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Approximate up-scaling of geo-spatial variables applied to deep foundation design

Harald Klammlera,b,c*, Kirk Hatfielda,b, Michael McVaya and Joana Angélica Guimarães da Luzc

aDepartment of Civil and Coastal Engineering, University of Florida, Gainesville, FL 32611-6450, USA; bInter-Disciplinary
Program in Hydrologic Sciences, University of Florida, Gainesville, FL 32611-6450, USA; cDepartment of Environmental

Sciences and Sustainable Development, Federal University of Bahia, Barreiras, Bahia 47805-100, Brazil

(Received 11 May 2010; final version received 4 December 2010)

We present a series of simple approximate methods for up-scaling the cumulative distribution function of
spatially correlated variables by using an effective number ne of independent variables. Methods are based on the
property of distribution permanence of the gamma and inverse Gaussian distributions under averaging, bootstrap

sampling and expansions about the normal and gamma distributions. A stochastic simulation study is used to
validate each method, and simple parameters are defined to identify respective ranges of applicability. A practical
example is presented where core sample rock strength data are up-scaled to shaft size for probabilistic (risk-based)

deep foundation design. Supplemental material is available online.

Keywords: probability of failure; reliability; change of support; geostatistics; Edgeworth; gamma expansion;

bootstrap; inverse Gaussian

1. Introduction

Spatial scale is one of the most fundamental para-

meters in science and engineering. However, data are

typically not defined on the same scale of support as

required for subsequent processing and decision-

making, which raises the question about the effect

of changing scales. This is known as the ‘change of

support’ problem, and for the particular case of

changing support from small to large, as the ‘up-

scaling’ problem. The topic has received considerable

attention in the (geo-) statistical literature (Chilés and

Delfiner 1999, Gotway and Young 2002) relating to

many fields of application including mining/petro-

leum engineering, hydrology, agriculture, etc. A

classic example is the use of core sample data (1 cm

scale) in the determination of total recoverable ore

tonnage in a reserve by estimating the cumulative ore

content of mining blocks (10 m scale) above a certain

cut-off level. Many times core sample data also need

to be used as input to numerical models of a desired

domain size and limited number of discrete cells

(possibly at a 1�100 m scale).
The present work is motivated by a practical

problem in geotechnical engineering � in particular,

reliability- (or risk-) based deep foundation design

(e.g. for bridges; Phoon et al. 2003, AASHTO 2004),

where it is the goal to assure compliance with a target

(maximum permissible) probability of failure pf of a

foundation in order to limit the level of risk

of potential damages (e.g. collapse or excessive

settlement). For this purpose, both design load Q
and foundation resistance R are generally regarded as
random variables such that the design goal may be
expressed mathematically as

P[RBQ]5pf; (1)

where P[ ] denotes the probability (risk) of the event
in brackets (load exceeding resistance) to occur.
Evaluation of Equation (1) requires knowledge of
the exact probability density functions (pdfs) and/or
cumulative distribution functions (cdfs) of R and Q.
Limiting attention to the resistance side, the sources
of uncertainty affecting cdf(R) may be categorised
into three principal classes: (1) spatial variability of
ground properties, (2) measurement errors and (3)
uncertainty in data transformation (Phoon and
Kulhawy 1999a, 1999b). A method to estimate a
lump value of all uncertainty types is based on past
experience and the compilation and analysis of
comprehensive load test databases, which allow for
assessment of prediction error distributions (and
possibly model calibration) for different combina-
tions of site conditions, prediction and construction
methods (Zhang et al. 2001, 2008, Haldar and Babu
2008). However, inherent shortcomings with this
method are that it does not offer an explicit possibi-
lity to account for site-specific data and that the
characteristics of a site/job have to be matched with a
sufficient number of corresponding observations
from the past. As an alternative, general approaches
have been proposed that evaluate the contributing
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sources of uncertainty separately and then combine
them according to appropriate physical and statistical
laws (Phoon and Kulhawy 1999a, 1999b, Foye et al.
2006). Approaches that explicitly account for spatial
variability are not very abundant and consider
shallow foundations in two (Paice et al. 1996, Fenton
and Griffiths 2002, 2003, Popescu et al. 2005, Babu
et al. 2006) and three (Fenton and Griffiths 2005)
dimensions. Fenton et al. (2005, 2008) relate their
previous results to Load and Resistance Factor
Design (LRFD) and investigate effects of data in
the vicinity of a shallow foundation to reduce
resistance uncertainty. Furthermore, Fenton and
Griffiths (2007) present a preliminary finite element
study for a single-object deep foundation subject to
vertically variable ground properties.

The present work develops methods for investi-
gating the effects of spatial variability on cdf(R),
where R is considered as the total ultimate (i.e.
deformation independent) axial resistance of a drilled
shaft due to side friction and neglecting end bearing
(which is common practice with design in Florida
limestone, for example; FDOT 2006). Thus, as
illustrated in Figure 1, R is known to be equal to
the integral of local ground (i.e. rock or soil) strength
(or unit side friction) q over the lateral shaft surface
area As (typically a cylinder; Klammler et al. 2010):

R�g
As

qdA: (2)

However, in early design stages, exact shaft
locations are unknown (i.e. in some sense random)
and local ground strength data are available, for
example, based on core sample analysis from a
number of (somehow also randomly located) borings
on a site. The resulting problem of Equation (2) is to
up-scale the observed cdf(q) at (quasi-) point support
to cdf(R) at a support equal to the lateral shaft
surface for subsequent use in Equation (1). Note that
the problem as stated does focus on transitions in
spatial scale; however, support sizes of both q and,
consequently, R are considered larger than the
representative elementary volume (REV) of what
may be considered local strength or unit side friction
in rock/soil (e.g. measured with samples obtained
from drilling cores). The term ‘quasi-point support’
for the scale of q will be merely used to designate a
scale much smaller than the scale of spatial variability
of q (i.e. the separation distance beyond which local
values of q become uncorrelated).

Klammler et al. (2010) studied the problem of
Equation (2) with log-normal up-scaling (Isaaks and
Srivastava 1989) using the well-known approxima-
tion that the sums (or averages) of log-normal
variables are again log-normal. However, this ap-
proach is limited to log-normal distributions of q,
which may be prohibitive in practice. Approximate
analytical models for up-scaling of spatially corre-
lated variables of arbitrary distributions include
affine and indirect log-normal corrections (Isaaks
and Srivastava 1989) and are recommended for use
only when reduction in variance is below 30%, since
they do not honor the Central Limit Theorem
(Deutsch 2002). More sophisticated approaches, in-
cluding disjunctive kriging, the discrete Gaussian and
mosaic methods, are described in Cressie (1993) and
Chilés and Delfiner (1999), while stochastic simula-
tion (Deutsch 2002) is a numerical alternative based
on random field generation. However, application of
the latter methods is limited in geotechnical design
practice due to their elevated complexity, and critical
underlying assumptions may not always be based on
sufficient data. For a more detailed overview of up-
scaling techniques see Gotway and Young (2002).

From this, we detect a lack of spatial up-scaling
methods which are both appropriate for any degree
of variance reduction (i.e. spatial averaging) and
which are simple enough for practical implementa-
tion by engineers with limited (geo-) statistical back-
ground. By using the concept of effective numbers of
independent variables the present paper develops a
series of simple approximate methods, which com-
bine the variance reduction principle due to spatial
averaging from geostatistics with distributional
properties from classical statistics. Averaging (or

Rtip = 0 
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Figure 1. Schematic of ultimate (and, hence, deformation

independent) axial shaft resistance R due to side friction
only. Tip resistance Rtip is neglected according to design
practice in Florida limestone (FDOT 2006).
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summing) of independent variables is a thoroughly
studied field (Petrov 1975), and the concept of
effective numbers of independent data has been
explored previously in many different ways (Bayley
and Hammersley 1946, Kitanidis 1997, Deutsch 2004,
Pardo-Iguzquiza and Dowd 2004). Two parametric
(gamma and inverse Gaussian) and three non-
parametric (bootstrap-based and expansions about
the normal and gamma distributions) methods are
developed in the present work and validated against
results from stochastic simulations. The existing
method of parametric log-normal up-scaling is also
included in the validation study to obtain a compara-
tive evaluation of its performance under different
conditions and to study its range of applicability.
Limiting assumptions in the present and previous
approaches are stationarity of the underlying random
process and that the variogram is sufficient to
describe spatial variability (Deutsch 2002).

2. Variance reduction and effective number of

independent variables

In concordance with the problem of shaft resistance
posed in Equation (2), we focus on arithmetic
averaging of spatially correlated random functions
(regionalised variables; Journel and Huijbregts 1978),
which can be expressed in a general form by

Zv(u)�
1

v g
v

Z0(x)dx; (3)

where x is a coordinate vector and Z0(x) a regiona-
lised variable defined on point support and described
by a cumulative distribution function (cdf) with
expectation m0 and variance s0

2 as well as a variogram
or, equivalently, a spatial covariance function C(h),
with h being a spatial separation vector between two
locations x and x?. Zv(u) is the corresponding
effective (i.e. arithmetically averaged) parameter for
support size v�f

v
dx centred on coordinate vector u.

Note that v can be a joint or disjoint domain in
one, two, or three (or more) dimensions. Equation (2)
is a particular case of Equation (3) for Z0�q, v�As

and Zv�R/As, the latter being equivalent to mean
unit side friction over the lateral shaft surface. As
such, the present work considers cdf and C(h) of
Z0(x) as reliably known, while the location u of v is
random (i.e. unknown or distant from available
data). Hence, there is no conditioning to data
(unconditional up-scaling) and Z0(x) can be abbre-
viated to Z0 as well as Zv(u) to Zv, whose cdf of
expectation mv and variance sv

2 is sought.
It is well known (Deutsch 2002) from the Central

Limit Theorem that up-scaling of linearly averaging

variables entails constant expectation (mv�m0), while
variance, skewness and higher-order cumulants de-
crease. The simplest case is that of Gaussian random
fields where up-scaled distributions are again Gaus-
sian; however, distributions are not generally pre-
served between scales. The reduced variance sv

2 is
found from (Deutsch 2002)

s2
v�

1

v2 g
v

g
v

C(x�x0)dxdx0: (4)

Equation (4) only depends on C(h) and v and is valid
independent of the underlying distribution type. If
Equation (4) is applied to a finite number n of
uncorrelated random variables it reduces to sv

2�s0
2/

n, which is the relationship for the variance of a mean
estimate in classical statistics requiring the assump-
tion of ‘i.i.d.’ (independent and identically distribu-
ted) variables. By following a concept briefly
introduced in the opposite context of estimating a
process mean from limited data by Kitanidis (1997)
or Deutsch (2004), an effective number of indepen-
dent variables ne can be defined as

ne�
s2

0

s2
v

; (5)

which expresses the number of independent random
variables that are subject to the same amount of
variance reduction when averaged as spatial aver-
aging of a regionalised variable Z0 with covariance
structure C(h) over a domain v.

3. Parametric methods

Data distributions encountered in science and engi-
neering are mostly non-negative and positively
skewed with a rather long tail to the right. The log-
normal is a two-parameter distribution that has been
widely applied to fit these observations before and
after up-scaling (direct log-normal up-scaling; Isaaks
and Srivastava 1989, Vargaz-Guzmán 2005).
However, it is well known that averages of even
independent log-normal variables are not exactly log-
normally distributed (Santos Filho et al. 2005). In
contrast, other non-negative and positively skewed
two-parameter distributions like the gamma and
inverse Gaussian appear to be more appropriate for
this type of ‘direct’ up-scaling than the log-normal
distribution, as they possess the property of strict
distributional permanence under arithmetic averaging
of independent variables (Krishnamoorthy 2006). For
example, the average of two or more independent and
identically distributed gamma variables is again
gamma distributed, however with different para-
meters. This preservation of distribution type with
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up-scaling does not strictly hold for spatially corre-

lated variables, but, motivated by the widely used

approximate direct log-normal up-scaling, the present

work proposes approximate direct gamma and inverse

Gaussian up-scaling. With this, in analogy to the

classic direct log-normal (LN) up-scaling, given that

Z0 may be assumed to be either gamma (GA) or

inverse Gaussian (IG), the up-scaled cdf is approxi-

mated by the same distribution type. This significantly

widens the range of applicability of the simplest

‘direct’ (i.e. using approximate distribution perma-

nence) up-scaling techniques, which honor the Central

Limit Theorem for large degrees of variance reduction

(such as LN, GA and IG also approach normality as

the variance decreases).
For convenience, expressions for pdfs and cdfs of

these distributions are given in the online supple-

mental material. Table 1 summarises the meanings of

the two parameters (p1, p2) for each distribution

(including LN) and the relationships to distribution

expectation m and coefficient of variation CV�s/m
(in order to remain close to common geotechnical

practice we prefer the use of CV to s or s2). Direct

up-scaling is simply performed by applying m�mv�
m0 and CV�sv/m v [using Equation (4)] in columns 2

and 3 to estimate distributional parameters p1 and p2
such that the cdf and pdf of Zv are fully defined.

Distributional fits/tests can be performed to evaluate

which (if any) distribution type best fits Z0. However,

the last column of Table 1 provides simple expres-

sions of the coefficient of skewness sk of each

distribution in terms of CV. The three distributions

may be ordered according to increasing sk for a given

CV, thus suggesting the ratio sk/CV as an efficient

field parameter to discern (up to third order) which

distribution may be most adequate for given data. sk/

CV:2 suggests a gamma fit, sk/CV:3 an inverse

Gaussian and sk/CV:3�CV2�3 a log-normal fit.

4. Non-parametric methods

4.1. Bootstrap

Stochastic simulation is a non-parametric method
using the cdf and the variogram of Z0 to generate
realisations of random fields, which are averaged
over v to obtain a discrete cdf of Zv in a Monte
Carlo sense. However, as initially mentioned, the
fact that random field realisations have to be drawn
from a population of given cdf and variogram
involves a significant degree of computational com-
plexity and software operational skills for (geo-)
statistically untrained engineers (the risk of blindly
trusting computer outputs is not acceptable). The
first non-parametric method proposed here avoids
the generation of random field realisations by
making use of the effective number of independent
variables ne defined in Equation (5). That is, C(h) is
known such that sv can be determined from
Equation (4) followed by ne from Equation (5).
Instead of arithmetic averaging over v in each of N
random field realisations, arithmetic averaging over
ne independent samples randomly drawn from the
cdf of Z0 is performed N times to arrive at a discrete
approximation for the cdf of Zv. If N is large
enough both the permanence of mean mv�m0, the
variance reduction criterion of Equation (4) as well
as the normalisation of the cdf of Zv due to the
Central Limit Theorem are satisfied by this method.
From Equations (4) and (5) it is evident that ne is
generally not an integer, and a solution for how to
draw a non-integer number of samples from a
population is given in the appendix. Due to the
similarities of this approach with the bootstrap
method (Efron and Tibshirani 1998) it is hereafter
referred to as ‘bootstrap’.

4.2. Edgeworth expansion

The second and third non-parametric approaches
developed here are based on series expansions of cdfs
about normal and gamma distributions respectively,
where only a certain number of lower-order moments
or cumulants of a cdf are retained. This will result in
relatively simple results and is appropriate for most
practical situations where limited data do not allow
for reliable inference of higher-order moments. The
term ‘non-parametric’ is justified by the fact that no
distribution type is assumed for Z0. If we denote the
ith centralised moment and the ith cumulant of a
random variable Z of mean m and variance s2 by mi
and ki, respectively, the following relationships apply
(Hall 1992): k1�m1�m�m, k2�m2�s2, k3�m3 and
k4�m4�3m2

2, where mi�E[(Z�m)i] with E[ ] being the
expectation operator. Standardised cumulants are

Table 1. Parameters of GA, IG and LN distributions
(Krishnamoorthy 2006).

p1 p2 sk

Gamma mCV 2

(scale)

1

CV 2

(shape)

2CV

Inverse
Gaussian

m
(mean)

m
CV 2

(shape)

3CV

Log-
normal

ln
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � CV 2
p

(log-mean)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln(1�CV 2)

p

(log-std. dev.)
3CV�CV3
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frequently used as ki/si and are known as coefficient
of skewness sk if i�3 and as excess kurtosis ek if i�
4. Important properties of cumulants for the present
work are that (1) if Z is scaled by a factor c, then
respective cumulants are scaled by factors ci, i.e.
ki(cZ)�ciki(Z) and (2) cumulants of sums of inde-
pendent random variables are equal to the respective
sums of cumulants, i.e. ki(Z1�Z2)�ki(Z1)�ki(Z2).
From this, the cumulants of a mean

Zv�
1

n

Xn

j�1

Zj

with Zj independent and identically distributed are
obtained as ki(Zv)�ki(Zj)/n

i�1 giving further sk(Zv)�
sk(Zj)/n

1/2 and ek(Zv)�ek(Zj)/n.
For an expansion about the normal distribution,

Edgeworth series are known to provide asymptotic
approximations to a general class of cdfs and, in the
case of averaging n independent variables Z, a general
form limited to effects of skewness and excess
kurtosis is (Hall 1992)

F(t)�FN(t)�
�

sk

6
ffiffiffi
n

p (t2�1)�
1

24n

�
ek(t3�3t)

�
sk2

3
(t5�10t3�15t)

��
fN(t): (6)

Here t�(Zv�m)
ffiffiffi
n

p
=s is the standardised mean Zv

with F(t) being the approximate cdf of t and FN()
and fN() being the standard normal cdf and pdf,
respectively, as defined in the online supplemental
material. sk and ek are used for sk(Z) and ek(Z),
respectively. While for n�1 no averaging takes
place and Equation (6) reduces to approximating
the cdf of Z, for large n the corrective terms in
the curly brackets vanish and F(t) approaches FN(t)
as required by the Central Limit Theorem. Similarly,
for sk�ek�0 skewness and excess kurtosis of Z
agree with those of the normal distribution and
the second-order Edgeworth expansion reduces to
F(t)�FN(t). In analogy to the bootstrap approach,
Equation (6) is applied to the up-scaling problem
of the spatially correlated variable Z0 in an
approximate way by using Z�Z0 and n�ne from
Equation (5).

4.3. Gamma expansion

Since low-order expansions about the symmetric
normal distribution can be expected to become
inaccurate for averages of strongly non-normal
variables and insufficient normalisation due to aver-
aging, expansion about the gamma distribution is
proposed for positively skewed non-negative vari-
ables. Bowers (1966) gives a solution for the approx-

imation F(w) of a general cdf (without averaging) by
a non-asymptotic series of gamma functions in the
form of

F(w)�FGA(w; p2)�A[ fGA(w; p2�1)

�2fGA(w; p2�2)�fGA(w; p2�3)]

�B[ fGA(w; p2�1)�3fGA(w; p2�2)

�3fGA(w; p2�3)�fGA(w; p2�4)] (7)

where terms containing higher-order moments than
kurtosis were truncated. The expressions for
FGA(w,p) and fGA(w,p) are given in the online
supplemental material and are the gamma cdf and
pdf, respectively, of shape parameter p for the
standardised variable w�Zm/s2. This transforma-
tion assures that the mean and variance of w are
both equal to m2/s2�1/CV2, which are then matched
by FGA(w,p2) with p2�1/CV2 (Table 1). The coeffi-
cients A and B are functions of the third and fourth
centralised moments of w as well as of p2. From the
relationships between centralised moments and cu-
mulants given above and knowing that k3(GA)�2p2
and k4(GA)�6p2 [with k3(GA) and k4(GA) being the
third and fourth cumulants of FGA(w,p2), respec-
tively] one can rewrite the expressions of Bowers
(1966) for A and B as

A�
1

6
(k3(w)�k3(GA)) (8)

and

B�
1

24
[(k4(w)�k4(GA))�12(k3(w)�k3(GA))]: (9)

This shows that corrective terms after FGA(w,p2) in
Equation (7) are weighted by simple functions of the
differences between the third and fourth cumulants
of the standardised variable w and FGA(w,p2), the
gamma distribution about which the expansion is
built. From the relationship between Z and w, one
obtains k3(w)�sk(Z)/CV3 and k4(w)�ek(Z)/CV4. In
addition, with k3(GA)�2/CV2 and k4(GA)�6/CV2

A and B can be expressed in terms of parameters of
Z only.

For the present purpose, Equations (7�9) are
generalised to allow for approximating the cdf of
some mean Zv over n independent and identically
distributed variables Z by using w�Zvm/sv

2�Zvmn/
s2, such that p2�m2n/s2 is equal to the common
value of mean and variance of w. Taking advantage
of the properties of cumulants under scaling and
averaging as already discussed, k3(w)�sk(Z)n/CV3

and k4(w)�ek(Z)n/CV4 are used in Equations (8) and
(7), to account for the effects of skewness and
kurtosis reduction due to averaging; thus,
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A�
n

6CV 2

�
sk

CV
�2

�
(10)

B�
n

24CV2

��
ek

CV2
�6

�
�12

�
sk

CV
�2

��
; (11)

where sk and ek equate to sk(Z) and ek(Z), respec-
tively. For n�1 these expressions reduce to Equa-
tions (8) and (9) for no averaging and F(w) in
Equation (7) becomes an approximation of the cdf
of Z. For large n the coefficients A and B increase;
however, proportionally large values of p2 lead to a
cancelling out of terms within the brackets of
Equation (7), and the basic expansion term FGA(w,p2)
approaches a normal distribution in agreement with
the Central Limit Theorem. Independent of n, for
k3(w)�k3(GA) and k4(w)�k4(GA), the first four
cumulants of the cdf of w and FGA(w,p2) are identical
leading to A�B�0 and F(w)�FGA(w,p2). This
reduces the approach to the preceding parametric
one of directly fitting a gamma distribution to a
distribution of Zv with known mean and variance. In
this sense, the non-parametric gamma expansion
extends the parametric gamma method by accounting
for effects of skewness and kurtosis in addition to
simply mean and variance. The parametric (direct)
gamma method implicitly assumes that skewness and
kurtosis are defined by the gamma distribution and
not the properties of Z. Equations (7), (10) and (11)
are applied to the up-scaling problem of the spatially
correlated variable Z0 in an approximate way by
using Z�Z0 and n�ne from Equation (5). Note,
finally, that in contrast to the bootstrap method both
the Edgeworth and gamma expansion methods can
directly handle non-integer values of ne.

5. Simulation study and results

The principal approximation involved in the ap-
proaches presented is that averaging of correlated
variables is substituted by averaging of an effective
number of independent variables. Moreover, the
classic direct log-normal method assumes approxi-
mate log-normality of means of independent log-
normals; also, the non-parametric Edgeworth and
gamma expansion methods are limited to a finite
number of terms and convergence is not always
guaranteed (Hall 1992). To validate these approxima-
tions a comprehensive simulation study is performed,
in which outcomes of the present approaches are
compared to up-scaling by stochastic simulation of
10,000 random field realisations. Gaussian random
fields are generated by the method of LU-decom-
position with subsequent inverse normal score trans-
formation (Goovaerts 1997) to achieve a target

distribution. A total of 16 test distributions including
bimodal, truncated, negatively skewed and discrete
distributions of CV5 2 and �0.5Bsk514 are used in
the simulation study, which is described in detail in
the online supplemental material.

To investigate the influence of different correla-
tion patters inside the spatial averaging domains, the
simulation study considers two-dimensional aver-
aging in combination with an isotropic and an
anisotropic spatial correlation structure. Hereby,
averaging domain sizes are assumed to be squared
and range from much smaller to much larger than the
spatial correlation range. In addition, spatial aver-
aging over a disjoint domain of two points separated
by half the correlation range is considered as a type of
worst-case scenario, where correlation is neither zero
(i.i.d. case) nor perfect (no spatial averaging), but
approximately 0.5.

It is uniformly observed that direct (parametric)
GA, IG and LN approximations perform well if the
underlying population distribution is of the same type
or sufficiently similar (e.g. IG and LN for CV50.5).
This confirms that, to the level of accuracy applied in
this study (10,000 realisations), spatial averaging over
a spatially correlated variable may be accurately
approximated by simple averaging of ne independent
variables, for which an exact solution is known in the
case of GA and IG distributions. For the LN the
additional assumption of log-normality of means of
independent variables is also seen to have a negligible
effect on the results presented. For large numbers of ne,
results become acceptable independent of the combi-
nation of test/approximation distribution, thus con-
firming the expected convergence to normality from
the Central Limit Theorem. From this and additional
results using discrete test distributions (being bimodal,
negatively skewed and/or truncated) it is further seen
that the choice and appropriateness of directGA, IG or
LN up-scaling may be well evaluated by the proposed
ratio sk/CV according to Table 1.

Among all methods studied, the bootstrap ap-
pears to be almost uniformly the best method.
However, if the population distribution is given in a
discrete form and ne is close to 1, then artifacts of the
discrete population cdf may remain after bootstrap-
ping. This effect may be reduced by drawing boot-
strap samples from a smoothed distribution. In the
present study the discrete population cdfs of the non-
parametric test distributions are linearly interpolated
for both bootstrapping and random field simulation
(without tail extrapolation). As to be expected, the
performance of the Gaussian-based Edgeworth ex-
pansion method deteriorates rapidly as CV and sk
increase and ne decreases. Moreover, the improve-
ment between first-order [Equation (6) neglecting the
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term of order 1/n; correcting for primary effects of

skewness] and second-order [full Equation (6); cor-
recting for primary effects of kurtosis and secondary
effects of skewness; Hall 1992] expansions is quite
limited or non-existent. However, simulation results
and Equation (6) suggest the definition of a para-

meter DskN � jskj= ffiffiffiffiffi
ne

p
� jsk(Zv)j as a measure of

convergence to normality and applicability of the

Edgeworth approximation. The expression (t2�1)
fN(t)=6 in Equation (6) possesses a maximum abso-

lute value of approximately 0.4/6, from which it is

inferred that for DskN50.15 the first-order correction
term is smaller than 1% for all t and the cdf of t can
be assumed to be accurately approximated by the
normal distribution FN(t). On the other hand, simula-
tion results indicate that the Edgeworth method

delivers acceptable results only for the approximate
range of DskN51. Failures of the Edgeworth method
for DskN51 are possible as demonstrated by test
distributions, for example, whose bimodal nature is
too complex to be captured by a single parameter

based on skewness.
The gamma expansion method, as expected,

improves on the Edgeworth method for positively
skewed test distributions, with little or no improve-
ment from a one-term [Equation (7) with B�0] to
two-term [full Equation (7)] expansion. For absolute

values of skewness close to 0, the gamma expansion
performs worse than the Edgeworth expansion;
however, it still outperforms the parametric approx-
imations. In general, the gamma expansion method is
seen to consistently improve upon the parametric

gamma approximation, except for cases where the
parametric gamma approximation itself is in large
error and the respective expansion becomes unstable.
In analogy to DskN Equations (7) and (8) may be

used to define a parameter DskGA� jsk(Zv)�
sk(GA)j�jsk�2CV j= ffiffiffiffiffi

ne

p
expressing the difference

in skewness between Zv (or equivalently w) and the
gamma fit FGA(w,p2). The simulation study indicates
that the gamma expansion method delivers accepta-

ble results in the approximate range of DskGA50.5
and that the improvement of the gamma expansion
over the simple parametric gamma fit becomes
negligible for DskGA50.15.

6. Practical example

Based on FDOT (2009), Klammler et al. (2010)
present a data analysis and case study of a site in

Florida, where drilled shafts are considered for bridge
foundation and 136 core sample rock strength data
are available from six borings (see online supple-
mental material). The summary statistics of the data

are m�2.04 MPa, CV�0.50 and sk�0.50 with a
spatial covariance function consisting of two compo-
nents: 80% of the total variance has vertical and
horizontal correlation ranges of 1.5 and 4.5 m,
respectively (geometric anisotropy), and the remain-
ing 20% of the total variance is only contained in the
horizontal direction with a range of 4.5 m (zonal
anisotropy; vertical range very large). These are
parameters obtained from variogram analysis (e.g.
Isaaks and Srivastava 1989) of the core sample data
as performed by Klammler et al. (2010). Assuming
shaft diameter and length of 1.2 and 9 m, respectively,
Klammler et al. (2010) apply their charts to graphi-
cally find a variance reduction factor a�0.23 (see
their Table 1, row for gA), which is directly converted
into an effective number of independent variables by
ne�1/a�4.33. With this, the methods presented here
are applied to estimate the distribution of a shaft’s
side friction resistance and compared to results of
full stochastic simulations [10,000 realisations; shaft
discretised into 20 (circumference)�50 (length)
elements].

Results in terms of maximum absolute differences
in per cent cdf values between approximations and
stochastic simulation are as follows: direct GA: 1.4;
direct IG: 2.9; direct LN: 2.9; bootstrap: 0.9; Edge-
worth first order: 0.9; gamma one term: 1.0. Edge-
worth second order and gamma expansion with two
terms performed similar to or slightly worse than
their simpler counterparts. These numbers may be
compared to a benchmark of 2.3, which is the
maximum absolute difference in cdf values between
two samples of 10,000 realisations that is not
exceeded with a probability of 99% according to
the Kolmogorov�Smirnov test. From this it is seen
that direct GA, bootstrap, Edgeworth and gamma
expansions produce results within the margins of
error of the stochastic simulation. Using the proposed
ratio sk/CV�1 and the last column of Table 1
predicts the evidently better performance of the direct
GA method over direct IG or LN (as used in
Klammler et al. 2010). Moreover, the proposed
parameters DskN�DskGA�0.24 (coincidentally the
same) are below their limits found of 1 and 0.5,
respectively, which is reflected by the good perfor-
mance of the expansion methods. Furthermore,
Figure 2 shows the lower tails of cdf(R) from selected
methods. For a given probability (risk) pf of failure a
maximum permissible load Q (for simplicity of
illustration assumed to be deterministic, i.e. without
uncertainty) is obtained as Q�R when entering the
chart with cdf(R)�pf. For example, for pf �0.01, Q
from direct GA, bootstrap and gamma one term are
within approximately 1 MN (3%) of Q:36
MN from the full simulation result; for pf �0.001
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deviations somewhat increase (illustrating the in-
creasing difficulty when working in extreme portions
of distribution tails); however, deviations are seen to
occur consistently towards the conservative side in
the present case. While Edgeworth first order results
in more conservative Q, direct LN (as well as IG; not
shown) up-scaling is consistently unconservative.
However, as already stated, the ratio criterion
sk/CV may be applied in practice to identify the
latter two methods as potentially worse for the
present data than the direct GA method (or its
expansion).

7. Summary and conclusion

Risk- (or reliability-) based design of deep founda-
tions aims at not exceeding a prescribed maximum
probability of failure. For mathematical treatment of
the problem according to Equation (1) and a given
deterministic (zero uncertainty) or random load it is
required to know the probability distribution of
random resistance. The properties of the resistance
distribution are affected by different sources of
uncertainty. One of these sources is spatial variability,
which is investigated in the present work in the
context of ultimate (deformation independent) axial
resistance of drilled shafts due to side friction, where
local strength data is available at a quasi-point
support (e.g. core samples). For this purpose, we
present a series of simple approximate methods for
up-scaling of linearly averaging variables based on a
combination of classical and geostatistical principles
that are linked by the use of an effective number ne of
independent variables. The number ne is equivalent to
a factor of variance reduction and is obtained from
the geostatistical operation of regularisation. It is

used to approximate spatial averaging of a correlated
variable over some domain by simple averaging of ne
independent variables. Two novel ‘parametric’ ap-
proaches are developed, which honor the frequent
requirement of non-negativity and positive skewness
and which explore the fact that means of independent
gamma and inverse Gaussian variables possess the
same distribution type (distribution permanence).
The existing method of ‘parametric’ log-normal up-
scaling is included in the study for comparative
evaluation against the other methods developed and
to define a new parameter for its potential range of
applicability. Furthermore, three novel approaches
termed ‘non-parametric’ are presented, which relate
to bootstrap sampling and expansions of distribu-
tions about the normal (Edgeworth) and gamma
distributions. A comprehensive simulation study is
performed to validate each method’s performance
against up-scaling by full random field simulation,
and a practical example for up-scaling of core sample
rock strength data to drilled shaft side friction
resistance with its associated risk of failure is
presented.

As expected, results of the simulation study show
that the parametric approaches produce acceptable
results only when the distribution chosen for approx-
imation is close enough to the actual test distribution.
To decide which one (or if any) of the gamma, inverse
Gaussian or log-normal is able to give an acceptable
result, a simple criterion based on the ratio of the
coefficient of skewness to the coefficient of variation
of the test distribution is developed and successfully
validated. The bootstrap approach is seen to be
almost uniformly superior to the others; however,
for values of ne close to 1, previous smoothing of a
possibly discontinuous distribution used for the point
variable may be necessary to avoid discontinuity
artifacts in the up-scaled distribution. Edgeworth
and gamma expansions involving skewness and
kurtosis are able to correct for a certain degree of
deviations in the up-scaled distributions with respect
to the normal and gamma distribution, respectively.
The parameters DskN and DskGA based on skewness
and coefficient of variation of the point support
variable as well as ne are developed to find DskN51
and DskGA50.5 as respective ranges of applicability
of the Edgeworth and gamma expansion methods.
For DskN50.15 (and in the absence of extreme
situations such as bimodality) the Central Limit
Theorem is seen to effectively normalise the up-scaled
distributions. Once ne is determined (typically from
numerical integration of the spatial correlation func-
tion or graphically as in Klammler et al. 2010) all of
the approaches presented are simple to apply and
honor the Central Limit Theorem for large ne.
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Figure 2. Lower tails of up-scaled resistance distributions

for field example. For deterministic loads Q the probability
of failure is equal to cdf(R) at R�Q.
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Appendix 1. Bootstrap sampling for non-integer ne

Given ne is an integer it is straightforward to draw ne
independent random numbers from a known discrete or
continuous distribution (Efron and Tibshirani 1998). If a
large number of N samples of size ne are drawn, then the

respective N arithmetic averages approach a variance of
sv

2�s0
2/ne [Equations (4) and (5)]. Furthermore, if N1

samples of size ne1 and N2 samples of size ne2 are drawn,

where N1�N2�N, then the respective N arithmetic
averages approach a variance of sv

2�(N1s0
2/ne1�N2s0

2/
ne2)/N. By choosing ne1�int(ne), designating the integer

part of ne (e.g. int(3.78)�3), and ne2�int(ne)�1, with d�

ne � int(ne) being the non-integer part of ne, the preceding

equations can be combined and written as

1

ne1 � d
�

b1

ne1
�

1� b1

ne1 � 1
(A1)

b1�N1/N and 1 � b1�N2/N are used for the portions of
samples drawn of size ne1 and ne2, respectively. Solving for

b1 gives

b1�
ne1(1� d)

ne1 � d
(A2)

Hence, the distribution of N sample means of non-integer

size ne is approximated by the requirement of equal
variance reduction through the composite distribution of
N1�round(b1N) samples of integer size ne1 and N2�N�N1

samples of size ne1�1. The expression ‘round()’ designates
the nearest integer to the argument. Using ne1�round(ne)
and N1�N is an accurate approximation for large ne
(�100), since ne1/ne:1. For an intermediate range of ne
(:10) Equation (A2) can be simplified to b1�1�d, since 0
5 dB1 and d/ne:0. Equation (A2) is most general and
remains accurate even for small values of ne close to 1.

Supplemental material

Online supplemental material is available with expressions

for pdfs and cdfs of distributions used (normal, gamma,
inverse Gaussian, log-normal), a detailed description of the
simulation study and core sample rock strength data for the

practical example.
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