execution of a job the more likely errors occur, which complies with Assumption 3.2.2.

Finally, observe that Assumption 3.2.1 is also considered.

3.3 simulation environment 29

Obviously, different metrics can be given. Some assumptions/requirements may not be

suitable for all systems while new assumptions/requirements may be needed for others.

For example, if Requirement 3.2.2 is not needed, usual analysis based on worst-case

scenarios may suffice. Further, if Assumption 3.2.2 is removed, counting the minimum

number of errors per task in worst-case is enough [33]. In any case, we stress here that we

use a metric which is in line with Definition 3.1 as a means of fault resilience assessment.

Motivated by the above requirement and assumptions, we derive a fault resilience

analysis based on simulation, as will be explained in the following section.

3.3 SIMULATION ENVIRONMENT

The scheme of the proposed simulation-based analysis method is illustrated in Figure

3.4. It is based on modeling a fault tolerant real-time system so that system execution

is represented by two main components: the scheduler and the error generator. While

the former follows a given scheduling policy and tries to keep the system schedulable, the

goal of the latter is to generate faults so that task deadlines are missed. Thus, the error

generator acts as an adversary to the scheduler. No particular error pattern is assumed.

A role of the error generator is to derive the worst-case error pattern for each simulation.

These two components are named simulation engine.

TASK SET

ERROR

GENERATOR

SIMULATION

SCENARIOS

SCHEDULER

ERROR PER

SCENARIO

SCENARIO

GENERATOR

S
IM

U
L
A

T
IO

N
 E

N
G

IN
E

Figure 3.4. Simulation Environment

The general idea of the simulation-based analysis is to generate possible tuples of

task release times, which we call simulation scenarios and for each tuple compute the

minimum number of errors that makes a specific job miss its deadline. Then, considering

3.3 simulation environment 30

this number of errors per scenario and the simulation time interval, the fault resilience

metric is computed.

As mentioned before, as long as simulation scenarios have been generated the simula-

tion engine computes the fault resilience metric for each scenario. Considering that fS

i is

the minimum number of errors that makes a task τi unschedulable in a given simulation

scenario S, the effort value is defined as follows:

Definition 3.2 Let Γ = {τ1, τ2, . . . , τn} be a task set and consider S a simulation scenario

of Γ. The effort Ei made by the error generator to make a task τi ∈ Γ unschedulable in

S is:

Ei =
fS

i

Di

(.)

Notice that the effort definition in accordance with Definition 3.1. Also, considering

the effort for several simulation scenarios allows one to infer the overall behavior of jobs

from fault resilience view point, as stated in Requirement 3.2.2. Intuitively, the higher the

effort Ei made by the error generator, the higher the resilience of τi regarding scenario

S. Note that the found values of Ei can be statistically analyzed. Also, one may be

interested in other parameters, such as the effort mean value Ēi or the minimum effort

Emin
i necessary to make a given system task unschedulable. Analyzing the simulation

data may make it possible to derive the parameter of interest.

It is important to observe that for complex systems determining Ei or any function of

it may be too time consuming, since the total number of simulation scenarios is a function

of the hyperperiod of the task set. For this reason, this simulation environment considers

studying Ei through sampling. The simulation time interval in which Ei is computed is

derived based on the concept of simulation scenarios, which are the focus of the following

section.

3.4 simulation scenarios 31

3.4 SIMULATION SCENARIOS

Unlike the existing approaches, the simulation environment illustrated in Figure 3.4

does not need to simulate the whole execution of the system, which might be too timing

consuming in the general case. The idea is to simulate specific time windows and then

derive system fault resilience by statistically analyzing the simulation data. These time

windows are obtained through the concept of simulation scenarios, defined by the scenario

generator. As a motivation to the content of this section, consider the following illustrative

example:

Example 3.2 Let Γ = {τ1, τ2, τ3} be a set of periodic tasks scheduled according to EDF.

The task parameters are T = (10, 15, 20), C = (4, 4, 4) and D = T. The hyperperiod of

this task set is defined as h = lcm(10, 15, 20) = 60. Figure 3.5 shows the EDF schedule

for Γ within [0, 60) assuming that all tasks are released at time zero.

10 20 30 40 50 600

1

2

5 15 25 35 45 55

3

Figure 3.5. Illustration of an EDF schedule for the task set described in Example 3.2

Considering that tasks always take their worst-case execution times to complete and

that they are all released at some time t, a simple and usual approach to simulating

a schedule has to take into account the time interval window [t, t + h), where h is the

hyperperiod of the task set. By doing so, one can represent all possible scenarios, relative

to the assumed system start time, by simulating the schedule as in Example 3.2. As

mentioned before, this approach may not be practical since the hyperperiod may be too

large. The approach used here divides the hyperperiod into specific time windows, in

order to represent only parts of the schedule.

3.4 simulation scenarios 32

For example, considering that one wishes to analyze the behavior of the second in-

stance of τ3, a possible simulation window could be [20; 40). If a large enough number

of such windows are selected to check the behavior of the jobs of τ3, after observing the

schedule of them, one can infer the average behavior of τ3. It can be observed that,

determining simulation windows depends on the release time of jobs.

Obviously, selecting arbitrary simulation windows brings about some interesting and

important questions. For example, why [20, 40) is a representative time window? Why not

[30, 45) or [0, 20)? How can one simulate a specific time window without considering what

happens before the window? And finally, how such a kind of window can be selected?

Notice that if the number of different scenarios is not large enough, it is likely that a

schedule can be simulated as in Example 3.2. Otherwise, suitable strategies to determine

these windows must be derived.

The following sections answer some of the questions stated above. Nonetheless, some

of the issues raised in this chapter will be left to be addressed in the next chapters. The

focus of the remainder of this chapter is on precisely defining the concept of simulation

scenarios.

3.4.1 The Concept of Simulation Scenarios

Considering a periodic task set, a representation of a possible execution of the system

can be given by tasks release times. For example, in the schedule represented in Figure

3.5, tuples such as (0, 0, 0) or (10, 15, 0) are configurations of release times for τ1, τ2 and

τ3, respectively. Based on this kind of tuples the starting and finishing times of any

simulation can be defined using some other criteria, as will be seen in Chapter 4. This

concept is given more precisely as follows:

Definition 3.3 Tuple S = (S1, . . . , Sn) is a simulation scenario of a periodic task set

3.4 simulation scenarios 33

Γ = {τ1, . . . , τn} if the following predicate holds:

scenario(Γ,S)
def

= ∃w ∈ ,∀Si : (Si + w) mod Ti = 0 ∧ max(S)− Si < Ti (.)

Both conditions defined by the above predicate mean that: (a) S is a tuple of tasks

release times; and (b) only the closest jobs, released before the last released job, are

considered. Taking Example 3.2 as illustration, it can be seen that according to Definition

3.3 tuples (0, 0, 0), (20, 15, 20) and (40, 30, 40) are simulation scenarios. However, tuple

S = (40, 15, 40), say, is not. In this example, although Si is a possible release time of

τi (i = 1, 2, 3), the release time of τ2 should be 30 instead of 15 to make S a simulation

scenario for this task set example.

Consider tuples S = (20, 15, 20) and S′ = (30, 25, 30), say, both simulation scenarios

for Example 3.2. Note that Si = S ′i + 10 for all tuple elements Si. This means that the

same simulation effects would be observed when S or S′ were simulated. In this case, it

is said that S is equivalent to S′:

Definition 3.4 Two scenarios S and S′ of a periodic task set Γ = {τ1, . . . , τn} are equiv-

alent to each other if and only if Si − S ′i is constant, i = 1, . . . , n. More formally,

S ≡ S′ ⇔ ∃w ∈ ,∀i ∈ {1, . . . , n} : Si = S ′i + w (.)

Indeed, a set of simulation scenarios of a periodic task set Γ must represent possible re-

lease time distances between jobs of distinct tasks of Γ. Simulating equivalent simulation

scenarios must be avoided. Therefore, the set of all distinct (non-equivalent) simulation

scenarios need to be defined:

Definition 3.5 The set of all possible simulation scenarios of Γ is denoted Ω and is

defined such that: (a) all elements of Ω are simulation scenarios of Γ; (b) there is no

distinct scenarios in Ω equivalent to each other; (c) any element not in Ω is not a scenario

3.4 simulation scenarios 34

or is equivalent to some scenario in Ω. This is formally expressed by:

∀S,S′ ∈ Ω,∀S′′ /∈ Ω,∃S′′′ ∈ Ω : scenario(Γ,S) ∧ scenario(Γ,S′) ∧

(S ≡ S′ ⇔ S = S′) ∧

(¬scenario(Γ,S′′) ∨ S′′′ ≡ S′′) (.)

Considering Example 3.2, the set of all possible scenarios can be Ω = {(0, 0, 0), (10, 0, 0),

(20, 15, 20), (30, 30, 20), (40, 30, 40), (40, 45, 40), (50, 45, 40)}. Each tuple S ∈ Ω is ob-

tained based on a specific task τi ∈ Γ. Suppose one wishes to analyze the jobs of τi

only. It is worth defining a set which contains simulations scenarios relative to a specific

task τi. This is defined as follows:

Definition 3.6 The set of all distinct simulation scenarios of a task τi ∈ Γ is denoted Ωi

and can be obtained by:

Ωi = {S ∈ Ω|∃w ∈ : max(S) + w mod Ti = 0}

For Example 3.2, Ω1 = {(0, 0, 0), (10, 0, 0), (20, 15, 20), (30, 30, 20), (40, 30, 40), (50, 45, 40)},

Ω2 = {(0, 0, 0), (10, 15, 0), (30, 30, 20), (40, 45, 40)} and Ω3 = {(0, 0, 0), (20, 15, 20), (40, 30, 40)}.

It is clear that
⋃n

i=1Ωi = Ω.

3.4.2 Useful Operations on Simulation Scenarios

Some operations on simulation scenarios will be used when deriving scenario gener-

ation procedures. First, it is convenient to define the time-shift operation. Actually, it

shifts the time-axis so that an equivalent scenario is produced.

Definition 3.7 The time-shift operation executed on a scenario of a periodic task set

3.4 simulation scenarios 35

Γ = {τ1, . . . , τn} is defined by

tshift(S, w)
def

= (S1 + w, . . . , Sn + w), w ∈ (.)

It is clear that S ≡ tshift(S, w), for any w ∈ .

Consider Example 3.2 and one of its simulation scenarios represented in Figure 3.5,

say S = (20, 15, 20). This scenario takes place after time advances by at least 20 time

units from the origin. Advancing time by 10 time units further, scenario (30, 30, 20)

is reached. This reasoning suggests the following useful operation on S that gives the

scenario that is found from S if time advances by a given value.

Definition 3.8 Let Γ = {τ1, . . . , τn} be a set of periodic task set and S a simulation

scenario of Γ. The time-add operation on S is defined as

tadd(Γ,S, w)
def

=

(
S1 +

⌊
max(S) + w − S1

T1

⌋
T1, . . . , Sn +

⌊
max(S) + w − Sn

Tn

⌋
Tn

)

(.)

The result of the time-add operation is also a scenario, as stated by the following

lemma.

Lemma 3.1 Let Γ = {τ1, . . . , τn} be a set of periodic tasks and S a simulation scenario

of Γ. For any time interval w ≥ 0, S′ = tadd(Γ,S, w) is also simulation scenario of Γ.

Proof Consider that S is a simulation scenario of a periodic task set Γ = {τ1, . . . , τn}.

It is clear that S ′i mod Ti = 0 since Si mod Ti = 0. Also, the following relation holds:

max(S) + w − Si −

⌊
max(S) + w − Si

Ti

⌋
Ti < Ti,

which implies that max(S)+w−S ′i < Ti. As max(S)+w < max(S′), relation max(S′)−

S ′i < Ti must hold for i = 1, . . . , n. Therefore, S′ is a simulation scenario of Γ according

to Definition 3.3.

3.4 simulation scenarios 36

Similarly, the operation tsub(Γ,S, w), which gives a scenario when time goes back by

w, can be defined:

Definition 3.9 Let Γ = {τ1, . . . , τn} be a set of periodic tasks and S a simulation scenario

of Γ. The time-sub operation on S is defined as

tsub(Γ,S, w)
def

=

(
S1 +

⌊
max(S)− w − S1

T1

⌋
T1, . . . , Sn +

⌊
max(S)− w − Sn

Tn

⌋
Tn

)

(.)

It is important to notice that tsub(Γ,S, w) ≡ tadd(Γ,S,−w). Thus, Lemma 3.1 can

be used to show that result of the time-sub operation is also a simulation scenario.

It is interesting to observe that tadd(Γ,S, w) is a step-functions which changes its

value whenever max(S) + w − Si are multiple of Ti. Taking Example 3.2 as illustration,

it can be seen that using any value in [0, 5) for w leads to the same simulation scenario

since from any S ∈ Ω, tadd(Γ,S, w) = tadd(Γ,S, 0). Further, it is not difficult to check

that tadd(Γ,S, w) ≡ tadd(Γ,S, w + 60) since lcm(10, 15, 20) = 60. These observations

imply that there is a finite set of values for w that can be used to generate simulation

scenarios for a periodic task set. Following this arguments, the following theorem gives a

basis for deriving scenario generation procedures for a given periodic task set.

Theorem 3.1 Consider a periodic task set Γ = {τ1, . . . , τn} and its hyperperiod defined

as h = lcm(T1, . . . , Tm). If S is a simulation scenario of Γ, then the set of all its (non-

equivalent) simulation scenarios Ω can be obtained by

Ω =
⋃

w∈Ψ

tadd(Γ,S, w), (.)

where

Ψ = {v ∈ [0, h)|∃τi ∈ Γ : v mod Ti = 0}

Proof From Lemma 3.1, it is known that tadd(Γ,S, w) is a simulation scenario of Γ.

It is needed to show that such values of w give Ω. Consider any value of w /∈ Ψ. The

3.4 simulation scenarios 37

proof will be by showing that tadd(Γ,S, w) ≡ tadd(Γ,S, v) for some v ∈ Ψ. First,

consider that v mod Ti 6= 0 for any τi ∈ Γ. In this case, write v = vi + xi such that vi

mod Ti = 0 and 0 < xi < Ti for all τi ∈ Γ. Let v′ = maxτi∈Γ(vi). Since S is a simulation

scenario of Γ, it follows that ⌊(max(S) + v′ − Si)/Ti⌋ = ⌊(max(S) + v − Si)/Ti⌋ for all

τi ∈ Γ. This means that tadd(Γ,S, v′) = tadd(Γ,S, v). If v ∈ [0, h), let w = v′ ∈ Ψ,

which is enough to show the theorem. Otherwise, let w′ ∈ be a value such that

w = v′ + w′ and w ∈ [0, h). It is clear that such w′ exists. Thus, by Definition 3.4,

tadd(Γ,S, w) ≡ tshift(tadd(Γ,S, v′), w′), completing the proof.

Corollary 3.1 Let S = (0, . . . , 0) be a simulation scenario. The set of all non-equivalent

distinct simulation scenarios for a given task τi can be obtained by

Ωi =
⋃

tadd(Γ,S, kTi), k = 0, 1, . . . ,
h− Ti

Ti

Proof Assume S′ = tadd(Γ,S, kTi) for some k ∈ and 0 ≤ k ≤ (h − Ti)/Ti. From

Lemma 3.1, it is known that S′ is a simulation scenario of Γ. As S = (0, . . . , 0), S′ =(⌊
kTi

T1

⌋
T1, . . . ,

⌊
kTi

Tn

⌋
Tn

)
, by Equation (.). From Theorem 3.1, with these values of k, a

subset of Ω is generated. Hence, it is necessary to show that such a subset is Ωi, which is

equivalent to showing that S′ ∈ Ωi. Assume by contradiction that S′ 6∈ Ωi. By Definition

3.6, this means that max(S′) =
⌊

kTi

Tl

⌋
Tl for some τl 6= τi, or equivalently,

⌊
kTi

Ti

⌋
Ti <

⌊
kTi

Tl

⌋
Tl ⇒

kTi

Tl

<

⌊
kTi

Tl

⌋
,

and so the corollary follows since kTi

Tl
≥ 0.

As an illustration of Theorem 3.1, consider S = (0, 0, 0) regarding Example 3.2. It can

be seen that Ω can be given by tadd(Γ,S, w) for any w ∈ Ψ = {0, 10, 15, 20, 30, 40, 45, 50}.

Considering task τ1, Ω1 can be given by tadd(Γ,S, kT1) for any k ∈ λ = {0, 1, 2, 3, 4, 5}.

Although simple, the observations stated by both the theorem and the corollary are

important for deriving algorithms to generate simulation scenarios. This is the main idea

3.5 summary 38

of most algorithms given in the next chapter. Also, it is important to observe that both

Theorem 3.1 and Corollary 3.1 can be extended to consider the generation on Ω and Ωi

regarding tsub() operation.

3.5 SUMMARY

This chapter presented a fault resilience metric which is reasonably independent of

the system and fault model. Such a metric can be used to compare different systems from

the resilience point of view. In order to compute this metric, a simulation environment

was defined so that the system can be simulated during specific time windows, which are

defined based on simulation scenarios, a concept formalized in this chapter.

The definitions presented in this chapter are a basis to deriving procedure to generate

simulation scenarios and those to generate errors during simulation. These issues will be

addressed in the next chapters.

CHAPTER 4

SIMULATION SCENARIO GENERATION

PROCEDURES

This chapter focus on describing the generation procedures for simulation scenarios. Some

of the derived algorithms, presented in Section 4.1, generate all possible simulation sce-

narios for a given task. Others, described in Section sec:randomscenario, randomly gen-

erate a subset of them. Also, the time complexity for each procedure is presented for

comparison means.

4.1 SEQUENTIAL SCENARIO GENERATION PROCEDURES

Sequential generation procedures are characterized by generating the set of all possible

simulation scenarios Ωi for a given task τi ∈ Γ. More specifically, the procedures described

here must comply with the following properties:

Property 4.1 (Full-coverage) All simulation scenarios Ωi are generated.

Property 4.2 (Validity) Only simulation scenarios are generated.

Property 4.3 (Termination) The generation procedure takes a finite number of steps.

Two procedures that satisfy these three properties are described. The first one is

based on the knowledge of the task set hyperperiod, and is described in Section 4.1.1.

The second procedure, described in Section 4.1.2, is capable of generating Ωi without the

need to determine the hyperperiod.

39

4.1 sequential scenario generation procedures 40

4.1.1 A Simple Sequential Generation Procedure

Algorithm 1 sequentially generates the set Ωi starting from S = (0, . . . , 0). The

generation procedure receives Ti as input and advances by steps of Ti. A new scenario

is generated in every step and k = 0, 1 . . . , (h− Ti)/Ti. Note that S = (0, . . . , 0) is fixed

during the execution of the algorithm.

Algorithm 1: A simple procedure to generate Ωi for a periodic task set.

k ← 0;1

h ← lcm(T1, . . . , Tn)−minn
j=1(Tj);2

Ω← ∅;3

S← (0, . . . , 0);4

while k < (h− Ti)/Ti do5

Ω← Ω ∪ tadd(Γ,S, kTi);6

k ← k + 1;7

Table 4.1 illustrates the behavior of the algorithm when it is applied for Example 3.2,

considering task τ1. Recall that T = (10, 15, 20). As can be seen, 6 values of k are used

by the algorithm.

Table 4.1. Results of Algorithm 1 for illustrative example.
k tadd(Γ,S, kTi) k tadd(Γ,S, kTi) k tadd(Γ,S, kTi)

0 (0, 0, 0) 2 (20, 15, 20) 4 (40, 30, 40)
1 (10, 0, 0) 3 (30, 30, 20) 5 (50, 45, 40)

It is not difficult to see the correctness of Algorithm 1:

Theorem 4.1 Algorithm 1 generates only simulation scenarios for any set of periodic

tasks Γ = {τ1, . . . , τn} and all possible simulation scenarios Ωi, regarding a given task

τi ∈ Γ, are generated in a finite number of steps.

Proof The validity porperty follows directly from line 6 and Lemma 3.1. Also, it can be

seen by the algorithm that there are exactly h/Ti steps and so the Termination property

holds. By the algorithm, only simulation scenarios within the interval [0, h) are generated.

4.1 sequential scenario generation procedures 41

Further, by Corolary 3.1, kTi, k = 0, . . . , (h−Ti)/Ti} ensures the Full Coverage property,

completing the proof.

Note that Algorithm 1 uses the value of the task hyperperiod, which can be calculated

efficiently by successively performing the classical Euclid’s algorithm [30]. Even though

this is true, its value may grow rapidly and generate large numbers. Hence, depend-

ing on the relations between task periods, the computation of the hyperperiod can be

time/memory consuming due to arithmetics on large numbers that must be carried out

[14] during the generation procedure.

Traditional algorithms used to do such arithmetics consider that the multiplication

and division operation take O(β2), where β is the number of bits used to save each

number. Better algorithms have already been developed, however, in practice assuming

O(β2) generally presents a better result [14]. For example, considering a task set Γ

with n tasks, the running time for the hyperperiod computation is O((n − 1)(log 2h)
2)

[30]. Furthermore, the algorithm may have to deal with large numbers arithmetics in

time-add operation. Hence, the running time for Algorithm 1 is O(nh
Ti
(log2 h)2).

It may be preferable to use algorithms that do not depend on the knowledge of task

set hyperperiod. An algorithm that avoids working with large numbers is shown in the

following section.

4.1.2 A Better Sequential Generation Procedure

The main idea of Algorithm 2 is to carry out time-shift operations during the genera-

tion procedure so that one of the release times in the simulation scenarios are always kept

at the origin. Recall that simulation scenarios are equivalent with respect to time-shift

operations (Definition 3.4). The algorithm starts from scenario (0, . . . , 0) and advances

in steps of Ti. Tuple S is updated in line 6 so that each generated S have S1 at the origin.

Any Si could be chosen instead of S1.

4.1 sequential scenario generation procedures 42

Algorithm 2: A better procedure to generate Ωi for a periodic task set.

S← (0, . . . , 0);1

Ω← ∅;2

repeat3

Ω← Ω ∪ S;4

S← tadd(Γ,S, Ti);5

S← tshift(S,−S1);6

until S1 = S2 = . . . = Sn ;7

Taking Example 3.2 for illustration and considering task τ1, the steps of Algorithm 2

are represented in Table 4.2. The second and third columns of the table show the simula-

tion scenarios generated before and after the time-shift operations (line 6), respectively.

It is interesting to observe that the release time values are bounded within a few values

unlike Algorithm 1. For this example, this strategy keeps the values of Si between −10

and 5 instead of within [0, h). As a consequence, time and space related to the computa-

tion of large numbers associated to the task set hyperperiod are saved. The last column

of Table 4.2 indicates the equivalences between the scenarios generated by Algorithm 2

and the one shown in Table 4.1. The algorithm halts in the seventh step, when scenario

S = (0, 0, 0) is reached for the second time.

Table 4.2. Results of Algorithm 2 for Example 3.2
step tadd(Γ,S, v) tshift(S,−v) equiv.

1 (0, 0, 0) (0, 0, 0) (0, 0, 0)
2 (10, 0, 0) (0,−10,−10) (10, 0, 0)
3 (10, 5, 10) (0,−5, 0) (20, 15, 20)
4 (10, 10, 0) (0, 0,−10) (30, 30, 20)
5 (10, 0, 10) (0,−10, 0) (40, 30, 40)
6 (10, 5, 0) (0,−5,−10) (50, 45, 40)
7 (10, 10, 10) (0, 0, 0) halt

The correctness of Algorithm 2 is now derived, where the Validity, Full Coverage,

Termination properties are shown.

Theorem 4.2 Algorithm 2 generates only simulation scenarios for any set of periodic

tasks Γ = {τ1, . . . , τn} and all possible simulation scenarios Ωi, regarding a given task

4.1 sequential scenario generation procedures 43

τi ∈ Γ, are generated in a finite number of steps.

Proof Assume that S and S′ are simulation scenarios generated (in line 6) in two con-

secutive steps of the algorithm. The properties will now be shown:

Validity. By a simple induction on the scenarios generated in each step of the algorithm.

As the base case, let S = (0, . . . , 0). By definition, it is clear that S is a simulation

scenario. It follows from lines 5,6 and from Lemma 3.1 that S′ is also a simulation

scenario. Assuming now that S is a simulation scenario generated by the algorithm

in any of its steps, it can be shown that S′ is a simulation scenario by the same

arguments used for the base case.

Termination. It is necessary to show that the halting state S ′1 = S ′2 = . . . = S ′n

is eventually reached. Since it is known by Definition 3.7 that time-shift opera-

tions produce equivalent scenarios, removing line 6 does not alter the algorithm

correctness. Carrying out this modification, the same halting state is reached when

⌊
kTi

T1

⌋
=

⌊
kTi

T2

⌋
= · · · =

⌊
kTi

Tn

⌋

where k > 0 is the number of times Ti is added. This identity can take place only if

kTi = h = lcm(T1, . . . , Tn), i.e. k = 0, 1, . . . , h/Ti and so the algorithm terminates

in h/Ti steps.

Full Coverage. Assume by contradiction that there is a scenario S′′ ∈ Ωi not generated

by the algorithm. From Equation (.), it is known that S 6= S′ and by line 5, the

procedure advances in steps of Ti. In other words, no simulation scenario for τi is

skipped during the generation procedure. Thus, the algorithm must have halted

before generating S′′. As mentioned before, k assumes integer values between 0 and

h−Ti

Ti
, which by Corollary 3.1 ensures full coverage.

4.2 random scenario generation procedures 44

It is important to observe that Algorithm 2 does not use large numbers and hence

it saves the cost of calculating them. Also, as mentioned before, it deals with numbers

bounded within a few values. For these reasons, the running time of Algorithm 2 is

O(nh/Ti).

4.2 RANDOM SCENARIO GENERATION PROCEDURES

The proposed generation procedures shown in Algorithms 1 and 2 are useful when

|Ωi| is reasonably small since in this case it is possible to analyze all scenarios in Ωi.

Otherwise, it is interesting to generate a smaller set of scenarios Ω∗i ⊂ Ωi. Analyzing Ω
∗
i

enables one to infer properties of Ωi. Deriving Ω
∗
i is the focus of this section.

It is clear that a procedure to generate Ω∗i must be random so that posterior analysis

is not biased. A random procedure often makes use of a pseudo-random generator, which

is assumed here to be available. More specifically, the algorithms described in this section

use the function rand(a, b). Each time rand(a, b) is performed, it returns an integer value

k according to a uniform distribution in the interval [a, b]. In other words, it is assumed

that the probability of choosing a given value k in this interval is P (k) = 1/(b− a+ 1).

The problem of generating Ω∗i at random must satisfy property 4.2 (Validity) and also

the following Property:

Property 4.4 (Probabilistic Coverage) Any subset of Ωi of size |Ω∗i | can be gener-

ated.

Also, the random procedures described in this chapter must ensure termination prop-

erty. Indeed, one of the derived procedure comply with Property 4.3. Nonetheless, for

some random-based procedures it is only possible to guarantee that their expected run-

ning time converge to a finite number of steps. In this case, termination requirement is

weaker:

Property 4.5 (Probabilistic Termination) The expected number of steps of the gen-

4.2 random scenario generation procedures 45

eration procedure is bounded.

It can be noted that Property 4.5 is now weaker than Property 4.3. Another difference

between the problem stated in the previous section and the one addressed in this section is

related to its coverage. Since not all simulation scenarios are to be generated, probabilistic

coverage is important to ensure that any subset with the required size can be generated.

For example, a näıve deterministic solution to determine Ω∗i is to consider that it will

always contain the first |Ω∗i | scenarios in Ωi so that a sequential generation procedure

could be used. However, this solution does not comply with Property 4.4.

Before describing the random-generation procedures, Section 4.2.1 explains the gen-

eral framework from which they are derived. Then, a very simple procedure is described

in Section 4.2.2. This procedure deals with numbers as large as the hyperperiod of the

task set, which implies that one must implement long number arithmetics. A second

random procedure, which relaxes this need, is presented in Section 4.2.3.

4.2.1 Random Choices to Generate Simulation Scenarios

As explained in Section 3.4, simulation scenarios can be generated by selecting integer

arguments from a set of values. This is what has been shown in Algorithm 1, for example.

The random generation procedures follow this idea but the selection of such arguments

is carried out by random choice instead. Figure 4.1 illustrates a general framework that

forms this random selection. The set Ui ⊂ represents the arguments that can be used

to generate a simulation scenario for task τi. The set Ui must be defined such that any

scenario in Ωi can be generated for the sake of the Probabilistic Coverage property. The

goal of the random generation procedure is to select values in Ui such that a subset

Ω∗i ⊂ Ωi of scenarios can be generated.

The random probabilistic procedures that will be described work in steps each of

which is responsible for choosing a value of Ui. For each chosen value a scenario in Ωi

is generated. If the generated scenario has been generated before, it is discarded and a

4.2 random scenario generation procedures 46

Ui ΩiΩ∗i

Figure 4.1. Generation of Ω∗i from Ui.

new value in Ui must be chosen. The procedure stops when m distinct scenarios in Ωi

has been generated. Algorithm 3 represents this general procedure.

Algorithm 3: General framework to randomly generate a sample of m scenarios
for a periodic task set.

Ω∗i ← ∅;1

Carry out some other initialization if needed;2

repeat3

Select a number from Ui at random;4

Generate a simulation scenario S from the selected value;5

if S /∈ Ω∗i then6

Ω∗i ← Ω∗i ∪ S;7

until |Ω∗i | = m ;8

One important aspect of any random generation algorithm is its expected running

time. Intuitively, it can be seen from Figure 4.1 that depending on the sizes of Ωi and

Ω∗i the random generation will take more or less steps. Hence, it is useful to derive this

time. First, for the sake of notation, the concept of sample size factor is defined:

Definition 4.1 The sample size factor of Ω∗i ⊂ Ωi is defined as

αi =
|Ω∗i |

|Ωi|
(.)

It is clear that the higher the value of αi the harder it is to generate Ω
∗
i . Now, the

4.2 random scenario generation procedures 47

following theorem gives the expected number of iterations of any algorithm following the

structure of Algorithm 3:

Theorem 4.3 The expected number of iterations of Algorithm 3 is not greater than

O
(
|Ωi| ln(1− αi)

−1
)

(.)

Proof The algorithm works in j = 1, . . . , |Ωi|
∗ steps, each of which is responsible for

generating a new element in Ω∗i . The proof will be by deriving an upper bound on the

number of iterations for generating a new scenario in each step j. Since all values in Ui

leads to a valid scenario by Figure 4.1, the probability of generating a valid selection is 1.

Hence, it is enough to derive the probability of generating a new scenario in step j. This

formulation serves to derive an upper bound on the number of iterations, which will now

be done. Define the random variable Aj as follows:

Aj ≡ Generation of a new scenario (not yet in Ω∗i) in step j

Note that in step j, there are j − 1 scenarios already selected. From this fact, P (Aj)

can be computed as

P (Aj) =
|Ωi| − (j − 1)

|Ωi|
(.)

It can be seen that Aj follows a geometric distribution
1. From probability theory [54]

it follows that its expectation is given by

E(Aj) =
|Ωi|

|Ωi| − (j − 1)
(.)

Equation (.) gives an upper bound on the number of times the repeat loop is

1Geometric distribution models the number of Bernoulli trials needed to get the first success.

4.2 random scenario generation procedures 48

expected to occur for a given value of j. Hence, the bound for j = 1, 2, . . . , |Ω∗i | is

|Ω∗

i |∑

j=1

|Ωi|

|Ωi| − (j − 1)
= |Ωi|

|Ω∗

i |∑

j=1

1

(|Ωi| − j + 1)

= |Ωi|

|Ωi|∑

j=1

(1/j)−

|Ωi|−|Ω
∗

i |∑

j=1

(1/j)

 (.)

Each sum term in Equation ((.)) is an harmonic series. LetHn, namely the nth harmonic

number, be defined as the sum of the first n terms of an harmonic series. Hence, Equation

((.)) can be computed as

|Ωi|

|Ω∗

i |∑

j=1

1

(|Ωi| − j + 1)
= |Ωi|(H|Ωi| −H|Ωi|−|Ω∗

i |
) (.)

It is known that Hn = lnn+ γ +O(1/n), where γ is Euler’s constant [30]. Therefore,

assuming αi < 1, Equation ((.)) can be approximated as

|Ωi|

|Ω∗

i |∑

j=1

1

(|Ωi| − j + 1)
≈ |Ωi| ln

(
|Ωi|

|Ωi| − |Ω∗i |

)

= |Ωi| ln

(
1

1− αi

)
(.)

which implies Equation ((.)), as required.

It is interesting to observe that the logarithm term in equation (.) serves as a

reducing factor when |Ω∗i | << |Ωi|. For example, if |Ωi| = 108 and |Ω∗i | = 103, that is

αi = 10−5, a random generation procedure in line with the framework of Algorithm 3 is

expected to stop with no more than 103 iterations. As a rule of thumb, one must not

use Algorithm 3 if αi ≥ 1 − 1
e
since in this case, ln(1/(1− αi)) ≥ 1 where e is a natural

number.

4.2 random scenario generation procedures 49

4.2.2 A Simple Random Generation Procedure

Algorithm 4 describes a procedure to generate m = |Ω∗i | scenarios at random. In order

to select a scenario in Ωi, an integer k (line 6) is chosen so that 0 ≤ kTi ≤ h− Ti. Note

that this range of values ensures that k could assume any multiple of the task periods

within [0, h). Then the scenario is generated taking kTi as argument in tadd(Γ,S, kTi).

Scenarios already generated are discarded (line 8). If this is the case, another value of k

is chosen. The algorithm stops when j = m distinct scenarios are generated. Note the

similarities of this algorithm and that of Algorithm 1 and that this random generation

procedure is in line with the framework described in Algorithm 3.

Algorithm 4: A simple procedure to randomly generate a sample of m scenarios
for a periodic task set.

h ← lcm(T1, . . . , Tn);1

j ← 1;2

Ω∗i ← ∅;3

S← (0, . . . , 0);4

repeat5

k ← rand(0, (h− Ti)/Ti);6

S′ ← tadd(Γ,S, kTi);7

if S′ /∈ Ω∗i then8

Ω∗i ← Ω∗i ∪ S′;9

j ← j + 1;10

until j = m ;11

Considering Example 3.2 and task τ1, k can assume values in the interval 0, 1, . . . , 5.

In this case, there are 6 possible values of kTi leading to 6 possible distinct scenarios, as

can be seen in Table 4.2.2, which illustrates that probabilistic coverage is ensured.

Since Algorithm 4 is in line with Algorithm 3, the number of iterations is upper

bounded by Equation (.). Also, the manipulation of simulation scenarios for a task set

with n tasks can be done in O(n log2 h). Thus, the expected execution cost of Algorithm

4 is upper bounded by O
(
n log2 h|Ωi| log

(
1

1−αi

))
. The correctness of the algorithm can

be stated as follows:

4.2 random scenario generation procedures 50

Table 4.3. Scenarios generated by Algorithm 4 for Example 3.2 considering task τ1.

kTi tadd(Γ,S, kTi) kTi tadd(Γ,S, kTi) kTi tadd(Γ,S, kTi)

0 (0, 0, 0) 20 (20, 15, 20) 40 (40, 30, 40)
10 (10, 0, 0) 30 (30, 30, 20) 50 (50, 45, 40)

Theorem 4.4 Algorithm 4 generates a subset Ω∗i ⊂ Ωi of m simulation scenarios for any

set of periodic tasks Γ = {τ1, . . . , τn} satisfying properties 4.2, 4.4 and 4.5.

Proof The Validity property follows directly from line 7 and Lemma 3.1. Also, it can

be seen that Algorithm 4 has the same structure of Algorithm 3. Hence, by Theorem

4.3, the algorithm is expected to stop in a finite number of steps, ensuring probabilistic

termination by Theorem 4.3. From line 6 it is known that any multiple of Ti within [0, h)

can be chosen at random and by Corolary 3.1 these values are enough to generate any

scenario in Ωi, Thus, the Probabilistic Converage property follows.

4.2.3 A Better Random Generation Procedure

It may be clear from Theorem 4.3 that the construction of Ui plays an important

role in the performance of the random generation procedure. In this section another

procedure is derived by changing slightly the way Ui is taken into consideration. Figure

4.2 illustrates the main idea behind the proposed modification. It can be seen that Ui is

divided into three disjunct subsets. A random choice is carried out considering a subset

at a time. As the figure indicates, Ui must be partitioned so that an element is only part

of one subset.

Algorithm 5 presents the procedure. Although this algorithm follows the same basic

structure as the previous ones, some aspects are worth mentioning. Observe in line 6 that

an integer value is chosen between 1 and h∗/Ti, where h∗ is the size of the partitions of Ui.

Its value must be large enough to ensure the Probabilistic Coverage property. Otherwise,

the algorithm will stop before taking the whole spectrum of Ui. In other words, h
∗ ≥ h/m,

4.2 random scenario generation procedures 51

Ui Ωi

Ω∗i
Ui1

Ui2

Ui3

Figure 4.2. Partitioning U into disjunct subsets.

where m is the desired number of simulation scenarios in |Ω∗i |. Another aspect is the

operation in line 10. This operation has the effect of advancing time so that the domain

for random choices are kept bounded within the chosen partition size. Both the time

advance and the time shift operations (lines 10 - 11), are used to reduce the complexity

due to large number arithmetics. This is a positive side effect of the strategy described

in this algorithm.

Algorithm 5: A better procedure to randomly generate a sample of m scenarios
for a periodic task set assuming m < h/Ti.

Ω∗ ← ∅;1

S← (0, . . . , 0);2

h ← lcm(T1, . . . , Tn);3

h∗ =
⌊

h
m

⌋
;4

repeat5

k ← rand
(
0,

⌊
h∗−Ti

Ti

⌋)
;

6

S′ ← tadd(Γ,S, kTi);7

Ω∗i ← Ω∗i ∪ S′;8

j ← j + 1;9

S← tadd(Γ,S, h∗);10

S← tshift(S,−S1);11

until (j = m) ;12

Consider again Example 3.2 and task τ1 as illustration and define h∗ = 20. This

means that the algorithm chooses a value of kT1 ∈ {0, 10, 20} in each of its steps. In

4.2 random scenario generation procedures 52

the first step, as S = (0, 0, 0), there are two possible scenarios to be generated. In the

second step, though, only two different scenarios can be generated. Table 4.4 gives the

possible scenarios that could be generated by the algorithm in each of its steps. Note

that in order to ensure the Probabilistic Coverage property, there must be at least three

steps. The demonstration that Algorithm 5 follows the required properties is defined in

the following theorem.

Theorem 4.5 Algorithm 5 generates a subset Ω∗i ⊂ Ωi of m simulation scenarios of a

periodic task τi ∈ Γ = {τ1, . . . , τn} satisfying properties 4.2, 4.4 and 4.5.

Proof

Validity. The Validity property follows directly from line 7 and Lemma 3.1.

Probabilistic Coverage. From lines 6-7 it is known that any multiple of a task period

within [0, h∗) can be chosen at random. There are m intervals with size h∗ (line 4).

Note that repeat-until loop and line 10 assures that all intervals are visited. Hence

any multiple of Ti within [0,h) can be chosen at random. According to Corolary

3.1 these values are enough to generate any scenario in Ωi. Thus, the Probabilistic

Coverage Property follows.

Termination. Note that the procedure divides h in m < h/Ti distinct subsets, where

m is the number of scenarios that must be generated. In each subset a scenario

will always be generated. Since there are m subsets, there will be m generated

scenarios. Hence, Algorithm 5 terminates with probability 1 in m steps.

In spite of calculating the hyperperiod, Algorithm 5 generates new scenarios based on

the values of h∗ (line 4) instead of using h. As a consequence it reduces the complexity

due to large numbers arithmetics, which is enforced by the use of time-shift operation

(line 11). Moreover, Algorithm 5 divides the hyperperiod in m subintervals and each

4.3 summary 53

Table 4.4. Illustration of Algorithm 5 for the illustrative example
step S k S′ S′ ≡

1st (0, 0, 0)
0 (0, 0, 0) (0, 0, 0)
1 (10, 0, 0) (10, 0, 0)

2nd (0,−5, 0)
0 (0,−5, 0) (20, 15, 20)
1 (10, 10, 0) (30, 30, 20)

3rd (0, 5, 0)
0 (0, 5, 0) (40, 45, 40)
1 (10, 5, 0) (50, 45, 40)

one of them generates a scenario in O(n log2 h∗) (line 7). Hence, the running time of

Algorithm 5 is O(mn log2 h∗).

4.3 SUMMARY

This chapter presented four procedures to generate simulation scenarios. Two of them

are useful when the total number of simulation scenarios for a given task τi is reasonably

small. They generate the whole set of such scenarios. However, in general, complex

task sets have a very large set of simulation scenarios. To deal with these cases, two

random generation procedures were derived. Table 4.5 summarizes the characteristicis of

the derived procedures.

Choosing an adequate algorithm to generate simulation scenarios poses as an im-

portant issue when it comes to simulating a specific time window of a system, instead

of considering the whole hyperperiod. The following chapter will presents the Simula-

tion Engine, which uses simulation scenarios to define the simulation time interval and

computes the fault resilience metric.

4.3 summary 54

Table 4.5. Summary of simulation scenarios generation procedures
Generation Time Characteristics
Procedure Complexity

Generates Ωi for a given task τi;

Algorithm 1 O
(

nh
Ti
log2 h

)
Based on hyperperiod;

Generates a scenario in every iteration.
Arithmetic of large numbers.
Generates Ωi for a given task τi;

Algorithm 2 O
(

nh
Ti

)
Not based on hyperperiod;

Generates a scenario in every iteration.
Generates a subset Ω∗i for a given task τi;

Algorithm 4 O
(

nh
Ti
log

(
h

h−mTi

)
log2 h

)
Based on the hyperperiod;

Generates a scenario in every iteration.
Arithmetic of large numbers.
Generates a subset Ω∗i for a given task τi;
Based on the hyperperiod;

Algorithm 5 O(mn log2 h∗) Generates a scenario in every iteration.
Deals with numbers bounded within
a few values.

CHAPTER 5

SIMULATION ENGINE

Chapter 4 presented some procedures to generate a set of simulation scenarios for a given

task τi. Based on each scenario S the simulation engine determines a specific time window

and then simulates the system to compute the fault resilience of the system regarding S.

Indeed, in order to determine the system behavior in a specific time window it is

necessary to evaluate if the execution of previous time windows may interfere in the one

that is being simulated. In other words, in order to carry out this simulation, the impact

of possible pending execution from previous scenarios in the one that is being simulated

must be considered. This procedure is addressed here as the backlog computation. Also,

the error generator procedure must generate errors so that the fault resilience is computed

considering the minimum number of errors and this is the second issue addressed in this

chapter.

The outline of the proposed simulation-based approach is given in Section 5.1. The

backlog effect on the simulation is analyzed in Section 5.2. Section 5.3 details both the

error generator and the system fault resilience. This chapter finishes with some preliminar

results obtained from the error generator algorithm, which are presented in Section 5.4.

5.1 OUTLINE

Assume that one wishes to evaluate the effort for a task τi in Γ = {τ1, . . . , τn},

considering a specific simulation scenario S = (S1, . . . , Sn). The job of this task, released

at Si, namely Ji, is called hereafter the analyzed job. Simulation will be taken until Ji

misses its deadline, making the system unschedulable. Figure 5.1 sketches the simulation

process and will be used for illustration purposes. Scenario S and a previous scenario S′

are indicated in the gray area of the figure. Release times are indicated by the vertical

55

5.2 backlog computation 56

solid arrows. The first release time of jobs in S whose priorities are at least p(Ji) is

denoted r ≤ Si in the figure. These jobs must be considered when analyzing the effects

of errors in the execution of Ji, since they may cause some interference in such a job.

r Sitb

i

j

S +!Di i

k

S’ S

Backlog computation Error generation

{ Simulation time for S

Figure 5.1. Two-step simulation procedure used by the Simulation Engine

The simulation of the system regarding S involves two problems: (a) determining

the execution backlog at r, which is related to jobs released before r; and (b) generat-

ing the minimum number of errors from r onwards so that the analyzed job misses its

deadline. Nonetheless, exact solutions to problems (a) and (b) may be computationally

too expensive for two main reasons: first, analyzing the impact of higher priority jobs

already released on the analyzed job requires backtracking in time. Second, generating

the minimum number of errors is an optimization problem. Thus, our approach to solving

them is to derive an upper bound for (a) and a lower bound for (b) so that the effort

of the fault generator is not overestimated. The simulation procedure has two steps, as

illustrated in Figure 5.1, and is explained in Sections 5.2 and 5.3, respectively.

5.2 BACKLOG COMPUTATION

The approach to estimating an upper bound on the backlog at r is based on (a) going

back to a previous scenario S′ and (b) forcing the release time of all tasks in Γ be at time

tb = min(S′). Then, the remainder task execution time after simulating the execution

of the system within [tb, r) should give the desired upper bound. It is worth mentioning

5.2 backlog computation 57

that any previous simulation scenario S′ could be considered. For example, one could

choose to backtrack from S until the time origin at t = 0, since this choice would lead

to compute the worst-case for backlog. However, in worst case it would be necessary

to consider the whole hyperperiod, which is not desired. Indeed, ideally S′ should be a

scenario which gives a good trade-off between simulation time and backlog estimation.

In order to evaluate which backtrack would give the ideal tb value, 5 periodic task sets,

composed of six tasks each, were simulated. Such task sets were randomly generated, con-

sidering variable values for both task periods T and execution cost C. In this simulation,

for each task τi we chose a simulation scenario S and backtracked to a previous scenario

S′, where S′ = tsub(Γ,S, kTi), k = 0, 1, . . . , h−Ti

Ti
. The mean backlog computed for each

task τi is presented in Table 5.1, where k indicates the number of scenarios before S that

were considered to compute the backlog.

Table 5.1. Summary of the mean backlog considering S′ = tsub(Γ,S, kTi)

i
k

50 40 30 20 15 10 5 1
1 0.0100 0.0103 0.0149 0.0161 0.0220 0.0243 0.0253 0.0260
2 0.0103 0.0106 0.0139 0.0145 0.0200 0.0223 0.0231 0.0239
3 0.0101 0.0103 0.0132 0.0150 0.0203 0.0219 0.0230 0.0241
4 0.0105 0.0109 0.0127 0.0153 0.0211 0.0224 0.0245 0.0253
5 0.0105 0.0108 0.0137 0.0151 0.0207 0.0233 0.0251 0.0266
6 0.0110 0.0113 0.0149 0.0157 0.0220 0.0239 0.0260 0.0269

Notice that the mean backlog values presented a small variability if we consider a

backtrack of at most 15 scenarios. Actually, such values begin to change when k ≥ 20.

Also, notice that the greatest backlog values were computed for the closest simulation

scenarios. This was an expected behavior since the closer S is from S′, the smaller the

time available to compute the extra workload. Based on that, the approach used to

compute the backlog, in the context of this work, is going back to the closest scenario.

In this case, S′ and tb are respectively given by:

S′ = tsub(S,Γ, kTi), k > 0 tb = min(S′)

5.3 error generator 58

Once tb is computed, the simulation starts executing the jobs released in [tb, r) but

with the fault generator deactivated. Since some jobs may be artificially released at tb, as

illustrated by the dotted-arrowed lines in Figure 5.1, there may be an execution overload

in [tb, r) which are generated for the purpose of backlog estimation only. This is illustrated

in Figure 5.2. For example, let S = (50, 45, 40) and S′ = (30, 30, 40). Artificially, a job of

τ3 is considered to be released at t = 30. Also, observe that the job of τ2 released at time

instant 30 does not complete its execution during the time interval [30, 40) and thus its

pending execution time represents a backlog for S.

10 20 30 40 50 600

1

2

5 15 25 35 45 55

3

Backlog
computation

Error
generation

S’

Figure 5.2. Illustrative example of backlog computation

In order to reduce this artificial overload, the jobs that miss their deadlines in [tb, r)

are executed until their deadlines, time at which they are discarded. This strategy can be

observed in Figure 5.3. In this case, S = (30, 30, 20) and S′ = (20, 15, 20). Observe that

at time t = 20, a backlog job, released at time t = 15 is discarded. The jobs simulated

during [tb, r) are called backlog jobs. Since we assume that the system is schedulable in

fault-free scenarios, discarding backlog jobs in this way is safe and reduces the pessimism

of the simulation-based analysis.

5.3 ERROR GENERATOR

The simulation during [r, Si +Di) is carried out with the fault generator active. The

strategy is to generate errors in the job which causes the highest interference in the

analyzed job. As the goal is to estimate a lower bound on the minimum number of

5.3 error generator 59

10 20 30 40 50 600

1

2

5 15 25 35 45 55

3

Backlog
computation

Error
generation

S’

Figure 5.3. Illustrative example of a backlog job being discarded

generated errors that make the analyzed job miss its deadline, the faulty jobs are allowed

to execute beyond its deadline. In other words, the optimization problem of determining

which jobs fail during simulation is circumvented. According to this approach the found

number of errors is guaranteed to be not overestimated but can be underestimated.

Consider a time interval [r, t), r < t, during which the fault generator is active when

simulating a given scenario S. Assume that the analyzed job Ji is active in this interval.

We define the predicate active(r, t, Ji), which is true whenever Ji has been released

before t and has not finished by r. Otherwise, the predicate evaluates false. By the

scheduling policy, the execution of Ji takes place at priority level p(Ji). Hence, the jobs

active in [r, t) that may interfere in the execution of the analyzed job or in its recovery are

executed or have their recovery actions executed at priority at least p(Ji). We represent

this set more formally as

hpS
i (r, t)

def

= {Jj|(p(Jj) ≥ p(Ji) ∨ ¯p(Jj) ≥ p(Ji)) ∧ (active(r, t, Jj)}

As mentioned before, when simulating a scenario S for a given analyzed job Ji, the

fault generator must not let Ji meet its deadline. Hence, every time t at which Ji would

successfully finish its execution (i.e t ≤ Si + Di), an error must be generated in a job

Jj ∈ hpS
i (r, t). The recovery of this faulty job must be such that it maximizes the

interference in the execution of Ji. Notice that jobs released in [r, Si) may satisfy the

maximization criterion. In order to compute this kind of interference, we define the

5.3 error generator 60

concept of interference distance:

Definition 5.1 Let S = (S1, . . . , Sn) be a simulation scenario for a given periodic task

set. Consider a time interval [r, t) and a job Ji, where min(S) ≤ r < t ≤ Si + Di. For

any job Jj ∈ hpS
i (r, t), denote ej the finishing time of Jj when no errors take place and

define Ck(t) the pending worst-case execution cost at time t of any Jk ∈ hpS
i (r, t). If Jk

has not executed by t, Ck(t) = Ck. If it has finished by t, Ck(t) = 0. Otherwise, Ck(t)

equals Ck minus what has been executed of Jk by t. The interference distance, ∆S
i,j, of

job Jj over job Ji in S is given by:

∆S
i,j

def

= max{Si − ej − ωi(ej), 0} (.)

where

ωi(t)
def

=
∑

Jk∈hpS
i (r,t)

Ck(t) (.)

Figure 5.4 illustrates the concept stated in Definition 5.1. Time t is a possible suc-

cessful finishing time of Ji. At this moment, the fault generator must generate an error in

some job in hpS
i (r, t). There are three possibilities in this example, denoted in the figure

as Jja
, Jjb

and Jjc
. Note that Jjd

is only active after t and so it is not considered as an

option. Also, note that the interference distance ∆S

i,jc
= 0 and so any error in Jjc

would

cause an extra interference in the execution of Ji. This is not true for jobs Jja
and Jjb

.

Indeed, Ji would suffer interference of these jobs due to errors only if their recovery times

are greater than their interference distances.

In the example no faults are considered. Now consider a general case where the fault

generator is to generate an additional error at time t and fS

i have already been generated.

Let the execution time of recovery actions associated to all these fS

i errors be C̄ time

units. Thus, the recovery action associated to all fS

i + 1 errors is either

max
Jj∈hpS

i (r,Si)

{
(fS

i + 1)C̄j −∆S

i,j

}
(.)

5.3 error generator 61

or

C̄ + max
Jj∈hpS

i (Si,t)
(C̄j) (.)

r eja ejb Si
ejc t Si +Di

Jja

∆i,ja = Si − eja − Cjb
, ∆i,jb

= Si − ejb
, ∆i,jc = 0

Jjb
Jjc Jjd

Figure 5.4. Interference distance.

The maximum of Equations (.) and (.) gives the desired lower bound on the

number of generated errors whenever fS

i + 1 errors make Ji miss its deadline. It is

important to emphasize that this strategy can be used because we are considering that

the execution of faulty jobs is not time-bounded, i.e. a chosen faulty job Jj is assumed

to execute beyond its deadline Sj + Dj. This is done for the sake of analysis only and

does not imply that we are restricting the system task model. It is clear that since Jj has

the highest interference in the execution of Ji according to this assumption, any other

combination of faulty jobs cannot interference more than what is computed in Equations

(.) and (.). Therefore, we are conservatively determining the fault generator effort

as mentioned before. Less pessimistic approaches to choosing faulty jobs involve solving

optimization problems, which will be considered in future work. For now, we are more

concerned with validating the fault resilience analysis as a whole.

5.3.1 Simulation Procedure

Algorithm 6 implements the simulation engine. It receives as input parameters a task

set Γ, one of its simulation scenarios S, and one task to be analyzed regarding S, whose

job is released at Si. The simulation interval [tb, t
′) is set in lines 1-3. Variables C̄ and

fS

i in the algorithm stores the sum of recovery times of faulty jobs and the number of

errors, respectively. The final value of fS

i is the generated number of errors by the fault

5.3 error generator 62

Algorithm 6: Simulation engine

t′ ← Si +Di; r ← minJk∈hp
S
i
(Sk);1

S′ = tsub(Γ,S,min(T));2

tb ← min
Jk∈hp

S′

i
(S ′k); t← tb;3

foreach Jk ∈ hp
S
i (tb, t

′) do4

enqueue(k, Ck, p(Jk));5

enqueue(0, t− t′, p(Ji)− 1); /* a dummy job */;6

fS
i ← 0; C̄ ← 0;7

while (t ≤ t′) do8

(k, C, p)← dequeue(t);9

s ← nextJob(t, p);10

if t+ C ≤ s then /* Jk finishes */11

t← t+ C;12

if t < r then /* backlog job */13

if Sk +Dk > t+ C then /* overload? */14

t← Sk +Dk;15

else /* fault generator active */16

if j = i ∧ t ≤ Si +Di then17

fS
i ← fS

i + 1;18

x ← maxJj∈hp
S
i (r,Si)

(fS
i C̄j −∆S

i,j);19

y ← maxJj∈hp
S
i (Si,t)

(C̄j);20

if x > C̄ + y then21

enqueue(i, x− C̄, p(Ji));22

C̄ ← x;23

else24

enqueue(i, y, p(Ji));25

C̄ ← C̄ + y;26

27

else /* Jk is preempted */28

enqueue(k, C − (s− t), p);29

t← s;30

31

5.3 error generator 63

generator that make Ji miss its deadline, meaning that scenario S is resilient to at least

fS

i − 1 errors.

Initially, all jobs in the simulation interval are enqueued according to their priorities

and release times (lines 4-5). This is carried out by the function enqueue. A dummy job

is also enqueued at priority level p(Ji) − 1 (line 6). This job is executed in background

during the simulation. Since time advances in the algorithm only when some job is

executed, the dummy job is used for the purpose of advancing time during idle intervals.

Any job is dispatched to execution at time t as follows. The highest priority ready job

at t is dequeued (line 9). The dequeue function returns the job identifier (k), its execution

time (C) and its priority (p). Then the nexJob function is called. This function returns

the next release time of the job with priority at least p whose release time is greater than

t. If t+C > s, the dispatched job Jk is executed until time s when a preemption occurs.

Otherwise, there are three situations to be checked. If Jk is a backlog job, it is executed

until either time t + C or time Sk +Dk. In the former case, time is simply advanced to

t + C. In the latter case, Jk misses its deadline at time Sk + Dk and is discarded (lines

14-15). Finally, if Jk = Ji and Ji meets its deadline, an additional error is generated in

the job which maximizes either Equation (.) or Equation (.), as explained earlier.

Note that the recovery time of the faulty job is added to Ci. This avoids possible

backtracking to execute the recovery of Jj, simplifying the simulation. Also, preemption

is simulated (lines 28-30) simply by enqueuing the remainder execution time (C − s+ t)

of the current job and advancing time to s. When dequeue is called at time s, the highest

priority job at s is selected.

The correctness of the simulation engine is stated by the following theorem.

Theorem 5.1 Consider a periodic task set Γ = {τ1, . . . , τn} and a given simulation

scenario S = (Si . . . , Sn) of Γ. Algorithm 6 finishes its execution returning a lower

bound on the number of errors necessary to make the analyzed job released at Si miss

its deadline.

5.3 error generator 64

Proof [Proof sketch] It is not difficult to see that the algorithm halts since in each of its

steps in the iterative loop time advances in lines 12, 15 or 30 and so eventually t > t′.

Assume that f < fS

i errors would make Ji miss its deadline in an actual schedule.

Since the value of fS

i is increased one unit at a time throughout the execution of the

algorithm, consider a moment t when fS

i = f and Ji finishes successfully in the simulation.

Then either an error is generated in some job in hpS
i (Si, t) or all errors take place in some

job in hpS
i (r, Si). Since the backlog at r is not underestimated, these sets of jobs contain

at least the same jobs which would be active in the corresponding intervals [r, Si) and

[Si, t) in an actual schedule. Since the choice of faulty jobs maximizes the interference in

the execution of Ji due to error recovery, Ji would meet its deadline in the actual schedule

if no more than f errors were taken into consideration, a contradiction.

5.3.2 Illustrative Example

To make things clear, consider S = (50, 45, 40) a simulation scenario for Example 3.2

scheduled according to EDF. In this scenario let us analyze the job J3 released at t = 20.

For such a scenario, S′ = (tsub(S,Γ,min(T)) = (40, 30, 40) and the simulation time

interval is [30; 60). Figure 5.5 shows the whole scheduling for S, including the backlog

computation and error generation.

10 20 30 40 50 600

1

2

5 15 25 35 45 55

3

Backlog
computation

Error
generation

S’

Figure 5.5. Illustrative simulation for Example 3.2

Observe that, in this case, system simulation starts at tb = 30. At this time, an

instance of τ3 is artificially included (dotted arrow in Figure 5.5). As mentioned before,

5.4 preliminary results 65

this is done for deriving an upper bound on the backlog. Notice that at t = 40, a backlog

job from previous scenario (from task τ2) is still executing. It is worth mentioning that

in the actual schedule shown in Figure 3.5 the backlog is null.

At time instant t = 40 the analyzed job is released and starts executing at t = 54 due

to the interference of higher priority jobs. When the error generator realizes that this job

is going to finish its execution successfully, it generates an error so that this job miss its

deadline, making the system unschedulable. The choice of the faulty job is done so that

the error generator effort is minimized. Hence, any active job in [40, 60) can be chosen

as the faulty job provided that it causes the highest interference in the analyzed job. It

is important to notice that during the time interval [40, 60), if any other job released at

this time interval misses its deadline the system is still considered schedulable. Only the

timeliness of the analyzed job (J3) is observed. According to Definition 3.2, the effort

value for S is given by E3 =
fS
3

D3
= 1

20
= 0.05.

In the following section we present some simulation results showing how the derived

fault resilience metric can be used to compare different systems.

5.4 PRELIMINARY RESULTS

In this section we give some direction of the proposed analysis using an example

task set composed of 10 tasks. Both EDF and RM were considered. The example was

generated as follows. The task execution times were fixed and the task periods were

randomly generated so that processor utilization was in [0.6; 0.8). The recovery model

considered was task re-execution and so C̄ = C:

Example 5.1 Consider Γ a periodic task set with 10 tasks and C = (1, . . . , 1), T =

(3, 11, 14, 15, 19, 19, 28, 33, 35, 44), D = T and C̄ = C.

The hyperperiod for the analyzed task set is h = 87, 780, which leads to
∑10

i=1Ωi =

68, 898. The mean effort Ēi for both RM and EDF is presented in Table 5.2.

5.5 summary 66

Table 5.2. Mean effort Ēi for Γ
Ēi

i 1 2 3 4 5 6 7 8 9 10
RM 1.000 0.614 0.432 0.337 0.294 0.262 0.247 0.206 0.173 0.162
EDF 0.999 0.658 0.507 0.406 0.371 0.371 0.332 0.291 0.282 0.256

As can be seen in the table, EDF has a better overall performance in terms of fault

resilience than RM. Although this behavior was expected due to the optimality of EDF

in terms of schedulability, it is important to emphasize that now the difference is being

measured. It is worth mentioning that τ1 has the same fault resilience for both schedulers.

Indeed, Ēi = 1 for both EDF and RM, although for EDF a small variability (< 10−3)

was present. Since no other task interferes in the execution of τ1 according to RM and

only in a few simulation scenarios there are other tasks with priority greater than p(J1)

by EDF, this behavior was also expected. On the other hand, for all other tasks, EDF is

visibly superior to RM in terms of fault resilience. Obviously, we are not considering here

problems such as possible overloads caused by the admission of recovery actions, which

could make EDF degrade. Nonetheless, the goal of the analysis is to point out to what

extent the system support errors and is not on evaluating overload conditions.

5.5 SUMMARY

This chapter presented an approach to infering the a system resilience considering

simulation scenarios. Two main problems were addressed: the first one deals with the

impact of pending execution from previous scenarios in the one that is being simulated;

the error generator procedure using the described approach, it was illustrated that EDF

is superior to RM from fault resilience perspective. The following chapter will present a

more systematic analysis of the simulation data produced by the simulation engine.

CHAPTER 6

STATISTICAL ANALYSIS

The approach presented in Chapter 5 illustrated how to compute the fault resilience

for a given task based on simulation scenarios. Indeed, when all simulation scenarios

are available, the simulation engine can compute the effort for each task and the fault

resilience of a given system can be determined based on the desired parameters, such as

the mean effort, median or percentile values. However, there may be situations in which

simulating all scenarios may be too time consuming. In this case, the fault resilience

effort of a given task, for example, can be determined based on a sample of simulation

scenarios, which requires applying statistical inference.

This chapter focus on describing two statistical inference methods, which can be used

to determine the confidence interval for a specific parameter based on a sample of such

values. When the chosen parameter is the mean, traditional inference, which is detailed

in Section 6.1, can be safely used to determine the confidence interval. However, if the

chosen parameter is different from the mean, bootstrap technique, presented in Section

6.2, is recommended. In this chapter we apply both methods for computing the 95%

confidence interval for the chosen parameter, which is shown through illustrative examples

in Sections 6.1 and 6.2. Simulation results are presented and discussed in Section 6.3.

6.1 TRADITIONAL INFERENCE

Statistical inference methods deal with the problem of drawing conclusions for a pop-

ulation based on sample data. More precisely, it deals with two problems: (a) testing

hypothesis about a specific parameter, issue not discussed here, and (b) estimating a

specific parameter through sample data, the focus of this work. Here, we use interval

estimation, which aims at determining a 100(1 − α)% confidence interval for a specific

67

6.1 traditional inference 68

parameter, where 1− α is the confidence coefficient. Parameter represents a population

attribute that one wishes to study and the 100(1−α)% confidence interval represents an

estimated range of values, which is likely to include the population parameter.

Traditional inference techniques, which are based on the Central Limit Theorem [54,

40], have been extensively used to determine the confidence interval when the parameter

is the mean. In order to illustrate how to use such a kind of technique, consider an

illustrative example which was presented in Section 5.4 and repeated here.

Example 6.1 Consider Γ a periodic task set with 10 tasks and C = (1, . . . , 1), T =

(3, 11, 14, 15, 19, 19, 28, 33, 35, 44), D = T and C̄ = C.

Assume that the parameter one wishes to study is the mean effort Ēi for each task

τi ∈ Γ. In order to construct a confidence interval for Ēi, we need first to calculate

the sample size |Ω∗i | for each task τi. To do so we need to (a) determine an acceptable

sample error for each task, which is denoted by |Ē∗i − Ēi|, where Ē∗i and Ēi stand for

the mean effort related to the sample Ω∗i and to the population Ωi, respectively; (b) fix

the population standard deviation σi and (c) determine the coefficient confidence 1− α.

For this case, we have set |Ē∗i − Ēi| = 5x10−3 and α = 5%. The population standard

deviation σi was assumed to be known, and the sample size |Ω
∗
i | for each task τi ∈ Γ was

computed according to Equation(.) [54, 40].

|Ω∗i | =
1.96σi

|Ē∗i − Ēi|
(.)

Note that if σi is not known, it can be estimated from a pilot sample [54]. The sample

size computed for each task τi ∈ Γ are shown in Table 6.1.

Table 6.1. Sample size estimation for Example 6.1
i 1 2 3 4 5 6 7 8 9 10
|Ω∗i | 56 589 1135 851 683 713 389 326 248 219

A random generation procedure was used to generate the random samples of sim-

6.1 traditional inference 69

ulation scenarios for each task τi ∈ Γ based on the sample size |Ω∗i |. Although bothe

Algorithms 4 and 5 can be used, we used Algorithm 5 since it presents a better per-

formance. Each sample of simulation scenarios Ω∗i was used as input for the simulation

engine, so that the mean effort Ē∗i was computed. Such values are shown in Table 6.2.

Table 6.2. Ēi with 95% of confidence
RM EDF

i Ē∗i CIi Ēi Ē∗i CIi Ēi

1 1.000 [1.000,1.000] 1.000 1.000 [1.000,1.000] 0.999
2 0.614 [0.505,0.723] 0.614 0.658 [0.536,0.780] 0.661
3 0.432 [0.284,0.579] 0.433 0.507 [0.325,0.688] 0.506
4 0.337 [0.220,0.455] 0.338 0.406 [0.261,0.550] 0.407
5 0.294 [0.196,0.391] 0.295 0.371 [0.249,0.493] 0.375
6 0.262 [0.155,0.369] 0.264 0.371 [0.237,0.505] 0.373
7 0.247 [0.131,0.362] 0.247 0.332 [0.233,0.431] 0.332
8 0.206 [0.115,0.297] 0.207 0.291 [0.198,0.384] 0.291
9 0.173 [0.123,0.223] 0.174 0.286 [0.200,0.364] 0.280
10 0.162 [0.112,0.211] 0.161 0.256 [0.183,0.329] 0.256

The confidence interval CIi for the parameter Ēi was also computed considering a

confidence of 95%. For this example, the mean effort Ēi for all simulation scenarios Ωi

was known and is also presented in the table. Observe that most effort values obtained

for EDF are greater than the ones obtained for RM, except for task τ1 in which such

values are the same. Note that this is the same result presented in Table 5.2, illustrating

the effectiveness of statistical estimation.

Although such a method to calculate a confidence interval has been extensively used in

statistical literature, it may present some shortcomings if one is interested in a population

parameter which is different from the mean. In fact, in this case computing the (1−α)%

confidence interval for a parameter cannot be done straightaway. The following section

presents a computer-based inference technique which can be used to infer population

parameters, which are different from the mean.

6.2 bootstrap 70

6.2 BOOTSTRAP

Bootstrap is a computer-based method for statistical inference, which uses sample

data to estimate sample distribution without the need of carrying any model assumption.

Quoting Politis [46], the idea behind bootstrap is:

“since you do not have the whole population, do the best with what you do

have, which is the observed sample”.

In order to infer a population parameter, bootstrap technique uses the plug-in prin-

ciple [20]. To understand it, suppose one wishes to estimate an important population

parameter θ = Ēi. The population is unknown and only a random sample is available.

In order to find out θ, the plug-in principle uses the sample to calculate an estimator

θ̂, which corresponds to a function that produces an estimate for a population parameter.

For example, if θ = Ēi, θ̂ = Ē∗i . In other words, the sample estimator is used to infer the

analogous unknown population parameter. Thus, based on the value of θ̂, the parameter

θ is inferred [20]. This is shown in Figure 6.1

POPULATION
(unknown)

SAMPLE

PARAMETER
θ

ESTIMATOR
θ

sampling

estimation

calculation

Figure 6.1. Illustration of the plug-in principle

Bootstrap is a direct application of the plug-in principle [20]. For this reason, it is

capable of estimating several different population parameter.

As long as the estimator has been defined, its reliability can be assessed through

bootstrap before it can be used to infer the population parameter. Indeed, such a tech-

nique aims at deriving robust estimates of standard errors of an estimator and confidence

intervals of a population parameter. To do so, its strategy is based on resampling with

replacement the original sample data.

6.2 bootstrap 71

Although there are other inference methods which are based on resampling, they may

not be suitable for computing fault resilience values for a given system. For example,

Monte Carlo simulation considers that the population parameter distribution is known,

which may not be true when it comes to errors [46]. Jackknife technique, which is in

fact easier to compute than bootstrap, could also be used. However, since this method

uses a smaller number of replicas than bootstrap, it uses limited information about the

estimator. For this reason, Jackknife is considered as an approximation of bootstrap [20].

Bootstrap is a completely automatic method, whose application is very simple and

requires no theoretical calculations. Also, such a technique may provide more accurate

confidence intervals for standard parameters such as the mean, if compared to normal

approximation, used in traditional inference methods [46]. Moreover, since bootstrap is

based on resampling the original sample data, it allows to infer population parameters

even from small samples with unknown distribution patterns.

Although resampling is an important characteristic, since the generated samples rep-

resent a potential set of observations, it can be too CPU consuming depending on the

sample size and on the number of necessary iterations. However, as computation power

has been remarkably improving, this does not pose a major problem for current machines

[12].

In order to understand the bootstrap algorithm, consider Figure 6.2. Let the es-

timator θ̂ be the sample mean and assume that the available sample is defined as

x = (x1, x2, . . . , xs), where s is the sample size. First, resampling is applied to generate B

bootstrap samples, which are represented by x∗i = (x∗1, x
∗
2, . . . , x

∗
s), i = 1, 2, . . . , B. Each

tuple x∗i is a randomized version of the original sample x, drawn with replacement. This

means that any value x∗j may appear several times in the sample x∗i, and some may

not appear at all. The number of bootstrap samples necessary to compute an estimator

depends on the original sample size. Indeed, some authors assume that it usually varies

from 25 to 300 samples [20], while others suggest 100 bootstrap samples to compute the

standard error and 1000 bootstrap samples to compute the (1− α)% confidence interval

6.2 bootstrap 72

[13].

Resampling is an important issue in bootstrap since the generated bootstrap samples

represent a potential set of observations, which may be better than relying on standard

assumptions, which may not be true.

The next step is then to calculate an estimator θ̂∗i for each bootstrap sample x∗i. And

finally, the sample estimated mean θ̂∗ can be calculated, as the average mean of θ̂∗i, as

shown in Figure 6.2.

POPULATION
(unknown)

sampling

resampling

bootstrap
samples

x = (x1, x2, . . . , xs)

x∗1 x∗2 x∗3 . . . x∗B

θ̂∗1 θ̂∗2 θ̂∗3
. . .

θ̂∗B

θ̂∗ =
∑

B

b=1
θ∗b

B

Figure 6.2. Illustration of bootstrap algorithm.

It is also important to compute the standard error of θ̂∗ [20], which is given by

ŝeB =

√∑B

b=1(θ̂
∗b − θ̂∗)2

B − 1

The whole bootstrap procedure is shown in Algorithm 7.

Bootstrap algorithm was also applied to Example 6.1 considering both RM and EDF

scheduling to estimate the mean effort Ēi. Here, we decided to consider the samples

generated previously (used to compute the mean Ēi in Section 6.1) as the original sample

for comparison means. For such an example, we have set B = 500. The mean effort Ēi

6.2 bootstrap 73

Algorithm 7: Bootstrap Algorithm

Select B independent bootstrap samples;1

Calculate the estimator for each generated bootstrap sample;2

Compute the bootstrap estimator θ̂∗;3

Estimate the standard error ŝeB from the sample standard deviation;4

was computed using the R software [53], which implements bootstrap algorithm. The

found results are shown in Table 6.3.

Table 6.3. Ēi with 95% of confidence according to bootstrap procedure
RM EDF

i Ē∗i ŝeB CIi Ēi Ē∗i ŝeB CIi Ēi

1 1.000 0.0000 [1.000,1.000] 1.000 1.000 0.0000 [1.000,1.000] 0.999
2 0.614 0.0027 [0.608,0.619] 0.614 0.658 0.0028 [0.652,0.663] 0.661
3 0.432 0.0026 [0.427,0.437] 0.433 0.507 0.0030 [0.501,0.513] 0.507
4 0.337 0.0026 [0.332,0.342] 0.338 0.406 0.0030 [0.400,0.411] 0.407
5 0.294 0.0024 [0.289,0.298] 0.295 0.371 0.0031 [0.365,0.377] 0.375
6 0.262 0.0024 [0.257,0.267] 0.264 0.371 0.0031 [0.365,0.378] 0.373
7 0.247 0.0027 [0.242,0.252] 0.247 0.332 0.0023 [0.327,0.336] 0.332
8 0.206 0.0025 [0.201,0.211] 0.207 0.291 0.0027 [0.286,0.296] 0.291
9 0.173 0.0021 [0.168,0.177] 0.174 0.282 0.0035 [0.275,0.289] 0.280
10 0.162 0.0024 [0.157,0.167] 0.161 0.256 0.0035 [0.249,0.263] 0.256

The confidence interval CIi for Ēi was computed considering a confidence of 95%

and is also shown in Table 6.3. The standard error ŝeB is also presented to evidence

sample standard deviation. Both standard error and confidence bootstrap interval were

automatically calculated using a bootstrap R function. Comparing the results from

Tables 6.2 and 6.3, it is possible to observe that the main difference is presented for the

confidence interval, which are closer to population parameter Ēi in Table 6.3, which is

based on bootstrap. This is due to smaller standard errors obtaind from bootstrap.

Bootstrap can also be used to compute any other estimator, since its calculation

procedure is the same for any of them. For example, it may be useful for designers to

determine system resilience based on trust levels. Percentile estimator would be helpful in

this situation since it represents the value bellow which a certain percent of observations

6.3 results discussion 74

fall. To illustrate this, we applied bootstrap algorithm to compute the 10th percentile

for each task in Example 5.1. Such values are presented in Table 6.4.

Table 6.4. 10th-percentile of Ei with 95% of confidence according to bootstrap procedure
RM EDF

i P ∗10 ŝeB CIi P10 P ∗10 ŝeB CIi P10

1 1.000 0.0000 [1.000,1.000] 1.000 1.000 0.0000 [1.000,1.000] 1.000
2 0.538 0.0000 [0.538,0.538] 0.538 0.583 0.2639 [0.539,0.615] 0.615
3 0.333 0.0138 [0.304,0.333] 0.333 0.375 0.0007 [0.370,0.380] 0.375
4 0.280 0.0048 [0.269,0.280] 0.280 0.321 0.0043 [0.321,0.333] 0.321
5 0.241 0.0047 [0.227,0.242] 0.241 0.303 0.0043 [0.290,0.313] 0.300
6 0.200 0.0059 [0.194,0.212] 0.206 0.282 0.0045 [0.276,0.290] 0.290
7 0.182 0.0027 [0.178,0.186] 0.182 0.272 0.0022 [0.273,0.279] 0.273
8 0.158 0.0044 [0.150,0.163] 0.158 0.224 0.0029 [0.220,0.228] 0.224
9 0.141 0.0030 [0.138,0.149] 0.138 0.233 0.0077 [0.222,0.246] 0.232
10 0.132 0.0040 [0.121,0.139] 0.128 0.218 0.0045 [0.207,0.222] 0.211

Although we assumed 10th-percentile, any other estimator could be used. It is im-

portant to mention that the confidence interval computed for such an estimator was the

percentile confidence interval [20]. Also, in this case, the 10th-percentile for the effort

regarding all simulation scenarios, denoted by P10, was known and is also presented in

Table 6.4.

In the following section simulation experiments are detailed and their results are

discussed.

6.3 RESULTS DISCUSSION

In order to illustrate how the derived fault resilience metric can be used to compare

different real-time systems, we present some obtained simulation results. Section 6.3.1

presents the characteristics of the simulated task sets and makes a detailed comparison

between RM and EDF scheduled systems, based on the mean effort Ē∗i of each task τi.

The confidence interval for Ēi is determined considering both traditional inference and

bootstrap technique in order to compare the results of such methods. Bootstrap technique

6.3 results discussion 75

is also used to compute the confidence interval for the 25th, 50th and 75th percentiles.

Such results are presented in Section 6.3.2

6.3.1 RM vs. EDF From Fault Resilience Viewpoint

We have generated 60 task sets composed of six tasks, each. Task periods (T) and

execution times (C) were randomly generated so that their processor utilization factor

were bounded in predefined intervals. To do so, each task period Ti and execution cost Ci

were generated so that Ti ∈ [1; 50] and Ci ∈ [1; 5]. The intervals defined for the processor

utilization factor were [50; 60), [60; 70), [70; 80) and [80; 90). Also, each of these intervals

contains 15 task sets. Tasks in each task set are ordered according to their periods. Thus,

T1 ≤ T2 ≤ . . . ≤ T6.

Initially, we assumed the mean effort Ēi as the fault resilience metric. Since the

population of simulation scenarios Ωi is unknown, we computed the sample size |Ω
∗
i | for

each task τi ∈ Γ. We set α = 5%, the sample error |Ē∗i − Ēi| = 5x10−3 and the standard

deviation σi for each τi ∈ Γ was assumed to be known. Each sample of simulation

scenarios was given as input to the simulation engine and results are discussed throughout

this section.

In order to compare RM and EDF from fault resilience viewpoint, first we considered

two different task sets Γ and Γ′, generated as described earlier, with utilization factor

bounded within [80; 90). Figure 6.3 shows the empirical distribution of the effort through

boxplot diagrams, which indicate the first, second and third quartiles of a distribution as

well as their minimum and maximum values.

Considering the second quartile, which is equivalent to the median and is represented

by bold lines in Figure 6.3, most effort values for RM obtained for Γ′ are greater than

the ones obtained for Γ. This can be seen in Figures 6.3(a) and 6.3(b). Such a result

indicates that Γ′ is more resilient to faults than Γ, regarding RM. Both Γ and Γ′ were

also submitted to EDF an the result is shown in Figures 6.3(c) and 6.3(d). Considering

6.3 results discussion 76

τ1 τ2 τ3 τ4 τ5 τ6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

E
ff

o
rt

(a) Γ scheduled by RM

τ1 τ2 τ3 τ4 τ5 τ6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

E
ff

o
rt

(b) Γ′ scheduled by RM

τ1 τ2 τ3 τ4 τ5 τ6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

E
ff

o
rt

(c) Γ scheduled by EDF

τ1 τ2 τ3 τ4 τ5 τ6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

E
ff

o
rt

(d) Γ′ scheduled by EDF

Figure 6.3. Fault resilience distribution for Γ and Γ′

EDF, it is possible to observe that Γ′ was also more resilient to faults than Γ.

In order to compare RM and EDF, we considered simulating 15 task sets with proces-

sor utilization factor bounded within [80; 90). The empirical distribution of the effort is

presented in Figure 6.4. Observe that considering the median, the fault resilience for τ1,

τ2, τ3 and τ4 are greater in RM than in EDF. Also, the difference between the minimum

and maximum values are greater in EDF than in RM, which denotes that variability of

effort values is greater in EDF. Further, notice that regarding task τ5, the effort values

are very close in both RM and EDF and for τ6, EDF was more resilient to faults than

RM. Such a result can be numerically observed in Table 6.5, which presents the mean

effort Ē∗i for all task sets with processor utilization within [80; 90), regarding both RM

and EDF.

We decided to analyze the mean effort Ē∗i of each task τi regarding the processor

6.3 results discussion 77

τ1 τ2 τ3 τ4 τ5 τ6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

E
ff
o
rt

(a) RM

τ1 τ2 τ3 τ4 τ5 τ6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

E
ff
o
rt

(b) EDF

Figure 6.4. Fault resilience distribution for task sets with utilization U ∈ (80; 90]

Table 6.5. Mean effort for RM and EDF
Ēi

i 1 2 3 4 5 6
RM 0.413 0.226 0.120 0.087 0.069 0.031
EDF 0.348 0.175 0.091 0.077 0.069 0.059

utilization factor. To do so, we (a) selected an interval for the processor utilization

factor; (b) simulated all task sets whose processor utilization factor were within the

chosen interval and (c) computed the mean effort Ēi for each task τi.

Figure 6.5 shows the mean effort Ē∗1 of τ1 considering both RM and EDF and sys-

tems with different processor utilization levels. Observe that considering task τ1, RM

presented a better fault resilience than EDF for most processor utilization ranges. This

was an expected result, since for RM higher priority tasks always preempts lower priority

ones, while in EDF this does not necessarily happens. Also, notice that for task sets

with utilization bounded within [50; 60) RM and EDF presented almost the same fault

resilience.

The intuition behind such a comparison is that the greater the processor utilization

the smaller the processor idle time, and consequently the smaller the effort Ei. Now,

observe Figure 6.6, which shows the mean effort Ē∗
2
related to task τ2 considering different

processor utilization ranges. Note that regarding the interval [70; 90) RM was more

resilient to faults than EDF, while for task sets with utilization within [50; 70) EDF was

6.3 results discussion 78

[50;60) [60;70) [70;80) [80;90)

RM

EDF

Processor Utilization Bounds

M
e

a
n

 E
ff

o
rt

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Figure 6.5. Mean effort Ē∗
1
for τ1 regarding different processor utilization levels

[50;60) [60;70) [70;80) [80;90)

RM

EDF

Processor Utilization Bounds

M
e

a
n

 E
ff

o
rt

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Figure 6.6. Mean effort Ē∗
2
for τ2 regarding different processor utilization levels

6.3 results discussion 79

more resilient to faults than RM. Until now, RM was more resilient to faults than EDF.

However, since the priority of the analyzed job is beginning to become lower, such a result

must change. Indeed, if we compute the fault resilience for τ2, without considering the

utilization ranges, we can note that the mean effort Ē∗
2
= 0.42 for RM and Ē∗

2
= 0.43 for

EDF, which evidences that for τ2 EDF is slightly more resilient to fault than RM.

Figure 6.7 shows the mean effort for task τ3 considering both RM and EDF. Considering

[50;60) [60;70) [70;80) [80;90)

RM

EDF

Processor Utilization Bounds

M
e

a
n

 E
ff

o
rt

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0
0

.3
5

Figure 6.7. Mean effort Ē∗
3
for τ3 regarding different processor utilization levels

task sets with utilization within [80; 90), the mean effort was greater in RM than in EDF.

However, this was not observed for task sets with utilization within [60; 80), where EDF

presented a better overall behavior. Also, notice that when the processor utilization is

bounded within [50; 60) RM was a little more resilient to faults than EDF. If we compute

the fault resilience for τ3, for all ranges, we can note that the mean effort Ē∗3 = 0.22 for

RM and Ē∗3 = 0.23 for EDF, regarding the considered task sets.

For now, let us observe what happens when the analyzed job is related to τ4. This is

shown in Figure 6.8, which presents Ē4 for RM and EDF. Observe that in this case, EDF

presents a better overall behavior for all simulated systems, whose processor utilization

6.3 results discussion 80

is in [50; 80). The exception was for task sets in [80; 90), in which RM was more resilient

to faults. In spite of that, the fault resilience for τ4, without considering the utilization

bounds for RM is Ē∗
4
= 0.13, while for EDF Ē∗

4
= 0.15.

[50;60) [60;70) [70;80) [80;90)

RM

EDF

Processor Utilization Bounds

M
e

a
n

 E
ff

o
rt

0
.0

0
0

.0
5

0
.1

0
0

.1
5

Figure 6.8. Mean effort Ē∗
4
for τ4 regarding different processor utilization levels

Figure 6.9 presents the mean effort for task τ5 for RM and EDF scheduled systems.

Notice that for Figure 6.9, the mean effort Ē∗5 is greater in EDF than in RM. Also, the

difference between EDF and RM mean effort is more evident for all task sets with uti-

lization between [50; 80). Actually, the mean effort for task sets with utilization bounded

within [80; 90) is almost the same. As mentioned before, as the priority of jobs become

lower, EDF scheduled task sets become more resilient to faults than those scheduled by

RM. Indeed, the fault resilience for τ5, without considering the utilization bounds for RM

is Ē∗
5
= 0.10, while for EDF Ē∗

5
= 0.14.

Last but not least, let us consider the mean effort for τ6, which is presented in Figure

6.10. Observe that in this case, since the jobs of τ6 are the ones with lower priorities,

EDF is more resilient than RM for all considered task sets. Also, the difference between

the mean effort values are more evident. Actually, Ē∗
6
= 0.08 for RM, while for EDF

6.3 results discussion 81

[50;60) [60;70) [70;80) [80;90)

RM

EDF

Processor Utilization Bounds

M
e

a
n

 E
ff

o
rt

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

0
.1

2
0

.1
4

Figure 6.9. Mean effort Ē∗
5
for τ5 regarding different processor utilization levels

[50;60) [60;70) [70;80) [80;90)

RM

EDF

Processor Utilization Bounds

M
e

a
n

 E
ff

o
rt

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

0
.1

2
0

.1
4

Figure 6.10. Mean effort Ē∗
6
for τ6 regarding different processor utilization levels

6.3 results discussion 82

Ē∗
6
= 0.12. A comparison between all generated systems, considering both RM and EDF

is shown in Figure 6.11.

τ1 τ2 τ3 τ4 τ5 τ6

RM

EDF

Tasks

M
e

a
n

 E
ff

o
rt

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Figure 6.11. Mean effort Ē∗i for RM and EDF

Notice that, as expected, the mean effort Ē∗i is greater for tasks with highest priorities

according to RM, since no other task interfere in its execution, and consequently more

errors have to be generated. On the other hand, lower priority tasks are preempted by

any higher priority task and so the effort Ē∗i must be smaller. Also, observe that RM

tends to be better than EDF only for lower priority tasks, as explained earlier. For most

tasks, the fault resilience for EDF gets better than for RM, in general case.

The following section shows the confidence interval for the mean effort according to

both traditional and bootstrap inference methods.

6.3.2 Computing Confidence Intervals

In this section we present the confidence intervals for the mean effort and percentile

parameters, considering the simulated task sets. First, we show the confidence intervals

6.3 results discussion 83

for the mean effort Ē∗i , regarding all processor utilization ranges, computed according to

traditional inference, using R software. This is presented in Table 6.6

Table 6.6. Ē∗
i
with 95% of confidence according to traditional inference

RM EDF
i Ē∗

i
CIi Ē∗

i
CIi

1 0.562 [0.549,0.558] 0.544 [0.535,0.545]
2 0.421 [0.420,0.423] 0.426 [0.424,0.427]
3 0.221 [0.220,0.222] 0.228 [0.227,0.228]
4 0.125 [0.125,0.125] 0.149 [0.146,0.146]
5 0.101 [0.101,0.102] 0.135 [0.135,0.135]
6 0.080 [0.080,0.081] 0.122 [0.122,0.122]

The confidence interval was computed considering a confidence of 95%. In Table 6.6 it

is possible to observe numerically that EDF is more resilient than RM. Indeed, the mean

effort values Ē∗i presented in the table are the same discussed in the previous section.

Also, as mentioned before, RM is more resilient than EDF only for task τ1 because of its

priority.

The confidence intervals for the mean effort were also computed considering bootstrap

with a confidence of 95%. Such results are presented in Table 6.7.

Table 6.7. Ē∗
i
with 95% of confidence according to bootstrap procedure

RM EDF
i Ē∗

i
CIi ŝeB Ē∗

i
CIi ŝeB

1 0.562 [0.566,0.568] 0.0024 0.544 [0.539,0.549] 0.0023
2 0.309 [0.309,0.311] 0.0005 0.312 [0.311,0.313] 0.0005
3 0.221 [0.220,0.222] 0.0004 0.228 [0.227,0.228] 0.0004
4 0.125 [0.125,0.125] 0.0001 0.146 [0.146,0.146] 0.0001
5 0.101 [0.101,0.101] 0.0001 0.135 [0.135,0.135] 0.0001
6 0.081 [0.081,0.081] 0.0001 0.122 [0.122,0.122] 0.0001

Observe that, regarding task τ1, the mean effort for RM is greater than that for EDF,

which is not true for the other tasks. Also, as mentioned before, the confidence interval

for Ē∗i computed by bootstrap is tighter than the ones computed by traditional inference,

6.3 results discussion 84

since bootstrap provides more accurate standard errors for the estimators, such as the

sample mean.

Bootstrap was also used to compute the percentile confidence interval for percentile

estimators, considering both RM and EDF. Table 6.8 shows the result for each task τi

considering 25th-percentile. Results presented in column P∗25 indicates the estimated

value, bellow which 25% of the effort values appear.

Table 6.8. 25th-percentile with 95% of confidence according to bootstrap procedure
RM EDF

i P∗25 CIi ŝeB P∗25 CIi ŝeB

1 0.313 - 0 0.313 - 0
2 0.156 - 0 0.147 - 0
3 0.122 [0.122,0.122] 0.0001 0.136 - 0
4 0.095 - 0 0.116 - 0
5 0.085 - 0 0.111 - 0
6 0.061 - 0 0.100 - 0

Observe that the 25th-percentile values are greater in EDF, except for tasks τ1, in

which such values are the same, and τ2 in which RM is more resilient than EDF. Also,

since P∗25 values presented no variability, the standard error was zero for most tasks and

consequently, there was no confidence interval for τ1, τ2, τ4, τ5 and τ6.

The 50th-percentile were also computed and is presented in Table 6.9. Notice that

for task τ2 RM was also more resilient to faults than EDF. Considering tasks τ1, τ2 and

τ3 the standard error was zero and no confidence interval could be calculated, which was

not true for τ5 and τ6.

Finally, we computed the 75th-percentile, which is presented in Table 6.10. Observe

that in this case all values for EDF were greater than RM values. Also, the standard

error for tasks τ4 and τ5 is zero and consequently there is no confidence interval.

6.4 summary 85

Table 6.9. 50th-percentile with 95% of confidence according to bootstrap procedure
RM EDF

i P∗50 CIi ŝeB P∗50 CIi ŝeB

1 0.500 - 0 0.500 - 0
2 0.217 - 0 0.192 - 0
3 0.152 - 0 0.166 - 0
4 0.114 [0.114,0.114] 0.0001 0.143 - 0
5 0.095 [0.095,0.095] 0.0001 0.136 [0.135,0.136] 0.0004
6 0.077 [0.076,0.076] 0.0001 0.122 [0.122,0.122] 0.0001

Table 6.10. 75th-percentile with 95% of confidence according to bootstrap procedure
RM EDF

i P∗75 CIi ŝeB P∗75 CIi ŝeB

1 1.000 [0.500,1.000] 0.1617 0.538 [0.500,0.846] 0.1071
2 0.353 [0.353,0.357] 0.0065 0.375 [0.368,0.375] 0.0030
3 0.219 [0.214,0.219] 0.0010 0.231 [0.230,0.233] 0.0012
4 0.143 - 0 0.167 - 0
5 0.118 - 0 0.158 - 0
6 0.098 [0.096,0.098] 0.0003 0.143 - 0

6.4 SUMMARY

This chapter presented two statistical inference methods, which were used to infer

the fault resilience of a given task based on a sample of simulation scenarios. Traditional

inference was used to compute the confidence interval for the mean effort, while bootstrap

technique computed the confidence interval for both mean effort and percentile estimators.

Results presented in this section show how to compare two classical scheduling policies,

RM and EDF, using a fault resilience metric. It was possible to compute fault resilience

from each task view point, which can be very useful, considering that each task may have

a different criticality. It is important to mention that the approach described in this work

can deal with other scheduling policies. To do so, it is necessary to modify the simulation

engine accordingly.

CHAPTER 7

CONCLUSION AND FUTURE WORK

In this work we derived a metric, called error generator effort, which aims at measuring

the fault resilience of real-time systems. Such a metric is designed to be as independent

of the assumed system model and/or fault model as possible. Moreover, it can be used

to subsidize the system designer decisions when choosing the fault-tolerant mechanisms

that best suit their systems.

In order to compute the fault resilience according to the proposed metric, a simulation

environment was built. The developed framework has the advantage of not needing to

simulate the system during the whole hyperperiod, which may be too time consuming in

general case. The basic idea is to simulate the system during specific time windows and

then compute the effort for each of them.

The simulation time windows are derived based on the concept of simulation scenarios,

which are generated by a framework component called scenario generator. Two kinds

of procedures were implemented to generate simulation scenarios: (a) sequential algo-

rithms, which outputs all possible simulation scenarios for a given task and (b) random

procedures, which generates a random subset of simulation scenarios.

After simulation scenarios are generated they are given as input to the simulation

engine, which is responsible for computing the effort for a given system task. It is

important to mention that even considering specific time windows, there may be some

situations in which deriving the fault resilience for all simulation scenarios may not be

practical. In this case, statistical inference methods are used so that the effort for a given

task can be inferred based on a sample of such values.

In this work we considered two statistical inference methods. First, traditional infer-

ence, which is based on the Central Limit Theorem, was used to compute the confidence

86

conclusion and future work 87

intervals for the mean effort, regarding each system task. Bootstrap, which is a computa-

tional statistical inference method, was considered for determining the confidence interval

for the mean effort and also for other parameters.

Experimental results indicate the differences of two well known scheduling policies,

RM and EDF, from the viewpoint of fault resilience, demonstrating that our approach is

reasonably independent of the system model.

Future work includes evaluating extensions of the proposed analysis focusing on two

main aspects. First, better strategies for decreasing the pessimism of the analysis should

be investigated. Less restrictive task models and the incorporation of probabilistic be-

havior for the error generator should also be addressed. A more ambitious goal is to use

the principles described here to derive probabilistic schedulability bounds for real-time

systems.

REFERENCES

[1] A. Armoush, F. Salewski, and S. Kowalewski. A Hybrid Fault Tolerance Method
for Recovery Block with a Weak Acceptance Test. In IEEE/IFIP International
Conference on Embedded and Ubiquitous Computing (EUC ’08), volume 1, pages
484 – 491, December 2008.

[2] A. N. Audsley, A. Burns, M. Richardson, and K. Tindell. Applying New Scheduling
Theory to Static Priority Pre-emptive Scheduling. Software Engineering Journal,
8:284 – 292, 1993.

[3] Algirdas Avizienis, Jean-Claude Laprie, Carl Landwehr, and Brian Randell. Basic
Concepts and Taxonomy of Dependable and Secure Computing. IEEE Transactions
on Dependable and Secure Computing, 1(1):11–33, 2004.

[4] Hakan Aydin. Exact Fault-Sensitive Feasibility Analysis of Real-Time Tasks. IEEE
Transactions on Computers, 56(10):1372 – 1386, 2007.

[5] Hakan Aydin, Rami Melhem, and Daniel Mossé. Tolerating Faults while Maximizing
Reward. Proceedings of the Twelfth Euromicro Conference on Real-Time Systems
(Euromicro’00), pages 219 – 226, June 2000.

[6] Alan Burns. Scheduling Hard Real-Time Systems: A Review. Software Engineering
Journal, 6(3):116–128, 1991.

[7] Alan Burns, Guillem Bernat, and Ian Broster. A Probabilistic Framework for Schedu-
lability Analysis. Proceedings of the 3rd International Conference on Embedded Soft-
ware (EMSOFT’ 03, pages 1 – 15, 2003.

[8] Alan Burns, Rob Davis, and Sasikumar Punnekkat. Feasibility Analysis of Fault
Tolerant Real-Time Task Sets. In Euromicro Real-Time Systems Workshop, pages
29–33, L’Aquila, Italy, June 1996. IEEE Society Press.

[9] Alan Burns, Sasikumar Punnekkat, L. Strigini, and D. R. Wright. Probabilistic
Scheduling Guarantees for Fault-Tolerant Real-Time Systems. In Proceedings of the
conference on Dependable Computing for Critical Applications (DCCA ’99), page
361, Washington, DC, USA, 1999. IEEE Computer Society.

[10] Giorgio C. Buttazzo. Rate Monotonic vs. EDF: Judgment Day. Real-Time Systems,
29(1):5–26, 2005.

88

REFERENCES 89

[11] Marco Caccamo and Giorgio Buttazzo. Optimal Scheduling for Fault-Tolerant and
Firm Real-Time Systems. In Proceedings of the 5th International Conference on Real-
Time Computing Systems and Applications(RTCSA ’98), page 223, Washington,
DC, USA, 1998. IEEE Computer Society.

[12] Russell C. H. Cheng. Bootstrap Methods in Computer Simulation Experiments. In
WSC ’95: Proceedings of the 27th conference on Winter simulation, pages 171–177,
Washington, DC, USA, 1995. IEEE Computer Society.

[13] Michael R. Chernick. Bootstrap Methods: A Guide for Practitioners and Researchers.
Wiley, second edition, 2008.

[14] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. Elsevier, second edition, 2002.

[15] José Luis Dı́az, José Maŕıa López, and Daniel Fernando Garćıa. Probabilistic Anal-
ysis of the Response Time in a Real-Time System. In 1st Workshop on Advanced
Real-Time Technologies, Aranjuez, Spain, 2002.

[16] José Luis Dı́az, José Maŕıa López, and Daniel Fernando Garćıa. Stochastic Analysis
of the Steady-State Backlog in Periodical Real-Time Systems. Technical Report
TR-03-SASS, Departamento de Informática, University of Oviedo, 2003.

[17] George Marconi de Araújo Lima and Alan Burns. An Optimal Fixed-Priority As-
signment Algorithm for Supporting Fault-Tolerant Hard Real-Time Systems. IEEE
Transactions on Computers, 52(10):1332–1346, 2003.

[18] Edinaldo O. de Jesus and George Marconi de Araújo Lima. Escalonamento para
Sistemas de Tempo Real Tolerantes a Falhas: Um Estudo Emṕırico. Proceedings of
the 7th Brazilian Workshop on Real-Time and Embedded Systems (WTR’05), 2005.

[19] Rômulo Silva de Oliveira and Joni da Silva Fraga. Uma Solução Mista para o Escalo-
namento Baseado em Prioridades de Aplicações de Tempo Real Cŕıticas. Congresso
da Sociedade Brasileira de Computação (SEMISH’96), 1996.

[20] Bradley Efron and Robert J. Tibshirani. An Introduction to the Bootstrap. Chapman
& Hall / CRC, 1993.

[21] Joaquin Entrialgo, Javier Garcia, Jose Luis Diaz, and Daniel Fernando Garcia.
Stochastic Metrics for Debugging the Timing Behaviour of Real-Time Systems. In
Proceedings of the 13th IEEE Real Time and Embedded Technology and Applica-
tions Symposium(RTAS ’07), pages 183–192, Washington, DC, USA, 2007. IEEE
Computer Society.

[22] Jean-Marie Farines, Joni da Silva Fraga, and Rômulo Silva de Oliveira. Sistemas
de Tempo Real. Departamento de Automação e Sistemas - Universidade Federal de
Santa Catarina, Florianópolis, Santa Catarina, 2000.

REFERENCES 90

[23] Sunondo Ghosh, Rami Melhem, and Daniel Mossé. Enhancing Real-Time Schedules
to Tolerate Transient Faults. In Proceedings of the 16th IEEE Real-Time Systems
Symposium (RTSS ’95), page 120, Washington, DC, USA, 1995. IEEE Computer
Society.

[24] Sunondo Ghosh, Rami G. Melhem, Daniel Mossé, and Joydeep Sen Sarma. Fault-
Tolerant Rate-Monotonic Scheduling. Real-Time Systems, 15(2):149–181, 1998.

[25] Ching-Chih Han, Kang G. Shin, and Jian Wu. A Fault-Tolerant Scheduling Algo-
rithm for Real-Time Periodic Tasks with Possible Software Faults. IEEE Transac-
tions on Computers, 52(3):362–372, 2003.

[26] Joel Huselius, Johan Kraft, Hans Hansson, and Sasikumar Punnekkat. Evaluating
the Quality of Models Extracted from Embedded Real-Time Software. In Proceedings
of the 14th Annual IEEE International Conference and Workshops on the Engineer-
ing of Computer-Based Systems (ECBS ’07), pages 577–585, Washington, DC, USA,
2007. IEEE Computer Society.

[27] Rolf Isermann. Modeling and Design Methodology for Mechatronic Systems.
IEEE/ASME Transactions on Mechatronics, 1(1):16 – 28, March 1996.

[28] Li Jun, Yang Fumin, and Lu Yansheng. A Feasible Schedulability Analysis for Fault-
Tolerant Hard Real-Time Systems. In Proceedings of the 10th IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS’05), pages 176–
183, Washington, DC, USA, 2005. IEEE Computer Society.

[29] Kim Kanghee, José Luis Dı́az, L. L Bello, José Maŕıa López, Chang-Gun Lee, and
Sang Lyul Min. An Exact Stochastic Analysis of Priority-Driven Periodic Real-Time
Systems and its Approximations. Transactions on Computers, 54(11):1460–1466,
2005.

[30] Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer
Programming. Addison-Wesley, Reading, Massachusetts, second edition, 1981.

[31] John Lehoczky, Liu Sha, and Ye Ding. The Rate Monotonic Scheduling Algorithm:
Exact Characterization and Average Case Behavior. In Proceedings of Real Time
Systems Symposium, pages 166–171, Santa Monica, California, USA, 1989.

[32] Frank Liberato, Rami Melhem, and Daniel Mossé. Tolerance to Multiple Transient
Faults for Aperiodic Tasks in Hard Real-Time Systems. IEEE Transactions on
Computers, 49(9):906–914, 2000.

[33] George Lima and Alan Burns. Scheduling Fixed-Priority Hard Real-Time Tasks in
the Presence of Faults. In Proceedings of the 2nd Latin-American Symposium on
Dependable Computing (LNCS’05), volume 3747, pages 154–173. Springer-Verlag,
2005.

REFERENCES 91

[34] George Lima and Flávia Maristela S. Nascimento. Simulation Scenarios: a Means of
Deriving Fault Resilience for Real-Time Systems. Proceedings of the 11th Brazilian
Workshop on Real-Time and Embedded Systems (WTR’09), 2009.

[35] C. L. Liu and James W. Layland. Scheduling Algorithms for Multiprogramming in
a Hard-Real-Time Environment. Journal of the ACM, 20(1):46–61, 1973.

[36] Ren C. Luo. Sensors and Actuators for Intelligent Mechatronic Systems. In Pro-
ceedings of the 27th Annual Conference of the IEEE Industrial Electronics Society
(IECON ’01), volume 3, pages 2062 – 2065, 2001.

[37] Raimundo Macêdo, George Lima, Luciano Barreto, Aline Andrade, Aĺırio Sá, Fre-
derico Barboza, Rodrigo Albuquerque, and Sandro Andrade. Tratando a Previsibili-
dade em Sistemas de Tempo-Real Distribúıdos: Especificação, Linguagens, Middle-
ware e Mecanismos Básicos. In 22nd Brazilian Symposium on Computers Network
and Distributed Systems (SBRC’ 2004), pages 105–163. SBRC, 2004.

[38] Pedro Mej́ıa-Alvarez, Hakan Aydin, Daniel Mossé, and Rami Melhem. Schedu-
ling Optional Computations in Fault-Tolerant Real-Time Systems. In Proceedings
of the Seventh International Conference on Real-Time Systems and Applications
(RTCSA’00), pages 323 – 330, Washington, DC, USA, 2000. IEEE Computer Soci-
ety.

[39] Paulo Eigi Miyagi and Emilia Villani. Mecatrônica como Solução de Automação.
Revista Ciências Exatas, 9/10(1-2):53 – 59, 2004.

[40] Pedro Morettin and Wilton Bussab. Estat́ıstica Básica. Saraiva, 2004.

[41] Daniel Mossé, Rami Melhem, and Sunondo Ghosh. A Nonpreemptive Real-Time
Scheduler with Recovery from Transient Faults and Its Implementation. IEEE Trans-
actions on Software Engineering, 29(8):752–767, 2003.

[42] Flávia Maristela S. Nascimento, George Lima, and Verônica Cadena Lima.
Simulation-Based Analysis to Derive Fault Resilience in Real-Time Systems. Proceed-
ings of the Work in Progress Section of the 10th Brazilian Workshop on Real-Time
and Embedded Systems (WTR’08), 2008.

[43] Flávia Maristela S. Nascimento, George Lima, and Verônica Cadena Lima. Deriving
a Fault Resilience Metric for Real-Time Systems. Proceedings of the 10th Brazilian
Workshop on Tests and Fault Tolerance (WTF’09), 2009.

[44] Mihir Pandya and Miroslaw Malek. Minimum Achievable Utilization for Fault-
Tolerant Processing of Periodic Tasks. IEEE Transactions on Computers,
47(10):1102 – 1112, 1998.

[45] Nuno Pereira, Eduardo Tovar, Berta Batista, Luis Miguel Pinho, and Ian Broster.
A Few What-Ifs on Using Statistical Analysis of Stochastic Simulation Runs to Ex-
tract Timeliness Properties. In 1st International Workshop on Probabilistic Analysis
Techniques for Real-time and Embedded Systems (PARTES ’2004), Pisa, Italy, 2004.

REFERENCES 92

[46] Dimitris N. Politis. Computer-intensive Methods in Statistical Analysis. IEEE Signal
Processing Magazine, 15:39–55, 1998.

[47] Krithi Ramamritham and John A. Stankovic. Scheduling Algorithms and Operating
Systems Support for Real-Time Systems. Proceedings of the IEEE, 82(1):55–67,
1994.

[48] Lui Sha, Tarek Abdelzaher, Karl-Erik Arzén, Anton Cervin, Theodore Baker, Alan
Burns, Giorgio Buttazzo, Marco Caccamo, John Lehoczky, and Aloysius K. Mok.
Real Time Scheduling Theory: A Historical Perspective. Real-Time Systems, 28(2-
3):101–155, 2004.

[49] Larry Sieh, Peter Haniak, and Paul Richardson. Implementing Transient Fault Tol-
erance in Embedded Real-Time Systems, 2001.

[50] John A. Stankovic. Misconceptions About Real-Time Computing: A Serious Prob-
lem for Next-Generation Systems. Computer, 21(10):10–19, 1988.

[51] John A. Stankovic, Chenyang Lu, and Sang H. Son. The Case for Feedback Control
Real-Time Scheduling. Proceedings of the 11th Euromicro Conference on Real-Time
Systems (Euromicro’99), pages 11 – 20, 1998.

[52] John A. Stankovic and Fuxing Wang. The Integration of Scheduling and Fault
Tolerance in Real-Time Systems. Technical report, University of Massachusetts,
Amherst, MA, USA, 1992.

[53] R Development Core Team. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria, 2009. ISBN 3-
900051-07-0.

[54] Mario F. Triola. Elementary Statistics. Pearson, 2008.

[55] Anders Wall, Johan Andersson, and Christer Norstrom. Probabilistic Simulation-
Based Analysis of Complex Real-Time Systems. In Proceedings of the Sixth
IEEE International Symposium on Object-Oriented Real-Time Distributed Comput-
ing (ISORC’03), pages 257–266, Washington, DC, USA, 2003. IEEE Computer So-
ciety.

[56] Taisy Silva Weber. Tolerância a Falhas: Conceitos e Exemplos. Instituto de In-
formática - Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande
do Sul, 2001.

