

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE QUÍMICA PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

MARIZETH LIBÓRIO BARREIROS

FLAVONÓIDES E TERPENÓIDES DE TRÊS ESPÉCIES DO GÊNERO ERYTHROXYLUM E SUAS ATIVIDADES BIOLÓGICAS

Salvador 2005 MARIZETH LIBÓRIO BARREIROS

FLAVONÓIDES E TERPENÓIDES DE TRÊS ESPÉCIES DO GÊNERO ERYTHROXYLUM E SUAS ATIVIDADES BIOLÓGICAS

Tese apresentada ao Programa de Pósgraduação em Química, Instituto de Química, Universidade Federal da Bahia, como requisito parcial para obtenção do grau de Doutora em Química.

Orientadora: Profa. Dra. Juceni Pereira de Lima David

Π

AGRADECIMENTOS

Aos meus pais pelo exemplo de vida e incentivo aos estudos.

Ao meu esposo André Luís pelo amor, incentivo e contribuições na realização deste trabalho.

A Profa. Dra. Juceni Pereira de Lima David, minha orientadora, pela sua paciência, orientação e, acima de tudo, por ter confiado na minha capacidade em dar continuação neste trabalho.

Ao Prof. Dr. Jorge Maurício David, coorientador, pelo apoio e valiosas contribuições. Aos meus colegas de laboratório, em especial ao Pedro Viana e a Daniela Trancoso pela contribuição no trabalho experimental.

Aos meus professores da graduação e da pós-graduação que contribuíram para minha formação.

Ao Prof. Dr. Antônio Euzébio, Karla e Cadedja, da UFAL, pela ajuda na realização dos testes larvicida e moluscicida.

A Profa. Dra. Lúcia Xavier, da UNESP, pelos espectros de RMN.

A Todos aqueles que contribuíram para a realização deste trabalho, muito obrigada.

RESUMO

Este trabalho descreve o estudo fitoquímico dos extratos clorofórmicos e acetato de etila de três espécies do gênero *Erythroxylum*, *E. nummularia*, *E. passerinum* e *E. barbatum*, além da realização de testes de atividade biológicas com os extratos e as substâncias isoladas visando obter substâncias bioativas.

O gênero *Erythroxylum* pertence a família Erythroxylaceae que compreende aproximadamente 250 espécies distribuídas nas regiões tropicais com extensas áreas de diversidade na América do Sul e Madagascar.

A partir das folhas de *E. nummularia* foram isolados os flavonóides, 7,4'dimetilquercetina, quercetina, quercetina-3-glicopiranosídeo e epicatequina. A partir dos frutos de *E. passerinum* foram isolados dois novos diterpenos, 3 α -metoxi-2,8,12 β -trihidroxi-15-oxi-10 α -hidroxi-rianodano e o 10 α -dihidroxi-2,6,12 β -triidroxi-15oxi-rianodano. Este é o primeiro registro desses diterpenos na família Erythroxylaceae. Enquanto que *E. barbatum* levou ao isolamento de quercetina-3ramnopiranosídeo, 7,4'-dimetilquercetina–rutinosídeo, quercetina-3-rutinosídeo, quercetina, epicatequina, além de β -amirina, palmitato de β -amirinila, lupeol, β sitosterol e 13²-(OH)-Clorofila *a*.

As substâncias foram isoladas através de métodos cromatográficos e suas estruturas foram elucidadas através da análise dos dados obtidos pelos espectros de RMN de ¹H e ¹³C, UV e EM. Os extratos e algumas substâncias foram submetidos a testes de atividade citotóxica, larvicida, moluscicida e imunomoduladora. Nestes testes o extrato acetato de etila dos frutos de E. passerinum apresentou 100% de atividade para larvas da Artemia salina na concentração de 100 ppm. Esta atividade é devido, provavelmente, a presença das substâncias 3α -metoxi-2,6,12 β -trihidroxi-15-oxi-10 α -hidroxi-rianodano e 10 α -dihidroxi-2,6,12 β -triidroxi-15-oxi-rianodano. A substância 3α -metoxi-2,6,12 β -trihidroxi-15-oxi-10 α -hidroxi-rianodano foi tóxica frente as larvas da Artemia salina causando 50% de mortes numa concentração de 0.63 x 10^{-5} mol/l com o LC₅₀= 21,8 mol/l. Com relação ao teste larvicida, os extratos tanto dos frutos de E. passerinum e E. nummularia foram inativos, entretanto a substância 3α -metoxi-2,6,12 β -trihidroxi-15-oxi-10 α -hidroxi-rianodano apresentou atividade para as larvas de Aedes aegypti causando 100 % de mortalidade na concentração de 2,52 x 10⁻⁵mol/l. Todos os extratos foram inativos para o teste de atividade moluscicida, bem como a substância 3α -metoxi-2,6,12 β -trihidroxi-15-oxi-10 α -hidroxiepicatequina rianodano. As substâncias quercetina. е quercetina-3ramnopiranosídeo apresentaram atividade imunomoduladora moderada, embora não tenha sido calculado o IC50.

Palavras-chave: *Erythroxylum*; Erythroxylaceae; Flavonóides; diterpenos; atividade biológicas;

ABSTRACT

This work describes the phytochemical study of the chloroform and ethyl acetate extracts of three species of the genus Erythroxylum, E. nummularia, E. passerinum and E. barbatum, besides biological activity assay of crude extracts and pure substances isolatedes in the search of bioactives substances. The genus *Erythroxylum* belongs to Erythroxylaceae family that comprises approximately 250 species widely distributed in tropical regions and with diversity areas in South America and Madagascar. From the leaves of *E. passerinum* it was isolated the flavonoids quercetin, quercetin-3-glucopyranoside and epicatechin and from E. *nummularia* it was obtained 7,4'-dimethylquercetin, quercetin, quercetin-3glucopyranoside and also epicatechin. From the fruits of E. passerinum it was isolated two new ryanodane diterpenes named 3α -metoxy-2,6,12 β -trihydroxy-15-oxy- 10α -hydroxy-ryanodane and $3,10\alpha$ -dihydroxy-2,6,12 β -trihydroxy-15-oxy-ryanodane. This is the first report of these diterpenes in the Erytrhoxylaceae family. While E. lead isolation of quercetin-3-rhamnopyranoside. 7.4'barbatum to the dimethylquercetin-rutinoside, quercetin-3-rutinoside, quercetin, epicatechin, besides of β -amyrin, β -amyrinile palmitate, lupeol, β -sitosterol and chlorophyll a. The compounds were isolated through extensive chromatographic procedures and their structures were elucidated by the analyses of ¹H RMN and ¹³C, EM, UV and IR spectral data. The crude extracts and same substances pure were performed cytotoxic, larvicidal, molluscicidal and immunodulator activity assays. In these assay the ethyl acetate of E. passerinum fruits showed 100 % of activity in the A. salina assay at concentration of 100 ppm. This activity is probably due to of the substances 3α -metoxy-2,6,12 β -trihydroxy-15-oxy-10 α -hydroxy-ryanodane and 3,10 α -dihydroxy-2,6,12 β -triidroxy-15-oxy-ryanodane presence. The substance 3 α -metoxy-2,6,12 β trihydroxy-15-oxy-10 α -hydroxy-ryanodane was toxic in front of A. salina larvae with 50 % death at concentration of 0.63 x 10^{-5} mol/l with LC₅₀= 21.8 mol/l. In relationship to the larvicidal assay, both extracts of *E. passerinum* and *E. nummularia* of the fruits were inactives. However, the substance 3α -metoxy-2,6,12 β -trihydroxy-15-oxy-10 α hydroxy-ryanodane showed activity to Aedes aegypti larvae causing 100 % of mortality at concentration of 2,52 x 10⁻⁵ mol/l. All the extracts were inactives for the molluscicidal assay, so as, the substances 3α -metoxy-2,6,12 β -trihydroxy-15-oxy- 10α -hydroxy-ryanodane. The substances guercetin, *epi*catechin and guercetin-3rhamnopyranoside showed moderade immunodulator activity, thougt the IC50 was not calculated.

Keywords: *Erythroxylum*; Erythroxylaceae; Flavonoids; diterpenes; biological activities;

LISTA DE FIGURAS

FIGURA 1 – Exsicata de Erythroxylum nummularia	30
FIGURA 2 – Exsicata de Erythroxylum passerinum	31
FIGURA 3 – Exsicata de Erythroxylum barbatum	32
FIGURA 4 – Obtenção dos extratos orgânicos das folhas d	е <i>Е</i> .
nummularia 33 FIGURA 5 – Obtenção dos extratos orgâ	nicos
das folhas de <i>E. passerinum</i> 39	
FIGURA 6 – Obtenção dos extratos orgânicos dos frutos de <i>E. passerinum</i>	40
FIGURA 7 – Obtenção dos extratos orgânicos das folhas de <i>E. barbatum</i>	46
FIGURA 8 – Espectro de RMN ¹ H de EN1	66
FIGURA 9 – Espectro de RMN ¹ H de EN1 (Ampliação)	66
FIGURA 10 – Espectro de RMN ¹ H de EN1 (Ampliação)	67
FIGURA 11 – Espectro de RMN ¹³ C de EN1 (Ampliação)	67
FIGURA 12 – Espectro de UV com MeONa de EN1	67
FIGURA 13 – Espectro de UV com AcONa de EN1	68
FIGURA 14 – Espectro de UV com AICI ₃ de EN1	68
FIGURA 15 – Espectro de massas de EN1	69
FIGURA 16 – Espectro de RMN ¹ H de EN3	72
FIGURA 17 – Espectro de RMN ¹ H de EN3 (Ampliação)	72
FIGURA 18 – Espectro de RMN ¹³ C de EN3	73
FIGURA 19 – Espectro de RMN ¹³ C de EN3 (Ampliação)	73
FIGURA 20 - Espectro de RMN ¹³ C de EN3 (Ampliação)	74
FIGURA 21 - Espectro de DEPT 135° de EN3 (Ampliação)	74
FIGURA 22 - Espectro de Massas de EN3	75
FIGURA 23 - Espectro de RMN ¹ H de EN5	78
FIGURA 24 - Espectro de RMN ¹ H de EN5 (Ampliação)	78
FIGURA 25 - Espectro de RMN ¹ H de EN5 (Ampliação)	79
FIGURA 26 - Espectro de RMN ¹ H de EN5 (Ampliação)	79
FIGURA 27 - Espectro de RMN ¹³ C de EN5	80
FIGURA 28 - Espectro de RMN ¹³ C de EN5 (Ampliação)	80
FIGURA 29 - Espectro de RMN ¹³ C de EN5 (Ampliação)	81
FIGURA 30 - Espectro de RMN ¹³ C de EN5 (Ampliação)	81

FIGURA 31 - Espectro de DEPT 135° de EN5 (Ampliação)	81
FIGURA 32 - Espectro de UV com AICI₃ de EN5	82
FIGURA 33 - Espectro de RMN ¹ H de EB8	84
FIGURA 34 - Espectro de RMN ¹ H de EB8 (Ampliação)	84
FIGURA 35 - Espectro de RMN ¹ H de EB8 (Ampliação)	85
FIGURA 36 - Espectro de RMN ¹³ C de EB8	85
FIGURA 37 - Espectro de RMN ¹³ C de EB8 (Ampliação)	86
FIGURA 38 - Espectro de DEPT 135° de EB8	86
FIGURA 39 - Espectro de RMN ¹ H de EB9	88
FIGURA 40 - Espectro de RMN ¹ H de EB9 (Ampliação)	89
FIGURA 41 - Espectro de RMN ¹ H de EB9 (Ampliação)	89
FIGURA 42 - Espectro de RMN ¹³ C de EB9	90
FIGURA 43 - Espectro de RMN ¹³ C de EB9 (Ampliação)	90
FIGURA 44 - Espectro de RMN ¹³ C de EB9 (Ampliação)	91
FIGURA 45 - Espectro de DEPT 135° de EB9	91
FIGURA 46 – Espectro de DEPT 135° de EB9 (Ampliação)	92
FIGURA 47 – Espectro de UV com MeONa de EB9	92
FIGURA 48 – Espectro de UV com AcONa de EB9	93
FIGURA 49 – Espectro de UV com AlCl₃ de EB9	93
FIGURA 50 – Espectro de RMN ¹ H de EB10 (Ampliação)	95
FIGURA 51 – Espectro de RMN ¹ H de EB10 (Ampliação)	95
FIGURA 52 – Espectro de RMN ¹ H de EB10 (Ampliação)	96
FIGURA 53 – Espectro de RMN ¹³ C de EB10	96
FIGURA 54 – Espectro de RMN ¹³ C de EB10 (Ampliação)	97
FIGURA 55 – Espectro de RMN ¹³ C de EB10 (Ampliação)	97
FIGURA 56 – Espectro de DEPT 135° de EB10 (Ampliação)	98
FIGURA 57 - Espectro de DEPT 135° de EB10 (Ampliação)	98
FIGURA 58 – Espectro de RMN ¹ H de EN4	101
FIGURA 59 – Espectro de RMN ¹ H de EN4 (Ampliação)	101
FIGURA 60 – Espectro de RMN ¹ H de EN4 (Ampliação)	102
FIGURA 61 – Espectro de RMN ¹³ C de EN4	102
FIGURA 62 – Espectro de RMN ¹³ C de EN4 (Ampliação)	103
FIGURA 63 – Espectro de RMN ¹³ C de EN4 (Ampliação)	103

FIGURA 64 – Espectro de DEPT 135° de EN4 (Ampliação)	103
FIGURA 65 – Espectro de Massas de EN4	104
FIGURA 66 – Espectro de RMN ¹ H de EN2	112
FIGURA 67 – Espectro de RMN ¹ H de EN2 (Ampliação)	112
FIGURA 68 - Espectro de RMN ¹ H de EN2 (Ampliação)	113
FIGURA 69 – Espectro de RMN ¹ H de EN2 (Ampliação)	113
FIGURA 70 – Espectro de RMN ¹³ C de EN2 (Ampliação)	114
FIGURA 71 – Espectro de RMN ¹³ C de EN2 (Ampliação)	114
FIGURA 72 – Espectro de DEPT 135° de EN2 (Ampliação)	115
FIGURA 73 – Espectro de DEPT 135° de EN2 (Ampliação)	115
FIGURA 74 – Espectro de DEPT 90° de EN2	116
FIGURA 75 – Espectro de HMQC de EN2	116
FIGURA 76 – Espectro de HMQC de EN2 (Ampliação)	117
FIGURA 77 – Espectro de HMQC de EN2 (Ampliação)	117
FIGURA 78 – Espectro de HMQC de EN2 (Ampliação)	118
FIGURA 79 – Espectro de HMBC de EN2 (Ampliação)	118
FIGURA 80 – Espectro de HMBC de EN2 (Ampliação)	119
FIGURA 81 – Espectro de HMBC de EN2 (Ampliação)	119
FIGURA 82 – Espectro de HMBC de EN2 (Ampliação)	120
FIGURA 83 – Espectro de HMBC de EN2 (Ampliação)	120
FIGURA 84 – Espectro de TOCSY de EN2 (Ampliação)	121
FIGURA 85 – Espectro de HMBC de EN2 (Ampliação)	122
FIGURA 86 – Espectro de Massas IE de EN2	123
FIGURA 87 – Espectro de Massas por spray de elétron EN2	124
FIGURA 88 – Espectro de Massas FAB de EN2	124
FIGURA 89 – Espectro de IV de EN2	125
FIGURA 90 – Correlações observadas no espectro de NOESY de EN2	125
FIGURA 91 – Espectro de RMN ¹ H de EP1	129
FIGURA 92 – Espectro de RMN ¹ H de EP1 (Ampliação)	129
FIGURA 93 – Espectro de RMN ¹ H de EP1 (Ampliação)	130
FIGURA 94 – Espectro de RMN ¹³ C de EP1	130
FIGURA 95 – Espectro de DEPT 135° de EP1 (Ampliação)	131
FIGURA 96 – Espectro de DEPT 90° de EP1 (Ampliação)	131

FIGURA 97 – Espectro de HMQC de EP1	132
FIGURA 98 – Espectro de HMQC de EP1 (Ampliação)	132
FIGURA 99 – Espectro de HMQC de EP1 (Ampliação)	133
FIGURA 100 – Espectro de HMBC de EP1	133
FIGURA 101 – Espectro de HMBC de EP1 (Ampliação)	134
FIGURA 102 – Espectro de HMBC de EP1 (Ampliação)	134
FIGURA 103 – Espectro de HMBC de EP1 (Ampliação)	135
FIGURA 104 – Incrementos observados nos experimentos de nOe diff	
de EP1	135
FIGURA 105 – Espectro de Massas de EP1	136
FIGURA 106 – Espectro de RMN ¹ H de EB1	139
FIGURA 107 – Espectro de RMN ¹³ C de EB1	140
FIGURA 108 – Espectro de RMN ¹³ C de EB1 (Ampliação)	140
FIGURA 109 – Espectro de RMN ¹³ C de EB1 (Ampliação)	141
FIGURA 110 – Espectro de DEPT 135° de EB1 (Ampliação)	141
FIGURA 111 – Espectro de DEPT 135° de EB1 (Ampliação)	142
FIGURA 112 – Espectro de Massas de EB1	143
FIGURA 113 – Espectro de RMN ¹ H de EB2	146
FIGURA 114 – Espectro de RMN ¹³ C de EB2	146
FIGURA 115 – Espectro de RMN ¹ H de EB5	150
FIGURA 116 – Espectro de RMN ¹³ C de EB5	150
FIGURA 117 – Espectro de RMN ¹ H de 13 ² –OH-Chl <i>a</i>	151
FIGURA 118 – Espectro de RMN ¹³ C de 13 ² –OH-Chl <i>a</i>	151
FIGURA 119 – Atividade citotóxica de EN2	152
FIGURA 120 – Atividade Larvicida de EN2	153

LISTA DE QUADROS

QUADRO 1 - Metabólitos secundários de espécies de Erythroxylum	5
QUADRO 2 – Alcalóides isolados de <i>Erythroxylum</i>	9
QUADRO 3 – Diterpenos isolados de <i>Erythroxylum</i>	13
QUADRO 4 – Triterpenos isolados de <i>Erythroxylum</i>	16
QUADRO 5 – Flavonóides isolados de Erythroxylum	18
QUADRO 6 – Tanino isolado de <i>E. coca</i>	20
QUADRO 7 – Diterpenos do grupo rianodano	24
QUADRO 8 – Substâncias isoladas das folhas de <i>E. nummularia</i>	53
QUADRO 9 - Substâncias isoladas das folhas de <i>E. passerinum</i>	54
QUADRO 10 – Substâncias isoladas dos frutos de <i>E. passerinum</i>	54
QUADRO 11 – Substâncias isoladas das folhas de <i>E. barbatum</i>	55
QUADRO 12 – Principais fragmentações de EN1	70
QUADRO 13 – Principais fragmentações de EN3	76
QUADRO 14 – Principais fragmentações de EN4	105

LISTA DE TABELAS

TABELA 1 – Frações obtidas da CC principal do extrato CHCl₃ das folhas	s de <i>E.</i>
34	
TABELA 2 – Frações obtidas da CE de ENC10	34
TABELA 3 – Frações obtidas da CE de ENC12	35
TABELA 4 – Frações obtidas da CC principal do extrato AcOEt das folhas	de E.
nummularia	36
TABELA 5 – Frações obtidas da CC de ENAC9	37
TABELA 6 – Frações obtidas da CC de ENAC13	37
TABELA 7 - Frações obtidas da CC principal do extrato AcOEt das folhas	de E.
passerinum	41
TABELA 8 - Frações obtidas da CE de EPAC6	42
TABELA 9 – Frações obtidas da CC EPAC8	42
TABELA 10 – Frações obtidas da CC de EPAC23	43
TABELA 11 – Frações obtidas da CC principal do extrato CHCl₃ dos frutos de	
E. passerinum	44
TABELA 12 – Frações obtidas da CC principal do extrato $CHCI_3$ dos frutos de	
E. passerinum	45
TABELA 13 – Frações obtidas da CC principal do extrato CH	ICI₃ das
folhas	
de <i>E. barbatum</i>	47
TABELA 14 – Frações obtidas da CC de EBC3	48
TABELA 15 – Frações obtidas da CC de EBC5	48
TABELA 16 – Frações obtidas da CC principal do extrato AcOEt das folhas	
de <i>E. barbatum</i>	49
TABELA 17 – Frações obtidas da CC de EBAC12	50
TABELA 18 – Frações obtidas da CC de EBAC14	51
TABELA 19 – Frações obtidas da CC de EBAC16	51
TABELA 20 – Dados de RMN ¹³ C dos flavonóis	99
TABELA 21 – Dados de RMN ¹³ C da <i>epi</i> catequina EN4	106

TABELA 22 – Dados de RMN ¹³ C de EN2	126
TABELA 23 – Dados de RMN ¹³ C de EP1	137
TABELA 24 – Dados de RMN ¹³ C de EB1 e EB2	144
TABELA 25 – Dados de RMN ¹³ C de lupeol EB3	147
TABELA 26 – Teste de atividade imunomoduladora	154

LISTA DE ABREVIATURAS E SÍMBOLOS

AcOEt	Acetato de etila
ara	arabinosídeo
CC	Cromatografia em Coluna
CCDC	Cromatografia em Camada Delgada Comparativa
CCDP	Cromatografia em Camada Delgada Preparativa
CE	Cromatografia por Exclusão
EM	Espectrometria de Massas
dd	duplo dubleto
d	dubleto
δ	deslocamento químico
DEPT	Distortionless Enhancement Polarization Transfer
F ₂₅₄	Fluoresceína
FAB	Fast Atom Bombardment
gal	galactosídeo
glc	glicosídeo
glc-(6"→1''')-ara	glicosil arabnosídeo
glc-(6"→1''')-glc	glicosil glicosídeo
glc-(6"→1''')-rha	glicosil ramnosídeo
glc-(6"→1''')-xyl	glicosil xilosídeo
Hex.	
НМВС	Heteronuclear Multiplete Bond Coherence
HMQC	Heteronuclear Multiplete Quantum Coherence
	Hexano
J	constante de acoplamento
MeOH	Metanol
MHz	megahertz
m/z	relação massa/carga
т	multipleto
MM	Massa Molecular
NOESY	Nuclear Overhauser effect Spectroscopy
rha	ramnosídeo

RMN ¹ H	Ressonância Magnética Nuclear de Hidrogênio
RMN ¹³ C	Ressonância Magnética Nuclear de Carbono
S	singleto
t	tripleto
TOCSY	TOtally Correlated Spectroscopy
xyl	xilosídeo

SUMÁRIO

1 Introdução	1
1.1 A família Erythroxylaceae	3
1.2 O gênero <i>Erythroxylum</i>	3
1.3 Flavonóides	21
1.4 Diterpenos de esqueleto rianodano	22
1.5 Testes Biológicos	26
2. Objetivos	27
3. Experimental	28
3.1 Materiais e Métodos	28
3.1.1 Solventes e reagentes	28
3.1.2 Equipamentos	28
3.2 Coleta e Identificação do material vegetal	29
3.3 Obtenção dos extratos orgânicos das folhas de <i>E. nummularia</i>	33
3.4 Purificação do extrato CHCl₃ das folhas de <i>E. nummularia</i>	34
3.5 Purificação do extrato AcOEt das folhas de E. nummularia	36
3.6 Obtenção dos extratos orgânicos das folhas de <i>E. passerinum</i>	38
3.7 Purificação do extrato AcOEt das folhas de E. passerinum	41
3.8 Purificação do extrato CHCl₃ dos frutos de <i>E. passerinum</i>	44
3.9 Purificação do extrato AcOEt dos frutos de <i>E. passerinum</i>	45
3.10 Obtenção dos extratos orgânicos das folhas de E. barbatum	46
3.11 Purificação do extrato CHCl₃ dos folhas de <i>E. barbatum</i>	47
3.12 Purificação do extrato AcOEt das folhas de E. barbatum	49
3.13 Metodologia dos testes de atividade	57
3.13.1 Metodologia do teste da Letalidade da Artemia salina	57
3.13.2 Metodologia do teste larvicida	57
3.13.3 Metodologia do teste moluscicida	58
4. Dados físicos e espectroscópicos das substâncias isoladas	59
5. Resultados e Discussão	64

5.1 Determinação Estrutural	64
5.1.1 Flavonóides e seus O-Heterosídeos	64
5.1.2 Identificação da 7,4'-dimetilquercetina EN1	64
5.1.3 Identificação da Quercetina EN3	71
5.1.4 Identificação da Quercetina-3-glicopiranosídeo EN5	77
5.1.5 Identificação da Quercetina-3-ramnopiranosídeo EB8	83
5.1.6 Identificação da 7,4'-dimetilquercetina-3-rutinosídeo EB9	87
5.1.7 Identificação da Quercetina-3-rutinosídeo EB10	94
5.2 Identificação da Epicatequina EN4	100
5.3 Diterpenos de esqueleto rianodano	107
5.3.1 Identificação do 3 α -metoxi-2,6,12 β -trihidroxi-15-oxi-10 α -hidroxi-rianodar	0
EN2	108
5.3.2 Identificação do 10 α -dihidroxi-2,6,12 β -trihidroxi-15-oxi-rianodano EP1	127
5.4 Triterpenos de esqueleto Oleanano	138
5.4.1 Identificação do palmitato de β -amirinila EB1	133
5.4.2 Identificação da mistura de β -amirina e lupeol	145
5.5 Esteróide	148
5.5.1 Identificação do β -sitosterol	148
5.6 Porfirina	149
5.6.1 Identificação 13 ³ -(OH)-Chl <i>a</i>	149
5.7 Resultados dos testes de Atividade	152
5.7.1 Teste da Letalidade da <i>Artemia salina</i>	142
5.7.2 Teste larvicida	153
5.7.3 Teste moluscicida	154
5.7.4 Teste de atividade imunomoduladora	154
6. Considerações Finais	155
Referências	157
RESUMO	IV
ABSTRACT	V
LISTA DE FIGURAS	VI

LISTA DE TABELAS	XI
LISTA DE QUADROS	Х
LISTA DE ABREVIATURAS E SÍMBOLOS	XIII