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RESUMO

Sistemas de Recomendação tornaram-se populares e amplamente adotados por muitos
sites e serviços, sendo ferramentas importantes para ajudar os usuários a filtrar o que é
relevante para eles neste mundo com tamanha quantidade de informação. Há diversas
maneiras de construir Sistemas de Recomendação, como a filtragem baseada em conteúdo,
que recomenda itens para o usuário com base em um perfil que contém informações a
respeito do conteúdo, tais como gênero, palavras-chave, assunto, etc. Estes metadados
são ponderados de acordo com avaliações anteriores, a fim de caracterizar principais
interesses do usuário. No entanto, esta abordagem tem problemas, tais como excesso de
especialização e desempenho limitado devido à escassez de metadados ou à qualidade.
Uma alternativa é a filtragem colaborativa, baseado em clusters de usuários ou itens
semelhantes. Uma desvantagem da filtragem colaborativa é o esforço computacional gasto
para calcular similaridade entre usuários e/ou itens em um espaço vectorial composto
por avaliações do usuário. Sistemas h́ıbridos surgiram para combinar os benef́ıcios de
ambas as técnicas. No entanto, a maioria dos sistemas recentes não consideram todos os
metadados associados ao conteúdo, o que poderia fornecer informações significativas sobre
os interesses do usuário. Esse trabalho propõe uma série de estratégias, como ensembles,
para combinação de múltiplos metadados, com o objetivo de melhorar a performance dos
atuais algoritmos de recomendação de uma forma computacionalmente viável. Quatro
experimentos foram realizados utilizando conjuntos de dados em algoritmos no estado
-da-arte e os resultados indicam que os algoritmos propostos alcançaram uma melhoria
considerável do MAP de até 21 % quando usando os algoritmos do conjunto. Estes
resultados encorajadores indicam que os algoritmos propostos podem ser usados para
melhorar os Sistemas de Recomendação com múltiplos metadados.

Palavras-chave: recomendação; ensemble; metadados; filme; filtragem colaborativa
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ABSTRACT

Recommender systems have become increasingly popular and widely adopted by many
sites and services. They are important tools in assisting users to filter what is relevant
for them in this complex information world. There are a number of ways to build recom-
mender systems such as content-based filtering, which recommends multimedia content
to the user based on a profile containing information regarding the content, such as genre,
keywords, subject, etc. These metadata are weighted according to past ratings, in order
to characterize the user’s main interests. However, this approach has problems such as
over-specialization and limited performance due to metadata scarcity or quality. An al-
ternative to this problem is the collaborative filtering approach, which is based on clusters
of similar users or items. The drawback is the computational effort spent to calculate
similarity between users and/or items in a vectorial space composed of user ratings in
a user-item matrix. Alternatively, hybrid recommenders aim at grouping the benefits
of content based and collaborative filtering approaches. The downside of hybrid recom-
menders which primarily exploit latent factor models are i) do not consider the metadata
associated to the content, which could provide significant and meaningful information
about the user’s interests, and ii) usually process only one item attribute missing the
exploitation of combination of the metadata available. This dissertation investigates the
problem of using and combining multiple metadata in hybrid Recommender Systems,
characterizing it and proposing ensemble strategies to combine different metadata. This
work aims at improving the top-performing state-of-art algorithms to leverage the avail-
able item metadata with an ensemble of this information in a computationally feasible
way. Four experiments were performed using state-of-art datasets and algorithms and
the results indicate that we were able to archive a considerable MAP improvement of
up to 21% when using the ensemble algorithms. These encouraging results indicate that
ensemble algorithms can be used to enhance the recommenders algorithms with multiple
metadata.

Keywords: recommendation; ensemble; metadata; movie; collaborative filtering
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Chapter

1

INTRODUCTION

Drop by drop is the water pot filled. Likewise, the wise man, gathering it

little by little, fills himself with good.

—BUDDHA (Dhammapada)

The Information Age is characterized by the widespread proliferation of emerging
information and communication technologies and the capabilities that those technologies
provide to overcome the barriers imposed on communications by time, distance, and
location. This new age represents the swift from the traditional industry to an economy
based on information and, as a result, we never had been exposed to such a staggering
amount of information. According to Gantz and Reinsel (2012), from 2005 to 2020, the
information in the digital universe will grow by a factor of 300, from 130 exabyte to 40,000
exabytes, or 40 trillion gigabytes (more than 5,200 gigabytes for every man, woman, and
child in 2020). Accordingly, from now until 2020, the digital universe information will
double every two years, as illustrated in Figure 1.1. This leads to a problem: there is
simply too much information to process and to choose. It is simply not possible to grasp
even a small percentage of it in a single lifetime.

1



2 INTRODUCTION

Figure 1.1: Information growth (GANTZ; REINSEL, 2012).

Processing huge amount of information is not a new phenomenon. Our brains are
already adapted to cope with a huge amount of data received every second through our
senses, and have a very good capacity of filtering and processing signals, images and
messages. For some type of signals such as visuals, the brain has a phenomenal ability
to minimize the noise and receive only the relevant patterns (MUSTO, 2010). Recent
studies (OTT, 2010) showed that human brain is able to absorb 126 bits of information
per second from the 393 bits per second we interact every day, totaling 34 billion of bits.
However, it is expected that until 2020 the amount of information will increase by almost
30 times. The problem is that nowadays the information is presented in a format that our
brain is not prepared and needs to be assisted (OTT, 2010). This is known as Information
Overload, which is the sensation of fatigue and distress that follows the cognitive surplus
required to handle the volume of information we have to deal with everyday (MUSTO,
2010). It is considered as the cause for diseases such attention deficits, anxiety and
cybercondria (HALLOWELL, 2005).

As seen, the amount of information we are exposed every day presents itself as a
challenge to find relevant and useful information. However, we cannot blame on the
abundance of information but rather on the absence of appropriate filters that support our
physiological brain deficits and help us to select the most important pieces of information.
The key is filtering the information (MUSTO, 2010).

To mitigate this problem, Recommender Systems (RS) appears as a response to the
information overload problem by learning from users about their interests from past user
actions (ratings, votes, ranked lists, mouse clicks, page views, product purchases, etc.)
and suggesting products that are likely to fit their needs (GANTNER, 2012). Organizing
and filtering this information can also present as a good opportunity to improve conversion
rates in e-commerce, engage customers with your product and improving content discover-
ability for business (ADOMAVICIUS; TUZHILIN, 2005). Thanks to this, Recommender
Systems are increasingly present in a wide variety of areas such as e-commerce, enter-
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tainment, education and tourism, making it a very promising area of research. Examples
of RS used commercially include Youtube1, by recommending related videos, Google2,
with personalized searches according to the user interest, Submarino3, recommending re-
lated products, Facebook4 that recommends friends you might know and Netflix5, that
recommends movies you might enjoy.

To provide recommendations that respect the user interest it is necessary to capture
users’ preferences and compare with information describing the item to be recommended.
However, the available algorithms do not always use all the available information, pre-
senting as an opportunity to improve the Recommendation performance.

The remaining of chapter contextualizes the focus of this dissertation and starts by
presenting its motivation in Section 1.1 and a clear definition of the problem in Section 1.2.
Section 1.3 presents the main contributions, while Section 1.4 describes the methodology
used by this work. Finally, Section 1.5 outlines the structure of this dissertation.

1.1 MOTIVATION

Recommender systems have become increasingly popular and widely adopted by many
sites and services. They are important tools in assisting users to filter what is relevant
for them in this complex information world. There are a number of ways to build recom-
mender systems and they can be used to predict a rating or to generate a top-n ranking
of recommended items. Today, a large portion of the work on recommender systems is
based on top-n recommendation or rating prediction. The top-n recommendation requires
bi/unary interaction data between users and items, whereas rating prediction requires a
dataset with previous ratings (SAID, 2013).

Previously, rating prediction – How much will a user like/rate a given item? – had
the majority of research and attention (GANTNER, 2012). Nowadays the task of item
recommendation – Which items will a user like/buy? – takes the bulk of attention and it
is considered more relevant for practical recommender system applications (GANTNER,
2012). For both tasks, you have three different approaches: content-based filtering, col-
laborative filtering and the combination of both of them (ADOMAVICIUS; TUZHILIN,
2005; EKSTRAND; RIEDL; KONSTAN, 2011).

Content-based filtering recommends content to the user based on a profile containing
information regarding the content, such as genre, keywords, subject, etc. These meta-
data are weighted according to past ratings, in order to characterize the user’s main
interests. However, this approach has problems such as over-specialization (ADOMAVI-
CIUS; TUZHILIN, 2005), limited performance due to metadata scarcity or quality and
requires knowledge of the domain. An alternative to this problem is the collaborative
filtering, which is based on the premise that users who have similar preferences in the
past are likely to have similar preferences in the future. However, collaborative filtering

1http://www.youtube.com
2http://www.google.com
3http://www.submarino.com.br
4http://www.facebook.com
5http://www.netflix.com
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alone has some limitations such as problems when the data is too sparse, overfitting and
it is not able to recommend new items or to new users.

Considering the limitations and challenges depicted above, one solution is the use of
Hybrid Systems, which use collaborative filtering with the addition of information de-
scribing the contents of the items. This information is called metadata. For example, a
film can be represented by the title, actors, release date, genre, etc. With more informa-
tion about the user, greater is the chance that a movie recommendation will be accurate.
It is known that limitations of content based and collaborative filtering, such as the cold
start problem, over-specialization and limited content analysis, can be reduced when
combining both strategies into a unified model (ADOMAVICIUS; TUZHILIN, 2005).

However, many recent systems which exploit latent factor models do not consider
the metadata associated to the content, that could provide significant and meaningful
information about the user’s interests, and some metadata aware recommenders only
supports one item attribute. An alternative approach for handling multiple metadata is
with ensemble methods. An ensemble method combines the recommendations of different
algorithms, or the same algorithm with different parameters to obtain a final recommen-
dation. Ensemble methods have been successfully used in the Netflix Prize contest, con-
sisting of the majority of the top performing solutions. (TÖSCHER; JAHRER; BELL,
2009; PIOTTE; CHABBERT, 2009). Most of the related works in the literature point
out that ensemble learning has been used in recommender system as a way of combin-
ing the prediction of multiple algorithms (heterogeneous ensemble) to create a stronger
rank (JAHRER; TöSCHER; LEGENSTEIN, 2010), in a technique known as blending.
They have been also used with a single collaborative filtering algorithm (single-model or
homogeneous ensemble), with methods as Bagging and Boosting (BAR et al., 2013).

Nonetheless, applying traditional ensemble techniques to metadata are often not fea-
sible to implement in a production scenario because of the computational cost and com-
plexity. In the case of heterogeneous ensemble, it needs to train all models in parallel and
treat the ensemble as one big model, but unfortunately training 100+ models in parallel
and tuning all parameters simultaneously is computationally not feasible (TÖSCHER;
JAHRER; BELL, 2009). In contrast, the homogeneous ensemble demands the same
model to be trained multiple times, and some methods such as Boosting requires that
the underlying algorithm be modified to handle the weighted samples. The focus of this
dissertation is to investigate algorithms for combining multiple metadata available to
improve the Recommendation performance.

1.2 PROBLEM STATEMENT

This dissertation investigates how the actual Recommenders Systems utilizes the avail-
able items metadata, characterizing it and proposing ensemble strategies to combine
multiple metadata in hybrid Recommender Systems. This work aims at improving the
top-performing state-of-art algorithms to leverage the available item metadata with an
ensemble of this information in a computationally feasible way.
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1.3 STATEMENT OF THE CONTRIBUTIONS

As a result of the work presented in this dissertation, the following contributions can be
highlighted:

� A study on existing solutions , which can provide the research and professional
community an overview of the state-of-the-art algorithms in the field that support
multiple metadata.

� A study on the best performant metadata for movies dataset , specifying
what metadata provides the biggest increase in Recommender performance, which
metadata provides the most significant value and charactering how the number of
metadata and sparsity impacts on the performance. This information is valuable
for researchers to further create novel tools and algorithms.

� A set of ensemble techniques that can be used to improve the performance
of existing Recommender Systems when using multiple metadata ( e.g. Movie
recommendation).

� An open-source application implementing the techniques proposed in
this work . We feel that in science the results should be replicable and freely
accessible. In this way, we published a fully-featured open-source software imple-
menting the techniques proposed.

In addition to the contributions mentioned, the work proposed in this project has
already been published in the form of papers at peer-reviewed workshops and conferences.
Moreover, we are currently submitting other papers to report the remaining results.

1.4 METHODOLOGY

The methodology of this project was based on a multi-method approach, which consists of
a combination of primary studies (proposed solutions, applications development, experi-
ments, etc.) and secondary studies (literature review, mapping studies, etc.) to increase
the body of knowledge in a particular area based on the findings of such research. Fol-
lowed by the specification and development of a tool implement the techniques proposed
by this dissertation.

The activities realized by this work were:

� Literature review: in this activity was be identified all relevant work carried
out in Recommender Systems in order to collect information necessary for the dis-
sertation development. It was necessary theoretical background on the following
topics: recommender systems, matrix factorization, collaborative filtering, ensemble
methods and recommender systems evaluation. Including the study of its features,
algorithms, data structures, involved concepts and aspects of the related technology.

� Specification and design of the tool architecture: oriented by the require-
ments and opportunities identified in the literature review, several of ensemble
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strategies were proposed. Based on those requirements of the strategies, an archi-
tecture was designed to fulfill their needs.

� Feasibility study: to verify shortcomings and benefits of the proposed architecture
and strategies;

� Development of strategies and tool: The development and codification of
strategies and tool to achieve the proposed objectives. It included adapting existing
algorithms to make use of metadata, develop several ensemble strategies, and the
combination of various metadata using the proposed ensemble strategies.

� Experiments and Evaluation: experiments was be conducted to validate the
effectiveness of the proposed strategies in quantitative terms. For each proposed
approach, multiple evaluation methods will be applied to the developed technique.
The technical performance was evaluated according to their efficiency to return
items according to the user’s needs. We used a number of metrics that are available
in the literature in our evaluation of performance, such as precision, recall, MAP
and AUC.

� Dissertation writing: after the completion of the validation and evaluation stud-
ies, the entire body of knowledge gained in this study was documented.

1.5 DISSERTATION STRUCTURE

The remainder of this dissertation is organized as follows:

� Chapter 2 reviews the essential topics used throughout this work: Recommender
systems and ensemble techniques. It also contains a comprehensive revision of
Recommendation Models.

� Chapter 3 describe the Movie Recommendation problem, our motivation and
what is the problem this work is trying to solve. Additionally, it has a overview
about related works, citing important papers in industry and literature, and an
detailed description of ensemble techniques.

� Chapter 4 describes the proposed solution. We introduce four ensemble strategies
to combine multi-model interactions.

� Chapter 5 describes some experiments conducted to evaluate the proposed so-
lution.

� Chapter 6 provides the concluding remarks. It discusses our contributions,
limitations, threats to validity, and outline directions for future work.
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2
RECOMMENDER SYSTEMS

Don’t let schooling interfere with your education.

—MARK TWAIN

This chapter provides an overview of the Recommender Systems field. After intro-
ducing the Recommendation problem, it is explored the most prominent prediction tasks
for recommender systems, describing different approaches for accomplishing these tasks,
and introduce the concept of ensemble to combine multiple results. Finally, we discuss
some state-of-art Hybrid Recommender Systems that are used through this work.

2.1 THE RECOMMENDATION PROBLEM

The concept of Recommender Systems was introduced (RESNICK; VARIAN, 1997) to
formally define tools and techniques able to provide personalized information access to
large collections of structured and unstructured data, providing users with advices about
items they might be interested in. Those items represent things to be recommended, such
as pages on the web, news, articles, jokes, movies, products of any kind, music albums,
individual songs, etc.

Later, several others definitions of what a RS is have been proposed in literature.
For example, Burke (BURKE, 2002) says that recommender systems have the effect of
guiding the user in a personalized way to interesting or useful objects in a large space
of possible. Ganter (GANTNER, 2012), define Recommender System as information
systems that learn user preferences from past user actions (ratings, votes, ranked lists,
mouse clicks, page views, product purchases, etc.) and suggest items according to those
user preferences.

A formal definition to the recommendation problem can be formulated as follows
(ADOMAVICIUS; TUZHILIN, 2005; MUSTO, 2010):

Let U be the set of all users and let I be the set of all possible items that can
be recommended to this user. Each element of the user space U can be defined as a
profile that can include various user features, such as gender, age or city. Likewise, each

7
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element of the item space I is defined through a set of features. For example, in a movie
recommendation scenario each movie can have as features its genre, director and year of
production. The size of the sets I and U can be very large in a real use case.

Let f be a utility function that measures the usefulness of item i to user u, f :
UI → R, where R is a totally ordered set (nonnegative integers or real numbers within a
certain range). The recommendation problem consists in choosing such item i′u ∈ I that
maximizes user’s utility for each user u ∈ U .
More formally:

∀u ∈ U, i′u = argmaxi∈If (u, i) (2.1)

Usually the utility function represented by a rating, which indicates how a particular
user liked a specific item. The central problem of recommender systems lies in that
utility is usually not defined on the whole U x I space, but initially defined only on the
items previously rated by the users. For example, in a movie scenario, users initially rate
some subset of movies they have already seen. Therefore, the recommendation engine
should be able to predict the ratings of the non-rated movie/user combinations and issue
appropriate recommendations based on these predictions (MUSTO, 2010).

With rate prediction, recommendations of an item to a user are made by selecting the
highest rating among all the estimated ratings for that user (best recommendation prob-
lem), or select the top N ratings (Top-N recommendation problem) (ADOMAVICIUS;
TUZHILIN, 2005).

2.2 THE RECOMMENDATION PIPELINE

There are multiple approaches to generate recommendations. Musto (MUSTO, 2010)
came up with a very thorough and generic Pipeline that can represent the steps used in a
recommendation pipeline. It was enhanced to also consider from the items point of view,
and consists of the following steps:

1. Training: first, the recommender needs to gather information about the target
users and the items that will be recommended. For items it maybe be extracted
a vector of features composed of information describing them. For the users the
system may also collect information about what one knows and likes, demographical
or contextual information. This step could be accomplished in an explicit or implicit
way. In the first case the user explicitly expresses her preferences, by giving a rating
items or marking as positive, while in the latter user’s preferences are gathered by
analyzing their transactional or behavioral data (for example, clicking a link or
reading a news article could be considered as a clue of user interest in that item).

2. User Modeling: to personalization effectively happen, it implies the presence of
something describing and identifying the preferences of the user interacting with
the recommender. Therefore, the information extracted are modeled and stored
in a user profile. Modeling the user profile is the core of the pipeline since it is
the component that triggers the whole recommendation process (MUSTO, 2010).
Depending on the filtering model, different information’s are stored about the user.
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For a pure collaborative filtering, only past actions are recorded, while in a content-
based recommender architecture the component for User Modeling can be split in
a Content Analyzer, whose goal is to analyze content in order to pop up relevant
concepts from unstructured text, and a Profile Learner that stores these concepts
into user profiles (RICCI; ROKACH; SHAPIRA, 2011).

3. Filtering: lastly, based on the user profile the recommender system will filter the
information and recommend it to the user. It can be based on a profile, predicting
how the user would rate an unknown item (Rating Prediction) (GANTNER, 2012)
or rank the items according to a relevance criterion, providing the user with an
ordered list of the most relevant items (MUSTO, 2010).

The main differences among different recommendation approaches lie in the way pro-
files are built and how it recommend items. In next section those different approaches
will be detailed.

2.3 RECOMMENDATION APPROACHES

There are multiple recommendation approaches, and authors in literature classify them
in different classes. Burke (BURKE, 2007) split recommendation models into six classes
(Content-based; Collaborative; Demographic; Knowledge-based; Community-based and
Hybrid). Masthoff (MASTHOFF, 2011) divides in two broad categories: content-based
and collaborative filtering approaches. In this work we use Masthoff definition with the
addition of a third category, Hybrids, a combination of content-based and collaborative
filtering.

In summary, with content-based recommenders the concept of similarity identifies the
items that share common features with those the user already considered as relevant
or interesting in the past. On the other hand, collaborative filtering tries to bring out
hidden connections between users that belong to the same community and share similar
tastes. In the next section, a description of the content-based approach and an analysis
its strengths and weaknesses will be provided.

2.3.1 Content-based Recommender Systems

Content-based Recommenders generates recommendations by analyzing a set of descrip-
tions of items previously rated or viewed by a user, and building a profile of user interests
based on the features of the objects rated by that user, as can be seen on Figure 2.1

The profile is an organized representation of user interests built based on previous
items observed by him. The recommendation of new interesting items consists in match-
ing up the attributes of the user profile against the attributes of a content object (RICCI;
ROKACH; SHAPIRA, 2011). In a movie recommendation scenario, for example, a user
profile may store the preferred genres and directors. The movie would also be composed
of a set of those features, as illustrated on Figure 2.2. With this information, the rec-
ommendation step consists in matching up the features of an unseen item with a user
profile.
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Figure 2.1: Content-based recommender overview (SEAGATE, 2015).

Figure 2.2: Example of item features.

Ricci (RICCI; ROKACH; SHAPIRA, 2011) proposes a high level architecture of a
content- based recommender system, where each step of the Figure 2.1 is extracted by a
separate component:

� Content Analyzer - It responsible for extracting the vector of features that de-
scribe the item. Usually the item has textual information, and a pre-processing
step is needed to extract structured relevant information. The information is ana-
lyzed by feature extraction techniques in order to shift item representation from the
original information space to the target one (RICCI; ROKACH; SHAPIRA, 2011).
For example, in a movie recommendation scenario, if the information about the
movie is textual, it needs to use Natural Language Processing (NLP) techniques to
extract information such as director, genre and so. This representation is the input
to the Profile Learner and Filtering component;
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� Profile Learner - This component collects as much as possible information about
user preferences or tastes based on previous observed items and tries to generalize
this data, in order to build a user profile. Usually, the generalization strategy is
realized through machine learning techniques (RICCI; ROKACH; SHAPIRA, 2011),
which are able to infer a model of user interests starting from items liked or disliked
in the past. In a movie recommendation scenario, a simple user profile could be
composed of multiple movie genres, such as horror, comedy, and how much the user
likes it, from a scale 0 to 1.

� Filtering - This component suggest relevant items by matching the similarity
between the user profile against available items. The result is a binary or a ranked
list of potentially interesting items (RICCI; ROKACH; SHAPIRA, 2011).

The matching can be determined using two different techniques: heuristic-based
or model-based (MUSTO, 2010). The former calculate the score using information
retrieval methods, such as cosine similarity. The latter predict the relevance relying
on models learned from the underlying data through statistical or machine learning-
based techniques.

2.3.1.1 Limitations of Content-based Recommender Systems .
Content-based recommender systems have several weak points:

1. Limited content analysis. Content-based recommendations need to have a very
rich amount of features describing the items to be recommended to be effective
(RICCI; ROKACH; SHAPIRA, 2011). However, in many cases, those extraction
requirements are very difficult to fulfill. There are some domains where automatic
feature extraction is complicated (MUSTO, 2010)(such as graphical images, video
streams, and audio streams), and extracting content from Natural Language is a
complicated problem (BANGALORE; RAMBOW, 2000). Finally, assigning fea-
tures by hand is often not practical.

2. Over-specialization. Content-based recommendation system retrieves items that
match against a specific user profile. In this way, it cannot recommend items that
are different from anything the user has seen before, and this is not a desirable
characteristic, as it will always recommend some of the same with a limited degree
of novelty. This is known as the serendipity problem. A desirable goal is that
the recommender system increase the serendipity of the recommendation lists by
including “unexpected” items in which the user might be interested in (MUSTO,
2010).

3. Cold-start. When a new user is added to the system, it does not have a previ-
ous history of items. Therefore, his user profile will be poor and the recommender
system will not be able to understand user preferences and provide accurate rec-
ommendations.
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2.3.2 Collaborative Filtering Recommender Systems

Another way of recommending is using a Collaborative Filtering approach. It is consid-
ered to be the most popular and widely implemented technique in RS (RICCI; ROKACH;
SHAPIRA, 2011). Differently from content-based approaches, Collaborative Filtering do
not use the item content directly, but allows users to give ratings or observations about
the items in such a way that when enough information is stored on the system, it can
make recommendations user based on information provided by what those users consider
to have the most in common with them (ORTEGA et al., 2013).

This approach overcomes some of the limitations of content-based (RICCI; ROKACH;
SHAPIRA, 2011). For example, items with non-existent or poor descriptions can still be
recommended to users through the feedback of other users. Furthermore, collaborative
recommendations are based on the quality of items as evaluated by peers, instead of
relying on content that may be unreliable. Finally, unlike content-based systems, collab-
orative filtering can recommend items with very different content, as long as other users
have already shown interest for these different items (RICCI; ROKACH; SHAPIRA,
2011).

Collaborative filtering methods can be grouped in the two general classes (RICCI;
ROKACH; SHAPIRA, 2011):

� Memory-based: Here, the user-item ratings stored in the system are directly used
to predict ratings for new items. It can also be subdivided in two types, User-based
and Item-based.

In User-Based Collaborative Filtering, correlations are identified between users
based on past preferences that are similar in order to make predictions on what
each user will like in the future. If two users have rated many items similarly in the
past, they may be considered in the same neighborhood (CASINELLI, 2013).

In an Item-Based Collaborative Filtering, the item similarities are used in order
to make recommendations. Rather than building a neighborhood and making rec-
ommendations based on similar users, correlations are made between items’ pref-
erences. The intuition is that the user will be recommended items that are most
similar to items he has already rated in the past (CASINELLI, 2013).

� Model-based: Differently from neighborhood-based systems, which use the rat-
ings matrix directly, model-based approaches use those ratings to learn a predictive
model. The general idea is to model the user-item interactions with factors repre-
senting latent (or hidden) characteristics of the users and items matrix and discover
general classes. This model needs to be trained firstly using the existing data, and
only after training, it can be used to generate recommendations (RICCI; ROKACH;
SHAPIRA, 2011).

Matrix factorization it one of the most popular model-based method (RICCI; ROKACH;
SHAPIRA, 2011). It works by decomposing the user vs item matrix of preference
data into a more compact, denser representation that can be used to extrapolate
the expected preference of items to a user. One of the most common techniques for
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this is Singular Value Decomposition (SVD). In Figure 2.3, illustrates the reduction
of a 9-dimensional movie rating matrix to a more compact 2-dimensional matrix.
In Figure 2.4 we made an assumption of what those two dimensions represent in
the movie recommendation context.

Figure 2.3: Example Singular Value Decomposition.

Figure 2.4: Interpretation of the reduced matrix.

2.3.2.1 Limitations of Collaborative Filtering Recommender Systems .
Collaborative Filtering address some issues compared to Content-based recommender
systems, however it also has several weak points:

1. Sparsity. The effectiveness of a Collaborative Filtering algorithm is closely related
to the availability of a dense and complete matrix of users and ratings. However, a
typical issue is that the number of ratings provided by the users is often very small
compared to the number of items that need to be predicted (MUSTO, 2010). In this
way, the matrix user x item becomes sparse (with empty spaces). It cannot make
valuable recommendations with the sparsity problem. Dimensionality reduction
techniques, such as Singular Value Decomposition (SVD) alleviates this problem
(RICCI; ROKACH; SHAPIRA, 2011).

2. Cold Start. When a new item is added in a recommender system there is no way to
recommend it before more users rate those items. You can address this problem by
encouraging users to vote in novel items in order to trigger the similarity calculations
that feed CF algorithms (MUSTO, 2010). Similarly, when a new user is added to
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the system, we do not have any information to determine his preferences. Usually
this is address by recommending popular items firstly (STECK, 2011).

2.3.3 Hybrid recommender systems

Hybrid recommender systems combine two or more different recommender algorithms to
create a stronger recommender. A hybrid recommender could for example, alleviate the
cold-start problem in Collaborative Filtering by using the item description to match the
new item with existing items based on metadata, when the users did not rate the item.

Burke (BURKE, 2002), classified hybrid recommender systems into seven classes:

� Weighted recommenders take the scores produced by several recommenders and
combine them to generate a recommendation list (or prediction) for the user.

� Switching recommenders switch between different algorithms and use the algo-
rithm expected to have the best result in a particular context.

� Mixed recommenders present the results of several recommenders together. This
is similar to weighting, but the results are not necessarily combined into a single
list.

� Feature-combining recommenders use multiple recommendation data sources as
inputs to a single meta-recommender algorithm.

� Cascading recommenders chain the output of one algorithm into the input of
another.

� Feature-augmenting recommenders use the output of one algorithm as one of the
input features for another.

� Meta-level recommenders train a model using one algorithm and use that model
as input to another algorithm.

Hybrid recommenders proved to be quite powerful in the Netflix Prize contest con-
sisting of the majority of the top performing solutions. (TÖSCHER; JAHRER; BELL,
2009; PIOTTE; CHABBERT, 2009).

Considering the limitations and challenges depicted in previous sections, hybrid rec-
ommenders play an important role because they group together the benefits of content
based and collaborative filtering. It is known that limitations of both approaches, such
as the cold start problem, overspecialization and limited content analysis, can be reduced
when combining both strategies into a unified model (ADOMAVICIUS; TUZHILIN,
2005).
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2.4 PERSONALIZED RECOMMENDATION MODELS

Recommender Systems are often used for two tasks. Rating prediction or item recom-
mendation. While rating prediction (How much a user will rate an unknown item?)
was very popular in the recommender systems literature in the past, the task of item
recommendation (Which items will a user like? ) got much more popular lately.

In the next subsections, we present a set of metadata aware algorithms, which use the
Bayesian Personalized Ranking (BPR) framework (GANTNER et al., 2010) to personalize
a ranking of items using only implicit feedback, they are considered state-of-art for the
top-n recommendation problem, and were used through this project.

2.4.1 Notation

Following the same notation in (KOREN, 2010; MANZATO, 2013), we use special index-
ing letters to distinguish users, items and attributes: a user is indicated as u, an item is
referred as i, j, k and an item’s attribute as g. The notation rui is used to refer to explicit
or implicit feedback from a user u to an item i. In the first case, it is an integer provided
by the user indicating how much he liked the content; in the second, it is just a boolean
indicating whether the user consumed or visited the content or not. The prediction of the
system about the preference of user u to item i is represented by r̂ui, which is a floating
point value calculated by the recommender algorithm. The set of pairs (u, i) for which
rui is known is represented by the set K = {(u, i)|rui is known}.

Additional sets used in this section are: N(u) to indicate the set of items for which user
u provided an implicit feedback, and N̄(u) to indicate the set of items that is unknown
to user u.

2.5 BAYESIAN PERSONALIZED RANKING

Bayesian Personalized Ranking (BPR) is a generic framework for optimizing different
kinds of models based on training data containing only implicit feedback information.
It was proposed by Rendle et al. (RENDLE et al., 2009) to address the issue that hap-
pens when training an item recommendation model using implicit feedback based only
on positive/negative data. The model will be fitted to provide positive scores to the
observed items, while considering unvisited items as negative. However, such assumption
is inaccurate because a not observed item may be due to the fact it was unknown to the
user.

Considering this problem, instead of training the model using only the user-item pairs,
Rendle et al. proposed considering the relative order between a pair of items, according
to the user’s preferences. It is inferred that if an item i has been viewed by user u and
j has not (i ∈ N(u) and j ∈ N̄(u)), then i >u j, which means that he prefers i over j.
Figure 2.5 presents an example of this method.

The key idea is to consider entity pairs instead of single entities in its loss function,
allowing the interpretation of positive-only data as partial ranking data. The user-item
preference estimation is based on a Bayesian analysis using the likelihood function for
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Figure 2.5: Adapted from Rendle et al., the left-hand side table represents the observed
data K. On right-hand side, after applying a user-specific pairwise relation i >u j,
the plus signal indicates that user u has more interest in item i than j; the minus signal
indicates he prefers item j over i; and the interrogation mark indicates that no conclusion
can be inferred between the items.

p(i >u j|Θ) and the prior probability for the model parameter p(Θ). The final optimiza-
tion criterion, BPR-Opt, is defined as:

BPR-Opt :=
∑

(u,i,j)∈DK

lnσ(ŝuij)− ΛΘ||Θ||2 , (2.2)

where ŝuij := r̂ui − r̂uj and DK = {(u, i, j)|i ∈ N(u) & j ∈ N̄(u)}. The symbol Θ
represents the parameters of the model, ΛΘ is a regularization constant, and σ is the
logistic function, defined as: σ(x) = 1/(1 + e−x).

For learning the model, the authors use a variation of the stochastic gradient de-
scent technique, denominated LearnBPR, which randomly samples from DK to adjust Θ.
Algorithm 1 shows an overview of the algorithm, where α is the learning rate.

Input: DK

Output: Learned parameters Θ
Initialize Θ with random values
for count = 1,...,#Iter do

draw (u, i, j) from DK

ŝuij ← r̂ui − r̂uj
Θ← Θ + α

(
e−ŝuij

1+e−ŝuij
. ∂
∂Θ
ŝuij − ΛΘΘ

)
end

Algorithm 1: Learning through LearnBPR.

The BPR framework can be used with different prediction rules, where the involved
parameters generate the set Θ which will be learned according to Algorithm 1. In the
next three subsections, we present a set of metadata aware algorithms which use the
BPR framework to personalize a ranking of items using only implicit feedback. These
techniques will be considered in our evaluation in the context of movies recommendation.
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2.5.1 BPR-Linear

The BPR-Linear (GANTNER et al., 2010) is an algorithm based on the Bayesian Per-
sonalized Ranking (BPR) framework, which uses item attributes in a linear mapping for
score estimation. The prediction rule is defined as:

r̂ui = φf (~ai) =
n∑

g=1

wugaig , (2.3)

where φf : Rn → R is a function that maps the item attributes to the general preferences
r̂ui and ~ai is a boolean vector of size n where each element aig represents the occurrence
or not of an attribute, and wug is a weight matrix learned using LearnBPR, which is
variation of the stochastic gradient descent technique (GANTNER et al., 2011). This
way, we first compute the relative importance between two items:

ŝuij = r̂ui − r̂uj

=
n∑

g=1

wugaig −
n∑

g=1

wugajg

=
n∑

g=1

wug(aig − ajg) .

(2.4)

Finally, the partial derivative with respect to wug is taken:

∂

∂wug

ŝuij = (aig − ajg) , (2.5)

which is applied to the LearnBPR Algorithm considering that Θ = (w∗) for all set of
users and descriptions.

2.5.2 BPR-Mapping

The BPR-Mapping was also proposed by Gantner et al. (GANTNER et al., 2010); the key
difference is that it uses the linear mapping depicted in Subsection 2.5.1 to enhance the
item factors which will be later used in an extended matrix factorization prediction rule.
Such an extension of matrix factorization is optimized for Bayesian Personalized Ranking
(BPR-MF) (RENDLE et al., 2009) that can deal with the cold-start problem, yielding
accurate and fast attribute-aware item recommendation. Gantner et al. (GANTNER et
al., 2010) address the case where new users and items are added by first computing the
latent feature vectors from attributes like the user’s age or movie’s genres, and then using
those estimated latent feature vectors to compute the score from the underlying matrix
factorization (MF) model.

Gantner et al.(GANTNER et al., 2010) explained that one way to learn suitable
parameters for the linear mapping functions is optimizing the model for the (regularized)
squared error on the latent features, and a ridge regression was used. In addition, a
stochastic gradient descent was used for training because of the enormous number of input
variables. Nevertheless, this approach leads to a sub-optimal performance. Thereafter,
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a linear mapping optimized for BPT-Opt was proposed and is what is used in BPR-
Mapping.

The model considers the matrix factorization prediction rule:

r̂ui = bui + pTu qi = bui +
k∑

f=1

pufqif , (2.6)

where each user u is associated with a user-factors vector pu ∈ Rf , and each item i with
an item-factors vector qi ∈ Rf . The baseline bui is defined as bui = µ+bu+bi and indicates
the distinct estimates of users and items in comparison to the overall rating average µ.

From this model, the item factors are mapped according to their attributes as:

r̂ui = bui +
k∑

f=1

pufφf (~ai) , (2.7)

where φf (~ai) has the same definition as in Equation 2.3.

2.5.3 MABPR

One disadvantage of the previous BPR algorithms is that they are not able to infer any
conclusion when the items i and j are known (or both are unknown). In other words,
if an item has been viewed by the user, it is possible to conclude that this content is
preferred over all other unknown items, as it aroused a particular interest to him than
the others. On the other hand, when both items are known (or both are unknown), it is
not possible to infer which one is preferred over the other because the system only has
the positive/negative feedback from the user. Consequently, those pairs which belong to
the same class (positive or negative) will not be able to be ranked accordingly, as the
model will be learned only by using the specific case where one item is known and the
other is not.

To overcome this limitation, Manzato et al. (MANZATO; DOMINGUES; REZENDE,
2014) proposed an extension to the BPR technique which also considers metadata from
items in order to infer the relative importance of two items.

It starts by redefining the set DK which contains the data used during training to
D′K := {(u, i, j)|i ∈ N(u) & j ∈ N̄(u) or i ∈ N(u) & j ∈ N(u) ∪ N̄(u) & |G(i)| >
0 & |G(j)| > 0} to consider the metadata available in the specified case, while also
considering items without descriptions.

Figure 2.6 shows how the proposed extension affects the relationship between items i
and j with respect to the preferences of user u. Because items i2, i4 and i5 are known,
the system has to analyze their metadata to infer which one is preferred over the other.
This is the role of function δ(i, j), which is defined as:

δ(i, j) =


+ if ϕ(u, i) > ϕ(u, j),
− if ϕ(u, i) < ϕ(u, j),
? otherwise,

(2.8)
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Figure 2.6: As an extension to Rendle et al. approach, Manzato et al. also consider the
metadata describing items i and j when both are known (i ∈ N(u) & j ∈ N(u)). The
function δ(i, j) returns positive whether user u prefers the description of item i over the
description of item j, and negative otherwise.

where ϕ(u, .) is defined as:

ϕ(u, .) =
1

|G(.)|
∑

g∈G(.)

wug , (2.9)

and wug is a weight indicating how much u likes a description g ∈ G(.).
This approach enhances the BPR algorithm with further insight about the user’s

preferences by considering his personal opinions about particular descriptions of items.
Such metadata can be of any type: genres of movies/music, keywords, list of actors,
authors, etc. The mechanism used to infer such opinions wug by analyzing only the
training data is accomplished by adopting the same linear attribute-to-feature mapping
described in Subsection 2.5.1.

In this section, was presented a background about Recommender Systems and detailed
a generic framework for optimizing different kinds of models based on training data
containing only implicit feedback information.

2.6 SUMMARY

In this chapter, we discussed about important concepts to this work. We stated by
contextualizing the Recommendation problem, discussing the main concepts and its im-
portance. Then, we provided a detailed overview about the existing Recommendation
Approaches in the literature and defined the Bayesian Personalized Ranking, a popular
framework for optimizing different kinds of models based on training data containing only
implicit feedback information.

Next chapter presents an overview about the problem of using multiple metadata in
actual recommenders, discussing the main concepts, techniques, roles, approaches and so
on, in order to define the bases for this dissertation. It also presents an overview about
ensembles and related works.





Chapter

3
USING MULTIPLE METADATA TO IMPROVE

RECOMMENDATIONS

Success is not final, failure is not fatal: it is the courage to continue that

counts.

—WINSTON CHURCHILL

In this chapter describes the Movie Recommendation problem, why it is popular in
Recommender Systems, and what is the problem this work is trying to solve. Right
after we make an overview about related works, citing important papers in industry and
literature, and a detailed description of ensemble techniques.

This chapter is organized as follows: Section 3.1 defines the Movie Recommendation
problem and the existing issue with actual recommenders algorithms, the problem of
using metadata with actual Recommenders, and a analyze of relevant works in the area;
and, Section 3.2 details existing ensemble algorithms in literature. Finally, Section 3.3
presents the findings and summarizes this chapter.

3.1 MOVIE RECOMMENDATION

Recommendation of Movies is a very popular area for Recommender Systems, for multiple
reasons. One important reason is that many papers in the literature uses it, making easier
to compare results. Another reason points to the “Netflix Prize”, a challenge started in
2007 by Netflix1 where with a provided dataset, the participants needed to reduce the Root
Mean Squared Error (RMSE) as much as possible. The winner won one million of dollars
(TÖSCHER; JAHRER; BELL, 2009). This challenge made a boost in recommendation
research where lots of quality papers with novel algorithms were published (PIOTTE;
CHABBERT, 2009).

The availability of public available datasets is also a important factor. In the recom-
mender systems literature, offline algorithmic evaluations frequently play a major role,

1http://www.netflix.com

21



22 USING MULTIPLE METADATA TO IMPROVE RECOMMENDATIONS

Figure 3.1: In NetFlix Everything is Recommendation.

because may be not possible to test with real users(EKSTRAND; RIEDL; KONSTAN,
2011). However, using one of the several datasets that are publicly available, we can
form a body of knowledge on which the raw numeric performance of new algorithms
can be compared against known performance of existing systems in a consistent environ-
ment. Those results can serve as a preliminary testing domain in building a system for
which no directly relevant data is available (EKSTRAND; RIEDL; KONSTAN, 2011).
In movie recommendation we have important and popular public available datasets such
as MovieLens2, NetFlix3 and Yahoo! Movies4.

Finally, movie recommendation is an appealing problem with immediate applications
in many real world popular applications, used by millions of users everyday such as
Youtube 5, NetFlix 6 and IMDB 7, which uses Recommender systems to improve users
experience and content discoverability.

2http://grouplens.org/datasets/movielens/
3http://www.netflix.com
4http://webscope.sandbox.yahoo.com/catalog.php?datatype=r
5http://www.youtube.com
6http://www.netflix.com
7http://www.imdb.org
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3.1.1 Metadata

Commercial movies, usually have a rich metadata. Metadata can be defined as structured
information that describes, explains, locates, or otherwise makes it easier to retrieve,
use, or manage an information resource. Metadata is often called data about data or
information about information (GUENTHER; RADEBAUGH, 2004).

Figure 3.2: Example of possible metadata for the movie The Godfather (1972).

In the Figure 3.2, we can see an example of available metadata for the movie The
Godfather (1972). In this figure, we listed only 9 metadatum (Genre; Director; Length;
Distributor; Language; Studio; Rating; Actors and Country). It is possible to obtain
this metadata and much more from the original media or from Web of Data sources as
DBPedia8.

3.1.2 Actual Recommender System Problem

As stated, metadata provides an important insight about the item to be Recommended.
However, Recommender Systems that uses solely this metadata to recommend (Content-
based) have severe shortcomings in a real world implementation, as stated in Chapter 2.
One of those limitation is that the metadata is not always available, or complete enough.
On the other hand, Collaborative Filtering became a hugely popular recommendation
technique, prevalent for its high performance and simple requirements (KOREN, 2010).
It does not use any metadata, using only historic data. However, it has shortcomings
such as sparsity, overfitting and data distortion caused by imputation methods (KOREN,
2010).

Hybrid recommenders came as an answer to mitigate those problems by combining
the benefits of content based and collaborative filtering. It is known that limitations of

8http://dbpedia.org
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both approaches, such as the cold start problem, overspecialization and limited content
analysis, can be reduced when combining both strategies into a unified model (ADO-
MAVICIUS; TUZHILIN, 2005). However, most recent systems which exploit latent fac-
tor models do not consider the metadata associated to the content, which could provide
significant and meaningful information about the user’s interests, and current metadata
aware recommenders only supports one item attribute.

As an example, the Bayesian Personalized Ranking is one of the most used and top
performant framework for the top-n problem but can only be trained with up to one item
metadata. The question is, which of the nine metadatum of The Godfather movie should
be used ? Our hypothesis in this dissertation is that if we utilize all available metadata,
we can improve the performance of Hybrid Recommender Systems. In the next section,
we analyze what solutions had been proposed in the past related works.

3.1.3 Related Work

In recent years, the way of users interact with computer systems changed considerably.
In the dawn of the Internet, users were consumers of information. With the Web 2.0,
users started to actively contribute and became providers of information. The quantity
of information present in the Internet exploded and ways to mitigate the Information
Overload was needed. Recommender Systems was the answer to this, and evolved closely
with the Internet.

Nowadays popular websites such as Google9 and Facebook10offers personalized results
for users. Users now expect that computer systems to be smart enough and to provide
answers personalized to them. The Microsoft CEO affirmed that digital assistants that
personalized answer to a user are the future of computing 11.

In order to present this evolution and a literature review of recommendation systems
area, Table 3.1 presents a research about relevant papers in the area who contributed to
this dissertation, discussing the features and offering examples over time.

Furthermore, regarding the combination of metadata, recommender systems can be
extended in several ways aiming at improving the understanding of users and items, in-
corporating new types of metadata or interactions in the recommendation process and
making the combination of them. One of these improvements is the support for multi-
criteria interactions, so as to provide greater flexibility and less obtrusive types of rec-
ommendations (RICCI; ROKACH; SHAPIRA, 2011). In this context, with more studies
in the area of recommender systems, various algorithms enabled the usage of more than
one type of user interaction.

These studies resulted in works such as Johansson (JOHANSSON, 2003), responsible
for developing the MADFILM, a movie recommendation system that addresses the in-
tegration of prediction and organization of content, through explicit and implicit user’s
feedback. The work proposed by (YANG et al., 2007) developed a recommendation sys-
tem for online video based on explicit and implicit feedback, plus feedback from relevant

9http://www.google.com
10http://www.facebook.com
11http://microsoft-news.com/microsofts-ceo-says-cortana-personal-assistants-replace-browser/



3.1 MOVIE RECOMMENDATION 25

Table 3.1: Relevant works in Recommender Systems.

Year Remarkable examples Description
1992 Papers: Tapestry (GOLD-

BERG et al., 1992)
It was the first mention for the term ”collaborative
filtering”. It began to arise as a solution for dealing
with overload in online information spaces. The
recommendation was not personalized and man-
ual.

1994 - 2000 Papers: A series of sys-
tems for various domains,
such as GroupLens for arti-
cles, Ringo (SHARDANAND;
MAES, 1995) for music, the
BellCore Video Recommender
(HILL et al., 1995) for movies,
and Jester (GOLDBERG et
al., 2001) for jokes.
Industry examples: Ama-
zon.com

Collaborative filtering systems, based on ratings or
other observable actions from the user, automati-
cally combined them with the ratings or actions of
other users to provide personalized results.

2002 Papers: Hybrid recommender
system (BURKE, 2002)

Hybrid recommender systems emerged as vari-
ous recommender strategies have matured, com-
bining multiple algorithms into composite systems
that ideally build on the strengths of their com-
ponent algorithm (EKSTRAND; RIEDL; KON-
STAN, 2011).

2003 - 2007 Papers: Social match-
ing Recommender systems
(TERVEEN; MCDONALD,
2005), Social recommender
systems for web 2.0 folk-
sonomies (SIERSDORFER;
SIZOV, 2009), Tag-aware
recommender systems (TSO-
SUTTER; MARINHO;
SCHMIDT-THIEME, 2008).
Industry examples:
Last.FM12 and Del.icio.us13

With the creation of Web 2.0 sites, an enormous
quantity of user created data became available.
Recommenders started to use information’s as tags
to recommend items. In this period, also happened
the ascension of social networks, and news algo-
rithms where created to use this data.

2008-2014 Papers: Matrix Factorization
(KOREN; BELL; VOLINSKY,
2009) ; Bayesian personalized
ranking from implicit feedback
(RENDLE et al., 2009);
Industry examples:: Net-
flix, Facebook, Google,
Youtube

In this period, a huge leap in Recommender sys-
tems research happened. Fueled by a greater num-
ber of internet users and initiatives such as the
Netflix Prize competition a good number of in-
novate algorithms appeared. ThThiscompetition
has demonstrated that matrix factorization mod-
els are superior to classic nearest-neighbor tech-
niques for producing product recommendations
(KOREN; BELL; VOLINSKY, 2009).

Tendencies Industry examples: Face-
book, Google Now, Siri, Cor-
tana

Combining as many possible sources of data to pro-
duce a better recommendation, such as semantic
data, social graph, item content and collaborative
filtering.
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information provided by the user. The used video was composed of multimedia content
and related information (such as query, title, tags, etc.). The project aimed to combine
these types of interactions with the information provided by users in order to generate a
more precise rank of relevant items. In order to automatically adjust the system, it was
implemented a set of adjustment heuristics given new user interactions.

The SVD++ algorithm proposed by (KOREN; BELL; VOLINSKY, 2009) uses ex-
plicit and implicit information from users to improve the prediction of ratings. As explicit
information, the algorithm uses the ratings assigned by users to items, and as implicit
information, it simulates the rental history by considering which items users rated, re-
gardless of how they rated these items. However, it uses a stochastic gradient descent to
train the model, which requires the observed ratings from users. Thus, it is impossible
to infer preferences for those users who provided only implicit feedback.

Ensemble is a machine learning approach that uses a combination of similar models
in order to improve the results obtained by a single model, and can be used to com-
bine multiple metadata. In fact, several recent studies, such as (JAHRER; TöSCHER;
LEGENSTEIN, 2010), demonstrate the effectiveness of an ensemble of several individual
and simpler techniques, and show that ensemble-based methods outperform any single,
more complex algorithm. Ensemble algorithms have been successfully used, for instance,
in the Netflix Prize contest consisting of the majority of the top performing solutions
(TÖSCHER; JAHRER; BELL, 2009; PIOTTE; CHABBERT, 2009).

Most of the related works in the literature point out that ensemble learning has
been used in recommender system as a way of combining the prediction of multiple
algorithms (heterogeneous ensemble) to create a stronger rank (JAHRER; TöSCHER;
LEGENSTEIN, 2010), in a technique known as blending. They have been also used
with a single collaborative filtering algorithm (single-model or homogeneous ensemble),
with methods as Bagging and Boosting (BAR et al., 2013). We going to provide a more
detailed analysis of the existing ensemble algorithms in the next section.

In the work of Randle et al. (RENDLE, 2010), the developers propose a technique
called factorization Machines (FM), responsible for combining the advantages of Support
Vector Machines (SVM) with factoring models. This technique can consider both infor-
mation from items such as user information to generate the recommendation. However,
the calculation of similarity between the information is done by pairs of comparison,
which causes not as accurate results, as it does not take into consideration the semantics
of data.

However, those solutions do not consider the multiple metadata present in the items,
and are often not practical to implement in a production scenario because of the compu-
tational cost and complexity. In the case of heterogeneous ensemble, it needs to train all
models in parallel and treat the ensemble as one big model, but unfortunately training
100+ models in parallel and tuning all parameters simultaneously is computationally not
feasible (TÖSCHER; JAHRER; BELL, 2009). In contrast, the homogeneous ensemble
demands the same model to be trained multiple times, and some methods such as Boost-
ing requires that the underlying algorithm be modified to handle the weighted samples.
Beltrão et al. (BELTAO et al., 2014) tried a different approach and combined multiple
metadata by concatenating them, with a modest performance increase.
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Our proposed solution involves three ensemble strategies that combine predictions
from a recommender trained with distinct item metadata into a unified rank of recom-
mended items. In comparison, da Costa at al. (FORTES; MANZATO, 2014), proposed a
similar ensemble strategy based on machine learning in order to combine different types
of interactions generated by multiple recommenders. Those strategies differ from the
aforementioned works because they adopt a post-processing step to analyze the rankings
created separately by different algorithms. This is because our method uses the user
prediction (which is the least possible information in any Recommender System).

Our approach involves two voting strategies and a weighted strategy where the param-
eters are optimized using a Genetic Algorithm approach. The advantage of this approach
is that it does not require the algorithm to be modified, or to be trained multiple times
with the same dataset, and therefore, it is easier to extend the models to other types of
interactions and recommenders.

In the next subsection, we describe in details some types of Ensemble that exists in
literature, and how they are related to this work.

3.2 ENSEMBLE LEARNING FOR RECOMMENDER SYSTEMS

An ensemble method combines the predictions of different algorithms to obtain a stronger
final prediction. Experimental results have shown that ensemble-based methods outper-
form any single, more complex algorithm (JAHRER; TöSCHER; LEGENSTEIN, 2010).

Constructing good ensembles of classifier has been a very active area of research in
supervised (DITTERRICH, 1997), and can have two different ways of generating en-
sembles. One way is using a single learning algorithm (DIETTERICH, 2000) , such as
decision tree learning or neural network training. Different classifiers are generated by
manipulating the training set (as done in boosting or bagging), manipulating the input
features, manipulating the output targets or injecting randomness in the learning algo-
rithm. The generated classifiers are then typically combined by majority or weighted
voting (DŽEROSKI; ŽENKO, 2004).

Another approach is to generate classifiers by applying different learning algorithms
(heterogeneous models) to a single dataset. One popular way is Stacking (WOLPERT,
1992), a technique used to learn a combining method in addition to the ensemble of
classifiers. Voting is then used as a baseline method for combining classifiers against
which the learned combiners are compared (DŽEROSKI; ŽENKO, 2004). The two top-
performers in the Netflix competition utilized blending, which may be considered to be
a form of stacking (JAHRER; TöSCHER; LEGENSTEIN, 2010).

The following sections describe the ensemble approaches used in the literature:

3.2.1 Bagging

Bagging, or Bootstrap Aggregation combines multiple outputs of a learning algorithm by
taking a plurality vote to get an aggregated single prediction. It decreases the variance
of your prediction by generating additional data for training from your original dataset
using combinations with repetitions to produce multisets of the same cardinality/size as
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your original data. Many experimental results show that bagging can improve accuracy
substantially. The vital element in whether bagging will improve accuracy is the insta-
bility of the predictor (BREIMAN, 1996). For an unstable predictor, a small change in
the training dataset may cause large changes in predictions(BREIMAN et al., 1996). For
a stable predictor, however, bagging may slightly degrade the performance(BREIMAN,
1996).

Figure 3.3: The bagging algorithm (HAN; KAMBER; PEI, 2011) creates an ensemble
of models (classifiers or predictors) for a learning scheme where each model gives an
equally-weighted prediction.

The algorithm is described in Figure 3.3. Given a set, D, of d tuples, bagging works
as follows (HAN; KAMBER; PEI, 2011). For iteration i(i = 1, 2, 3, ....., k), a training set,
Di of d tuples is sampled with replacement from the original set of tuples, D. Because
sampling with replacement is used, some of the original tuples of D may not be included
in Di, whereas others may occur more than once. A classifier model Mi is learned for each
training set, Di. To classify an unknown tuple, X, each classifier, Mi, returns its class
prediction, which counts as one vote. The bagged classifier, M*, counts the votes and
assigns the class with the most vote to X. If we use Bagging for prediction of continuous
values, we can take the average value of each prediction for a given test tuple.
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3.2.2 Boosting

Boosting combines the different decisions of a learning algorithm to produce an aggregated
prediction. It calculates the output using several different models and then average the
result using a weighted average approach. The weights of training instances change
at each iteration to force learning algorithms to put more emphasis on instances that
were predicted incorrectly previously and less emphasis on instances that were predicted
correctly previously (DIETTERICH, 2000).

Intuitively, combining multiple models only helps when these models are significantly
different from one another and when each one treats a reasonable percentage of the
data correctly. Ideally, the models complement one another, each being a specialist in a
part of the domain where the other models do not perform very well (HAN; KAMBER;
PEI, 2011). The boosting method for combining multiple models exploits this insight
by explicitly seeking models that complement one another. As bagging, boosting uses
voting (for classification) or averaging (for numeric prediction) to combine the output
of individual models. Again like bagging, it combines models of the same type, such as
decision trees (HAN; KAMBER; PEI, 2011).

However, the boosting technique is iterative, and each new generated model is influ-
enced by the performance of the models generated previously. The purpose of Boosting
is to create new models, fixing the bad examples classified by previous models, so its
strategy is to focus on the examples classified wrongly. For example, assuming there are
eight training examples and that Example 1 is difficult to classify. Then, in each training
set along the iterations of the algorithm, the Example 1 will be presented more times (as
iterations of Table 3.2).

Table 3.2: Boosting example.

Training dataset Examples

Training dataset (original) 1, 2, 3, 4, 5, 6, 7, 8

Training dataset 1 (boosting) 2, 7, 8, 3, 7, 6, 3, 1

Training dataset 2 (boosting) 1, 4, 5, 4, 1, 5, 6, 4

Training dataset 3 (boosting) 7, 1, 5, 8, 1, 8, 1, 4

Training dataset 4 (boosting) 1, 1, 6, 1, 1, 3, 1, 5

In addition, this technique gives a weight to each of the models generated according
to how well they classified the training data. Thus, models with less mistakes will have
a greater weight in classification of new examples while models with more mistakes will
have a lower weight.
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In a visual example, considering the dataset shown in Figure 3.4 (a), the samples
misclassified by the first classifier h1 increases their weight in the next distribution (rep-
resented by the sample size), as shown in Figure 3.4 (b). Then, a new classifier h2 is
generated considering the distribution of the new weights, as shown in Figure 3.4 (c),
gives an even greater weight to examples difficult to classify. Finally, in Figure 3.4 (d)
shows the combination of the final classifier models (h1, h2, h3 and h4) generated consid-
ering their weights

Figure 3.4: Example from LLerena (LLERENA, 2011) illustrating the Boosting tech-
nique: (a) initial dataset, (b) the dataset classified with the “weak” classifier (First Run),
(c) the dataset classified with the “weak” classifier (Second Run) and (d) construction of
the final classifier combining “weak” classifiers. The item size represents its weight.

A very popular boosting algorithm is AdaBoost (FREUND; SCHAPIRE, 1997). It
is the abbreviation for adaptive boosting algorithm because it adjusts adaptively to the
errors returned by classifiers from previous iterations. In AdaBoost, the input includes
a dataset D of d class-labeled tuples, an integer k specifying the number of classifiers in
the ensemble and a classification-learning scheme.
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Figure 3.5: AdaBoost Algorithm framework (HAN; KAMBER; PEI, 2011). The weights
are assigned to each training tuple. A series of k classifiers is iteratively learned. After a
classifier Mi is learned, the weights are updated to allow the subsequent classifier, Mi +
1 , to “pay more attention” to the training tuples that were misclassified by Mi.

Each tuple in the dataset is assigned a weight. The higher the weight is the more it
influences the learned theory. Initially, all weights are assigned a same value of 1/d. The
algorithm repeats k times. At each time, a model Mi is built on current dataset Di which
is obtained by sampling with replacement on original training dataset D. The framework
(HAN; KAMBER; PEI, 2011) of this algorithm is detailed in Figure 3.5
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3.2.3 Bayes optimal classifier

The Bayes Optimal Classifier creates an ensemble consisting of all the hypotheses in the
hypothesis space. Each hypothesis is given a vote proportional to the likelihood that the
training dataset would be sampled from a system if that hypothesis was true. The Bayes
Optimal Classifier can be expressed with the following equation:

y = argmaxcj∈C
∑
hi∈H

P (cj|hi)P (T |hi)P (hi) (3.1)

Where y is the predicted class, C is the set of all possible classes, H is the hypothesis
space, P refers to a probability, and T is the training data. Although, theoretically, on
average, no other ensemble can outperform it (JAHRER; TöSCHER; LEGENSTEIN,
2010). It has only has been utilized in simple and small problems. There are several
reasons why the Bayes Optimal Classifier are not used in practice:

� The argmax utility function requires a small number of hypothesis spaces to iterate
over.

� It cannot be used if the hypotheses yield only a predicted class, rather than a
probability for each class as required by the term P (cj|hi).

� Estimating the prior probability for each hypothesis P (hi) is rarely feasible.

� Computing an unbiased estimate of the probability of the training set given a
hypothesis P (T |hi) is non-trivial.

3.2.4 Stacking

Stacking generalization (WOLPERT, 1992), or stacking is a technique in which the pre-
dictions of a collection of models are given as inputs to a second-level learning algorithm.
This second-level algorithm is trained to combine the model predictions optimally to form
a final set of predictions. Stacking typically yields performance better than any single
one of the trained models. Unlike bagging and boosting, stacking is not normally used to
combine models of the same type. Instead it is applied to models built by different learn-
ing algorithms. As an example of the power of stacking, the team BellKor’s Pragmatic
Chaos won the $1 million prize offered by the Netflix Prize using a blend of hundreds of
different models (TÖSCHER; JAHRER; BELL, 2009; PIOTTE; CHABBERT, 2009).

Consider that you have an ensemble learning, with multiple classifiers trying to fit
to a training set to approximate the target function. Since each classifier will have its
own output, we will need to find a combining mechanism to combine the results. One
way to combine outputs is by voting—the same mechanism used in bagging. However,
unweighted voting only makes sense if the learning schemes perform comparably well. If
at least one of classifiers make predictions that are grossly incorrect, the results will get
much worse.

Stacking introduces the concept of a meta learner, which replaces the voting proce-
dure. The problem with voting you cannot guarantee that all classifiers are trustable.



3.2 ENSEMBLE LEARNING FOR RECOMMENDER SYSTEMS 33

Figure 3.6: Stacking generalization overview.

Stacking tries to learn which classifiers are the reliable ones, using another learning al-
gorithm - the meta learner — to discover how best to combine the output of the base
learners (HAN; KAMBER; PEI, 2011)

As illustrated by the Figure 3.6 , the input to the level-1 model, or meta-model are
the predictions of the base models, or level-0 models. A level-1 instance has as many
attributes as there are level-0 learners, and the attribute values give the predictions of
these learners on the corresponding level-0 instance (HAN; KAMBER; PEI, 2011).

Although some authors consider the same thing and use “stacked ensembling” and
“blending” interchangeably, blending was a word introduced by the Netflix winners(TÖSCHER;
JAHRER; BELL, 2009; PIOTTE; CHABBERT, 2009). Its similar o stacked generaliza-
tion, but a bit simpler and less risk of an information leak. Performance-wise, both
techniques are able to give similar results. In Figure 3.7 is depicted the solution, com-
posed of approximately 500 predictors.

With blending, instead of creating out-of-fold predictions for the train set, you create
a small holdout set of say 10% of the train set. The stacker model then trains on this
holdout set only. It has some benefits: It’s simpler than stacking; The generalizers and
stackers use different data, preventing an information leak; and use can use as many
models as you want and just throw models in the ‘blender’. It decides if it wants to keep
that model or not. However, it also has some issues. You use less data overall and there’s
a chance that the final model is overfit, as the holdout set is limited.
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Figure 3.7: The BigChaos Solution to the Netflix Grand Prize (TÖSCHER; JAHRER;
BELL, 2009).

3.3 SUMMARY

This chapter discussed the main concepts related to movies recommendation. It was
characterized the problem including motivations, benefits and definitions and what are
possible approaches that can be used to overcome the limitations. Then it was discussed
the evolution of Recommender Systems, and how they relate to this work, highlighting
and discussing related work and future trends. Finally, we made a thoughtful analysis of
ensemble techniques, an alternative for combining together multiple metadata.

From what was presented in this chapter, you can see the importance of ensemble
methods for recommendation systems and the need to further explore these techniques,
given that the more information its available, the greater the probability of generating
good recommendations to the user. The combination of metadata using the ensemble
algorithms cited in this chapter, can greatly enhance the performance of recommender
systems. However, the studies presented do not propose a general model for the creation
of a recommendation system that can be used specifically for metadata combination.
In this context, the next chapter presents a proposal to improve the recommendation
performance by all available metadata.
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4
COMBINING METADATA USING ENSEMBLE

METHODS

Believe nothing, no matter where you read it, or who said it, no matter if

I have said it, unless it agrees with your own reason and your own

common sense

—DREAMS COME DUE (John Calt)

As discussed in the previous chapters, using available metadata is important, and
hybrid recommenders play an important role because they group together the benefits
of content based and collaborative filtering. However, some recent systems which exploit
latent factor models do not consider the metadata associated to the content, which could
provide significant and meaningful information about the user’s interests. Another issue
is that the current metadata aware recommenders usually supports only one type of item
attribute at a time. To overcome this issue, this work proposes a different approach for
handling multiple metadata, using ensemble algorithms. In this chapter, we introduce
multiple ensemble strategies to combine different metadata, but with the advantage that
it does not require the algorithm to be modified, or to be trained multiple times with the
same dataset, and therefore, it can be used in many current Recommender Systems.

In this chapter, is presented an open source recommendation tool for combining meta-
data, using ensemble algorithms developed during the research. This tool is based on the
MyMediaLite tool (GANTNER et al., 2011), and implements multiple ensemble strate-
gies, which support the idea that the more types of metadata the recommender system
can handle, the more accurate the generated recommendations will be.

This chapter is organized as follows: Section 4.1 specifies the notation used; Section 4.2
describes the proposed ensemble algorithms; Section 4.3 presents the general architecture
and details of the implementation; and, finally, Section 4.4 presents the summary of this
chapter.

35
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4.1 NOTATION

This chapter extends the notation established in Chapter 2. We need to recall that
our recommenders produce a ranking of items. For generating the recommendations,
this Ranking-Oriented Recommender receives as an input a dataset of ratings as a tuple
〈u, i, r〉, and outputs a matrix MUI , where U is the set of all users and I is the set of
all items known by the recommender system. Each row of the matrix M is composed
of a vector of tuples 〈i, r̂ui〉, ordered by the item score prediction r̂ui for the user u.
The ensemble algorithms proposed in this paper can be formally defined as a function
f : MK →M , where the input MK is a vector of k-predictions and the output is a matrix
of the combined predictions M .

4.2 ENSEMBLE STRATEGIES

The strategies elicited were inspired by group decision-making strategies that combine
several users’ preferences to aggregate item-ranking lists. According to Senot et al
(SENOT et al., 2010) there are three categories of strategies, namely majority-based,
which strenghten the “most popular” choice among the group, e.g. Borda Count and
Plurality Voting strategies; Consensus-based strategies, which average somehow all the
available choices, e.g. Additive Utilitarian and Average without Misery ; and borderline
strategies, also known as role-based strategies, which only consider a subset of choices
based on user roles or any other relevant criterion, e.g. Dictatorship, Least Misery and
Most Pleasure strategies.

In (BELTAO et al., 2014), it was investigated the problem of using multiple meta-
data and it was evaluated the performance of various metadata in the context of movie
recommendation. It also experimented a simple strategy for combining different types
of attributes by combining them in a unified metadata x item list. The results were
promising, however, the performance improvement was moderate. Following this work in
(CABRAL et al., 2014), we proposed an ensemble framework that consisted of training
the recommender system for each different item metadata and combining them with one
of the ensemble strategies presented next. The strategies can be defined as a type of
stacking ensemble.

In the following sections we present proposed strategies: Most Pleasure, the simplest
ensemble strategy, that combines predictions based on score; Best of All strategy, that
determines a preferred metadata for a user and uses it to create the ensemble; and
the Weighting strategy, that uses multiple metadata and weights them with a Genetic
Algorithm optimizing the Mean Average Precision (MAP).

4.2.1 Näıve Combination Strategy

This is a very straightforward way of combining metadata, and was used as a baseline
for our proposed strategies. It consists of getting pairs of attributes combining them,
creating a linearly combined in pairs by concatenating the attributes.

The Näıve combination Strategy, proposed in (BELTAO et al., 2014), investigates the
problem of using multiple metadata and it this solution consists of concatenating the
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different types of attributes as a single metadata x item list. Figure 4.1 illustrates this
strategy.

Figure 4.1: Näıve Combination Strategy. It concatenates two lists of attributes into one.

The results were positive when compared to not utilizing the metadata, however,
the performance improvement was modest and more advanced strategies were proposed
below.

4.2.2 Most Pleasure Strategy

Figure 4.2: Most Pleasure Strategy.
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The Most Pleasure strategy is a classic aggregation method, often used for combin-
ing individual ratings for group rating (MASTHOFF, 2011). It takes the maximum of
individual ratings for a specific item and creates a unified rank. Figure 4.2 illustrates the
Most Pleasure strategy, in which the output comprehends a ranked list of movies with
highest ratings from two distinct input sets.

Input: Vector of predictions, P
Output: Predictions ensemble M
for u = 1,...,#Users do

for i = 1,...,#Items do
Select highest r̂ui for the item i among the K-predictions for the user u
Mui ← (i, r̂ui) //Store the highest score

end
Sort Mu by r̂ui

end

Algorithm 2: Most Pleasure algorithm.

Algorithm 2 shows that it only needs the generated prediction vector as an input.
This vector is composed of the predictions from the recommender algorithm trained with
one of the item metadata. For each user, a new prediction is created, selecting the highest
score of an item among all the individually-trained algorithms.

The idea behind this strategy is that differently trained algorithms have a distinct
knowledge about the user’s preferences, and the predicted score can be considered as an
indicator of the algorithm’s confidence. So the created ensemble is a list of items whose
distinct algorithms have more confidence to recommend.

4.2.3 Best of All Strategy

The Most Pleasure strategy gives the same weight for different types of metadata. How-
ever, it is natural to assume that different types of metadata can affect users differently. In
contrast, the Best of All strategy considers the recommendation algorithm that provides
the best results for a specific user, and uses this algorithm to provide future predictions
as illustrated in Figure 4.3.

The Best of All Strategy, as detailed in Algorithm 3 requires as an input: i) the recom-
mendation algorithm, ii) a training dataset, iii) a probe dataset, and iv) the set of item’s
metadata. Unlike the Most Pleasure strategy, this one requires a probe run to determine
which is the best performing algorithm. Therefore, the dataset is divided in training
and probe. The recommender algorithm is firstly trained using each of item metadata
individually. Then, for each user, a probe run is made to determine the metadata with
the highest performance. This performance is indicated by the Mean Average Precision
(MAP) metric (GOODRUM, 2000), often used for ranked recommendations. Finally, the
algorithms are retrained using all data (including the probe set), and the final ensemble
is the result of the combination of predictions using, for each user, the prediction from
the algorithm with the highest performance in the probe test.
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Figure 4.3: Best of All Strategy.

The idea behind this strategy is that a single metadatum can greatly influence the
user’s preferences, and this should be used for future predictions. For instance, if a User
A enjoys films from a particular genre such as “horror”, and other User B enjoys films of
some specific theme such as “bloody films”, the ensemble will contain predictions from
the recommendation algorithm trained with both: the genre metadata for User A, i.e.
“horror”, and a keyword metadata for user B, i.e. “bloody”.

4.2.4 GA Weighting Strategy

One drawback of the Best of All strategy is that it considers that only one type of
metadata influences the user preference. However, the GA Weighting strategy assumes
that the interests of a user may be influenced by more than one metadatum, and with
different levels. The GA Weighting strategy considers all available metadata assigning
different weights for each prediction as illustrated in Figure 4.4.

Figure 4.4: Weighting Strategy.

Similarly to the previous strategy, the Algorithm 4 requires as an input: i) the recom-
mendation algorithm, ii) a training and probe dataset, and iii) the set of item metadata.
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Input: T - Training dataset of rating < U, I,R >
Input: P - Probe dataset of rating U, I, R
Input: A - Vector of Metadata
Input: PredAlg - the Base prediction algorithm
Output: Predictions ensemble M
for m = 1,...,#Metadata do

Km ← PredAlg Trained with T dataset and Au

end
for u = 1,...,#Users do

Evaluate all K models against the P dataset and select the one with highest
MAP for the user u as highestu

end
for m = 1,...,#Metadata do

Km ← PredAlg Trained with T+P dataset and Au

end
for u = 1,...,#Users do

r̂u ← Khighestuu
Mu ← r̂u

end

Algorithm 3: Best of All algorithm.

After training the algorithm using each of item metadata individually, a probe run is also
needed; however, the objective is to determine the optimal weights for each user. This is
an optimization problem and that can be solved using a Genetic Algorithm (GA). GA is
particularly appealing for this type of problem due to its ability to handle multi-objective
problems. In addition, the parallelism of GA allows the search space to be covered with
less likelihood of returning local extremes (NEWCOMBE, 2013).

The probe part consists of running the GA to find out the optimal weights. Our
algorithm was implemented using the GA Framework proposed by Newcombe (NEW-
COMBE, 2013), where the weights are the chromosomes, and the fitness function is the
MAP score against the probe dataset. Other GA characteristics include the use of 5%
of Elitism, Double Point crossing-over, and Binary Mutations. Finally, the algorithms
are retrained using all data (including the probe set), and the final ensemble uses, as
the item score, the sum of individual predictions multiplied by the weights found in the
probe phase and divided by the total number of metadata.

The idea behind this strategy it that the different types of metadata influence dif-
ferently the user preference. Still in the context of movies, let us consider two users:
User A, that enjoys films from a determinate set of genres, but do not care about the
production country and User B, that does not care about film genre or country of pro-
duction. For the User A, the ensemble should give a higher weight for the film genre,
and a lower weight for the production country. In contrast, to the User B, the ensemble
should equally distribute the weights between those metadata.
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Input: T - Training dataset of rating < U, I,R >
Input: P - Probe dataset of rating < U, I,R >
Input: A - Vector of Metadata
Input: PredAlg - the Base prediction algorithm
Output: Predictions ensemble M
for m = 1,...,#Metadata do

Km ← PredAlg Trained with T dataset and Au

end
for u = 1,...,#Users do

Get weights wu for all K models against the Pu dataset for the user u using a
Genetic Algorithm, where the MAP is the Fitness function.

end
for m = 1,...,#Metadata do

Km ← PredAlg Trained with T+P dataset and Au

end
for u = 1,...,#Users do

r̂ui ←
Metadata∑

i=1

wuiKi/Metadata

Mui ← r̂ui
end

Algorithm 4: Weighting algorithm.

4.2.5 BPR Learning Strategy

This strategy was not proposed by this work, it was originally proposed by (FORTES;
MANZATO, 2014), for combining different kinds of interactions. We use it in our evalu-
ation as a comparative. It is similar to our Weighting strategy. The main difference, is
that it uses a Gradient Decent as optimization technique and tries to maximize the ROC
curve, while the Weighting optimize the MAP metric.

In order to combine the output generated by each recommendation technique trained
with a different kind of interaction, this ensemble strategy is based on a machine learning
algorithm (FORTES; MANZATO, 2014). Firstly, it extracts information about users’
interactions from the database, such as sets of tags, ratings and browsing history. With
these interactions available, it runs the recommendation algorithms, which receive as
input the users’ interactions. In this step, each algorithm runs with a particular set of
feedback, resulting in a feedback-specific personalized ranking (individual ranking) for
each user. Thus, a feedback-specific ranking contains the items and their associated
scores, which represent how much a user likes an item described by the considered set of
attributes. The final step consists of combining all considered rankings into a final list
of recommendations. To do that, it assigns weights according to the relevance of each
type/set of attributes. This combination is performed according to a linear function,
represented by r̂finalu,i :
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r̂finalui = βar
a
ui + βbr

b
ui + ...+ βn.r

n
ui. (4.1)

where raui, r
b
ui, ..., rnui indicate the scores computed previously by each individual recom-

mendation algorithm for a (u, i) pair, and βa, βb, ..., βn are the weights of each individual
score for the final prediction, learned using Learn BPR Algorithm 5. This is possible
because of the natural strategy of BPR, which in a each interaction, select randomly a
couple of items i and j for a user u, a known item i and one unknown item j.

Input: DK

Output: Learned parameters Θ
Initialize Θ with random values
for count = 1,...,#Iter do

draw (u, i, j) from DK

ŝuij ← r̂ui − r̂uj
Θ← Θ + α

(
e−ŝuij

1+e−ŝuij
. ∂
∂Θ
ŝuij − ΛΘΘ

)
end

Algorithm 5: Learning through LearnBPR.

Finally, the algorithm predicts scores for items not seen by each user and sorts these
scores in descending order resulting in the final ranking, which will be recommended in
a top N ranking list.

The underlying characteristic of this algorithm is the ability to learn the users’ prefer-
ences and employ this information to match the recommendations generated individually
for each type of interaction.

4.3 ALGORITHMS IMPLEMENTATION

For implementing the ensemble methods described in the previous section it was chosen
not to develop each strategy individually, where the solution would be used only in this
work and let it to bit rot. Instead we decided to build an extensible platform where new
ensemble algorithms can be built on and with enough flexibility so other developers can
utilize it.

MyEnsembleLite was the result of this idea. It is an open-source, publicly available1.
All four ensemble strategies presented previously were implemented on it. It was built
using the MyMediaLite library (GANTNER et al., 2011), which is a fast and scalable,
multi-purpose library of recommender system algorithms, aimed both at recommender
system researchers and practitioners. It has been chosen for a number of reasons:

� Stable and Established tool. MyMediaLite initial release was on October 21,
2010, with the latest version 3.11, released in February, 2015. It has been used in
many industrial projects and research (GANTNER et al., 2011). Thus, we have
good indicators of stability and efficiency.

1https://github.com/wendelad/RecSys
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Figure 4.5: Overview of MyEnsembleLite Architecture.

� Set of features. After examination of other open-source solutions, we found that
MyMediaLite had a good number of features needed to build our tool. Because, it
supports the two most common scenarios in collaborative filtering: rating prediction
and item prediction from positive-only implicit feedback, offering multiple state-of
the-art algorithms for those two tasks, with dozens of different recommendation
methods. It also supports online-updates, serialization of computed models, and a
rich set of routines for evaluation (AUC, MAP, precision@N, recall@N and more).



44 COMBINING METADATA USING ENSEMBLE METHODS

� Portable. It is implemented in C#, and runs on the .NET platform. With the free
.NET implementation Mono, it can be used on multiple operating systems such as
Linux, Windows and MacOS. Using the library is not limited to C#, though: it
has wrappers from many other languages such as Ruby, Clojure2 and Python;

� Liberal license. MyMediaLite uses the GNU General Public License (GPL).3, a
permissive and very popular free software license, that enables us to modify and
distribute the code while accepting contributions from external developers.

Figure 4.6: Example output of the MyEnsembleLite Tool.

In Figure 4.5, the architecture is detailed, illustrating how MyEnsembleLite imple-
ments the ensemble techniques in this work. It is composed of four big modules:

1. File pre-processing. This module is responsible to do any sort of file-preprocessing,
for example, the MyEnsembleLite needs a specific input format, often different than
the available datasets. The developer had to convert to the needed format to be
able to run experiments. The official answer to this, was to create Perl scripts for
each dataset. However, for beginners this can be an annoyance. This module have

2https://github.com/timgluz/clj-mml
3http://opensource.org/licenses/GPL-2.0
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some boilerplate and examples so a dataset can be easily converted to the right
format.

This module is also responsible for splitting the files in multiple k-folds, for a cross
validation evaluation. Although the MyMediaLite already supports splitting a file
for cross-validation. It has a non-deterministic way of splitting the k-folds and
generating the files, causing subsequently runs to produce slightly different results.
For some experiments it was required to have a fixed set of k-folds for reproducibility.
So this module enables splitting files and saving the output.

2. Training. This module is responsible for training the recommenders. It can use
any algorithm available in MyMediaLite. For example, in an ensemble of three meta-
data’s, it is responsible for training each recommender with the specific metadata
to later provide the Ensemble module with the results for ensembling.

3. Ensemble. Here is the core of MyEnsembleLite, where the ensemble strategies were
implemented. It provides a clear interface, where the ensemble strategies receive the
results of previous probe run (if it requires it), and the set of results from previous
trained recommenders. Actually, it also utilizes a Genetic Algorithm library for
weighting optimization.

4. Evaluation. This module extends the evaluation framework available in MyMedi-
aLite, enabling it to comprehends the output generated from the Ensemble Module.
Actually it supports: AUC; precision@; MAP; recall; NDCG and MRR.

In the Figure 4.6 it can be seen the output of a run. It shows the evaluation in
various metrics (MAP, AUC, Precision, Recall, etc...) for each recommender trained
with a single metadata, and the result for each ensemble. It can use any Recommender
Algorithm implemented in MyMediaLite, however in this context of combining multiple
metadata make no sense to use any algorithm that is not attribute/metadata aware.
Actually the following recommenders supports attributes:

� ItemAttributeKNN, a k-nearest neighbor (kNN) item-based collaborative filter-
ing using the correlation of the item attributes.

� UserAttributeKNN, a k-nearest neighbor (kNN) user-based collaborative filter-
ing using the correlation of the user attributes.

� ItemAttributeSVM, a content-based filtering using one support-vector machine
(SVM) per user.

� MostPopularByAttributes, a simple algorithm that always recommends the
most popular items by attribute.

� BPRMF-Mapping, BPRMFAttr , BPR-GSVDPlusPlus and BPRLinear.
A set of matrix factorization algorithms that implements the Bayesian Personalized
Ranking that also takes into account what users have rated and its attributes.
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The MyEnsembleLite tool is public available in a GitHub Repository4. It is still in
development, however it does have a working prototype. The use instructions are available
in the embedded help as some working examples. It has been tested in Windows and
Linux (using Mono) environments. Contributions are welcome and expected.

4.4 SUMMARY

This chapter introduced the MyEnsembleLite tool, and presented four ensemble strategies
capable of processing multiple metadata to generate a more accurate recommendation.
Recommender algorithms may not be able to take advantage of multiple types of metadata
and the proposed ensemble algorithms enable those recommenders to take advantage of
all available metadata.

Initially, the presented techniques were based on heuristics, gathering the recommen-
dations generated individually and combining them, namely Most Pleasure, Best of All.
Most Pleasure, the simplest strategy, consisted of combining the predictions based on
score, while Best of All determined a single metadata that was more preferred for a user.
However, despite the results of these techniques have been positive when compared to not
utilizing the metadata, as will be seen in Chapter 5, the strategies where very näıve and
something more sophisticated could be used. Consequently, two new approaches were de-
veloped in order to combine multiple metadata. Those strategies also process the results
generated individually for each type of metadata, but use a machine learning technique
to examine each type of metadata when combining the ranks. Specifically, GA Weight-
ing strategy uses multiple interactions and weights them with a Genetic Algorithm that
optimizes the MAP and finally, BPR Learning uses LearnBPR to optimize the weights
related to AUC.

In the next chapter, the experiments and results of the evaluation of proposed ensem-
ble strategies will be presented.

4https://github.com/wendelad/RecSys



Chapter

5
EVALUATION

If we’re facing in the right direction, all we have to do is keep on walking.

—JOSEPH GOLDSTEIN ( The Experience of Insight)

This chapter will present multiple evaluations performed to verify that the objectives
specified in this work have been achieved with the development of the ensemble tech-
niques. It is expected that with the combination of multiple metadata, there will be
an improvement in the quality of recommendations in terms of precision. The evalu-
ation consists in comparing the ensemble strategies presented in the previous chapter,
using standard datasets available in the literature. The experiments comprehend four
experiments, where three are in the movie domain: One with a Näıve combination of
metadata; Another using all the proposed ensemble techniques; and, finally one with a
different objective ( user interaction) in the movies domain. A final experiment in the
Books domain was performed to guarantee that the proposed techniques in this master
thesis generalizes to another domain.

This chapter is organized as follows: in Section 5.1 we present details of the methodol-
ogy used for the development and evaluation of this work, tools and datasets used during
the experiments; from Section 5.2 to Section 5.5 all experiments are depicted;Section 5.6
discuss the results and finally, Section 5.7 presents the final remarks.

5.1 METHODOLOGY

The objective of the evaluation presented in this work is to validate the proposed ensemble
strategies in Chapter 4. It is used the algorithms presented in Chapter 2 with real-
world datasets to verify the performance of Recommender Systems performance by using
standard evaluations metrics such as MAP and AUC. To this end, four experiment were
performed. The goals of each experiment are described as following:

� Experiment 1. This was an initial evaluation, to validate the hypothesis that
metadata combination could improve the performance of Recommender Systems.

47



48 EVALUATION

It was used the MovieLens 100k 1 dataset with some additional data extracted from
IMDB. The Näıve Combination Strategy was used for combining five different types
of metadata. This experiment also gave insights of the most performant metadata
for this particular dataset.

� Experiment 2. Following the previous experiment, in this evaluation, it was used
more advanced ensemble strategies proposed in Chapter 4 to combine metadata. It
was used the HetRec 2011 MovieLens 2k dataset (CANTADOR; BRUSILOVSKY;
KUFLIK, 2011).

� Experiment 3. This was the last experiment in the movie domain. In this exper-
iment it was compared the proposed ensemble strategies for a different objective.
The difference was that the ensemble strategies were applied not to combine meta-
data but user interactions (historic, tags and explicit rating). It has also used the
HetRec 2011 2k dataset (CANTADOR; BRUSILOVSKY; KUFLIK, 2011).

� Experiment 4. Because all previous experiments were performed in the movie
recommendation domain, another experiment in a different domain was needed
in order to verify whether the proposed ensemble techniques generalize and not
were specific to the movies domain. This experiment was executed with the Book-
Crossing dataset, of Books evaluations.

The following subsections presents other aspects of the methodology used in this work.
Section 5.1.1 details the datasets used where the experiments were conducted; and, in
Section 5.1.2 shows how the work was evaluated.

5.1.1 Datasets

To evaluate the proposed ensemble techniques, we used public available datasets. The
experiments were performed in four different datasets. Three in the movie domain and
one in the book domain. In this section, we present information about those datasets.

5.1.1.1 Extended MovieLens 100k. In this work, it was used the 100k MovieLens
database2 combined with Internet Movie Database(IMDB)3 in order to infer which is the
best algorithm in movie recommendation. The MovieLens4 is a Website that provides
movie recommendations. The GroupLens5 research group provides three databases gen-
erated from the base of MovieLens called MovieLens 100k (100k-ML), MovieLens 1M
(ML-1M) and MovieLens 10M (ML-10M). Such bases vary in number of items, users’
and reviews. It was utilized the 100k version. Because the MovieLens dataset has few
metadata about the movies (only genres and release date), it was extracted additional

1http://www.grouplens.org/node/73
2http://www.grouplens.org/node/73
3http://www.imdb.com/interfaces
4http://www.movielens.org
5http://www.grouplens.org
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(a) Distributions of movie ratings.

(b) Distributions of user ratings.

Figure 5.1: Distributions of Movie ratings and User ratings in MovieLens 100k dataset.
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information from IMDB database, thus enriching the movie dataset information. Figures
5.2 and 5.3 illustrate the items present in each dataset.

Figure 5.2: IMDB database.

Figure 5.3: MovieLens database.

Firstly, we tried to align the information of both datasets using the indexes to generate
a unified dataset. However, since the indexes from IMDB and Movielens are not always
similar, it was used then a search using the title and year present in the MovieLens
dataset to match the movies index in IMDB and recover the information we wanted. It
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was necessary to modify the data in MovieLens because the movie titles were written in
English form (e.g. Godfather, The). Therefore, we changed the names to the form used
in IMDB (e.g. The Godfather). The discovery of these indexes enabled us to extract
the information we needed, i.e. genre, actor, writer, director and keyword. With this
metadata, we created a unified dataset, connecting the movies with their metadata. As
we only used the movies from MovieLens dataset, the additional information extracted
from IMDB was incorporated to the MovieLens dataset. Worth mentioning that only
three movies did not have additional information extracted from IMDB, which did not
impact the results.

The final augmented database of MovieLens 100k, contains 100,000 ratings of 943
users on 1682 movies, with 5 different metadata : actors; directors; genres; keywords;
and, writer. In the Figure 5.1 we present details on the distribution of users and movies
ratings. It can be seen that all users had rated at least 20 movies, and 39% rated more
than 100 movies. From the user perspective, cold-start would not be a problem. In the
other hand, looking at the Distribution of Movie Ratings, can be seen that 31% of movies
had not received more than 10 ratings, with 20% of receiving more than a 100 ratings.
This is probably because few movies are blockbusters, attracting a big number of ratings.
In fact, the most rated movie in this dataset was Star Wars (1977), with 583 ratings.

5.1.1.2 HetRec2011 MovieLens 2k. Later, we found out that an extended Movie-
Lens database had been released. HetRec 2011 MovieLens 2k(CANTADOR; BRUSILOVSKY;
KUFLIK, 2011) is an extension of MovieLens10M dataset, released for the 2nd Interna-
tional Workshop on Information Heterogeneity and Fusion in Recommender Systems
(HetRec 2011 6), which contains personal ratings and tags about movies. In the dataset,
MovieLens movies are linked to the Internet Movie Database (IMDb) 7 and Rotten-
Tomatoes (RT) 8 movie review systems. Each movie has its IMDb and RT identifiers,
English and Spanish titles, picture URLs, genres, directors, actors (ordered by “popular-
ity”), countries, filming locations, and RT audience’ and experts’ ratings and scores. The
dataset was composed of 2113 users with 855598 ratings on 10197 movies, including the
relation between 20 movie genres, 4060 directors, 95321 actors, 72 countries and 13222
tags.

In the Figure 5.4 depicts the distribution the distribution of users and movies ratings.
It can be seen that all users had rated at least 20 movies, and the majority (77%) rated
more than 100 movies. This is a good number of ratings per user, providing a rich amount
of information for a collaborative filtering recommender, avoiding the cold-start problem.
Similarly, to the previous dataset, looking at the Distribution of Movie Ratings, can be
seen that 32 % of movies had not received more than 10 ratings, with 21 % of receiving
more than a 100 ratings. The most rated movie in this dataset was The Matrix (1999),
with 1670 ratings.

6http://ir.ii.uam.es/hetrec2011
7Internet Movie Database, http://www.imdb.com
8Rotten Tomatoes, movie critic reviews, http://www.rottentomatoes.com
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(a) Distributions of movie ratings.

(b) Distributions of user ratings.

Figure 5.4: Distributions of Movie ratings and User ratings in HetRec2011 dataset.

5.1.1.3 Book-Crossing. The Book-Crossing (BX) dataset is a result of a 4-week
crawl (August / September 2004) from the Book-Crossing community9. It contains
278,858 users (anonymized but with demographic information) providing 1,149,780 rat-
ings (explicit / implicit) about 271,379 books. This dataset was important because it
utilizes another domain from the previous datasets. Each Book has the ISBN, Title,
Author, Year of Publication, Publisher and cover image.

In the Figure 5.5 presents the details on the distribution of users and books ratings.
This dataset exhibits a huge problem of sparsity, with the majority of users (88%) rating
less than 10 books. If we applied the same constraint of the previous, where the users

9http://www.informatik.uni-freiburg.de/ cziegler/BX/
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(a) Distributions of movie ratings.

(b) Distributions of user ratings.

Figure 5.5: Distributions of Movie ratings and User ratings in Book-Crossing dataset.

rated at least 20 items, only 7% of the dataset would be usable. The distribution of
ratings in books exhibits the same problem, with 95% of books being rated by less than
10 users.

5.1.2 Experimental Setup and Evaluation Metrics

During this work we use two types of evaluation protocol. For all tests, we did a 10-fold-
cross-validation. Given the data set, we randomly divided it into n subsets of the same
size, with n as 10, and for each sample we use n− 1 of these subsets of data for training
and the rest for testing. The training set tr was used to test the proposed assembly
and test system Te randomly split an item for each user to create the truth set H. The
remaining items form the set of observable O is used to test the unimodal algorithms.
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In the Experiments 1, 2 and 4 we performed the evaluation using the standard pro-
tocol, where all items are considered. This is a classical methodology used by the re-
search community with regard to recommender systems evaluation (RICCI; ROKACH;
SHAPIRA, 2011). For the evaluation of the Experiment 3, we used the All But One
(BREESE; HECKERMAN; KADIE, 1998) protocol for the construction of the ground
truth. The All But One protocol works in the follow way:

Figure 5.6: Example of hiding items in the All but One protocol (MORAIS, 2012).

The total number of users is divided into two subsets: training and testing. Initially,
it is selected all users that contain at least two items evaluated. In this set, pairs are then
removed for testing and the remainder comprises the training set. This step is required
to ensure that all users who are in the test set also belong to the training. Now, from the
test set of n items belonging to the active user, one item previously rated by the user is
randomly selected to be hidden (set to 0) , causing that item pass to be unknown to the
user, as can be seen in Figure 5.6. The relevant items are then hidden and marked as
unknown by the protocol. For this reason, for a user to be active, it must have at least
two initial items: one for hiding and another to train the model.

To assess the outcomes of the Recommender System we use the evaluation met-
rics, AUC (Area Under the ROC curve) Precision and Mean Average Precision (MAP)
(VOORHEES; HARMAN, 2005). Then, we compute Precision and Mean Average Pre-
cision as follows:

Precision calculates the percentage of recommended items that are relevant. This
metric is calculated by comparing, for each user in the test set Te, the set of recom-
mendations R that the system makes, given the set of observables O, against the set
H:

Precision(Te) =
1

|Te|

|Te|∑
j=1

|Rj ∩Hj|
|Rj|

. (5.1)

Mean Average Precision computes the precision considering the respective position
in the ordered list of recommended items. With this metric, we obtain a single value
accuracy score for a set of test users Te:
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MAP (Te) =
1

|Te|

|Te|∑
j=1

AveP (Rj, Hj), (5.2)

where the average precision (AveP) is given by

AveP (Rj, Hj) =
1

|Hj|

|Hj |∑
r=1

[Prec(Rj, r)× δ(Rj(r), Hj)], (5.3)

where Prec(Rj, r) is the precision for all recommended items up to ranking r and δ(Rj(r), Hj) =
1, iff the predicted item at ranking r is a relevant item (Rj(r) ∈ Hj) or zero otherwise.

AUC, or area under the ROC curve (Receiver Operating Characteristic curve), is a
metric for binary classification. A ROC curve is a plot of true positive rate vs. false
positive rate as the prediction threshold sweeps through all the possible values. The area
under this curve has a property that specifies the probability that, when we draw one
positive and one negative example at random, the decision function assigns a higher value
to the positive than to the negative example (BICKEL, 2006). The best possible value
is 1, and any non-random ranking that makes sense would have an AUC > 0.5. 1 means
that for each item, the classifier was able to correctly identify the class. 0.5 means that
the classifier get as many true positives as false positives, exactly as a random classifier.
Similarly, a 0 value represents that the classifier incorrectly classifies every item.

For the experiments that uses the GA Weighting Strategy, which utilizes a Genetic
Algorithm (GA), the following parameters were used: A population of size 40 with 90
generations; a crossover probability of 80% ;and, a mutation probability of 8%. This is a
very poorly optimized Genetic Algorithm, as usually a much higher number of generations
is needed for the GA converge to the optimal; however, we were to the size of our dataset,
and our preference to utilize a real world scenario, where the computations needed to be
done in a timely manner, these moderated parameters were used.

In this work we used Precision@N and MAP@N , where N took values of 1, 3, 5 and 10
in the rankings returned by the system. For each configuration and measure, the 10-fold
values are summarized by using mean and standard deviation. In order to compare the
results in statistical form in Experiment 3 and 4, we apply the two-sided paired t-test
with a 95% confidence level (MITCHELL, 1997).

5.2 EXPERIMENT 1: NAÏVE COMBINATION IN MOVIELENS

This was an initial evaluation, to validate the hypothesis that metadata combination
could improve the performance of Recommender Systems. It was used the MovieLens
100k dataset with some dataset extensions from IMDB. The Näıve Combination Strategy
was used for combining five different types of metadata. We compared the combination
of five different types of metadata: actors, directors, genres, keywords and writers using
the recommendation algorithms previously described in Section 2. These algorithms were
implemented in the MyEnsembleLite. To measure the accuracy of recommendations, we
used the Mean Average Precision (MAP).
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The tests were executed with our augmented database of MovieLens 100k. Each user
rated at least 20 movies freeing us from the cold start problem. The metadata were
linearly combined in pairs by concatenating the attributes in the final matrix. As a
result, a total of 10 combinations was generated and compared.

Table 5.1: Algorithms MAP scores using the Näıve Combination strategy.

Metadata BPR-Linear MABPR BPR-Mapping MostPopular
ACTOR 0.04221 0.25314 0.2552 0.04115
ACTOR-DIRECTOR 0.04352 0.25154 0.25429 0.04337
ACTOR-GENRE 0.0406 0.25335 0.25438 0.01727
ACTOR-KEYWORD 0.04369 0.25187 0.25605 0.02409
ACTOR-WRITER 0.04433 0.25312 0.25705 0.04392
DIRECTOR 0.03959 0.252 0.25489 0.06123
DIRECTOR-GENRE 0.04476 0.25531 0.25121 0.02714
DIRECTOR-KEYWORD 0.05096 0.25388 0.25093 0.02387
DIRECTOR-WRITER 0.04877 0.25354 0.25315 0.05441
KEYWORD 0.0554 0.25153 0.25122 0.0213
GENRE 0.03915 0.25494 0.25083 0.03401
GENRE-KEYWORD 0.05295 0.2553 0.252 0.01686
WRITER 0.04476 0.25171 0.25118 0.0213
WRITER-GENRE 0.04896 0.2519 0.25254 0.02155
WRITER-KEYWORD 0.05106 0.25378 0.25388 0.02439

After executing the algorithms for each possible metadata combination and with dif-
ferent numbers of latent factors in the range [10..100], we compared the best MAP scores
in each algorithm and each metadata. The goal was to infer the most suitable in each
case. The obtained results are listed in the Table 5.1. The results of the algorithms are
also shown in the Figure 5.7.

In Experiment 1 we also utilized a different Recommender algorithm as a baseline
called MostPopularByAttributes. This is a simple algorithm similar to the “Same artist
-greatest hits” baseline presented on McFee et al. (MCFEE et al., 2012). It recommends
a ranked item list ordered by popularity, considering attributes that the user had seen
previously, followed by the remaining items also ordered by popularity. For instance, if
the user had listened only to Rock music, it will recommend first the most popular Rock
songs, followed by other genres.

The algorithms MABPR and BPR-Mapping achieved better MAP results than the
others algorithms, due to the fact they are based on matrix factorization. These two
algorithms generated a MAP score greater than 0.250 in all tested cases, while the others
reached a maximum of 0.06. Further, we compared those two best performing algorithms
with both the individual and combined metadata as seen in Figure 5.8.

In particular, the best results were achieved when the BPR-Mapping algorithm was
combined with the actor-writer metadata, followed by actor-keyword or when the MABPR
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Figure 5.7: Comparison among algorithms.

Figure 5.8: Comparison between MABPR and BPR-Mapping.
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algorithm was combined with the genre-keyword metadata. It is noted that combined
metadata performs better with MAP score of 0.25705, 0.25605 and 0.2553 respectively.

Regarding the analyzed metadata, none of the algorithms returned the best recom-
mendation for all tested cases. As shown, the results are balanced and every algorithm has
a specific metadata that produces a better score. This occurs because each method has
its own purposes. For example, the MostPopularByAttributes was originally proposed
for recommending popular songs from an artist that the user already liked (MCFEE et
al., 2012). Thus, we expect that the entities directors and actors to produce a better
result over other metadata types in this algorithm. In both BPR-Linear and MostPopu-
larByAttributes combining multiple metadata produced a worse performance.

The results also indicate that for each single metadata it is possible to combine with
another metadata and produce a higher score compared to using it individually. However,
combining metadata do not always improves the performance. Actor is the top performing
metadata using the BPR-Mapping, and combining with writer or keyword metadata lead
to a better MAP score. On the other hand, combining with director or genre impacts
negatively the score. Another interesting aspect is that combining the two best individual
metadata do not produce the best-combined recommendation score. In fact, the top
performing MABPR combined metadata is composed of the best individual metadata
(genre) and the worse (keyword).

In addition, the metadata with the best recommendations for one algorithm is not
equivalent in other algorithm. This behavior is observed by analyzing the MAP scores
among the tested algorithms. An example is the fact that actor-keyword is the metadata
which returned the highest MAP in the algorithm BPR-Mapping with MAP 0.25605,
and the genre-keyword is the metadata which returned the highest MAP score in the
algorithm MABPR with MAP 0.2553. Thus, it is possible to note that some algorithms
work better when using more general descriptions (e.g. genres/keywords), whereas other
produce better results when using more specific descriptions (e.g. actor/writer).

Nevertheless, although different metadata vary differently in each analyzed algorithm,
we understand that the genre metadata has a bigger relevance than the single keyword,
as it describes the whole content in general, and not a single subject of the movie. Thus,
in cases where the MAP score is too similar, instead of searching a metadata that prevails
over all algorithms, we suggest to search for better recommendations.

Finally, we conclude that best recommendations are achieved when we combine multi-
ple metadata. The top performing is the algorithm BPR-Mapping using the actor-writer
metadata, followed by the algorithm MABPR using the genre-keyword metadata.

5.3 EXPERIMENT 2: ENSEMBLE STRATEGIES USING HETREC 2011 2K
DATASET

Following the previous experiment, in this evaluation, it was used the more advanced
ensemble strategies proposed in Chapter 4 to combine metadata. They were evaluated
with combination of five different types of metadata: actors, directors, genres, tags and
countries using the recommendation algorithms and the ensemble algorithms previously
described. All algorithms were also available in the MyEnsembleLite, thanks to the
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MyMediaLite library (GANTNER et al., 2011), which provides the needed infrastructure
such as matrix factorization algorithms and error measure methods. To measure the
accuracy of recommendations, we used the Mean Average Precision (MAP).

All tests were executed with the HetRec 2011 MovieLens 2k dataset (CANTADOR;
BRUSILOVSKY; KUFLIK, 2011), composed of 2113 users with 855598 ratings on 10197
movies, including the relation between 20 movie genres, 4060 directors, 95321 actors, 72
countries and 13222 tags.

The three matrix factorization algorithms were evaluated using a fixed latent factor
of 10, and as a preliminary run, they achieved the highest MAP score for the majority of
cases. The Genetic Algorithm (GA) uses a population of size 40 with 90 generations, a
crossover probability of 80% and a mutation probability of 8%. Usually a higher number
of generations is used for convergence; however, due to the size of our dataset, a moderated
number was used.

Figure 5.9: Dataset Split.

We split the dataset randomly in an 80:20 proportion and used as training and eval-
uation respectively. However, due to the need of a probe run in some of the ensemble
strategies presented in Section 5, 25% of training dataset was split again to the probe
run, resulting in a 60:20:20 split as illustrated in Figure 5.9. It is important to note that
during the evaluation the algorithm is trained with the full training dataset. To sum-
marize, the ensemble was created with an algorithm trained with the 60% dataset and
evaluated with the 20% probe dataset, later with the ensemble created, the algorithm
was trained again, this time with the full 80% training dataset and evaluated with the
evaluation dataset.

Finally, we executed for each algorithm, eight different runs, resulting in total 32 runs.
The first five are runs where the algorithm is trained with one of the metadata individ-
ually, and are used as baseline for performance evaluations of three ensemble strategies.
Thus, we compared the best MAP scores in each algorithm and each metadata. The
obtained results are listed in the Table 5.2.

The results indicate the following: With ensembles strategies, it was possible to sig-
nificantly improve the baseline results of using a single metadata. The improvement
level was between 1.5% and 7.2%. These improvements were significant as increasing the
MAP is a difficult problem, and every increment in MAP is difficult to achieve. Surpris-
ingly, the improvement level was similar among simpler and the complex models, with
approximately 7% of improvement discarding the Tags metadata outlier in BPR-Linear
algorithm as shown in Figure 5.12. The GA Weighting strategy generated the best rec-
ommendation for three of the four algorithms, and had the MABPR as the best algorithm
to use. The values returned by the algorithms MABPR (Figure 5.10) and BPR-Mapping



60 EVALUATION

Table 5.2: Algorithms MAP scores of Ensemble strategies using the HetRec 2011 2k
dataset

Metadata MABPR BPR-Mapping BPR-Linear MostPopular
Genre 0.1671 0.1662 0.0190 0.0186
Tags 0.1704 0.1682 0.1486 0.0155
Directors 0.1687 0.1670 0.0303 0.0504
Actors 0.1675 0.1646 0.0254 0.0202
Countries 0.1671 0.1662 0.0250 0.1051
Most Pleasure 0.1695 0.1670 0.1444 0.1124
Best of All 0.1761 0.1729 0.1217 0.1081
GA Weighting 0.1838 0.1803 0.1510 0.0598
Improvement 7.2817% 7.1981% 1.5674% 6.8860%

Figure 5.10: MAP score results using the MABPR algorithm. The first five bars are
the results for the MABPR recommender algorithm using only one type of metadata,
whereas the last three bars are the results for the proposed ensemble algorithms.

(Figure 5.11) are generally much better than those achieved by the other two algorithms.
This is due to the fact that they are state-of-art recommender algorithms. They gener-
ated very similar results with a maximum MAP of 0.1838 for MABPR and 0.1803 for
BPR-Mapping. On the other hand, the BPR-Linear achieved a lower MAP, of 0.1510 .
Probably because it is a simpler algorithm .

Indeed, none of the evaluated ensemble method was optimal for all given scenarios.
Consequently, one should look for the (base model, ensemble) pair that achieves the best
results for the dataset at hand. However, the GA Weighting ensemble strategy showed as
the most effective on three of four scenarios and may be considered as a good candidate
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Figure 5.11: MAP score results using the BPR-Mapping algorithm. The first five bars are
the results for the BPR-Mapping recommender algorithm using only one type of meta-
data, whereas the last three bars are the results for the proposed ensemble algorithms.

Figure 5.12: MAP score results using the BPR-Linear algorithm. The first five bars are
the results for the BPR-Linear recommender algorithm using only one type of metadata,
whereas the last three bars are the results for the proposed ensemble algorithms.

to implement in a real world scenario. This is because this strategy uses all metadata to
make predictions, and it assigns different weights to the most relevant metadata according
to the taste of each individual user.
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While the GA Weighting strategy got promising results, the other two strategies
should also be considered depending on the scenario. For instance, the MostPleasure
strategy is the simplest and straightforward to implement, with a very low overhead as
a probe run is not needed. Moreover, it got a good performance improvement on the
weaker algorithms, and almost did not affect negatively the more complex algorithms.
Likewise, the Best of All did produce an even higher improvement, and although it needs
a probe run, it does require the GA weight optimization, an expensive step in the process.

Considering only the metadata individually, the Tags is the metadata that returned
the best recommendations for three of the four analyzed algorithms, and in BPR-Linear
yielded a similar result compared to the ensemble algorithms. This is probably because
the Tags contains a more diverse set of information, and, sometimes, may even simulate a
combination of metadata. The tags referenced information such keywords, actors, genres,
directors, producers. Recommending movies based on a combination of metadata, as seen
in the previous experiment, generates better combinations than with a single metadata.

Finally, we conclude that ensemble algorithms significantly improved the recom-
mender prediction performance, with the GA Weighting strategy standing out with higher
performance on most of the scenarios. Additionally, the algorithm MABPR obtained the
best for the tested data.

5.4 EXPERIMENT 3: ENSEMBLE STRATEGIES USING HETREC 2011 2K
DATASET TO COMBINE INTERACTIONS.

The previous experiments were all made using the movie domain for combining multiple
metadata. However we wanted to verify if the proposed ensemble techniques could be
using for another objective. In this experiment it was compared the proposed ensemble
strategies with another work with a similar objective. However, the objective of the
ensemble was not to combine metadata, but to combine different types of user interaction
(historic, tags and explicit rating)

In order to evaluate the performance of the ensemble strategies, we used again the
HetRec MovieLens 2k dataset. As explicit information, we used the ratings that users
assigned to items, and as implicit information, we considered: i) whether a user tagged
an item or not; and ii) the history of visited items, which is simulated by boolean values
(visited or not) generated by the ratings and tagging activities. For implicit data in-
teractions (history and tags), we used the BPR-MF, an implementation of the Bayesian
Personalized Ranking (BPR)(GANTNER et al., 2010), a generic framework for optimiz-
ing different kinds of models based on training data containing only implicit feedback
information. For explicit interactions (ratings), we used SVD++ (KOREN, 2008), also
implemented originally in the MyMediaLite library.

For evaluation, we divided the base dataset into two sets, 80% for training and 20% for
testing, where the training set is used to run the isolated algorithms and predict weights
for each pair of algorithms (simulate the real-time interaction from the user); and where
the test-set is used with the All but One protocol to evaluate the approaches.

Table 5.3 shows the results of this evaluation, considering single interactions and
ensembles. From the results we can see that the best performing single interaction was
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Table 5.3: Algorithms’ performance in Precision@1, 3, 5 and 10.

Prec@1 Prec@3 Prec@5 Prec@10 Map@5 Map@10
Historic 0.000047 0.000047 0.000037 0.000033 0.000104 0.000120
Tags 0.002082 0.002035 0.001874 0.001628 0.004569 0.005456
Ratings 0.000094 0.000047 0.000037 0.000018 0.000119 0.000119
BestOfAll 0.001988 0.001988 0.001845 0.001614 0.004458 0.005345
GA 0.001988 0.001971 0.001845 0.001614 0.004441 0.005334
MostPleasure 0.000047 0.000047 0.000037 0.000033 0.000104 0.000120
BPR Learning 0.002366 0.002366 0.002271 0.001845 0.005229 0.006044
Improvement 12.0 % 12.1 % 21.1 % 13.3 % 14.4 % % 10.7 %

the tags, in this way, we compared the ensemble performance to this best performing
interaction. As seen, the BPR Learning strategy achieved statistically better results than
the baseline, as proven by the t-student analysis (with p < 0.05) in Table 5.4. Figure
5.13 illustrates the algorithms’ precision@1, 3, 5 and 10 using the All But One Protocol.

Figure 5.13: Comparative of Precision@1, 3, 5 and 10 using All But One Protocol.

The results indicate that we were able to significantly improve the baseline results of
using a single interaction in our work. The improvement level was between 10.7% and
21.1% compared to the best performing interaction. These improvements were significant
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Table 5.4: t-Test comparing MAP@5 using BPR Learning with Tags.

BPR Learning Tags
Mean 0.005115 0.004569
Variance 3.16E-07 1.07E-07
Observations 10 10
df 14
t Stat -2.65099
P(T<=t) one-tail 0.009496
t Critical one-tail 1.76131
P(T<=t) two-tail 0.018992
t Critical two-tail 2.144787

as increasing the MAP and precision is a difficult problem, and every increment in MAP
is difficult to achieve.

Surprisingly, the tags interaction got considerably higher scores than others did for
all tested metrics. This scenario is very interesting for real-world applications. Not all
companies can afford a skilled engineer to analyze what interaction can provide the best
performance and end up using a public available recommender library with an interaction
chosen empirically.

The BPR Learning Ensemble strategy was optimal for all given scenarios since it
uses all metadata to make predictions, and it assigns different weights to the most rel-
evant metadata according to the taste of each individual user. On the other hand, the
MostPleasure strategy achieved the lowest performance among the ensemble strategies.

However, the Weighting ensemble and Best of All strategies obtained a good perfor-
mance, close to the best performing interaction. The Best of All strategy is simple to
implement and do not require weight optimization, an expensive step in the process re-
quired for BPR Learning Ensemble and GA Ensemble. Alternatively, GA ensemble does
requires a weight optimization step, but as it uses a Genetic Algorithm, one can manually
set the parameters and set a trade off of speed or performance.

The overall results obtained and described in this work are small because of the
Sparsity and evaluation protocol used in the experiments. The All But One protocol
hides one item from each user in the test set and considers it as the ground truth. As
we are recommending top N items, the precision and MAP will decrease because the
system thinks there are N relevant items, although the protocol has set only the hided
item as relevant. The high sparsity presents as another challenge to provide valuable
recommendations, as many users had not rated any movies, only tagged it. In this case,
the rating prediction cannot be made. Another issue is that the rating rank is built
using the rating predictions in a decreasing order from the SVD++ algorithm and in the
dataset can have items with a low score, lowing the metrics related to this interaction as
the test dataset is generated randomly. In this way, it is important to rely only on the
differences among the approaches, and we managed to increase the results of our proposal
when compared to the baselines.
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Finally, we conclude that ensemble algorithms significantly improved the recom-
mender prediction performance, with the BPR Learning strategy standing out with higher
performance on most of the scenarios.

5.5 EXPERIMENT 4:

To validate our finds and an experiment in a different domain was needed in order to verify
if the proposed ensemble techniques generalize or were specific for the movies domains.
This experiment is then executed with the Book-Crossing dataset, containing 278,858
users providing 1,149,780 ratings (explicit / implicit) about 271,379 books. This dataset
was important because it utilizes another domain from the previous datasets. Each Book
has the ISBN, Title, Author, Year of Publication, Publisher and cover image. Because
this dataset was very sparce, it was then selected only books and users which at least 20
ratings. The final dataset consisted of 7.485 users with 253.902 ratings in 3156 books.

In this experiment we utilized only the BPR-Mapping algorithm to generate the per-
sonalized raking, it was utilized with a fixed latent factor of 10 as in a preliminary run,
it achieved the highest MAP score for the majority of cases. The Genetic Algorithm
(GA) uses a population of size 40 with 90 generations, a crossover probability of 80%
and a mutation probability of 8%. We also split the dataset randomly in an 80:20 pro-
portion and used as training and evaluation respectively, with 25% of training dataset
for the probe run, resulting in a 60:20:20 split as previously illustrated in Figure 5.9. A
10-fold-cross-validation was utilized.

Table 5.5: Algorithms’ performance in Precision@5 AUC and MAP.

Prec@5 AUC MAP
None 0,01441 0,691 0,01035
Year 0,01848 0,73260 0,01514
Publisher 0,01441 0,70716 0,01014
Author 0,01842 0,73265 0,02147
BestOfAll 0,0211 0,75127 0,01988
MostPleasure 0,01987 0,76106 0,02071
GA Weighing 0,02238 0,77189 0,02292
Best Improvement 21,4% 5,3% 6,7 %

Finally, we executed the algorithm with no metadata, and with: Year; Publisher
and Author metadata, and used them as baseline for performance evaluations of three
ensemble strategies. The obtained results are listed in the Table 5.5.

The results indicate with ensembles strategies; it was possible to significantly improve
the baseline results of using a single metadata. The improvement level was between 5.3%
and 21.4%. In the Figure 5.14, it can be seen the performance comparative of different
metadata and ensemble strategies for the AUC, MAP and Prec@5. The overall scores
were lower than in the previous Experiments, probably because this dataset is much
sparser than the movie dataset used in the previous experiments.
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(a) AUC scores

(b) MAP scores

(c) Prec@5 scores

Figure 5.14: Experiment 4 Algorithms’ performance in AUC, MAP and Prec@5

The GA Weighting ensemble strategy achieved statistically better results than the
baseline, as proven by the t-student analysis (with p < 0.05) in Table 5.4. It was the
most effective on all scenarios, and may be considered as a good candidate to implement
in a real world scenario. This is because this strategy uses all available metadata to make
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Table 5.6: t-Test comparing the AUC using GA Weighing with Year.

GA Weighing Year
Mean 0.77189 0.732693
Variance 0.00058 0.000237
Observations 10 10
df 15
t Stat -4.33783
P(T<=t) one-tail 0.000293
t Critical one-tail 1.75305
P(T<=t) two-tail 0.0000586
t Critical two-tail 2.13145

predictions, and it assigns different weights to the most relevant metadata according
to the taste of each individual user. While the GA Weighting strategy got the highest
performance, the another strategy should also be considered depending on the scenario,
the MostPleasure strategy. It was more performant than any of the single metadata in all
metrics, and as previously discussed, the MostPleasure strategy extremely straightforward
to implement, with a very low overhead as a probe run is not need, and very fast to
execute. On the other hand, the Best of All, although got a higher score than any single
metadata in two of three scenarios, it was worse in a single case – in the MAP metric
where the Author metadata got a higher score. MostPleasure may be a better option as
it got higher scores and does not need a probe run, an expensive step, differently from
the Best of All strategy.

Considering only the metadata individually, the Author is the metadata that returned
the best recommendations for all analyzed scenarios. This is somehow intuitive, as often
users become fans of a specific author and they usually release books with similar themes.
Another interesting point is that the improvement of using ensembles were higher in MAP
and Prec@5 metrics than in AUC, one reason to justify this could be because during the
development of the ensemble strategies, that target was optimizing the MAP, in fact, in
GA Weighing the Fitness function optimizes for MAP.

Finally, we conclude that ensemble algorithms significantly improved the recom-
mender prediction performance, with the GA Weighting strategy standing out with higher
performance on most of the scenarios. Additionally, comparing the performance, Author
is the most significant metadata for the tested data.

5.6 DISCUSSION

Experiment 1 evaluated four different recommender algorithms and utilized the Näıve
Combination Strategy to combine movie metadata to generate recommendations of movies.
These algorithms were tested with five types of metadata and combining all pair combi-
nations of metadata without repetition in order to infer which one achieves better results
according to MAP measure. After comparing the metadata with four different algorithms,
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we can conclude that combining multiple metadata can improve the performance and the
best algorithms in our tests are MABPR and BPR Mapping, as all the tested metadata
achieves the best results with them. In addition, using actor combined with writer meta-
data in BPR Mapping algorithm produces better recommendations than other types of
metadata, and genre combined with keyword produces the best recommendations when
using MABPR algorithm.

Evolving the previous experiment, in experiment 2 was evaluated three different
strategies that do not require modification of the recommender algorithm, namely Most
Pleasure, Best of All and Genetic Algorithm Weighting. The considered recommender
algorithms did not take advantage of multiple item metadata and our ensemble algorithm
was able to enable those recommenders to take advantage of this metadata. Most Plea-
sure, the simplest strategy, consisted of combining the predictions based on score. Best
of All determined a single metadata that was more preferred for a user, and finally the
Weighting strategy uses multiple metadata and weights them with a Genetic Algorithm
that optimizes the MAP. Empirical evaluation showed a considerable MAP improvement
between 1.5% and 7.2% when using the ensemble algorithms, with the Weighting strat-
egy producing the best recommendation for the majority of scenarios. These encouraging
results indicate that ensemble algorithms can be used to enhance the recommenders’ al-
gorithms with multiple metadata.

In Experiment 3 was evaluated four ensemble strategies to unify different types of feed-
back from users when consuming content in order to provide better recommendations.
All ensemble strategies utilized in the previous experiment was used, with the addition of
BPR Learning an ensemble strategy that uses LearnBPR to optimize the weights related
to AUC. The considered recommender algorithms did not take advantage of multiple
types of interactions and the evaluated ensemble algorithms were able to enable those
recommenders to take advantage of all interactions. The experiments were executed with
the HetRec2011 movielens 2k dataset and the results show the effectiveness of combin-
ing various types of interactions in a single model for recommendation using ensemble
learning. Our evaluation showed a considerable MAP improvement between 10.7% and
21.1% when using the ensemble algorithms, with the BPR Learning producing the best
recommendation for the majority of scenarios. These results indicate that the ensemble
algorithms could be successfully used for combining multiple types of interactions.

Finally, in Experiment 4, another domain was evaluated in order to verify if the
proposed ensemble techniques generalize or were specific for the movies domains. This
experiment utilized the Book-Crossing dataset consisting of 7.485 users with 253.902
ratings in 3156 books. was possible to significantly improve the baseline results of using
a single metadata. The improvement level was between 5.3% and 21.4% and indicates
that the proposed ensemble techniques could be utilized in a Book domain to improve
the precision of the recommendation.

5.7 SUMMARY

In this chapter, the main results obtained during development of the experiments were
presented, related to the implementation process of the combination of metadata in Rec-
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ommender Systems. Initially, was presented to the evaluation methodologies employed in
the studies describing the tools, datasets, metrics and evaluation protocols utilized. Next,
multiples experiments were presented to validate our proposed ensemble techniques.

The studies presented in this chapter show that the proposed techniques were effective
in regard to reduce the problem addressed in this work in different application domains.
The next chapter presents the final considerations of this work, as well as the contributions
and future work.





Chapter

6
CONCLUSION

Now this is not the end. It is not even the beginning of the end. But it

is, perhaps, the end of the beginning.

—WINSTON CHURCHILL (The End of the Beginning)

In the previous chapter were presented all the experiments carried out on this work,
along with a discussion of the results. This chapter, concludes this work, presenting a
summary of the work, contributions, achievements and finally some directions for future
work.

6.1 OVERVIEW

Recommender systems have become increasingly popular widely adopted by many sites
and are important tools in assisting users to filter what is relevant for them in this complex
information world. Hybrid recommenders aim at grouping the benefits of content based
and collaborative filtering approaches. The downside of hybrid recommenders which
primarily exploit latent factor models are: i) do not consider all the metadata associated
to the content, which could provide significant and meaningful information about the
user’s interests, and ii) usually process only one item attribute missing the exploitation
of combination of the metadata available.

With that in mind, this dissertation proposed three ensemble strategies for combin-
ing multiple metadata in hybrid Recommender Systems, with the aim of improving the
top-performing state-of-art algorithms to leverage the available item metadata with an
ensemble of this information in a computationally feasible way. Four experiments were
performed using state-of-art datasets and algorithms and the results indicate that we
were able to achieve a considerable MAP improvement of up to 21% when using the
ensemble algorithms. The experiments are composed of three experiments in the movie
domain: i) Näıve combination of metadata; ii) an experiment using all the proposed
ensemble techniques in the movie domain iii) an experiment combining different kinds
of user interactions, and iv) a final experiment in the Books domain was performed to
guarantee that the techniques proposed in this papers generalizes to another domain.
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6.2 RESEARCH CONTRIBUTION

During the development of the proposal, our prototype originated three recommenda-
tion techniques, each with advantages and disadvantages. Most Pleasure, the simplest
strategy, consisted of combining the predictions based on score. Best of All determined
a single metadata that was more preferred for a user, and finally the Weighting strategy
uses multiple metadata and weights them with a Genetic Algorithm that optimizes the
MAP. It was created a tool implementing those techniques. This tool is public-available
with an open-source license. Another important contribution of this work, was the study
and comparison of the best performing metadata in four different scenarios. The finds of
this research was the subject of presentations in local conferences such as SEMCOMP 1,
these actions have helped to foster the local research and startup ecosystem.

The main contributions of this research are described as follows:

� A study on existing solutions, which can provide the research and professional
community an overview of the state-of-the-art algorithms in the field that support
multiple metadata.

� A study on the best performing metadata for movies dataset, specifying
which metadata provides best increase in precision for the movie domain. This
information is valuable for researchers to further create novel tools and algorithms.

� Three ensemble strategies that can be used to improve the performance of
existing Recommender Systems when using multiple metadata.

� An open-source application implementing the techniques proposed in
this work. The MyEnsembleLite tool is a fully-featured, publicly available open-
source software implementing the techniques proposed.

6.2.1 Published Papers

This section presents the published and submitted papers resulting from this work :

� Personalized Ranking of Movies: Evaluating Different Metadata Types
and Recommendation Strategies, Revista de Sistemas e Computação,
2014

Abstract: This paper proposes a study and comparison among a variety of meta-
data types in order to identify the most relevant pieces of information in personal-
ized ranking of movie items. We used four algorithms available in the literature to
analyze the descriptions, and compared each other using the metadata extracted
from two datasets, namely MovieLens and IMDB. As a result of our evaluation,
we found out that the movies’ genres and actors are the kind of description that
generates better predictions for the considered content-based recommenders.

1http://www.semcomp.com.br/
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Reference: BELTRAO, R. D. ; CABRAL, B. S. ; MANZATO, M. G. ; DURAO,
F. A. . PERSONALIZED RANKING OF MOVIES: EVALUATING DIFFERENT
METADATA TYPES AND RECOMMENDATION STRATEGIES. Revista de Sis-
temas e Computação - RSC , v. 4, p. 53-58, 2014.

� Personalized ranking of movies: Evaluating different metadata types and
recommendation strategies using multiple metadata, BRACIS, 2014

Abstract: This paper proposes a study and comparison of the combination of
multiple metadata types to improve the recommendation of movie items according
to users’ preferences. We used four algorithms available in the literature to analyze
the descriptions, and compared each other using all the possible combinations of
the metadata extracted from two datasets, namely MovieLens and IMDB. As a
result of our evaluation, we found out that combining metadata generates better
predictions for the considered content-based recommenders.

Reference: BELTRAO, RENATO DOMPIERI ; CABRAL, BRUNO SOUZA ;
MANZATO, MARCELO GARCIA ; DURAO, FREDERICO ARAUJO . Evaluat-
ing the Combination of Multiple Metadata Types in Movies Recommendation. In:
2014 Brazilian Conference on Intelligent Systems (BRACIS), 2014, Sao Paulo. 2014
Brazilian Conference on Intelligent Systems, 2014. p. 55.

� Combining Multiple Metadata Types in Movies Recommendation Using
Ensemble Algorithms, WEBMEDIA, 2014

Abstract: In this paper, we analyze the application of ensemble algorithms to im-
prove the ranking recommendation problem with multiple metadata. We propose
three generic ensemble strategies that do not require modification of the recom-
mender algorithm. They combine predictions from a recommender trained with
distinct metadata into a unified rank of recommended items. The proposed strate-
gies are Most Pleasure, Best of All and Genetic Algorithm Weighting. The eval-
uation using the HetRec 2011 MovieLens 2k dataset with five different metadata
(genres, tags, directors, actors and countries) shows that our proposed ensemble
algorithms achieve a considerable 7% improvement in the Mean Average Precision
even with state-of-art collaborative filtering algorithms.

Reference: CABRAL, B. S. ; DOMPIERI BELTRAO, RENATO ; GARCIA
MANZATO, MARCELO ; ARAÚJO DURÃO, FREDERICO . Combining Mul-
tiple Metadata Types in Movies Recommendation Using Ensemble Algorithms. In:
the 20th Brazilian Symposium, 2014, João Pessoa. Proceedings of the 20th Brazil-
ian Symposium on Multimedia and the Web - WebMedia ’14, 2014. p. 231.

� Evaluating Multiple User Interactions for Ranking Personalization Using
Ensemble Methods, PENDING SUBMISSION

Abstract: The variety of interaction paradigms on the Web, such as clicking,
commenting or rating are important sources that help recommender systems to
gather accurate information about users’ preferences. Ensemble methods can be
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used to combine all these pieces of information in a post-processing step to generate
recommendations that are more relevant. In this paper, we review the application of
existing ensemble methods to improve ranking recommendations in the multimodal
interactions context. We compared four ensemble strategies, ranging from simple
to complex algorithms including Gradient Descent and Genetic Algorithm to find
optimal weights. The evaluation using the HetRec 2011 MovieLens 2k dataset with
three different types of interactions shows that a considerable 7% improvement in
the Mean Average Precision can be achieved using ensembles when compared to
the most performant single interaction.

6.3 FUTURE WORK

An initial prototype was developed and evaluated in this work. However, we are aware
there is room for its continuation and improvement. In this section, some suggestions are
presented as a continuation of this research:

� Implement more complex ensemble strategies and evaluate the algo-
rithms with a higher number of metadata to verify whether metadata can
generate better recommendations. In order to do so, it will be necessary to find a
more extensive dataset and evaluate the performance of the algorithms with this
increased work.

� Increase the number of metadata combined. The highest number of metadata
combined in this work was five. An interesting path to follow is verifying if the
proposed ensemble strategies could still be efficient with a much higher number of
metadata to combine.

� Further evaluation. In this work, we presented a case study. A more detailed
evaluation is needed by applying the proposed ensemble techniques in other context
such friends and products recommendations, in order to provide richer findings.

� Validate the techniques in a real world application. Although the tests
were evaluated using datasets from real applications, during the implementation
and deploy of a real world application, a number of issues and requirements may
appear. It is important to be able to apply the proposed techniques in such scenario.

� Online update of ensemble weights. The proposed ensemble techniques that
utilize weighing require the generation of the entire model when updating informa-
tion. It would be interesting to iteratively update the weights for saving unnecessary
computation.

What we gathered from observing the industry is that ensembles are omnipresent and
it is a trump card for the industry. However, they keep the implementation details as a
secret, usually because this is very coupled to their business logic. An open study and
availability of ensemble techniques could provide as a valuable competitive advantage to
small business and startups. In this way, future works should focus on implementing
ensemble techniques in real-world systems.
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p. 43–52. ISBN 1-55860-555-X. Dispońıvel em: 〈http://dl.acm.org/citation.cfm?id=
2074094.2074100〉.

BREIMAN, L. Bagging predictors. Machine learning, Springer, v. 24, n. 2, p. 123–140,
1996.

BREIMAN, L. et al. Heuristics of instability and stabilization in model selection. The
annals of statistics, Institute of Mathematical Statistics, v. 24, n. 6, p. 2350–2383, 1996.

BURKE, R. Hybrid recommender systems: Survey and experiments. User modeling and
user-adapted interaction, Springer, v. 12, n. 4, p. 331–370, 2002.

BURKE, R. Hybrid web recommender systems. In: The adaptive web. [S.l.]: Springer,
2007. p. 377–408.

CABRAL, B. et al. Combining multiple metadata types in movies recommendation using
ensemble algorithms. WEBMEDIA, 2014.

CANTADOR, I.; BRUSILOVSKY, P.; KUFLIK, T. 2nd workshop on information het-
erogeneity and fusion in recommender systems (hetrec 2011). In: Proceedings of the 5th
ACM conference on Recommender systems. New York, NY, USA: ACM, 2011. (RecSys
2011).

75



76 BIBLIOGRAPHY

CASINELLI, P. Evaluating and implementing recommender systems as web services using
apache mahout. 2013.

DIETTERICH, T. G. Ensemble methods in machine learning. In: Multiple classifier
systems. [S.l.]: Springer, 2000. p. 1–15.

DITTERRICH, T. Machine learning research: four current direction. Artificial Intelli-
gence Magzine, v. 4, p. 97–136, 1997.
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978-3-642-13470-8\ 6〉.

SHARDANAND, U.; MAES, P. Social information filtering: Algorithms for automat-
ing &ldquo;word of mouth&rdquo;. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. New York, NY, USA: ACM Press/Addison-
Wesley Publishing Co., 1995. (CHI ’95), p. 210–217. ISBN 0-201-84705-1. Dispońıvel
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