
Revectorization-Based Shadow Mapping
Márcio C. F. Macedo∗ Antônio L. Apolinário Jr.†

Federal University of Bahia, Brazil

(a) Shadow mapping (b) SMSR (c) RSMSS (d) RPCF

Figure 1: Comparison of shadow mapping (a) with the techniques proposed in this paper. Single-pass shadow map silhouette revectorization
(SMSR) removes perspective aliasing by revectorizing the shadow boundaries (b). Revectorization-based shadow map silhouette smoothing
(RSMSS) takes advantage of this revectorization to filter the anti-aliased hard shadows (c). Revectorization-based percentage-closer filtering
(RPCF) is incorporated into the solution to control the filter kernel size (d). The image (d) was generated with the RPCF + RSMSS variant.

ABSTRACT

Real-time rendering of high-quality, anti-aliased shadows is a chal-
lenging problem in shadow mapping. Filtering the shadow map
reduces aliasing, but artifacts are still visible for low-resolution
shadow maps or small kernel sizes. Moreover, the existing tech-
niques suffer from light leaking artifacts. Shadow silhouette re-
covery reduces perspective aliasing at the cost of large memory
footprint and high computational overhead for the shadow map-
ping. In this paper, we reduce aliasing with the revectorization-
based shadow mapping. To effectively reduce the perspective alias-
ing, we revectorize shadow boundaries based on their disconti-
nuity directions. Then, we take advantage of the discontinuity
space to filter the shadow silhouettes, further suppressing the re-
maining artifacts. To control the filter kernel size, we incorporate
percentage-closer filtering into the algorithm. This enables us to re-
duce jagged shadow boundaries, to simulate penumbra and to pro-
vide high-quality screen-space anti-aliasing. Compared to previous
techniques, we show that shadow revectorization produces less arti-
facts, consumes less memory and offers real-time performance. The
results show that our solution can be used in games and other ap-
plications in which real-time, high-quality shadows are desirable.

Index Terms: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture;

∗e-mail: marciocfmacedo@gmail.com
†e-mail: apolinario@dcc.ufba.br

1 INTRODUCTION

The faithful rendering of shadows is essential to improve the un-
derstanding and to provide realism for computer-generated scenes.
However, the real-time rendering of high-quality shadows is still
a challenging problem, mostly because computing photorealistic
shadows still takes too much processing time to be done interac-
tively for dynamic scenes.

Shadow mapping [21] is one of the most common algorithms
used to compute hard shadows in real-time applications. It has sev-
eral advantages, such as: simplicity, flexibility, scalability and hard-
ware support. However, as an image-based approach, the finite res-
olution of the shadow map produces aliasing artifacts along shadow
boundaries, false self-shadowing, and temporal incoherence [7].

Many approaches have been proposed to solve the problem of
aliasing in shadow mapping. Filtering the shadow map is useful
to reduce aliasing and to fake soft shadows, but the jagged shadow
boundaries are still visible for shadow maps of low resolution or
small kernel sizes. Also, most of the existing techniques suffer
from light leaking, artifact in which a fully shadowed region is er-
roneously rendered as a lit region. As an alternative, shadow sil-
houette recovery is commonly used to compute accurate hard shad-
ows. Unfortunately, this kind of techniques typically involves high
memory and computational costs to reduce the perspective alias-
ing, which makes the methods unsuitable for real-time applications
[19, 4, 9].

In this paper, we introduce the revectorization-based shadow
mapping (RBSM). Shadow silhouettes are determined based on a
discontinuity space. In this space, shadow edges are represented by
their discontinuity directions. We take advantage of these discon-
tinuity directions to revectorize and soften the shadow boundaries.
For revectorization, we use a new variant of the shadow map silhou-
ette revectorization (SMSR) algorithm [3]. To control the level of

smoothness for the filtering, the percentage-closer filtering (PCF)
algorithm [17] is incorporated into our solution.

In this context, our main contributions are: 1. A shadow revec-
torization pipeline, which supports entering and exiting discontinu-
ities. 2. A variant of the SMSR algorithm which runs on the shader
in a single pass, produces less artifacts and consumes less memory
than the original approach. 3. A filtering technique which takes
advantage of a discontinuity space to effectively smooth shadow
boundaries, producing less artifacts and consuming less memory
than related work, while still providing real-time performance. 4.
A variant of the PCF algorithm which works on the filtered shadow
silhouettes to reduce the perspective and banding artifacts of the
original technique with smaller filter sizes and at higher frame rates.

2 RELATED WORK

One of the first techniques proposed for real-time shadow rendering
is the shadow mapping [21]. In this method, the scene is rendered
from the light’s point of view and the depth of the closest surface
seen from the light is stored in a shadow map. Then, the scene
is rendered from the camera viewpoint and the current depth values
are compared to the depth values stored in the shadow map to deter-
mine whether a point in the scene is in shadow or not (i.e., shadow
test).

Over the past decades, many approaches have been proposed to
solve the main problem of shadow mapping: the aliasing. In this
section, we review the most relevant methods related to our solu-
tion. A complete review of the existing shadow mapping algorithms
is beyond the scope of this paper. The reader should refer to [7, 22].
Here, we classify the approaches based on their main strategy to al-
leviate aliasing in hard shadow mapping: filtering and silhouette
recovery.

Filtering: Techniques of this category solve the problem of
aliasing by smoothing the shadow silhouettes, resulting in the gen-
eration of soft, anti-aliased shadow edges. In shadow mapping,
shadow maps cannot be filtered as conventional color maps be-
cause of the shadow test, which would be affected by the filtered
depth values. Percentage-closer filtering [17] solves this problem
by reversing the order of the filtering. First, the shadow test is per-
formed, and then the filtering takes place, averaging the result of the
depth comparisons over a filter region. PCF is easy to implement
and provides good anti-aliasing, however it is prone to banding ar-
tifacts, does not support pre-filtering and is not scalable for large
filter sizes.

To enable shadow map pre-filtering, the shadow test is com-
monly approximated by a filterable function. Variance shadow
mapping (VSM) [6] and its variants [11, 12] use the Chebyshev’s
inequality approximation. Convolution shadow mapping (CSM) [1]
uses the Fourier series to approximate the shadow test. In expo-
nential shadow mapping (ESM) [2, 18], an exponential function
is used. In exponential variance shadow mapping (EVSM) [12],
an exponentially-warped VSM is used. Moment shadow mapping
(MSM) [16] solves the shadow test according to the Hamburger mo-
ment problem. All of these methods are faster than PCF for large
filter kernel sizes, produce pleasant visual results and are scalable.
However, they usually suffer from light leaking artifacts in scenes
with high depth complexity.

Filtering techniques are a good alternative to produce shadows
which mimic the appearance of soft shadows. They avoid the com-
plexity of soft shadowing and require low processing time. Fur-
thermore, they contribute to the minimization of aliasing artifacts
produced by shadow mapping. Unfortunately, these methods can-
not remove the aliasing artifacts of low-resolution shadow maps
for small filter sizes, as they work over jagged shadow boundaries.
Increasing the resolution of the shadow maps may overcome this
issue, at the cost of higher memory consumption and processing
time. But, even in this case, any close-up on the shadow may re-

veal the aliasing artifacts. Larger kernel sizes remove the aliasing
of the shadows, however, they severely blur out the shadows, losing
too much detail of the shadow silhouette. Here, we propose a new
technique which performs filtering over anti-aliased shadows. Our
method does not generate perspective or banding artifacts even for
small filter sizes, achieving high-quality anti-aliasing in real-time.

Silhouette Recovery: Rather than blurring the shadows, other
techniques focus on shadow silhouette recovery to remove the
jagged shadow edges. Instead of faking soft shadows, these tech-
niques aim to compute hard shadows as accurate as the ones gener-
ated with shadow volumes [5] or ray tracing [20], however at high
frame rates.

Hybrid approaches based on shadow mapping, shadow volumes
[14, 4], and ray tracing [9] have been proposed in the literature. As
a hybrid approach, these methods compute shadows faster than the
reference solutions, but still much slower than shadow mapping.

To reconstruct accurate shadow silhouettes, some techniques rely
on the storage of additional geometric information. In shadow sil-
houette mapping [19], the vertex which lies on the geometry sil-
houette is stored with the shadow depth map. Fast, sub-pixel anti-
aliased shadow mapping [15] uses the pixel’s position and associ-
ated face normal. Sub-pixel shadow mapping [13] stores triangle
information (i.e., 3D vertex coordinates and depth derivatives) with
the shadow map. Each one of these techniques has a different vis-
ibility function which uses this augmented information to recon-
struct accurate shadow boundaries. However, they also increase
memory consumption and processing time to achieve this goal.

Closest to our solution, shadow map silhouette revectorization
[3] revectorizes shadow boundaries to reduce the perspective alias-
ing artifacts. Shadow edges are embedded into a discontinuity
space and revectorized according to their discontinuity directions.
The author suggests that the algorithm indeed alleviates aliasing,
but the paper misses formalization and validation of the approach.
Moreover, the method consists of two passes in the shader and does
not work well for sloped surfaces, generating artifacts during revec-
torization.

Techniques for reconstructing shadow silhouettes are useful be-
cause they can solve the problem of aliasing in an accurate way.
However, the existing techniques have large memory footprint or
add high computational overhead to the shadow mapping. In this
paper, we show that RBSM provides high-quality shadow silhou-
ette recovery in real-time, while consuming as much memory as
the traditional shadow mapping. Also, none of the existing shadow
silhouette recovery techniques support filtering natively. In this pa-
per, we propose a new solution to combine the strengths from both
strategies (i.e., filtering and silhouette recovery) to effectively re-
duce perspective aliasing.

3 REVECTORIZATION-BASED SHADOW MAPPING

In this section, we introduce the revectorization-based shadow map-
ping. Our work is mainly inspired by the two-pass shadow map sil-
houette revectorization algorithm described in [3]. In the first pass
of this technique, jagged shadow edges are detected and stored in
a discontinuity map. This texture stores color-coded values which
indicate where the inner-side of the shadow edge is located. In
the second pass of the method, similarly to morphological anti-
aliasing [10], for each fragment belonging to a shadow edge, the
distance between the fragment and both shadow edge ends is com-
puted based on a traversal over the discontinuity map computed
previously. This traversal results in the generation of the oriented
normalized discontinuity space (ONDS). In this space, depending
on the location of the fragment with respect to the shadow edge, it
may or may not be revectorized by the algorithm.

In this paper, we propose several improvements over the ap-
proach presented in [3]: First, we propose a new revectorization
algorithm which runs in a single pass on the shader (in addition to

(a) Shadow Map

(b) Shadow Test

(c) Entering
Discontinuity

(g) Entering + Exiting
Discontinuity

(d) Entering ONDS

(h) Entering + Exiting
ONDS

(e) Clipped ONDS

(i) Smoothed ONDS

(f) Shadowed Scene

(j) Shadowed Scene

SMSR

RSMSS

Figure 2: An overview of single-pass SMSR, and RSMSS techniques proposed in this paper. First, a shadow map is rendered from the light’s
point of view (a). Then, in the camera viewpoint, the shadow map is used to determine whether a fragment is in shadow or not (b). For the single-
pass SMSR, entering discontinuities are computed in the exterior side of the shadow edges (c). Shadow boundaries are scanned according to
the opposite axis of their discontinuity directions, resulting in the generation of an entering oriented normalized discontinuity space (ONDS) (d).
By using an appropriate visibility function, ONDS is clipped (e), resulting in the generation of new shadows to be included into the final rendering
(f). In RSMSS, exiting discontinuities are included into the pipeline (g-h). ONDS is smoothed, generating fake penumbras (i-j). The component
(dc)b was suppressed for visualization purposes.

the pass required for shadow map generation). In this case, we had
to reformulate the algorithm to compute the ONDS because we do
not generate a discontinuity map in a separate pass. We show that
our algorithm is faster and consumes less memory than [3]. Sec-
ond, we extend the algorithm to support entering and exiting dis-
continuities, located at the exterior and interior sides of the shadow
silhouette edge, respectively. The approach proposed in [3] was
designed to support only entering discontinuities during the ONDS
computation. Third, a new approach was developed to reduce arti-
facts produced by the revectorization on sloped surfaces. Fourth,
we integrate the native support for filtering into the revectoriza-
tion pipeline through the technique named revectorization-based
shadow map silhouette smoothing (RSMSS). In this method, we
show that not only entering discontinuities, but also exiting dis-
continuities are useful to produce high-quality anti-aliasing. Fi-
nally, we propose a new variant of the PCF algorithm to control the
level of smoothness in the final rendering. To achieve better perfor-
mance and higher quality than the PCF algorithm, we incorporate
the RSMSS into the PCF, reducing both perspective and banding
artifacts of the technique using just a small kernel size.

RBSM can be used for both silhouette recovery and filtering. An
overview of RBSM can be seen in Figure 2. Details can be found
in the following subsections and in the supplementary document.

3.1 Revectorization Pipeline
To revectorize shadow boundaries in real-time, we must: render
the shadow map, compute and normalize the discontinuity space,
revectorize the shadow silhouettes and include them in the final
shadowed scene. Each one of these steps is described in more detail
below:

Shadow Map Rendering: First, we render the scene from the
light’s viewpoint and store the depth buffer in a shadow map (Figure
2-(a)).

Discontinuity Computation: Next, we compute the discon-
tinuity for every texel projected in the camera viewpoint (Figures
2-(c), (g)). Let us denote zl the depth stored in the shadow map

and zc the depth of the scene rendered from the camera view-
point. The shadow test s(x,y) for a texel (x,y) can be defined
as a binary function that returns: 0 if zc > zl (i.e., fragment is
in shadow) and 1 otherwise (Figure 2-(b)). Also, let us define
n(x,y) the shadow test evaluation for a 4-connected neighbourhood:
n(x,y) = (s(x− o,y),s(x+ o,y),s(x,y+ o),s(x,y− o)), where o is
an offset equivalent to one shadow map sample.

We define discontinuity du ∈ {0,1} as the absolute difference in
the shadow test results for a texel and its 4-connected neighbours.
Formally, du = ||n− s||. Therefore, the discontinuities are positive
only at the shadow edges (i.e., where the shadow tests disagree)
and zero elsewhere. If one desires to build a discontinuity map
in an additional pass [10, 3], this definition of discontinuity would
consume four color channels for each texel. To reduce memory
consumption, the four-channel vector du is compressed into a three-
channel vector dc (Figures 2-(c), (g)) as follows:

(dc)rg =
2(du)rb +(du)ga

4
(dc)b = 1− s(x,y)

Discontinuity Components
Value (dc)r (dc)g (dc)b

0 No discontinuity No discontinuity Entering
0.25 Right Top –
0.5 Left Bottom –

0.75 Left and right Top and bottom –
1 – – Exiting

Table 1: The possible values for dc and their meanings. The first two
components of dc store the discontinuity direction along horizontal
((dc)r) and vertical ((dc)g) axes. The component (dc)b stores the type
of the discontinuity.

As can be seen in Table 1, the components (dc)r and (dc)g are
used to store the discontinuity direction (i.e., the direction where the
shadow edge is located) along horizontal and vertical axes, respec-
tively. The last term (dc)b stores the type of discontinuity, which
can be classified in entering or exiting. An entering discontinuity
denotes that the current fragment is lit and the adjacent neighbour
is shadowed (i.e., the current fragment is in the exterior part of the
shadow silhouette). Similarly, an exiting discontinuity denotes that
the current fragment is shadowed and the adjacent neighbour is lit
(i.e., the current fragment is in the interior part of the shadow sil-
houette). To keep consistency with previous definitions which do
not compute exiting discontinuities [3], we have defined (dc)b = 0
for an entering discontinuity and (dc)b = 1 otherwise.

Oriented Normalized Discontinuity Space Computation: In
the discontinuity space, a jagged shadow edge is defined as an edge
discontinuity which has beginning, end and length (Figures 3-(a),
(b)). Each edge discontinuity has a dominant discontinuity, which
is shared by all the texels belonging to the edge. For instance, in
Figure 3-(a), the dominant discontinuity is to the top and in Figure
3-(b), it is to the bottom.

B E

L
(a)

E B

L
(b)

F
don

(c)

F

don
(d)

Figure 3: The properties of (a) entering and (b) exiting edge dis-
continuities: B - Discontinuity beginning. E - Discontinuity end. L -
Discontinuity length. Arrow - Texel discontinuity (dc). Black arrow -
Entering discontinuity. White arrow - Exiting discontinuity. The rela-
tive position of the fragment F for entering (c) and exiting (d) edge
discontinuities is defined by the parameter don, which is oriented to-
wards the discontinuity end.

To compute the relative position don ∈ [0,1] of the fragment in-
side the edge discontinuity (Figures 3-(c), (d)), we traverse the
edge in the projected light space, since discontinuities are computed
based on shadow map texels. Therefore, the step of the traversal is
equivalent to one shadow map sample. The traversal is done for
the two directions of the opposite axis of the dominant disconti-
nuity (e.g., left and right directions for the cases shown in Figure
3) to find the edge discontinuity beginning and end. Details about
the handling of special cases where the edge discontinuity does not
have a beginning or end can be found in the supplementary docu-
ment.

In our algorithm, the discontinuity beginning is found when the
discontinuity directions of the current shadow map sample being
traversed do not correspond to any discontinuity directions of the
initial shadow map sample. The discontinuity end is found when
the illumination condition goes from lit to unlit or vice-versa during
the traversal (Figure 3-(a), (b)). We store the result of this traversal
as a signed distance α between the texel and the end of the edge.
In fact, α stores the number of steps taken during the traversal. We
orient α such that it is positive if a discontinuity end has been found
and negative otherwise.

Let us denote α1 and α2 the oriented distances computed for the
two directions traversed and L = |α1|+ |α2| − 1 the edge length.

The oriented normalized discontinuity don is defined as:

don = (1− max(α1,α2)

L
)+

po

L
(1)

where po is the relative position p of the fragment in relation to the
projected shadow map sample, but oriented towards the disconti-
nuity end. In practice, p is computed as the fractional part of the
product between the 2-D coordinates of the pixel in the light space
(normalized to [0,1]) and the shadow map resolution. Here, po is
used to bring pixel-level accuracy for the ONDS computation. The
subtraction in Equation (1) guarantees that the value of don grows
towards the discontinuity end (i.e., don varies from 0 at the discon-
tinuity beginning to 1 at the discontinuity end). Computing don for
every fragment in the camera space results in the generation of the
ONDS (Figure 2-(d), (h)).

To optimize performance and keep consistent frame rates, the
user may fix the maximum number of steps given during traversal
(i.e., the maximum edge length). In our tests, the use of a maximum
of L = 16 was sufficient to keep consistent real-time performance
and accurate ONDS computation.

(a) (b) (c)

(d) (e)

Figure 4: Jagged shadow edges (a) are revectorized with single-pass
SMSR (b) and filtered with RSMSS (d). However, artifacts (pointed by
red arrows) may arise for sloped surfaces due to the depth change,
which affects the shadow test (b, d). By using our solution, we can
solve this problem for both entering (c) and exiting (e) discontinuities.

For sloped surfaces, the depth of the shadow map sample being
accessed may change in relation to the depth accessed in the initial
shadow map texel. If we use the same zc for shadow test during
traversal, artifacts may arise in the cases where the depth change
in zl affects the shadow test result (Figures 4-(b), (d)). To solve
this problem, we use the shadow mapping assumption that zc ≥
zl holds for every shadow map texel. Thus, to detect this depth
change during traversal, we check whether |zc− zl | < ε holds. If
the condition is true, we update zc before the shadow test: zc =
zc− ε . In fact, we use a conservative approach which ensures that,
for fragments in shadow, zc > zl . Conversely, for lit fragments,
zc < zl . As shown in Figures 4-(c) and 4-(e), this solution provides
good results for ONDS computation and alleviates the artifacts. To
detect only the cases of depth change, the value of ε must be chosen
carefully. In our setup, the difference between zc and zl is really
small. Hence, we empirically have defined ε = 2.5× 10−5, which
has sufficed for all our test cases.

Oriented Normalized Discontinuity Space Clipping: In this
step, we define a visibility function which works on the ONDS to
compute the new shadow silhouettes (Figures 2-(e), (i)). The visi-
bility function consists of a set of linear comparisons done over the

oriented normalized discontinuity don and the sub-coordinates of
the pixel in the light space p. As a general framework, the RBSM
does not have a specific visibility function. This visibility function
is specialized for each technique developed over RBSM, such as the
single-pass SMSR and the RSMSS techniques. More details are de-
scribed in the next subsections and in the supplementary document.

Final Rendering: Let us define φ(x,y) the shading function,
v(x,y) the revectorization-based visibility function, and s(x,y) the
hard shadow test. The final rendering function f (x,y) can be ex-
pressed as f (x,y) = φ(x,y)s(x,y)v(x,y). By using this equation, we
can render anti-aliased hard shadows, as depicted in Figures 2-(f),
(j).

3.2 Single-Pass Shadow Map Silhouette Revectoriza-
tion

The SMSR technique is a specialization of the RBSM which aims
to revectorize the jagged shadow edges. In this method, we need
to compute only entering discontinuities at the shadow silhouettes
(Figure 2-(c)). Then, the discontinuity space is oriented and nor-
malized only for entering discontinuities as well (Figure 2-(d)). We
use the shadow mapping to classify fragments as lit or shadowed.
Additionally, fragments that are back-facing the light source are
classified as shadowed and do not participate in the discontinuity
computation.

The SMSR visibility function vSMSR(x,y) is a function which
returns 0 if the fragment is a new shadow to be included after ONDS
clipping and 1 otherwise (Figure 2-(e)). vSMSR(x,y) consists of a
set of 12 different shadowing configurations which group all the
possible revectorization scenarios. A detailed description of this
function is too long to be included here. We refer the reader to the
supplementary material to find the full definition of vSMSR(x,y).

By assuming v(x,y) = vSMSR(x,y) in the final rendering function
f (x,y) (Section 3.1), we can generate anti-aliased hard shadows, as
shown in Figures 1-(b) and 2-(f).

3.3 Revectorization-Based Shadow Map Silhouette
Smoothing

The RSMSS technique uses the entering and exiting discontinuities
of RBSM to add filtering for the anti-aliased hard shadows. RSMSS
not only suppresses the aliasing artifacts to slightly lower frequen-
cies, but also acts as a 1-D smoothing filter over the scene. This
latter characteristic will be useful when extending this technique
for 2-D filtering (Section 3.4).

In RSMSS, we compute entering and exiting discontinuities for
all fragments in the camera viewpoint (Figure 2-(g)). ONDS is
computed for entering and exiting discontinuities as well. Then, we
define a visibility function vRSMSS(x,y) which smoothes the ONDS
to filter the anti-aliased hard shadows (Figure 2-(i)). Because we
handle both entering and exiting discontinuities, we need a more
complete visibility function to provide coherent filtering. Hence,
vRSMSS(x,y) consists of a set of 31 linear comparisons which return
shadow intensities ranging in the interval [0,1]. Again, we refer the
reader to the supplementary material to find a detailed description
of vRSMSS(x,y).

If we assume v(x,y) = vRSMSS(x,y) in the final rendering func-
tion f (x,y) (Section 3.1), we can render filtered hard shadows, as
shown in Figures 1-(c) and 2-(j).

3.4 Revectorization-Based Percentage-Closer Filtering

As described in the previous subsection, the RSMSS technique pro-
duces filtered anti-aliased hard shadows. However, the filter size is
fixed, proportional to the size of the shadow edge, which depends
on the shadow map resolution. To enable control over the filter
size, we incorporate PCF into the revectorization pipeline, creating
the revectorization-based PCF (RPCF) technique.

The RPCF technique has two variants: The RPCF + SMSR vari-
ant uses the visibility function v(x,y) = vSMSR(x,y) and provides
filtering over the anti-aliased hard shadows. Unfortunately, sim-
ilar to PCF, the RPCF + SMSR variant is still prone to banding
artifacts and requires a high-order kernel to achieve good accuracy,
which makes this technique unsuitable for real-time applications.
To achieve high-quality anti-aliasing, reducing both banding and
perspective artifacts for a small kernel size, we propose the RPCF
+ RSMSS variant, the incorporation of the 1-D RSMSS filter into
the PCF, in which v(x,y) = vRSMSS(x,y).

The evaluation of v(x,y) for every texel inside the RPCF ker-
nel is computationally expensive. Nevertheless, we can avoid the
high cost of evaluating the visibility function for every sample. For
the RPCF + SMSR variant, we only evaluate dc for the samples in
which s(x,y) = 1, because the SMSR technique handles only enter-
ing discontinuities. The visibility result for each neighbour sample
vs(x,y) can be easily determined as follows:

vs(x,y) =

0 if s(x,y) = 0,
1 else if dc = 0,
vSMSR(x,y) otherwise.

(2)

For the RPCF + RSMSS variant, we compute vs(x,y) as follows:

vs(x,y) =

{
s(x,y) if (dc)rg = 0,
vRSMSS(x,y) otherwise.

(3)

In this case, for the texels where there is no discontinuity
(dc)rg = 0, the visibility of the fragment is defined by the shadow
test result. Otherwise, the RSMSS visibility function must be eval-
uated.

4 RESULTS AND DISCUSSION

In this section, we evaluate the techniques in terms of visual qual-
ity, performance and memory consumption. We analyze the tech-
niques for filtering and silhouette recovery separately. All images
were generated using only one shadow map without any perspec-
tive optimization technique. In our experimental setup, memory
and time usage was evaluated in an Intel CoreTM i7-3770K CPU
(3.50 GHz), 8GB RAM, and an NVIDIA GeForce GTX 660 graph-
ics card. All memory requirements were computed considering
the mip-map overhead by a factor 1.3. ESM and EVSM are im-
plemented without fallback to PCF and c = 80. For VSM, ESM,
EVSM and MSM, a 3×3 two-pass separable Gaussian blur is used
to filter the shadow maps. PCF and RPCF-based techniques were
implemented with a simple 3×3 box filter (unless stated otherwise)
to highlight the strengths and weaknesses for each technique. All
the techniques are implemented with 16-bit quantization, with ex-
ception to ESM and EVSM, which require 32-bit [2, 12]. We use
the stencil shadow volumes [8] for generating ground-truth hard
shadows. To see the temporal consistency of RBSM and additional
results of this work, we suggest the reader to see the accompanying
video.

4.1 Rendering Quality
We compared the hard shadows computed from the single-pass
shadow map silhouette revectorization technique with the ones pro-
duced by standard shadow mapping and shadow volumes, the latter
being the ground-truth technique (Figure 5). We did not include the
two-pass SMSR technique in this comparison because the visibility
function of the original technique was not properly defined in the
original paper [3]. In both scenarios, the closeups show that the
SMSR technique recovers shadow boundaries at pixel-level (Fig-
ure 5-(b)), producing hard shadows which resemble the rendering
quality of shadow volumes (Figure 5-(c)).

(a) Shadow mapping (b) VSM (c) ESM (d) EVSM (e) MSM

(f) PCF (g) RSMSS (h) RPCF + SMSR (i) RPCF + RSMSS

(a) Shadow mapping (b) VSM (c) ESM (d) EVSM (e) MSM

(f) PCF (g) RSMSS (h) RPCF + SMSR (i) RPCF + RSMSS

(a) Shadow mapping (b) VSM (c) ESM (d) EVSM (e) MSM

(f) PCF (g) RSMSS (h) RPCF + SMSR (i) RPCF + RSMSS

(a) Shadow mapping (b) VSM (c) ESM (d) EVSM (e) MSM

(f) PCF (g) RSMSS (h) RPCF + SMSR (i) RPCF + RSMSS

(a) Shadow mapping (b) VSM (c) ESM (d) EVSM (e) MSM

(f) PCF (g) RSMSS (h) RPCF + SMSR (i) RPCF + RSMSS

(a) Shadow mapping (b) VSM (c) ESM (d) EVSM (e) MSM

(f) PCF (g) RSMSS (h) RPCF + SMSR (i) RPCF + RSMSS

(a) Shadow mapping (b) VSM (c) ESM (d) EVSM (e) MSM

(f) PCF (g) RSMSS (h) RPCF + SMSR (i) RPCF + RSMSS

(a) Shadow mapping (b) VSM (c) ESM (d) EVSM (e) MSM

(f) PCF (g) RSMSS (h) RPCF + SMSR (i) RPCF + RSMSS

(a) Shadow mapping (b) VSM (c) ESM (d) EVSM (e) MSM

(f) PCF (g) RSMSS (h) RPCF + SMSR (i) RPCF + RSMSS

(a) Shadow mapping (b) VSM (c) ESM (d) EVSM (e) MSM

(f) PCF (g) RSMSS (h) RPCF + SMSR (i) RPCF + RSMSS
(a) Shadow mapping (b) VSM (c) ESM (d) EVSM (e) MSM

(f) PCF (g) RSMSS (h) RPCF + SMSR (i) RPCF + RSMSS

(a) Shadow mapping (b) VSM (c) ESM (d) EVSM (e) MSM

(f) PCF (g) RSMSS (h) RPCF + SMSR (i) RPCF + RSMSS

(a) Shadow mapping (b) VSM (c) ESM (d) EVSM (e) MSM

(f) PCF (g) RSMSS (h) RPCF + SMSR (i) RPCF + RSMSS

(a) Shadow mapping (b) VSM (c) ESM (d) EVSM (e) MSM

(f) PCF (g) RSMSS (h) RPCF + SMSR (i) RPCF + RSMSS

(a) Shadow mapping (b) VSM (c) ESM (d) EVSM (e) MSM

(f) PCF (g) RSMSS (h) RPCF + SMSR (i) RPCF + RSMSS

(a) Shadow mapping (b) VSM (c) ESM (d) EVSM (e) MSM

(f) PCF (g) RSMSS (h) RPCF + SMSR (i) RPCF + RSMSS

(a) Shadow mapping (b) VSM (c) ESM (d) EVSM (e) MSM

(f) PCF (g) RSMSS (h) RPCF + SMSR (i) RPCF + RSMSS

(a) Shadow mapping (b) VSM (c) ESM (d) EVSM (e) MSM

(f) PCF (g) RSMSS (h) RPCF + SMSR (i) RPCF + RSMSS

(a) Shadow mapping (b) VSM (c) ESM (d) EVSM (e) MSM

(f) PCF (g) RSMSS (h) RPCF + SMSR (i) RPCF + RSMSS

Figure 6: Filtered hard shadows produced by various techniques. Even in a simple scenario where the shadow of a wall is cast onto a dragon
and a floor, several techniques suffer from light leaking artifacts (red arrows). Moreover, by blurring the aliased hard shadows, the filtered hard
shadows still suffer from aliasing (green closeups). By using the techniques proposed in this paper, we can solve both problems. Images were
generated for the Dragon model using a 10242 shadow map.

(a) Shadow mapping (b) SMSR (c) Shadow volumes
(a) Shadow mapping (b) SMSR (c) Shadow volumes(a) Shadow mapping (b) SMSR (c) Shadow volumes(a) Shadow mapping (b) SMSR (c) Shadow volumes

(a) Shadow mapping (b) SMSR (c) Shadow volumes(a) Shadow mapping (b) SMSR (c) Shadow volumes(a) Shadow mapping (b) SMSR (c) Shadow volumes

Figure 5: Hard shadows produced by shadow mapping, the SMSR
technique and shadow volumes. Images were generated for Spheres
(top) and YeahRight (bottom) models using a 20482 shadow map.

We visually compared the revectorization-based shadow map sil-
houette smoothing and the revectorization-based percentage-closer
filtering techniques with related work, as shown in Figure 6.
Shadow mapping suffers from aliasing (Figure 6-(a)). VSM, ESM

and MSM techniques suffer from light leaking for the shadow cast
by the wall onto the floor (Figures 6-(b, c, e)). Light leaking is
greatly reduced in EVSM (Figure 6-(d)). However, for small kernel
sizes, all these four filtering techniques do not remove the shadow
mapping aliasing. PCF does not suffer from light leaking, but it
does not remove the jagged appearance of the shadow edges for
small kernel sizes (Figure 6-(f)). RSMSS is not prone to light leak-
ing artifacts and effectively reduces the perspective aliasing. How-
ever, the filtering is performed in a limited extension (Figure 6-(g)).
The RPCF + SMSR technique incorporates blurring into the revec-
torized shadows, but the method is still prone to banding artifacts
(Figure 6-(h)). High accuracy is obtained for the RPCF + RSMSS
technique, which takes advantage from the 1-D smoothing filter of
the RSMSS to reduce both banding and perspective artifacts of the
shadow filtering even for a low-order box filter kernel (Figure 6-(i)).

(a) PCF
(3×3)

(b) PCF
(17×17)

(c) RPCF + RSMSS
(3×3)

(a) PCF
(3×3)

(b) PCF
(17×17)

(c) RPCF + RSMSS
(3×3)

(a) PCF
(3×3)

(b) PCF
(17×17)

(c) RPCF + RSMSS
(3×3)

(a) PCF
(3×3)

(b) PCF
(17×17)

(c) RPCF + RSMSS
(3×3)

Figure 7: The influence of the kernel sizes over the filtered hard shad-
ows produced by PCF and RPCF + RSMSS techniques. Images
were generated for the Teapot model using a 10242 shadow map.

In Figure 7, we show a comparison between PCF and RPCF
+ RSMSS techniques in terms of filter size and rendering quality.
As shown in Figure 7-(a), PCF suffers from banding artifacts for a
low-order kernel size. Meanwhile, the RPCF + RSMSS algorithm
requires a small filter size to provide high-quality anti-aliasing, re-
ducing at the same time both banding and perspective artifacts (Fig-
ure 7-(c)). For the same filter size, RPCF + RSMSS is slower than
PCF because filtering with revectorization demands increased pro-
cessing time. To compare the visual quality achieved by both tech-
niques for a similar performance, we must increase the filter size
of the PCF technique to 17× 17 (Table 5). In this case, the PCF
effectively suppresses banding artifacts, but is still not able to re-
duce the perspective aliasing (Figure 7-(b)). This makes the RPCF
+ RSMSS a better choice for filtering, even for a 3×3 filter size.

Shadow mapping SMSR

Shadow mapping SMSR

Shadow mapping SMSR

Shadow mapping SMSR

Shadow mapping SMSR

Figure 8: Standard shadow mapping and shadow map silhouette
revectorization techniques applied for the Tree model for 10242 (top)
and 40962 (bottom) shadow map resolutions.

Similar to related work (e.g., [13]), the quality of the
revectorization-based shadow mapping is highly dependent on the
shadow map resolution used. Because we do not rely on additional
geometric details to perform the revectorization, we do not handle
holes caused by the use of insufficient shadow map resolution (e.g.,
Figure 8, top). For models with fine details (e.g., the tree shown in
Figure 8), revectorization does not perform well for low-resolution
shadow maps. Increasing the resolution of the shadow map helps
reducing the artifacts caused by the revectorization.

4.2 Performance
Tables 2 and 3 show timing results from the standard shadow map-
ping, our single-pass SMSR technique, the two-pass SMSR tech-
nique proposed in [3] and the shadow volumes. The two-pass
SMSR is two times slower than the standard shadow mapping.
Meanwhile, our single-pass SMSR adds an averaged computational
overhead of 40% for a model with 100 000 polygons. Clearly, the
single-pass SMSR technique outperforms the performance of the
two-pass SMSR technique. Furthermore, the single-pass SMSR
provides real-time performance, much faster than shadow volumes.

Shadow Map Resolution
Technique 5122 10242 20482 40962

Shadow mapping 1.9 2.0 2.4 3.7
Single pass SMSR 2.4 2.6 3.3 5.9
Two pass SMSR 3.1 3.3 4.0 6.6
Shadow volumes 28.0 28.0 28.0 28.0

Table 2: Rendering times (in ms) for standard shadow mapping and
the silhouette recovery techniques measured for the Dragon model
(≈ 100 000 polygons). Measurements include varying shadow map
resolution.

Output Resolution
Technique SD HD Full HD

Shadow mapping 1.9 2.0 2.3
Single pass SMSR 2.2 2.6 3.3
Two pass SMSR 2.9 3.3 4.0
Shadow volumes 25.0 28.0 40.0

Table 3: Rendering times (in ms) for standard shadow mapping and
the silhouette recovery techniques measured for the Dragon model
(≈ 100 000 polygons). Measurements include varying output reso-
lution. SD - Standard Definition (480p). HD - High Definition (720p).
Full HD - Full High Definition (1080p).

The main advantage of our technique over the two-pass SMSR
technique can be seen in Table 4. By running in a single-pass, our
technique needs to render the scene from the camera viewpoint only
once, which reduces processing time when rendering models with
a moderate amount of polygons.

Number of Polygons
Technique 15 000 100 000 750 000

Shadow mapping 0.6 2.0 10.0
Single pass SMSR 0.9 2.6 10.1
Two pass SMSR 1.2 3.3 15.1
Shadow volumes 5.5 28.0 200.0

Table 4: Rendering times (in ms) for standard shadow mapping
and the silhouette recovery techniques measured for the Teapot (15
000 polygons), Dragon (100 000 polygons) and YeahRight (750 000
polygons) models. Times were measured using a 10242 resolution
shadow map.

Table 5 shows rendering performance for the shadow mapping
and several filtering techniques. Shadow mapping and RSMSS
were measured only for varying shadow map resolution. RSMSS
is about two times slower than shadow mapping and it is slightly
slower than related filtering techniques. The performance of RPCF-
based filtering techniques is severely decreased for large filter sizes.
However, as shown in Figure 7-(b), our solution is designed to pro-
vide high-quality anti-aliasing for small kernel sizes (e.g., 3×3 fil-
ter). In this sense, the cost of the use of the RSMSS technique as
basis for the RPCF is compensated by the fact that the algorithm
provides good results for small kernel sizes. PCF achieves near the
same performance of the RPCF + RSMSS for a high-order kernel
size of 17× 17. In this case, the PCF technique is able to reduce
banding artifacts, but it is still prone to perspective aliasing, both
alleviated by the RPCF + RSMSS algorithm (Figure 7-(b, c)).

To achieve such performance results, we have tuned the
revectorization-based shadow mapping to compute f (x,y) effi-
ciently. This optimization reduced 20− 30% of the computational
cost of the RBSM-based techniques. More details about this tun-
ing can be found in the supplementary document. Also, RBSM
provides consistent real-time frame rates independent of lighting or

viewing conditions, since the maximum number of steps for ONDS
traversal is fixed. This makes our approach suitable for games and
other applications in which consistent performance is essential.

Shadow Map Resolution
Filter Size Technique 5122 10242 20482 40962

Shadow mapping 520 490 410 270
RSMSS 260 240 210 145

PCF 470 445 410 270
3×3 Pre-filtering 335 295 230 135

RPCF + SMSR 180 165 145 110
RPCF + RSMSS 90 85 80 70

PCF 200 180 150 90
10×10 Pre-filtering 300 240 190 115

RPCF + SMSR 40 36 32 30
RPCF + RSMSS 13 13 13 13

PCF 85 80 70 40
17×17 Pre-filtering 250 190 160 100

RPCF + SMSR 20 16 15 13.5
RPCF + RSMSS 5.5 5.5 5.5 5.5

Table 5: Performance table (measured in frames per second) for
standard shadow mapping and the filtering techniques for the Dragon
model. Pre-filtering represents the averaged performance of VSM,
ESM, EVSM and MSM techniques. Measurements include varying
shadow map resolutions and varying kernel sizes.

Figure 9: Memory consumption (measured in MB) for several shad-
owing techniques. Memory usage was measured for the YeahRight
model. Measurements include varying shadow map resolutions. TP-
SMSR: Two pass SMSR.

4.3 Memory Consumption
Figure 9 shows memory usage results for several shadowing tech-
niques and shadow map resolutions.

Our revectorization-based techniques do not rely on any addi-
tional texture. In this sense, they use less memory than the two-
pass shadow map silhouette revectorization, which stores dc in a
discontinuity map. Furthermore, we can see in Figure 9 that the
proposed techniques provide the best memory results, comparable
to shadow mapping. It is mainly because RBSM works with 16-bit
quantization and needs only the shadow map texture (a single depth
channel) to generate anti-aliased hard shadows.

5 CONCLUSION AND FUTURE WORK

In this paper, we have proposed three revectorization techniques
to reduce the aliasing artifacts in shadow mapping. The single-

pass SMSR technique takes advantage of a discontinuity space to
solve the problem of perspective aliasing in real-time. The RSMSS
technique enhances anti-aliasing by filtering the anti-aliased hard
shadows. The RPCF technique brings higher accuracy to PCF by
incorporating it into RBSM. We have shown that our techniques are
accurate, real-time, and do not suffer from light leaking artifacts,
producing hard shadows that outperform state-of-the-art methods
in terms of visual quality and memory consumption. By providing
consistent, real-time frame rates, we believe that our approach is
useful for games or other applications where perspective aliasing is
still visible due to the use of low-resolution shadow maps or small
kernel sizes for filtering. In this sense, the use of a small filter size
to provide high-quality anti-aliasing makes the RPCF faster than
the PCF to achieve an improved visual quality. We believe that the
RPCF is ready to replace the PCF technique in applications which
still use it for real-time hard shadow filtering.

Future work will extend the use of revectorization for other
fields, such as soft shadows. In this case, strategies to reduce the
computational cost of the soft shadow filtering, such as the restric-
tion of the soft shadow calculation for fragments located in penum-
bra, will be useful to make the algorithm faster. Also, we believe
that the RPCF will still require a low-order kernel size to provide
high-quality soft shadow filtering. In terms of silhouette recovery,
hybrid approaches which use revectorization with additional geo-
metric details may be useful to improve the robustness of both tech-
niques.

ACKNOWLEDGEMENTS

We are grateful to Vladimir Bondarev for discussing the ideas
behind his original implementation of the two-pass shadow map
silhouette revectorization method. Also, we would like to thank
the anonymous reviewers for their insightful feedback. Armadillo
and Dragon models are courtesy of Stanford Computer Graph-
ics Laboratory. YeahRight model is courtesy of Keenan Crane.
This research is financially supported by Fundação de Amparo
à Pesquisa do Estado da Bahia (FAPESB) and Coordenação de
Aperfeiçoamento de Pessoal do Nı́vel Superior (CAPES).

REFERENCES

[1] T. Annen, T. Mertens, P. Bekaert, H.-P. Seidel, and J. Kautz. Convo-
lution shadow maps. In J. Kautz and S. Pattanaik, editors, Rendering
Techniques, pages 51–60. The Eurographics Association, 2007.

[2] T. Annen, T. Mertens, H.-P. Seidel, E. Flerackers, and J. Kautz. Expo-
nential shadow maps. GI ’08, pages 155–161, Toronto, Ont., Canada,
Canada, 2008. Canadian Information Processing Society.

[3] V. Bondarev. Shadow map silhouette revectorization. I3D ’14, pages
162–162, New York, NY, USA, 2014. ACM.

[4] E. Chan and F. Durand. An efficient hybrid shadow rendering algo-
rithm. EGSR’04, pages 185–195, Aire-la-Ville, Switzerland, Switzer-
land, 2004. Eurographics Association.

[5] F. C. Crow. Shadow algorithms for computer graphics. SIGGRAPH
’77, pages 242–248, New York, NY, USA, 1977. ACM.

[6] W. Donnelly and A. Lauritzen. Variance shadow maps. I3D ’06, pages
161–165, New York, NY, USA, 2006. ACM.

[7] E. Eisemann, M. Schwarz, U. Assarsson, and M. Wimmer. Real-Time
Shadows. A.K. Peters, 2011.

[8] T. Heidmann. Real shadows, real time. Iris Universe, 18:28–31, 1991.
[9] S. Hertel, K. Hormann, and R. Westermann. A hybrid GPU rendering

pipeline for alias-free hard shadows. In Proceedings of Eurographics
2009 Area, pages 59–66, 2009.

[10] J. Jimenez, B. Masia, J. I. Echevarria, F. Navarro, and D. Gutierrez.
Practical morphological anti-aliasing. In W. Engel, editor, GPU Pro
2, pages 95–113. AK Peters Ltd., 2011.

[11] A. Lauritzen. Summed-area variance shadow maps. In H. Nguyen,
editor, GPU Gems 3, pages 157–182. Addison-Wesley, 2008.

[12] A. Lauritzen and M. McCool. Layered variance shadow maps. GI ’08,
pages 139–146, Toronto, Ont., Canada, 2008. Canadian Information
Processing Society.

[13] P. Lecocq, J.-E. Marvie, G. Sourimant, and P. Gautron. Sub-pixel
shadow mapping. I3D ’14, pages 103–110, New York, NY, USA,
2014. ACM.

[14] M. D. McCool. Shadow volume reconstruction from depth maps.
ACM Trans. Graph., 19(1):1–26, Jan. 2000.

[15] M. Pan, R. Wang, W. Chen, K. Zhou, and H. Bao. Fast, sub-pixel
antialiased shadow maps. Computer Graphics Forum, 28(7):1927–
1934, 2009.

[16] C. Peters and R. Klein. Moment shadow mapping. I3D ’15, pages
7–14, New York, NY, USA, 2015. ACM.

[17] W. T. Reeves, D. H. Salesin, and R. L. Cook. Rendering antialiased
shadows with depth maps. SIGGRAPH ’87, pages 283–291, New
York, NY, USA, 1987. ACM.

[18] M. Salvi. Rendering filtered shadows with exponential shadow maps.
In ShaderX 6.0 Advanced Rendering Techniques, pages 257–274.
Charles River Media, 2008.

[19] P. Sen, M. Cammarano, and P. Hanrahan. Shadow silhouette maps.
ACM Trans. Graph., 22(3):521–526, July 2003.

[20] T. Whitted. An improved illumination model for shaded display. Com-
mun. ACM, 23(6):343–349, June 1980.

[21] L. Williams. Casting curved shadows on curved surfaces. SIGGRAPH
’78, pages 270–274, New York, NY, USA, 1978. ACM.

[22] A. Woo and P. Poulin. Shadow Algorithms Data Miner. CRC Press,
2012.

