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Combining intermediate propositional logics with
classical logic

Steffen Lewitzka"

Abstract

In [17], we introduced a modal logic, calldd which combines intuitionistic
propositional logicI PC' and classical propositional logi€ PC' and is complete
w.r.t. an algebraic semantics. Howeveérseems to be too weak for Kripke-style
semantics. In this paper, we add positive and negativespécion and show
that the resulting logid.5 has a Kripke semantics. For intermediate logi¢cs
we consider the parametrized versialis(I) of L5 whereI PC is replaced by
1. L5(I) can be seen as a classical modal logic for the reasoning atait
in I. From our results, we derive a simple method for determiilggbraic and
Kripke semantics for some specific intermediate logics. W8ewss some examples
which are of interest for Computer Science, namely the Lofidere-and-There,
Godel-Dummett Logic and Jankov Logic. Our method providew proofs of
completeness theorems due to Hosoi, Dummett/Horn and Jamspectively.

Keywords: intuitionistic logic, intermediate logic, non-Fregeagic, Heyting al-
gebra, Logic of Here-and-There, Godel-Dummett Logickdariogic

1 Introduction

The study of certain modal systems from the perspective offfregean logic seems to
be a promising approach (see elg. [15,17| 16,22, 2]). The blassical non-Fregean
logic is Suszko’s Sentential Calculus with IdentB¢'7 [2]. SCI contains an identity
conne%ivez and extends classical propositional logi@C' by the following identity
axiom

(dl)p =
(1d2) (p =9) = (p < V)
(1d3) (¢ = ¥) = (x[z == ] = x[z == ¥

*TR-PGCOMP-001/2015. Technical Report. Computer Scienegl@te Program. Federal University
of Bahia. Departamento de Ciéncia da Computacdo, UFBA7@-110 Salvador — BA, Brazil, e-mail:
steffen@dcc.ufba.br

Linstead of scheme (1d3), Suszko considers a collectionhefraixioms. However, it can be shown that
that collection of axioms is equivalent with (Id3) module tfest (se€ [15]).

2Formulax[z := ] is the result of replacing every occurrence of variable x by ¢.
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¢ = 9 reads Y% and« have the same meaning (denotatiBedeutuny. While
(p = ¥) — (¢ < ) is a theorem, its converde < ) — (p = ) is not.
The latter says thap and have the same meaning whenever they have the same
truth value. This is essentially what Suszko calledRregean AxiomLogics without
Fregean Axiom are called non-Fregean logics. We regardghetdtion of a formula as
apropositionand refer to the axioms (Id1)—(Id3) above as éx@éms of propositional
identity. In particular, we refer to (Id3) as the Substitution ProdeiSP. It corresponds
to a general ontological principle as part of Leibniz’ landais sometimes called in
the literature théndiscernibility of Identicals identical entities can be substituted by
each other in all contexts. Note that the modal systems Sir®8&duced by C. Lewis
as logics ofstrict implication satisfy (Id1)—(Id2) if we define propositional identity
¢ = 1 asstrict equivalencél(¢ — ) A DOy — ¢). In [15,[16] we saw that
under this assumption, S3 is the weakest Lewis modal logictwhlso satisfies SP,
i.e. identity axiom (Id3). There is no known intuitive sertiag for Lewis system
S1. Nevertheless, in_[15] we were able to present an algebmain-Fregean-style
semantics for the slightly stronger system S1+SP whichiteBom S1 by adding all
formulas of the form SP as theorems. Thus, the “Lewis-styietal logics S1+SP,
S3, S4, S5 can be viewed as specHic-theories where propositional identity=
is given as strict equivalendg(¢ «» ). These observations led to the development
of logic L [17] which extends the intuitionistic version of S1+SP by aom for
a disjunction propertyand the theorentertium non datur It turns out thatl is a
conservative extension 6fPC and contains a copy of intuitionistic propositional logic
IPC by means of the embedding— Oy from IPC to L. Thatis,L is a modal logic
that combineg PC andC PC. L has a non-Fregean-style semantics given by a class of
specific Heyting algebras with a modal operator and a detgdnatrafilter. However,
we are not able to provide a Kripke-style semanticsifor

This paper is organized as follows. First, we present aximaigon and algebraic
semantics ofL5, the logic which results fronl, by adding the axioms of positive
and negative introspection. Many facts concerning lagican be adopted. In the
following sections, we introduce Kripke-style semanti€d.6 and prove equivalence
to algebraic semantics by showing that ed¢hmodel corresponds to a Kripke frame
which satisfies exactly the same formulas, and vice-versaxt,Nve generalize the
approach and study the parametrized versions®of for each intermediate logig,
we consider modal logi€5(7) which extendsl5 in the sense thatPC is replaced
by I. The main result from [17] then can be re-formulated in théofang way: ¢
derives from® in logic I iff Oy derives fromiJ® in L5(1), for propositionald U {¢}.
We conclude that modal logit5(7) is a conservative extension 6fPC and contains
a copy ofI by means of the embedding — Oy from [ to L5(I). That is, L5(I)
combinesl andCPC in a similar way asl. combines/ PC' andC PC'. Our results
give rise to a simple method of deriving the algebraic angkeistyle semantics of
some specific intermediate logics. Discussing the pagiadses of the Logic of Here-
and-There, Godel-Dummett Logic and Jankov Logic, we alle &t establish new
proofs, with some simplifications, of corresponding cortgriess results found in the
literature.



2 Modal logic L5

The language of modal propositional logic is inductivelfided in the usual way over
a set of variablesy, z1, ..., logical connectives\, v, —, L and the modal operator
0. F'm denotes the set of formulas, aftlng C F'm denotes the set giropositional

formulas i.e. formulas without modal operatial. We use the following abbreviations:

—pi=p— 1

T:=-1

perpi=(p2P) A=)

=1 :=0(p — ¥) AO(W — ¢) (“propositional identity = strict implication”)
Od := {0y | ¢y € o}

We consider the following axiom schemes:

(i) theorems off PCB

(i) Op — ¢

(iii) O(p — ) = (O = x) = O = x))
(V) O(p v y) — (Be v OY)

(V) Dp — OO

(vi) Oy — O-0¢p

We call scheme (iv) the disjunction property. Schemes (d) (@) are the axioms
of positive and negative introspection, respectively. Tiference rules are Modus
Ponens (MP) and Axiom Necessitation (AN) %fis an axiom, then infelfly.” Fur-
thermore, we add formulas of the form SP, i.e. (1d3) above, tartium non datur
v V —p as theorems. Note that rule AN only applies to axioms, i.emfdas of the
form (i)—(vi). We call the resulting deductive systdib and write® 5 ¢ if formula
p is derivable from® in L5. Recall thatZ [17] is L5 minus (v) and (vi). Also observe
that we obtain Lewis modal logic S1 if we drop (iv)—(vi), rapel PC by CPC'in (i),
and replace scheme SP by the weaker rule of Substitutiom®eé® Strict Equivalents
(SPSE) “If o = ¢ is a theorem, the[z := ¢] = x[z := ¢] is a theorem” (see
e.g. [12] for a discussion about Lewis modal systems). licldg as well as inL,
the modal operator, if restricted to propositional fornsylean be seen as a predicate
for provability (= intuitionistic truth). The axioms (iifvi) then express principles of
constructive logic. For instance, scheme (iv) says thagiistence of a proof ap v ¢
implies the existence of a proof gfor a proof oﬁ/}B This constructive principle can-
not be expressed ihPC itself.

As in logic L, the Deduction Theorem holds. Interestingly, the modaslaw

e Ly < (p =T) (“There is exactly one necessary proposition.”)

e O(p —9) = (Hp — Oy)

3We mean all formulas which have the form of some IPC-theofesninstanceJz — Oz has the form
© — ¢ and is therefore an axiom.
4The conversély v Oy) — O(p V 1) is derivable.



e D(pA9) < (OpAly)
o (e —=¢)AD@W = ) « O(p < 1)

are theorems. Derivations of the first two theorems can baddn [15]. The third

theorem derives similarly as in normal modal logics usinglai¢éaw K (i.e. the second
theorem). Finally, the last theorem is a consequence ofhing done. In particular,
propositional identityp = 1 is given byO(p < ).

3 Denotational semantics

In [17], we presented an algebraic, non-Fregean-styleasgos for logicL. We also
use the terndenotational semantidsecause there is an explicitly given function that
maps formulas to their denotations/meanings as elemeatsofiel-theoretic universe.
A model for L, which we call here d&-model, is a Heyting algebra

M = (M, TRUE7fL7fT7f‘>7fV7f/\7fD)

with a designated ultrafilteT’RUE C M on universeM and an operatiorfy such
that for allm, m’, m” € M the following truth conditions are fulfilled< is the lattice
ordering):

() folm) <m

(i) fo(f-(m,m")) < fo(fa(f-m/,m")), fa(f-(m,m")))
(i) fo(fvim,m")) < fu(fa(m), fa(m’))
(iv) fo(m) € TRUE <& m = fr

We regardM as apropositional universdeing TRUE C M the set of (classically)
true propositions fr, f, are the top and the bottom element of the Heyting algebra
and stand for intuitionistic truth and falsity, respec[}'@

An important feature of d-model is thedisjunction propertyDP: for allm, m’ €
M, fy(m,m') = fr iff m = fr orm’ = fr. Note that DP follows from truth condi-
tions (iii) and (iv) of aL-model and is not a general property of Heyting algebrast Tha
is, DP defines a specific subclass of Heyting algebras.

A L5-model is al.-model satisfying the following additional truth conditio
(v) Forallm € M,

fr,ifm=fr
f1, else.

fa(m) —{

Note that truth condition (v) ensures soundness of the axwirpositive and nega-
tive introspection if we consider the definition of satidfan below. Also observe that

5Note that we do not regard the elements of the underlyingirigygtigebra as “generalized truth values”
as it is sometimes the case in the literature when algebeaiastics off PC is discussed.



in a L5-model, the truth conditions (i), (ii) and (iv) follow alrdg from truth condition

(v).

Given amodelM, an assignment iM is a functiony: V' — M that extends in the
canonical way to a function afim, i.e.v(L) = f1,~v(T) = fr,v(dp) = fal(y(e)),
Yo ) = fu(v(p),v(¥)), forx € {V,A,—}. A L5-interpretation is a tupleM, )
consisting of aL5-model and a corresponding assignment. The relation cffaati
tion is defined by(M,~) E ¢ & v(p) € TRUFE and extends in the usual way to
sets of formulas. Finally, the relation of logical conseageein logicL5 is defined by
D lkrs @ & (M, ) E @ implies(M, v) E ¢, for everyL5-interpretation M, ).

The following is not hard to prove (see e.g.[[15]):

(3.1) M, v)Ee=9¢ & v(p) =)

That is,p = v is true iff o andy denote the same proposition. This is precisely the
intended meaning of an identity connective in a denotatisemantics, and that's why
we refer to it agpropositional identit)@

If (M,~) is any interpretation angp < 1 is any theorem ofCPC, such as
—-—x ¢ X, then(M,~) E ¢ + 1 but not necessarilyM,~) E ¢ = . Thatis,
Fregean Axion(y < ¥) — (p = ) does not hold. This is in the very spirit of non-
Fregean logic: two formulas with the same truth value mayehdistinct denotations
(meanings). If we consider the preorder definedby m’ :< f_,(m,m’) € TRUE,
then the underlying Heyting algebra is a Boolean prealgefittapreorder=, accord-
ing to Definition 3.1 in[[16]] In fact, the quotient algebra of the underlying Heyting
algebra modulo ultrafilteT’RUFE is the two-element Boolean algebra wiltRUE as
top element. We proved in [16] that Boolean prealgebras aodets of basic non-
Fregean logicSCT are essentially the same mathematical objects.

We call an interpretatioGM, ) surjective ify: F'm — M is surjective, i.e. if for
eachm € M thereis ap € F'm such thaty(¢) = m. Note that for any interpretation
(M, ), the sety(FFm) C M is the universé{’ of a submodeM’ of M in the sense
that the operations o restricted toM’ = ~(F'm) form a Heyting algebra that sat-
isfies the truth conditions of a modéh’. In fact, if m, m’ € M’ then fa(m,m’) =
Ia(v(©),v(W)) = ~v(pAt) € M’, for somep, ¢ € Fm, and similarly for the remain-
ing operations. Then it is clear thaf’ forms a Heyting algebra. It is also clear that
the truth conditions of a model hold for all subsets of thevarse, particularly fod/’.
Furthermore, one easily recognizes ti@ UE N~(F'm) is an ultrafilter onM/’. Thus,
(M,7)Ep < v(p) € TRUE & v(¢) € TRUENY(Fm) < (M) E ¢. Thatis,
the interpretationg M, v) and(M’, v) satisfy exactly the same formulas. Therefore,

6When we say that a formuladenotesa propositionn € M of a given modelM, then we are assuming
a given assignment with y(¢) = m.

"Roughly speaking, a Boolean prealgebra is a structure émarglizes a Boolean algebra in the sense that
the underlying lattice ordering is no longer a partial ongdgibut a preorder, i.e., the axiom of antisymmetry
is not necessarily satisfied.



we may assume in the following that all interpretations amgestive.

The completeness proof fdr [17] extends straightforwardly to the case of logic
L5 and the corresponding classof-models:

Theorem 3.1 Logic L5 is sound and complete w.r.t. the class of all L5-nted€hat
is, for any set of formula® U {¢}, D b5 p < @ IFps .

4 Kripke-style semantics for Logic L5

We were unable to find a Kripke semantics for logicThe addition of axiom schemes
for positive and negative introspection (schemes (v) ai)ji{e L enables us to estab-
lish a natural Kripke-style semantics for the resultingitog5. A L5-frame (W, R)

is given by a non-empty sév of worlds and a partial ordering C W x W, called
accessibility relation, with the property that there i®amallest element, which we
usually denote by g (the bottom of the frame), and eveR¢chain has an upper bound
in W. Note that Zorn’s Lemma implies that eagche W accesses &-maximal el-
ement. An assignment in a givdrb-frame (W, R) is a functiong: V' — Pow(W)
satisfying the followingmonotonicity condition For all w,w’ € W andz € V, if
wRw' andw € g(x), thenw’ € g(z). The satisfaction relation is defined as follows.
SupposéW, R) is a L5-frame,g is an assignment ilW, R), andw € W. Then

(w,g) ¥ L

(w,9) Fz = w e g(x)

(w,9) Fo Vi (w,g)Fpor(w,g)F1p

(w,9) Fo A& (w,9) Fpand(w,g) F ¢

(w,g) E @ — ¢ :=forallw € W with wRw', (W', g) F ¢ implies(w’, g) E ¢
(w,9) FOp = (wp,g) F o

Note that semantics of logical connectives is defined asialustuitionistic Kripke
models. The next monotonicity result, which also holdg &', can be shown by in-
duction on formulas.

Lemma 4.1 If (W, R) is a L5-frame andg € Pow(W)V is an assignment, then for
all w,w’ € W and all formulasy: if (w, g) F ¢ andwRuw’, then(w’, g) E ¢.

Lemma 4.2 Let (W, R) be aL5-frame,w € W andg an assignment. Then for any
formulagp,

e (w,g9) FOp — O0p

e (w,g) FE —Op — O-0.
Proof. We leave the first claim as an exercise and outline the protfi@fisecond
statement(w, g) £ -0y means thatw’, g) ¥ Oy, for all w’ € W with wRw’. This

implies (w, g) E —-O¢ implies (wg, g) ¥ ¢ implies (v, g) ¥ Oy, for allw’ € W,
implies(wg, g) F -0y implies (w, g) F O-Op. Now, the claim follows. Q.E.D.



5 Translation results

Of course, we expect that our algebraic and Kripke-styleasgits for logicL5 are
equivalent in the sense that both lead to consequenceoredatinich model precisely
the relationt-5 of derivability. Instead of proving completenesgafw.r.t. Kripke se-
mantics directly, we show in this section in which way algabrand Kripke semantics
translate into each other. The following basic facts abdtetréi in Heyting algebras,
possibly known to the reader, will be useful.

Lemma 5.1 LetH be a Heyting algebra. Then:

(a) Every filter is the intersection of a set of prime filters.

(b) Letmy, mo € H and P be a prime filter. If for all prime filters®’ > P, my € P’
impliesmq € P/, thenf_, (my,ms) € P.

(c) If U is an ultrafilter, then for alim, m’ € H:

emeUorf.(m):=f,(mf)eU
o fo(m,m)eUiff[m¢Uorm' e U]iff fu(f=(m),m')eU

e U is a prime filter.

Proof. (@): LetF be afilter, and lefX be the set of prime filters containidg Since
every filter is contained in an ultrafilter which, by the lasttement of the Lemma, is a
prime filter, X is non-empty. Obviouslyf” C () X. Suppose thereis € (X \ F.
By a standard application of Zorn’s Lemma, we derive theterise of an ultrafiltet/
that containg’” but notm. ThenU € X. This contradicts the hypothesis € [ X.
Thus,N X = F.

(b): Letmy, me € H and P be a prime filter. We consider the quotient Heyting alge-
bra#’ of X moduloP. That is, the elements 6{’ are the equivalence classesof
m € M modulo the equivalence relation defined bym ~ m’ < [f_(m,m') € P
and f_,(m’,m) € P]. Then one easily checks th&tis the equivalence class ¢f-
modulo~, and it is the top elemenft, of 7{'.

Claiml: Letm,m’ € H. If m € F’ impliesm’ € F’, for all filters I’ of ', then
m <’ m’/, where<’ is the lattice ordering of{’.

Proof of Claim1 Supposen £’ m/. Consider the filtet: = {m” | m <’ m’}. Then
m € G andm’ ¢ G. We have proved the Claim.

Claim2: Letm,m’ € H. If m € F’ impliesm/ € F’, for all prime filtersF’ of #’,
thenm <’ m/, where<' is the lattice ordering oH’'.

Proof of Claim2 Claim2 follows from Claim1 together with (a).

Claim3: If F’ is a (prime) filter ofH{’, thenF = {m | m € F'} is a (prime) filter of
‘H extendingP.

Proof of Claim3 Supposen € F andm < m/. Thenf_(m,m’) = fr. Thus,
f(m,m') = P = fi. Thatis,f’, (m,m/) = f- and thereforen <’ m/. It follows
thatm’ € F’ andm’ € F. The remaining filter properties follow straightforwardly
m € Pimpliesm = P = f; € F'impliesm € F. Thus,P C F and Claim3 holds
true.

Now suppose the premises of (b) are true. EBtbe any prime filter of’ and



m1 € F'. Then, by Claim3m; € F = {m | m € F'} and F is a prime filter
of # with P C F. By hypothesis of (b)ms € F. Thus,m3; € F’. By Claim2,
m1 < ms. Thenf_,(m1,mz) = fr = P. Thatis,f_, (m1,mz) € P.

(c) Itis not hard to check that the quotient algebr&fafodulo ultrafilterU is the two-
element Boolean algebra with top elemgnt= U. Alternatively, one can show that
the maph: H — {f1, f}, defined byr(m) = fr :& m € U, is an homomorphism
of Heyting algebras. The assertions of the Lemma then follgwwitching between
the elements o} and their corresponding congruence clagéeandf |, i.e. the two
elements of the quotient algebra. Q.E.D.

There is a close connection between Heyting algebras andiamistic Kripke
frames which can be studied under different aspects (se€j4.d]). The next two
Theorems give an approach from the perspective of our sérahimvestigations. The
construction developed in the proof of Theorlem 5.3 (cf. [@ieen 6.1 [16]]) will be
particularly useful for the method of determining Kripkersntics of some intermedi-
ate logics, as discussed in the last section.

Theorem 5.2 SupposeM is a L5-model andy € M"Y is an assignment. Then there
are aL5-frame(W, R), a maximal worldwor € W and an assignmegte Pow (W)Y
such that for all formulas:

(M,7) F o & (wr,g) F o

Proof. LetW be the set of all prime filters of the underlying Heyting algebn M.
Then TRUE is a maximal element o andwp := {fr} is the bottom world w.r.t.
the accessibility relatio® which is given by set inclusionwRw’ :< w C w’. The
union of a chain of prime filters is again a prime filter. Thusgery chain inl¥ has
an upper bound iV and (W, R) fulfills the requirements of &5-frame. For a given
assignmenB € MV, define the functioyz: V. — Pow(W) by z — {w € W |
B(z) € w}. ThenwRw' together withw € gg(z) impliesw’ € gg(x). That is,
functiongg fulfills the monotonicity condition and is in fact an assigemhin (1, R).
Claim: Let 3 € MV be any assignment in modgt(. Then for allw € W

(w,98) F v & Blp) € w.

We prove the Claim by induction ap, simultaneously for allv € W. In the basis case
¢ =z € V, the Claim follows from the definition of assignment Lety = ¢ V x.
Then

(w,98) F 1V x & (w,98) Fyor(w,gs) Fx
< B(¢) € worB(x) € w, byinduction hypothesis
< fv(BW), B(v)) € w, sincew is a prime filter
< B(p V) € w, by definition of an assignment



The casex = ) A x follows similarly. Suppose = ¢ — x. Then, again by induction
hypothesis, we get

(w,g8) E — x & (W', gs) F ¢ implies(w’, gg) F x, for eachw’ with wRw’
< B(y) € w' implies(x) € w', for eachw” with wRw’
S [5(B(W), B(x) € w
B o x)ew
The left-to-right direction of (*) follows from Lemmi@a5.1 \bThe right-to-left direc-
tion of (*) follows from the fact thatf_, (m,m’) is the relative pseudo-complement of

m W.r.t. m’ in the underlying lattice.
Finally, let = . Then

< B(v) = fr, by induction hypothesis and the definitiomof
< B(OyY) = fa(B)) = fr, by truth conditions of &5-model

In partlcular( ,gp) E ¢ = B(0¢) € w. On the other hand}(Cy) € w implies
B(Oy) = fo(B(v)) # f1L becausev is a filter and does not contajfi . By truth con-
dition (v), fo(8(v)) = fr andB(v) = fr. By the equivalences above, this implies
(w, gg) E Oy. Hence, the Claim holds true. Then for the wotlg = TRUE € W
we have:

(wr,9,) £ ¢ €' 5(p) € TRUE = (M,7) F o,
for any formulap. Q.E.D.

Observe that truth condition (v) of B5-model is crucial for the last case of the
induction step in the above proof. The proof does not worlhwity Z-model not
satisfying truth condition (v).

Theorem 5.3 Let (W, R) be aL5-frame,g: V — Pow(W) an assignment and €
W a maximal element ofi’. Then there are aL5-model M and an assignment
~v: V — M such that for all formulag:

(M,7) F o & (wr,g) F o

Proof. Suppose we are givengs-frame (W, R) with a maximal worldwy € W
and an assignmegtc Pow(W)Y. We define an equivalence relatienon the set of
formulas by

e~ Y& (wp,g)F oy,

wherewp is the bottom world. Thusp ~ v iff (w,g) F ¢ = 1, for any world

w € W. One easily checks that respects the logical connectives as well as the modal
operator. Thusz is a congruence relation on the set of formulas. Bwe denote
the congruence class of a formuylamodulo~. Then we define the ingredients of
our L5-model byM = {@ | ¢ € Fm}, TRUE := {3 | (wr,9) F ¢}, fr =T,



f1 =1, fo®) = Op and £.(B,¢) := px*, forx € {V,A,—}. Sincex is a
congruence relation, all these ingredients are well-ddfivée must show thatt =
(M, TRUE, f1, ft, [, fv, fa, fo) fulfills the conditions of aL5-model.

Claim: (M, f1, f+, f=, fv, fa) is a Heyting algebra.

Proof of the Claim The class of Heyting algebras can be axiomatized by a set of
equations which correspond to theoremd & of the formy <« . Then at every
world in every Kripke model of intuitionistic logicp is true iff ¢ is true. Since our
frames are in particular Kripke models 8PC, we gety ~ 1 for every theorem
¢ + ¢ of IPC. Thus, = v and we have a Heyting algebra. It is clear by the
definitions that’'RUE is an ultrafilter onM.

It remains to show thaM satisfies the truth conditions (i)—(v) ofizb-model. Recall
that in any Heyting algebraf_,(m,m’) = fr iff m < m’. Also, we observe that
P =T Iiff o~ Tiff (wg,g) F ¢, wherewg is the bottom world. Then, in order to
verify truth condition (i), it suffices to show thétvs, g) E Op — . This obviously
holds true. Similarly, one checks truth conditions (ii) &fig. Finally, we check
truth conditions (iv) and (v). On the one hand~= ft implies (wg, g) F ¢ implies
(wp, g) E Op implies fo(@) = fr. On the other hand; # f+ implies(w’, g) ¥ ¢,
for somew’ € W, implies(wg, g) # ¢ implies (w, g) ¥ O, for all w € W, implies
Op = fo(@) = fi. Thus, M is a L5-model. Now we lety: V. — M be the
assignment: — . By induction on formulasy () = @, for anyp € Fm. Then
(M,v)Ep < v(p) =9 € TRUE < (wr,g) F ¢. Q.E.D.

Definition 5.4 Let® U {¢} be a set of formulas. The relation of logical consequence
w.r.t. Kripke semantics is defined as follows|-£7 ¢ :< for every L5-framéW, R),
every assignment: V. — Pow(W) and maximal worldwy € W, (wr,vy) F @
implies(wr, ) E .

So for Kripke semantics we have a pointwise (locally) defio@asequence relation
which only considers thmaximalpoints of a given frame. It follows by the definitions
that if (W, R) is a frame with maximal worldvr, g is an assignment and, ¢ are
formulas, then

(5.1) (wr,g) Epo=9¢ < forallw e W : (w,g) E ¢iff (w,g) E.

Recall that in modal logic, propositionis usually regarded as a set of possible worlds.
Then [5.1) says that = v is true iff o andy are satisfied at exactly the same worlds
iff ¢ and+ denote the same proposition. Thatjs= « actually stands foproposi-
tional identity. In this sense[(5l1) is the analogue[io{3.1) in terms ofiplesworlds
semantics.

Corollary 5.5 (Completeness w.r.t. Kripke semantics)Let ® U {¢} be a set of for-
mulas. Then
Plrrspe@lrs e @ IFE o

Proof. The first equivalence is TheordmB.1 above, which can be driovéhe same
way as the corresponding completeness resultLf@resented in[[17]. The second
equivalence follows by Theorermsb.2 5.3. Q.E.D.

10



6 The parametrized logicsL5(/)

In the following, we consideparametrizedversions of logicL5. Let I be any in-
termediate logic. That is] results from/PC by adding some axiom schemes that
correspond to theorems 6fPC. We write® I-; ¢ if there is a derivation ofp from
®in I. By L5(I) we denote the logic which results froh% by considering in item (i)
of the definition ofL5 all theorems off instead of only those of PC. In particular,
L5 = L5(1PC). The notion of derivatio®® -5,y ¢ in L5(I) is defined as usual.

We saw in[[17] thal5 can be seen as a classical modal logic for the reasoning about
intuitionistic truth, i.e. provability. Analogoushy,5(7) is a logic for the reasoning
about truth in the sense df In the limit casel = C'PC, the modal operator then
becomes a predicate for classical truth in logig 7) itself:

Lemma 6.1 Let] = CPC. Then forallp € Fm, Fr51) ¢ +» Do,

Proof. The formulaCly — ¢ is an axiom. We show that — Oy is a theorem of
L5(CPC). First, observe thaertium non daturp vV -y is not only a theorem but
also an axiom of.5(C'PC). By rule AN and the axiom of the disjunction property,
e vO-gpis atheorem. Thep — Oy VO-g is a theorem. By axiom (i) an@' PC,

(p AO=p) = (@ A—¢). Thus,—(p AO-y) is atheorem. BY' PC, that is equivalent
to - V -O-¢ and top — —O-¢p. Then we havey — ((Op V O-¢) A =O-p).
By distributivity,  — ((Op A “O-¢) vV (O-¢ A =O-y)) which is equivalent to
v — (Op A =0O-¢). Of course(Op A --¢) — Oy is derivable. By transitivity,
¢ — Oy is atheorem. Q.E.D.

Let M(L5(I)) be the class of thosE5-models which evaluate all theorems bf
to the top element, under all assignments. Thaivis,e M (L5(1)) iff M is a L5-
model andy(y) = f~ for all I-theoremsp € F'mg and for ally € MV B we refer to
the elements oM (L5(I)) as L5(I)-models. Analogously, we definelz (I)-frame
as alLb5-frame with the property thatwg, g) = ¢ for all theoremsy of 7 and all
assignmentg, wherewp is the bottom world. For a given set of formulésJ {¢},
we write ® I-757) @ if (M, ) F @ implies (M, v) F ¢, forall M € M(L5(I)) and
all assignments in M. Analogously, we definé@ kag(l)  as in Definitior 5.4, but
with L5(1)-frames instead of allL5-frames. Now observe that Theoréml5.2 assigns
to eachL5(I)-modelM a L5(I)-frame (W, R). In fact, if ¢ is a theorem of, then
(M,~) E Op. By Theoreni 5R{wr,g) E Op. This mean§wg, g) E ». On the
other hand, Theorem 5.3 assigns to e&ék/)-frame (W, R) a L5(I)-model M. For
if ¢ is anI-theorem, thertwg, g) F . Thus,(wr, g) E Oy, with maximal worldwy.
Then by Theorem 5l13 M, v) E Oy. Thatis,y(¢) = fr. We conclude:

Corollary 6.2 Forany setdb U {¢} C Fm:

o R wfg(,) ©.

8By SP, such a model evaluates not ofilfheorems to the top element but also any formpla Fm
which has the form of aii-theorem and possibly contains the modal operator
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By induction on derivations, we may prove soundnessif) w.r.t. the semantics
generated by the class of dlb(I)-models:

(6.1) Qs = P lrnsay ¢

Now suppos®@U{p} C F'my, i.e. we are given propositional formulas. Asin [Lemma
2.3 [17]], one shows by induction on derivations thalt-; ¢ implies® 57y D,

On the other hand, i® ¥#; ¢, then, in a similar way as in the proof of [Theorem 5.1
[17]] (in fact, it suffices to replacé PC' with I in that proof), we may find a model
M € M(L5(I)) and an assignment such that M,~) E O® and (M, ~) ¥ Oe.
That is,00¢ W55y Op. By soundness1® ¥ 5y Op. We have established the
following two results fopropositional® U {p} C Fmy:

Ok o0 Ik Op

(6.2)
(0] F[ (2 & O FL()(I) D(p

Note that we did not need completeness to estalilish (6.2erwless, complete-
ness ofL5(I) can be shown in a similar way as completenesg ¢17]. Thus, the
converse of((6]1) above holds true, too. The second staterhé®L2) is a generaliza-
tion of the Main Theorem of[17] witlf instead off PC andL5(I) instead ofL. What
does that result mean? Itis clear that-cr.c ¢ implies® 151y ¢ (recall thatL5(1)
contains all classical theorems). Now suppése; 5 ;) ¢, for propositionalb U {}.

By soundnessp I-151) ¢. In particular, if the two-element Boolean algebra (which,
of course, is &.5(1)-model) satisfie®, under a given assignment, then it also satisfies
¢. This means thap follows from @ in CPC. Thus,® Fcpc ¢ < @ Frsiy ¢,

for propositional formula® U {¢}. This, together with the second statemen{ofl(6.2),
shows that.5(I) can be seen as a combination of intermediate IdgiadC PC'. In
particular,L5(1) is a conservative extension 6fPC, andL5(I) contains a copy of

in the following senset-; ¢ < 151y O, for propositionalp € Fmy.

Recall thatdyp + (p = T) is a theorem ofL and of L5([). For a set of formulas
o, we write® = T for the set of equationg) = T | ¢ € ®}. Then the first statement
of (6.2) can be expressed in the following way. For proposal® U {¢}:

Before we discus$ (6.3), we define tleeluctof a L5-model (or aL-model) as the
underlying Heyting algebra. Since a model has an ultrafiiereduct is a non-trivial
Heyting algebra, i.e. it has at least two elemefits# f+. Moreover, the reduct is a
Heyting algebra with disjunction property DP. On the othemndh, one easily shows that
any non-trivial Heyting algebra with DP expands té.&model. In fact, the resulting
L5-model only depends on the actual choice of the designatedilier TRUE. Note
that the operatiorf is uniquely determined in 45-model.

These considerations show that we can interprel (6.3) ifollmving way.

® 1 ¢ iff for the reduct of anyL5(7)-model and any assignment, if all formulasf
denote the top element, therdenotes the top element.
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That is, we get a concept of logical consequence defined iinsteif Heyting al-
gebras. This corresponds to the usual notion of logical epmsnce w.r.t. algebraic
semantics fod PC found in the literature. However, whereas the usual notigalives
all Heyting algebras, we see here that it is enough to considgirtdealgebras with
DP. This observation will play a crucial role in the next et

How can we interpre{{6l3) under Kripke semantics? By Carg[b.2, we have
Pl (d=T) kag(l) (¢ = T). By definition, this means that whenewvef
is a maximal world of a.5(/)-frame andy is any assignment, thdw,,g) FE =T
implies (wr,g) E ¢ = T. But(wp,g) F ® = T means(wg,g) E ¢ + T for all
¥ € ®, wherewp is the bottom world.(wg,g) F ¢ + T implies (wg,g) F .
Consequently, we may expreks {6.3) in the following way.

(6.4) Ot o< if (wg,g) F ®then(wp, g) E ¢,
wheneven is the bottom world of &5(7)-frame andy is any assignment.

Note that we have now two frame-based locally defined logicalsequence re-
lations. The first one, based on Definitibnl5.4, models |dgiomsequence in the
parametrized modal logics5(1) and involves only thenaximalworlds of a given
frame. The second one, given [n_(6.4), models consequerioteimediate logicd
and involves themallestworld of a given frame. This is the usual definition of logical
consequence based on intuitionistic Kripke frames.

7 Asimple method for determining algebraic and Kripke
semantics of some intermediate logics

The results from the preceding section give rise to a simmthod for determining
algebraic and Kripke-style semantics of some specificiimégliate logics. The method
essentially relies on the fact that it suffices to work withytitey algebras having DP.

If intermediate logic/ is given asl = IPC + ¢; + ... + ¢, with disjunctiveand not
too complicated formulag;, then we may hope that our method is applicable. In the
following, we illustrate the method discussing some speeiamples witm = 1. We
obtain simple proofs of already known completeness results

7.1 The Logic of Here-and-ThereHT'

The Logic of Here-and-ThereHT") was originally introduced by Heyting [9] as a
three-valued logic for the purpose of showing th&(' is strictly weaker thar®' PC'.

It reappeared i [6] where Godel proved t&C cannot be characterized by a finite
matrix of truth values. Godel also showed ti&l" is the strongest intermediate logic
weaker tharC PC. SemanticallyHT can also be described by Heyting algebras with
at most three elements and by Kripke frames with at most twaddsdthe world of
“here” and the world of “there”).HT is also known as Smetanich Logic. The im-
portance ofH T for logic programming under the stable semantics paradiinaas
discovered by D. Pearce [19,120]. Moreover, results of lhifigc Pearce and Valverde
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[18] show thatH T can be seen as an adequate logic for reasoning with logicareg
Two logic programs are said to be equivalent if they have #mesanswer sets (stable
models). This concept of equivalence, however, is not comtelependent. 1N [18],
two logic programgP; and P, are said to bstronglyequivalent if for any progran®,

the programs?, U P and P, U P are equivalent. In this sense, the concept of strong
equivalence is independent of the actual context in whigiclprograms are embed-
ded. The authors show that two logic programs are stronglyvalgnt iff they are
equivalent as formulas il T. Observe now that by (6.2) above, for any propositional
formulasy, 1:

Far ¢ < pifandonlyif Frs gy ¢ = 9.

That is, the relation of propositional identigy = v, which is defined as strict equiv-
alencel(p <+ %) in the sense of Lewis’ modal logics, reads as strong equicale
of corresponding logic programs. Note that the above dslisontext independence
of strong equivalence, defined in [18], is in some sense expresseddnyrein SP:
(p = ¥) — (x[z := ¢] = x[z := «]), our representation of the principle bfdis-
cernibility of Identicals shortly discussed in the introductory part.

Hosoi [11] proved that Kripke semantics BfI" can be axiomatized byPC + [pV
(¢ — 1) vV —¢]. Recently, a more direct proof was found by Harrison et dl. [8

In the following, we illustrate our method deriving algelsrand Kripke seman-
tics directly from Hosoi's axiomatization. This resultsanfurther proof of Hosoi's
theorem.

By (©.3), HT is sound and complete w.r.t. the class of Heyting algebrashwh
are reducts of.5( HT)-models. We will characterize those reducts by their algiebr
structure. BY[(6.B)IFr5q7) (zV (2 — y) V —x) = T. LetH be the reduct of a
L5(HT)-model and suppose that, m’ are elements of{ distinct from the top and
the bottom. We consider an assignmeniith v(x) = m and~(y) = m’. Then
Y@V (x =y V-y) =~(T) = fr. ByDPy(z) = frory(z — y) = fror
v(=y) = fr. By hypothesisy(z) # fr andy(-y) = v(y — 1) # fr. Hence,
v(x = y) = fo(m,m’') = fr. Thatis,m < m’. Now we consider an assignmeht
with g(z) = m’/ andB(y) = m and conclude in a similar way that’ < m. Hence,
m = m' andH has exactly three elements:, f+ andf, . One also easily checks that
a reduct may have only two elements;: and f, . We have shown that the reduct of
any L5(HT)-model is a Heyting algebra with at most three elements. Nagppsse
we are given a non-trivial Heyting algebra with at most thelsments. Note that such
an algebra is a linearly ordered; < m < ft. Thenitis clear that Hosoi's axiom
xV (z — y) V —y is satisfied, under all assignments. Hence, the redudi$ @ T')-
models are precisely the non-trivial Heyting algebras wwitmost three elements, and
HT is sound and complete w.r.t. that class of algebras.

There is exactly one Heyting algebra with three elemen tlh@ unique Heyting
algebra with two-elements is the two-element Boolean algélp to isomorphisms).
Obviously, the Boolean algebra has only one (prime) filted, the three-element Heyt-
ing algebra has exactly two (prime) filters which are lingantdered by inclusion.
By Theoren{5.R, this results in frames with at most two worlds, wr (possibly
wp = wr). On the other hand, suppose we are given a frame with at nvosworlds
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wp,wp. Then one verifies that ~ ¢ < (wp,g) F ¢ < ¥ defines an equivalence
relation with at most three classés L and®, wherey is any formula false at the
bottom world and true at the top world. According to the probTheoreni 5.3, this

results in aL5-model with at most three elements, i.eL&(HT')-model. HenceHT

is sound and complete w.r.t. Kripke semantics generatedamges with at most two

worlds. Q.E.D.

7.2 GOdel-Dummett Logic G

M. Dummett [3] considers the logi€PC + [(¢ — ) V (¢ — ¢)] and shows its
completeness w.r.t. algebraic semantics given by all igesidered Heyting algebras.
The logic is known as Godel-Dummett Logdit because of its relations to Godefis
valued logics studied in [6]. J. v. Plato [|21] observed that fogic was introduced by
T. Skolem already in 1913. P. HajeK [7] studi&sas one of the important Fuzzy Logic
systems which are given as extensions of Hajek’s basic [Bdi.

A relatively simple proof of Dummett's original completessetheorem is found by
A. Horn [10]. Horn’s proof is based on the fact that a Heytihgebra?{ validates
Dummett's axiom iffH is a subalgebra of a direct product of linearly ordered Hugyti
algebras. A similar proof, in terms d@ L-algebras, is contained inl[7]. In the follow-
ing, we prove Dummett's theorem with our method.

By (6.3), G is sound and complete w.r.t. the class of Heyting algebrab waie
reducts ofL5(G)-models. Our goal is to characterize those algebras by sheiific
structure. By[(GB)-15() ((z = y) V (y — x)) = T. Then for any giverL.5(G)-
model and assignment v((z — y) V (y — z)) = fr. By DP,v(z — y) = ft
ory(y — z) = fr. Thatis,y(x) < ~(y) or v(y) < ~(z). This holds for all
assignments. Thus, the universe of the model is linearlgrexd! We have proved that
the reduct of every.5(G)-model is a linearly ordered Heyting algebra. On the other
hand, itis clear that every linearly ordered Heyting algebraluates Dummett’'s axiom
(x = y) V (y — x) to the top element, under all assignments. We concludefbat t
class of L5(G) reducts is exactly the class of all non-trivial linearly erdd Heyting
algebras. Hencé; is sound and complete w.r.t. the semantics generated byltss
of algebras.

Note that logicHT axiomatizes a special class of linearly ordered Heyting-alg
bras, namely those with at most three elements. Conseguéhik a sublogic of
HT. What can be said about the prime filters of a linearly ordéteglting alge-
bra? We may consider such an universe as the closed infgnvaf+] which is lin-
early ordered by the underlying lattice ordering. The sopma (infimum) of two
elementsm, m’ equalsm or m/. Then it is clear that the filters are precisely the
unions of closed intervalgn, f+] with m > f,. In particular, all filters are prime,
and they are linearly ordered by inclusion (observe thattiique ultrafilter is the set
(fis fr] = Uy, [m, fr]). By Theoremi SR, this results in linearly ordered frames.
Now suppose we are given a frani@, R) which is a linear ordering. Again, we
consider the equivalence relatign~ ¢ < (wp,g) E ¢ < 9 from the proof of
TheoreniB.B. For two elemens « of the resultingL5-model, we haves < ¢ <
[5@Y)=fre o= =T<x (ws,g9) F ¢ — 1. Since the worlds are linearly

15



ordered andv is the bottom world, one easily checks tiats, g) ¥ ¢ — v implies
(wp,g) F ¥ — ¢. Then by the above equivalences,% ¢ impliesy < . That
is, the resulting.5-model is linearly ordered, i.e. it is B5(G)-model. Consequently,
Kripke semantics of logi¢ is given by the class of linearly ordered frames. Q.E.D.

7.3 Jankov LogicKC'

The logic axiomatized by PC' + —¢ V =—¢ was introduced by V. A. Jankol [1L4] and
is known as Jankov Logid{ C or the Logic of the Weak Law of the Excluded Middle.
Jankov proved its soundness and completeness w.r.t. fouted Kripke frames with
a single maximal world. D. de Jongh and L. Hendriks| [13] shewreat K C is the
weakest intermediate logic for which strongly equivalegit programs, in a language
allowing negations, are logically equivalent. In the fellog, we show how algebraic
and Kripke-style semantics o C' derives from Jankov’s axiomatization using our
general method.

By (6.3), KC is sound and complete w.r.t. the class of Heyting algebrashware
reducts ofL5(K C)-models. We aim at a characterization of those algebrasafpr
reduct of aL.5(K C)-model and any assignment we havey(—x V ——x) = fr. By
DP,v(—x) = ft ory(——x) = fr. This is equivalent to the condition:

(7.1) y(z) = frory(z — L) = f(v(z), fL) = f1.

Recall that the relative pseudo-complemgnt(vy(x), f1) of v(z) w.r.t. f, is the
greatestlementn such thatfs (y(z), m) < f1. Then, with [Z1);(z) > f1 implies
fo(y(@), fL) = fL implies fa(vy(z),m’) > fi, forallm’ > f,. This holds for
all assignments. We conclude that the reduct of afy (K C')-model is a non-trivial
Heyting algebra with DP and the following specific propeRgr all elementsn, m’:

(7.2) m > fyandm’ > fi = fa(m,m’) > fi.

Let us refer to such Heyting algebras A% -algebras. In order to characterize
the class of reducts di5(K C)-models as precisely the class BfC-algebras, it re-
mains to show that everiX C-algebra is the reduct of &5(K C)-model, i.e. eval-
uates the formula~z vV ——2 to the top element, under any assignment. Suppose
we are given ak C-algebra and an assignmentwith v(—z vV —=—z) # fr. Then
Y(mz) = (@ = L) = fo(y(@), fL) # frandy(-2) = (e — 1) =
Fo((2), £1)) # fr- Thus(z) > f1 andy(-z) = f(y(x), f1) > f1. How-
ever,fa(y(z), f(v(x), f1)) = f., as in every Heyting algebra. This contradicts the
property of akK C-algebra, conditiori(7]12) above. Hengé¢;aV——z) = f+. We have
proved that the reducts df5(K C)-algebras are precisely tH€C algebras. Hence,
Jankov logic is sound and complete w.r.t. the semanticanddyethe class o' C-
algebras. Note that the models of Godel-Dummett Ldgiare special{ C-algebras.
Hence, KC C G C HT.

Let us specify the corresponding Kripke semantics. We cldiat eachK C-
algebra has exactly one ultrafilter. Suppose there are tafiltersV # U’. Then
there is somen € U \ U’. By Lemmd&.lL,f-(m) := f_(m, f1) € U'. Because
m and f_(m) belong to filters, they are greater than the bottom elemewiveder,
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their infimum equals the bottom. This contradicts the spepifoperty [7.R) of & C-
algebra. Thus, & C-algebra has exactly one ultrafilter. By Theolen 5.2, thésiits

in frames with a single maximal world. Now suppose we aremgaé&ame with a sin-
gle maximal worldwy. For a given assignmegt we consider again the equivalence
class~ on I'm defined in the proof of Theoreim %.3. We must show that the tiagul
L5-model is aL5(K C)-model, i.e. has the property (¥.2) offaC-algebra. So let
% # L andy # L be two elements greater than the bottom. Since neither L
nory ~ 1, there are worldsy andw’ with (w, g) F ¢ and(w’, g) E 1. Both worlds
must access the same maximal world because there is onlpamelyw. Then, by
monotonicity,(wr, g) E @A, Thatis,fA(B,¢) = p A # L = f1, and[Z.R) is ful-
filled. Hence, the resulting Heyting algebra i&@ -algebra. We conclude that Kripke
semantics fol C is given by all frames with a single maximal world. It is knotrat
I1PC is complete w.r.t. the class of dihite rooted Kripke models. SincePC C KC,

it suffices to considefinite frames with a single maximal world as Kripke semantics
for Jankov Logic. Q.E.D.
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