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The ionic conductivity and viscous flow data of 𝑥Na
2
O ⋅ (1 − 𝑥)GeO

2
, 0.05 < 𝑥 < 0.296, have been collected in a large

temperature range, below and above their glass transition temperatures (𝑇
𝑔
). A microscopic model is proposed, assuming that

the ionic displacement would result from the migration of interstitial positively charged cationic pairs whose concentration is an
activated function of temperature. Below 𝑇

𝑔
, their migration is also an activated mechanism, but a “free volume” would prevail

above this temperature. This discontinuity in the migration mechanism justifies a Dienes-Macedo-Litovitz (DML) relationship to
be representative of conductivity data above 𝑇

𝑔
and an Arrhenius law below. According to this model, the enthalpy deduced by the

fit of high temperature data using a DML equation would correspond to the charge carrier formation, whose migration enthalpy,
below 𝑇

𝑔
, could be deduced by the difference between the activation energy measured in the Arrhenius domain and the charge

carrier formation enthalpy. To reduce the number of adjustable parameters numerical values were physically justified. We also
applied a complete test for conductivity below 𝑇

𝑔
, using the so-called weak electrolyte model, splitting activation enthalpy 𝐸𝐴

𝜎
into

formation and migration enthalpies and also explaining the variation of pre-exponential term of conductivity with composition.

1. Introduction

For glass-forming mixtures in the solid or supercooled liquid
state, ionic transport due to alkali cations strongly depends
on temperature 𝑇. The variations of the conductivity-
temperature product𝜎𝑇 in anArrhenius representation show
two distinct behaviors. At the lowest temperatures, that
product follows an activated relationship:

𝜎𝑇 = 𝐴
low
𝜎

exp(−
𝐸
𝐴

𝜎

𝑅𝑇
) , (1)

where 𝐴low
𝜎

and 𝐸
𝐴

𝜎
are constants; 𝑅 is the gas constant.

At higher temperatures, experimental data obey another
temperature behavior:

𝜎𝑇 = 𝐴
high
𝜎

exp(−
𝐸
𝐴

𝜎

𝑅𝑇
) exp[−

𝐵
𝜎

𝑅 (𝑇 − 𝑇
0
)
] , (2)

where 𝐴high
𝜎

, 𝐵
𝜎
and 𝑇

0
are constants. This expression will be

deduced in more details below.
Such equation suggests an asymptotic decrease of con-

ductivity towards 𝑇
0
and is similar to the empirical Vogel-

Fulcher-Tammann-Hesse (VFTH) relationship originally
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established to describe the viscosity-temperature dependence
of molten silicates [1–3]:

𝜂 = 𝐴
high
𝜂

exp[
𝐵
∗

𝜂

𝑅 (𝑇 − 𝑇∗
0
)
] , (3)

where 𝑇∗
0
≈ 𝑇
0
< 𝑇
𝑔
(the glass transition temperature) is an

empirical constant at which the viscosity diverges, and 𝐴
high
𝜂

has the same meaning of the preexponential constant of the
Arrhenius expression:

𝜂 = 𝐴
low
𝜂

exp(
𝐸
𝐴

𝜂

𝑅𝑇
) , (4)

where 𝐴
low
𝜂

and 𝐸
𝐴

𝜂
are constants. The regime of viscosity

below 𝑇
𝑔
follows (4) and is called isostructural (i.e., the

viscosity of the glassy state where the structure is frozen).
Unfortunately (4) was not used because there is no data in
such temperature range.

Some authors have correlated 𝑇
0
with the Kauzmann

temperature. The 𝐵
𝜎
and 𝐵

∗

𝜂
parameters are erroneously

denominated “activation energies.” In fact, the activation
enthalpy for viscous flow in VFTH depends on 𝐵

∗

𝜂
and 𝑇

0

in the form 𝐵
∗

𝜂
𝑇/(𝑇 − 𝑇

∗

0
), considering a fixed temperature

𝑇. As described below, both 𝐵 parameters are related to “free
volumes.”

In the high temperature domain a hybrid viscosity form
associating (3) and (4) has been found: Macedo and Litovitz
[4] determined the average activation energy for viscous flow
from the probability of forming a hole.Their ideas resulted in
an advantageous equation, that combines both the Arrhenius
andVFTH equations with the free volumemodel [5, 6]. Some
years before, and following analogous considerations, Dienes
[7] obtained a similar expression, but using explicitly the
equation below, that includes the VFTH term:

𝜂 = 𝐴
high
𝜂

exp(
𝐸
𝐴

𝜂

𝑅𝑇
) exp[

𝐵
𝜂

𝑅 (𝑇 − 𝑇
0
)
] , (5)

where 𝐵
𝜂
is another constant.

In this work we attribute (5) to Dienes, Macedo and
Litovitz (DML). The temperature at which the transport
properties change from the Arrhenius law to one governed
by (2) or (3) is near 𝑇

𝑔
. At this temperature, transport and

mechanical properties change from solid-like to liquid-like.
Both viscosity and conductivity data in large temperature

ranges are not commonly available since different experimen-
tal setups are used below and above 𝑇

𝑔
. Nevertheless some

results have been published, considering the same batches
[8], something rare in the literature. The ionic conductivity
and viscous flow behavior for sodium germanate glasses and
supercooled liquids at wide temperature range (from below
𝑇g to over 𝑇

𝑚
) are illustrated in Figures 1 and 2, respectively.

Lines correspond to adjustable models explained below.
The purpose of this paper is to verify the validity of two

microscopic models, trying to find a connection between
conduction and viscous flow processes. These models could
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Figure 1: Variation of the𝜎𝑇 product as a function of temperature in
the Arrhenius coordinates for sodium germanate glass system. Full
and dashed lines represent the extrapolations of the fits to (1) and (2)
for several conductivity data [8].

ascribe a physical meaning to the different ionic conductivity
parameters 𝐴

high
𝜎

, 𝐸
𝐴

𝜎
, 𝐵
𝜎

and 𝑇
0
in (2) with viscosity

parameters 𝐴high
𝜂

, 𝐸𝐴
𝜂
, 𝐵
𝜂
and 𝑇

0
from (5)—considering the

same 𝑇
0
in both cases. We also verified the validity of such

obtained parameters from conductivity models above and
below 𝑇

𝑔
. Careful attention was done to predictable 𝐵

𝜂
and

𝐵
𝜎
values. From such conductivity values is possible to assess

the activation enthalpy formation, that will be considered on
application of the weak electrolyte theory for conductivity
data below 𝑇

𝑔
, as presented below. We also will take care of

the conductivity dependencewith composition, obtaining the
resulting charge carrier concentration as well asmobilities for
each glass system.

2. Experimental Procedure

Samples were melted in platinum crucible. In fact, it is
easier to measure conductivity data below 𝑇

𝑔
due to dif-

ferent experimental setups: the design of conductivity cells
is different below and above the glass transition temper-
ature. Below 𝑇

𝑔
, glass samples are generally discs of 1

to 3 cm in diameter and 1 to 5mm thickness. Graphite
electrodes were deposited on the two faces in this case
study. Electrical measurements were made by d.c. measure-
ments by means of a.c. bridge method using alumina cell
with wire electrodes. For conductivity values lower than
10
−3 S/cm and an applied voltage below 200mV, the electrode

polarization is low, and no significant differences can be
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Table 1: Numerical resulting values from the fits of conductivity to (9) at low temperature, to (23) for high temperature, and viscosity data to
(5), considering 𝐴

𝜂
= 10
−5 Pa ⋅ s [8]. Please note that we used the same 𝑇

0
in conductivity as well as viscous flow processes above 𝑇

𝑔
.

(a) 𝑇 < 𝑇𝑔

xNa2O 𝐴
low
𝜎

(K/Ω ⋅ cm) Δ𝐻
𝑓
(eV) Δ𝐻

𝑚
(eV) 𝐸

𝐴

𝜎
(eV)

0.05 10
4.616±0.049

1.7850 ± 0.0024 0.1817 ± 0.0006 1.0742 ± 0.0055

0.10 10
5.66±0.69

1.9023 ± 0.0015 0.1828 ± 0.0012 1.134 ± 0.081

0.15 10
5.08±0.23

1.6597 ± 0.0011 0.1791 ± 0.0041 1.009 ± 0.027

0.20 10
5.044±0.046

1.4778 ± 0.0024 0.1771 ± 0.0008 0.9160 ± 0.0055

0.25 10
5.63±0.27

1.3796 ± 0.0038 0.1767 ± 0.0031 0.866 ± 0.030

0.296 10
5.05±0.21

1.0955 ± 0.0097 0.1742 ± 0.0023 0.722 ± 0.023

(b) 𝑇 > 𝑇𝑔

xNa2O 𝐴
high
𝜎

(K/ Ω ⋅ cm) 𝐸
𝐴

𝜎
= Δ𝐻

𝑓
/2 (eV) 𝐵

𝜎
(eV) 𝐸

𝐴

𝜂
(eV) 𝐵

𝜂
(eV) 𝑇

0
(K) 𝑇

𝑔
(K)

0.05 10
4.616±0.049

0.8925 ± 0.0012 0.0180 ± 0.0097 1.189 ± 0.049 0.231 ± 0.012 580 ± 10 729
0.10 10

5.66±0.69
0.9512 ± 0.0008 0.0139 ± 0.0040 1.082 ± 0.091 0.190 ± 0.024 669 ± 21 783

0.15 10
5.08±0.23

0.8299 ± 0.0005 0.0181 ± 0.0098 1.081 ± 0.057 0.177 ± 0.017 706 ± 4 791
0.20 10

5.044±0.046
0.7389 ± 0.0012 0.0129 ± 0.0097 0.977 ± 0.011 0.209 ± 0.014 693 ± 5 793

0.25 10
5.63±0.27

0.6898 ± 0.0016 0.0299 ± 0.0034 0.889 ± 0.006 0.2655 ± 0.0024 624 ± 19 755
0.296 10

5.05±0.21
0.5478 ± 0.0048 0.0176 ± 0.0057 0.712 ± 0.091 0.2887 ± 0.0061 599 ± 6 716
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Figure 2: Comparison test of experimental viscosity data on binary
sodium germanate glass system using the Dienes-Macedo-Litovitz
(5) viscosity equation [8].

noticed between the two techniques. At higher temperatures,
over 𝑇

𝑔
, they are contained in platinum crucibles and

two platinum electrodes immersed in the melt. In gen-
eral the cell is previously calibrated at room temperature
with a KCl solution. To avoid electrode polarization the
melt resistance is determined in a frequency range in which
the resistance is not frequency dependant, generally around
10 kHz.

For obvious technological reasons, the viscosity of a
glass or glass-forming melt is an important characteristic
justifying the large number of available experimental data.
The common viscosity unit is the Poise but the SI unit of
viscosity is the Pa ⋅ s with the correspondence 1Pa ⋅ s = 10

Poise. From an experimental point of view, viscosities are
currently determined between ≈ 10

14 and ≈ 10
−2 Pa ⋅ s.

Over a value of 1012 Pa⋅s themelt has a solid-like behavior and
is called a glass, and, below this value, designed as a liquid or
supercooled liquid. Fewmethods are most frequently used to
measure viscosity at low or high viscosity. At low viscosity, up
to 10
4 Pa ⋅ s, the rotating cylinder, counterbalanced method,

or crucible techniques appear to be the most reliable. Higher
viscosities (> 10

7 Pa ⋅ s) are measured by the rate at which
a glass rod elongates under a constant stress or even by
penetration/beam-bending methods. The viscosity was mea-
sured in this sodium germanate system by counterbalanced
method with Pt body and crucible for 𝜂 ≤ 10

3 Pa ⋅ s and by
penetration method for higher values.

𝑇
𝑔
was obtained from dilatometric measurements with

error ± 5K. More details can be found elsewhere [8]. All
adjustments were performed using a Levenberg-Marquardt
nonlinear fitting using the Origin software. Table 1 gives the
corresponding experimental results, according to theoretical
explanation given in this work.

3. Ionic Transport below the Glass
Transition Temperature (𝑇

𝑔
)

Below 𝑇
𝑔
, the usual approach developed for ionic crystals

prevails: charge carrier formationmay be described by partial
dissociation of ionic pair equivalent to the formation of a
Frenkel defect, and their migration in a glass is caused by an
indirect interstitialmechanism [9], as briefly explained below.
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The two processes are activated and justify an Arrhenius law
for conductivity dependence with 𝑇 (1).

In this temperature range, and for all ionic conduc-
tive glasses, the representation of experimental data of the
conductivity-temperature product, 𝜎𝑇, in the Arrhenius
coordinates results in straight lines whose extrapolation
towards infinite temperature converges to corresponding
values of the preexponential term𝐴

low
𝜎

. Temperature conduc-
tivities of sodium germanate glasses under study spread over
12 orders ofmagnitude only due to the narrow variation of the
conductivity activation energy (0.72 eV ≤ 𝐸

𝜎

𝐴
≤ 1.13 eV), that

also depends upon the nature and the concentration of the
added alkali cation. Figure 1 shows such conduction results
in wide temperature and composition range.

For cationic glasses and regardless of the conduction
mechanism, electrical transport can be expressed as the
product of three terms, the charge carriers concentration, 𝑛

+
,

their electrical mobility, 𝜇
+
, and their charge, 𝐹 (by means of

Faraday constant):

𝜎 = 𝐹𝑛
+
𝜇
+
. (6)

Since the relative dielectric constant 𝜀 of inorganic silicate
glasses is low (3 < 𝜀 < 15) ionic species are strongly associ-
ated. For instancemost monovalent cations will be associated
with nonbridging oxygen atoms. Such an associated cation
should be regarded as in a normal position, hence defining a
regular cationic site. Nevertheless, thermal vibrations allow
some partial dissociation which leads to the formation of
point defects as it is the case in crystalline structures. When a
cation leaves its “normal position,” it will be in what could
be considered an “interstitial position” and its previously
occupied site will become a “vacancy.” This defect formation
in the glass structure is equivalent to the formation of a
Frenkel type defect in an ionic crystal. In oxide based glasses
for which alkali concentration, 𝑛, is over 10% atom (as in
this case), “normal” sites are close enough (3 Å to 5 Å) and
a leaving cation is now expected to share a neighboring
nonbridging oxygen with another cation. This combination
of two cations surrounding a nonbridging oxygen can be
described as an “interstitial pair defect.”

The concentration of these interstitial pairs, 𝑛
+
, may be

very small compared with the total concentration of alkali
cations, 𝑛. In other words, glasses are weak electrolytes. In
that case, the chemical equilibrium between alkali cations in
regular sites and interstitial positions leads to the following
relationship:

𝑛
+
= 𝑛 exp(−

Δ𝐺
𝑓

2𝑅𝑇
) , (7)

where Δ𝐺
𝑓

= Δ𝐻
𝑓
− 𝑇Δ𝑆

𝑓
is the free energy associated

with the simultaneous formation of an interstitial pair and
a cationic “vacancy,” Δ𝐻

𝑓
is the formation enthalpy, and

Δ𝑆
𝑓
is the formation entropy. The second step is to describe

the defect migration caused by the electric field. Thus, the
mobility, 𝜇

+
, of the charge carrier (the interstitial cation) in

the electric field is expressed by the general relationship:

𝜇
+
=

𝐹𝜆
2
𝜈
0

6𝑅𝑇
exp(−

Δ𝐺
𝑚

𝑅𝑇
) . (8)

In this expression, 𝜆 is the mean distance between
two cationic sites, 𝜈

0
the attempt frequency and Δ𝐺

𝑚
=

Δ𝐻
𝑚
−𝑇Δ𝑆

𝑚
is characterized by amigration free energy with

its corresponding enthalpy Δ𝐻
𝑚
and entropy Δ𝑆

𝑚
.

Using (6), (7), and (8), the cationic conductivity in the low
temperature range is given by

𝜎𝑇=𝑛
𝐹
2
𝜆
2
𝜈
0

6𝑅
exp(

Δ𝑆
𝑓
/2+Δ𝑆

𝑚

𝑅
) exp(−

Δ𝐻
𝑓
/2+Δ𝐻

𝑚

𝑅𝑇
) .

(9)

This relationship reduces to the experimentally observed
the Arrhenius law (1) by identification of the experimental
value of 𝐸𝐴

𝜎
to

𝐸
𝐴

𝜎
=

Δ𝐻
𝑓

2
+ Δ𝐻
𝑚
. (10)

Equation (9) is the usual expression proposed for the
intrinsic ionic conductivity-temperature dependence in ionic
crystals. The successive steps of a cationic displacement
according to this description are illustrated in [10].

Equation (9) interestingly gives the opportunity to calcu-
late a theoretical value for the preexponential term, 𝐴low

𝜎
=

𝑛 (𝐹
2
𝜆
2
𝜈
0
/6𝑅) exp ((Δ𝑆

𝑓
/2 + Δ𝑆

𝑚
)/𝑅). Assuming a homo-

geneous distribution of the alkali cations through the glass,
the jump distance, 𝜆, is the mean distance between two
nonbridging oxygen atoms and is related to the total alkali
concentration [𝜆 = (1/𝑛)

1/3]. For classical oxide glasses,
this distance typically varies from 3 Å to 5 Å. The attempt
frequency, 𝜈

0
, may be obtained from the far-infrared absorp-

tion which occurs between 500 cm−1 and 100 cm−1 in oxide
glasses [11]. Corresponding values of 𝜈

0
are around 1013Hz.

Assuming a low value for the entropy terms, Δ𝑆
𝑓
and Δ𝑆

𝑚
,

reasonable values of the preexponential term, 𝐴low
𝜎

, lie in the
104-105 (K⋅S/cm) range in remarkable agreement with most
experimental data [12].

From the model above, (10), based on defect crystal
theory for ionic transport in solids, the activation enthalpy for
conduction 𝐸

𝐴

𝜎
is the sum of two enthalpy terms. Contrary to

what can be done for ionic conductive materials presenting
temperature-dependent intrinsic and extrinsic domains, the
migration and formation enthalpies cannot be separated
without further experiments and assumptions. In the follow-
ing paragraphs, we will assume that Δ𝐻

𝑓
remains the same

at high temperatures and obtain it from viscous flow results
considering the same batches.

Fortunately, as far as the author knows, the only theory
that can predict the 𝐴

low
𝜎

and 𝐸
𝐴

𝜎
composition dependences

below 𝑇
𝑔
is the Ravaine-Souquet model [13, 14], presented

below.

3.1. Ravaine and Souquet Model (Weak Electrolyte Theory).
The weak electrolyte theory has been extended to glassy
electrolytes by Ravaine and Souquet [13, 14] to interpret the
important variations in conductivity with composition.

In the classical approaches of ionic transport in glasses,
all cations, in the present case all Na+, are supposed to
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simultaneously migrate. Since the conductivity variations
with composition are of several orders of magnitude larger
than the total concentration in Na+ cations, these variations
in conductivity with composition (𝑥) should be the result
of large variations of their mobility with the composi-
tion, which cannot be justified from a structural point of
view.

Ravaine and Souquet [13, 14] have then supposed that the
number of instantaneous charge carriers do not correspond
to all the Na+ cations present in the glass but only to a
small fraction of them who temporally escape from their
stable cationic site to participate in conduction process. On
a long time scale, that is much over the charge carriers
life time, all Na+ cations participate to ionic transport, but
the number of instantaneous charge carriers is far lower
than the total number of Na+ cations. This hypothesis is
similar to ionic transport by defects as previously described
for ionic crystals. In the present case, the concentration of
instantaneous charge carriers can be identified to interstitial
pair concentration 𝑛

+
.These interstitial pairs can also be seen

as sites of higher energy than the bound lowest energy sites as
suggested by Martin and Angell [15] such intermediate sites
would temporarily “store” a dissociated cation and make it
“available” for ionic conduction.

Thus, Ravaine and Souquet have done the simple hypoth-
esis that the charge carriers mobility 𝜇

+
could be considered,

in a first approximation, as constant with composition in
a given glass system and that the large variations in ionic
conductivity with composition is the result of the large
variations in instantaneous charge carriers concentration
with composition. The previous considerations developed
remain valid, and the hypothesis of a constant mobility with
composition means that all terms in the mobility expression
in (9) can be considered as almost constant at constant
temperature as a function of 𝑥.

To estimate, in the 𝑥Na
2
O ⋅ (1 − 𝑥)GeO

2
system, the

number, or at least the variation of instantaneous charge car-
riers with composition, thermodynamic solutions are applied
to this glass-forming system, considered as a “solution” in
which theNa

2
Omodifier is the solute andGeO

2
the “solvent.”

The charge carriers are obtained by partial dissociation of
Na
2
O in this low dielectric solvent like it is the case for

the weak electrolyte solutions in electrochemistry. Through
this dissociation process, the number of instantaneous charge
carriers is an exponential function of the partial free energy
Δ𝐺Na

2
O of Na

2
O in the 𝑥Na

2
O ⋅ (1 − 𝑥)GeO

2
mixture,

that is,

𝑛
+
= 𝑛 exp(

−Δ𝐺
0

𝑓
+ Δ𝐺Na

2
O

2𝑅𝑇
) , (11)

in which Δ𝐺
0

𝑓
is the free energy for the formation of a

charge carrier in an arbitrary reference state, and Δ𝐺Na
2
O

the difference in partial free energy of Na
2
O in this ref-

erence state and the studied composition. The factor 2
in the exponent expresses that, similar to ionic crystals,
the dissociation process generates two charged species,
a charge carrier and its vacant site, both in the same
amount.

Finally, the ionic conductivity variations with composi-
tion should follow the variations in the sodium partial free
energy according to

log 𝜎 ≈ log 𝑛
+
≈

Δ𝐺Na
2
O

2𝑅𝑇
. (12)

This correlation has been directly evidenced in different
glass-forming systems by simultaneous measurement of the
ionic conductivity and alkali partial free energy using poten-
tiometric or calorimetric techniques [13, 16]. Finally, in this
approach, the large variations in ionic conductivity would
be the result of large variation in Δ𝐺Na

2
O with composition

(𝑥) as long as all other energetic terms may be considered as
composition independent.

To interpret these large variations in Δ𝐺Na
2
O with com-

position, Ravaine and Souquet [13, 14] and Pradel et al.
[17] have developed a statistical model for binary oxide and
sulfide systems similar to those already developed for molten
silicates [18, 19]. Basically, the mixing enthalpy Δ𝐻mix is
deduced from the enthalpy variation in Δ𝐻 when a bridging
oxygen is replaced by two nonbridging oxygens according the
equilibrium:

M+

M+
O−O−

𝑖

𝑖𝑖
+M2OGe Ge Ge GeO (13)

and the mixing entropy (Δ𝑆mix) estimated from the different
possible configurations for the oxygen, that is, ionic (O2−),
non bridging (–O−) and bridging (–O–).

The Gibbs-Duhem equation is then used to calculate the
expression of the partial free energy of the alkali oxideΔ𝐺M

2
O

as a function of the molar ratio 𝑥 (0 < 𝑥 < 2/3) in M
2
O

leading to

Δ𝐺M
2
O = 𝑅𝑇 log 𝑎M

2
X = Δ𝐻

0
+ ℎ

2𝑥

1 − 𝑥⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

enthalpic terms

+ 𝑅𝑇 log 4𝑥
2

(2 − 3𝑥) (2 − 𝑥)
.

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

entropic term

(14)

The enthalpic term is the sum of two terms, Δ𝐻
0
(<0)

representing the variations in enthalpy associated to the bond
reorganization according to (12)—of the order of some eV
[20]—and a corrective term, ℎ (>0), expressing an eventual
small decrease in this enthalpy as a function of the number
of broken oxygen bridges. In other terms, the electronic
reorganization implied in (12) modifies the bond strength
of the remaining bridging oxygens as evidenced by X-ray
structural analysis [21]. A positive value for ℎ indicates the
progressive decrease in the energy balance of the exothermal
reaction with the amount of modifier M

2
O. This decrease

is also evidenced from the reported formation enthalpies of
silicates on thermodynamic tables [20].

The dependence of Δ𝐺M
2
O on 𝑥 and, consequently, the

number of charge carriers are due to both the entropic
and enthalpic terms. In all cases, the important isothermal
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variations in ionic conductivity with 𝑥 are well represented
by the relationship:

log𝜎 ≈
Δ𝐺M

2
O

2𝑅𝑇
=

Δ𝐻
0

2𝑅𝑇
+

ℎ

𝑅𝑇

𝑥

1 − 𝑥
+
1

2
log 4𝑥

2

(2−3𝑥) (2−𝑥)
,

(15)

using (14) to expressΔ𝐺M
2
O as a function of 𝑥. An assessment

of the enthalpic term ℎ can be done by the research of the best
fit with conductivities data as a function of 𝑥. Such estimation
can also be done by fitting variations in activation enthalpy
with 𝑥 since the global activation enthalpy obeys the relation:

𝐸
𝐴

RS = 𝐸
0
− ℎ

𝑥

1 − 𝑥
, (16)

including in the constant term themigration and dissociation
enthalpies (𝐸

0
is a constant).

Note that in this model, the defect formation and
migration energies are not estimated in absolute value; the
model only proposes an interpretation of the variations of
isothermal conductivity data with the amount of cation
modifier dissolved in the GeO

2
solvent.

4. Ionic Transport over the Glass
Transition Temperature

The changes in transport properties above 𝑇
𝑔
involve a

cooperativemechanism of the neighboring atoms in addition
to the low temperature process, where a new displacement
mechanism is observed which may be described by the free
volume approach. This mechanism can be understood by a
local concentration of free volume distributed throughout the
supercooled liquid which leads to the formation of a hole
enabling the displacement of the diffusing species. The free
volume concept was introduced by Doolittle [5] and further
developed by Cohen and Turnbull [6].

At high temperature, that is, above 𝑇
𝑔
, in addition to the

low temperature process, another displacement mechanism
is observed, which is schematized in [10]. Local deformations
of the macromolecular chains enable the transfer of the
defect to a neighboring position. This deformation requires
local fluctuations of the free volume allocated to the chain
segments [6]. Let us define 𝑉∗

𝑓
as the minimum free volume

required in order that the chain movement results in a defect
displacement. Hence, the probability, 𝑃

2
, that this minimum

free volume is reached, is

𝑃
2
= exp(−

𝑉
∗

𝑓

𝑉
𝑓

) , (17)

where 𝑉
𝑓
is the mean free volume allocated to a chain

segment. Its temperature dependence can be expressed by
𝑉
𝑓

= 𝑉
0
𝛼 (𝑇 − 𝑇

0
), where 𝛼 is the thermal expansion

coefficient of the free volume, and 𝑉
0
corresponds to the

volume at 𝑇
0
.

𝑃
2
can then be rewritten as

𝑃
2
= exp[−

𝑉
∗

𝑓

𝑉
0
𝛼 (𝑇 − 𝑇

0
)
] . (18)

This expression confirms that this second mechanism
only appears above the ideal vitreous transition temperature,
𝑇
0
, at which the free volume disappears. Above this tem-

perature, the cationic displacement may occur either by an
activated jump (𝑃

1
= exp(−Δ𝐻

𝑚
/𝑅𝑇)) or by an entropic free

volume mechanism (𝑃
2
). As these mechanisms are exclusive,

the total probability of a successful displacement reads

𝑃 = 𝑃
1
+ 𝑃
2
− 𝑃
1
𝑃
2
. (19)

Under such conditions, the cationic mobility becomes

𝜇
+
=

𝐹𝜆
2
𝜈
0

6𝑅𝑇
𝑃, (20)

and the cationic conductivity can be rewritten in the follow-
ing manner:

𝜎𝑇 = 𝐴
high
𝜎

exp(−
Δ𝐻
𝑓

2𝑅𝑇
){exp (−

Δ𝐻
𝑚

𝑅𝑇
)

+ exp[−
𝐵
∗

𝜎

𝑅 (𝑇 − 𝑇
0
)
]

× [1 − exp (−
Δ𝐻
𝑚

𝑅𝑇
)]} .

(21)

The variation of thismobility as a function of temperature
depends on the relative values of 𝑃

1
and 𝑃

2
. According to

(18), a free volume migration mechanism is possible as soon
as the temperature reaches 𝑇

0
. Nevertheless, it is detectable

only for higher temperatures because the low temperature
activatedmechanismprevails below a particular temperature,
𝑇
𝑔
, which can be seen as the “electrical vitreous temperature.”

It is to say that, in the particular temperature range (𝑇
0
< 𝑇 <

𝑇
𝑔
), 𝑃
2
remains very small compared to 𝑃

1
, and the mobility

expression (20) is reduced to (8). Hence, the conductivity
expression is the same as the activated form proposed in
(9), keeping its continuity from 𝑇 > 𝑇

0
up to 𝑇

𝑚
(in the

mathematical sense). On the contrary, over 𝑇
𝑔
, 𝑃
2
becomes

preponderant and the conductivity expression now reads

𝜎𝑇 = 𝐴
high
𝜎

exp(−
Δ𝐻
𝑓

2𝑅𝑇
) exp[−

𝑉
∗

𝑓

𝑉
0
𝛼 (𝑇 − 𝑇

0
)
]

or

(22)

𝜎𝑇 = 𝐴
high
𝜎

exp(−
Δ𝐻
𝑓

2𝑅𝑇
) exp[−

𝐵
𝜎

𝑅 (𝑇 − 𝑇
0
)
] . (23)

This expression of 𝜎𝑇 is the product of two exponential
terms where the first is representative of an activated mecha-
nism and where the second describes a VFTH behavior. This
kind of relationship has already been proposed to improve
the viscosity-temperature fits for B

2
O
3
or alkali silicate above

their vitreous transition temperature [4]. We may also note
that the preexponential term in this relationship contains
the same microscopic characteristic parameters as in (9). It
means that the limit of the conductivity-temperature product
when the temperature tends to infinity does not depend on
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the nature of the displacement mechanism. Please note that
above 𝑇

𝑔
we assume that all activation enthalpy is due to the

defect formation and will assume Δ𝐻
𝑓
the same as below

𝑇
𝑔
. The migration term is mainly due to the “chain segment”

motion, that is, due to the formation of holes according to the
free volume theory.

5. Numerical Fits and Discussion

For all glass compositions studied within the measured
temperature range below 𝑇

𝑔
, the conductivity was found to

obey an Arrhenius behavior, according to (1). Examples are
shown in Figure 1, where it is possible to note the increasing
in 𝜎𝑇 when more sodium is added. For conductivity, the
initial procedure was to obtain from the Arrhenius fit below
𝑇
𝑔
the activation enthalpy 𝐸

𝐴

𝜎
. We have reported in Figure 3

the variations of 𝐸𝐴
𝜎
calculated from experimental data using

(16) in the range 0.05 < 𝑥 < 0.296 and observed a smooth
decrease of 𝐸

𝐴

𝜎
between 1.13 to 0.72 eV (see Table 1). On

the same graph are superimposed the expected calculated
variations in 𝐸

𝐴

RS deduced from the Ravaine-Souquet model,
with 𝐸

0
= 1.187 ± 0.039 eV and ℎ = 1.04 ± 0.15 eV,

giving reasonable results that can be comparable to other
systems using the same approach [17]. Please note that this
model does not allow to calculate the activation enthalpy
in absolute value, but only its variations with composition
through the parameter h. As far as the author knows,
only recently binary silicate systems had activation enthalpy
analysis compared with other theoretical models in near the
same wide compositional and conduction ranges [22–24].

On Figure 4 are reported the variations of 𝐴
low
𝜎

as a
function of 𝑥 for the compositions investigated. Despite
some scattering, one observes a continuous andmonotonous
increase with 𝑥, indicating the low influence of enthalpic
terms, as expected. This trend was observed and explained
in the same way in lithium silicate systems [25]. The full line
superimposed represents the expected variations calculated
from the weak electrolyte model. For instance, a variation
of preexponential termwith composition was experimentally
observed in binary alkali silicate, borate, germanate,and tellu-
rite systems [26–29], ranging up to two orders of magnitude,
with an average value of 104 K⋅S/cm.

Before analyzing the conductivity data above 𝑇
𝑔
, we

analyzed first the viscous flow behavior and assess reasonable
values using DML (𝐴high

𝜂
, 𝐸𝐴
𝜂
, 𝐵
𝜂
, 𝑇
0
) parameter equation, as

shown in Figure 2 and Table 1, using a least square analysis
method. As DML and VFTH expressions give the same
preexponential 𝐴high

𝜂
, we analyzed the viscous flow behavior

using it freely, and the average value found was 𝐴
high
𝜂

=

10
−5 Pa ⋅ s, in agreement with experimental analysis done in

dozens of silicate and borate systems [30, 31]. From this table,
it was possible to calculate 𝐸

𝐴

𝜂
, 𝐵
𝜂
and 𝑇

0
< 𝑇
𝑔
, resulting

in reasonable values, giving one idea of the chemical bond
reorganization above 𝑇

𝑔
in this system, because 𝐸

𝐴

𝜂
ranged

between 0.712 < 𝑥 < 1.189. The DML equation uses four
parameters and fits better than VFTH to experimental data,
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Figure 3: Activation enthalpy from experimental data in Figure 1
and (1) as a function of Na
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O molar ratio 𝑥, and comparison with

calculated values using the Ravaine-Souquet approach (full line).
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but this should be not surprising because the description of
experimental results is most accurate by the equations that
use the highest number of adjustable parameters.

About conductivity data above 𝑇
𝑔
, it was possible

to obtain the formation enthalpy term assuming that
𝐸
𝐴

𝜎
≈ Δ𝐻

𝑓
/2, as shown in Figure 1, thus easily finding

the migration term Δ𝐻
𝑚
. From this procedure we assumed

that the defect formation does not depend on the nature of
the displacement mechanism, that is, the knowledge of the
formation and migration enthalpies was supposed to be the
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same below and above 𝑇
𝑔
. From Table 1 it is possible to note

that 𝐸𝐴
𝜎
decreased with increasing 𝑥, physically because less

enthalpy is necessary to surpass the kinetic barrier, and near
following the same trend observed below 𝑇

𝑔
.

We may note that the respective orders of the magni-
tude of the two enthalpies (Δ𝐻

𝑓
and Δ𝐻

𝑚
) are reasonably

in agreement with those generally observed in crystalline
materials presenting extrinsic and intrinsic conductivity
domains which allow, in that case, the separation of the two
contributions [32]. It was not possible to obtain the entropy
values Δ𝑆

𝑓
and Δ𝑆

𝑚
by adjusting (9); thus its contribution

for preexponential term exp[(Δ𝑆
𝑓
/2 + Δ𝑆

𝑚
)/𝑅] was assumed

inserted in preexponential. Then, the Gibbs free energies
Δ𝐺
𝑓
and Δ𝐺

𝑚
could not be determined from appropriated

choice of respective enthalpies and entropies of formation
and migration, respectively. Indeed, the preexponential val-
ues obtained from the Arrhenius fits was near to 𝐴

low
𝜎

≈

10
5 K ⋅ S/cm, in fact very reasonable results, as explained

above.
The coherence between the low and high temperature

conductivity parameters was obtained from experimental
conductivity data using (23) and considering the same 𝑇

0

from viscosity data (5). We observed that, above 𝑇
𝑔
, 𝐸𝐴
𝜎
< 𝐸
𝐴

𝜂

and it was possible to obtain easily 𝐵
𝜎
assuming 𝐴

high
𝜎

≈

𝐴
low
𝜎

fixed, that is, because this term should have the same
physical meaning in the full temperature range. All results
are summarized in Table 1. The obtained 𝐵

𝜎
’s values are

lower than 𝐵
𝜂
considering DML equation, which means

that the conduction process needs a lower free volume
than the viscous flow. Unfortunately there are no viscosity
measurements below 𝑇

𝑔
to verify if the activation enthalpy

for conductivity is lower than that for 𝜂.
To be on the safe side we also tested (21), that involves the

calculation of the 𝑃
1
and 𝑃
2
temperature dependent probabil-

ities. As the 𝑃
2
/𝑃
1
ratio shows a sharp increasing above 𝑇

𝑔
in

the systems investigated, it confirms the use of the simplified
form, (23). For instance, we found that the resulting 𝐵

∗

𝜎

values from (21) were similar to 𝐵
𝜎
, which means that the

migration enthalpy is related to the free volume available
above 𝑇

𝑔
, following similar procedure done by Caillot et al.

[33].
We may now emphasize that (21) and (23) contain the

usual VFTH “contribution” (3). The multiplying Arrhenius
term exp(𝐸𝐴

𝜂
/𝑅𝑇) takes into account the formation of defects;

in fact this is an advantageous equation, that combines both
the Arrhenius and VFTH equations with the free volume
model. Such combinations of equations with two different
exponential temperature dependencies may reflect different
aspects of viscous flow mechanisms, for example, separa-
tion of the individual diffusing units from their neighbors
followed by a translation over certain distances intro an
appropriated vacancy [34].

5.1. An Assessment for Charge Carriers Concentration and
Mobility above and below the Glass Transition Temperature.
Table 1 allows a comparison between the enthalpies for
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Figure 5: The determination of the charge carrier ratio 𝑛
+
/𝑛

from the data in Table 1 following (7) in wide temperature and
composition ranges.

charge carriers formation and migration deduced from the
experimental values for activation enthalpy above and below
𝑇
𝑔
. For the investigated compositions, the charge carriers

formation require a formation enthalpy of about 1.10–1.90 eV,
their migration enthalpies, a near fixed value close to 0.18 eV.

Using now these experimental values it is thus possible to
estimate the relative concentration 𝑛

+
/𝑛 of the charge carriers

in the glassy state using (7) and their mobility 𝜇
+
by means of

(8). Variations of the relative concentration in charge carriers
and their mobility are represented in Figures 5 and 6. These
results are similar to analysis done in alkali disilicates [35].
Note that the combination of both figures gives the previous
lines shown in Figure 1.

Mobility values at room temperature are quite similar to
each other (near 10−4 cm2 s−1 V−1), due to the same obtained
values for migration enthalpy, Δ𝐻

𝑚
. Such results are similar

to the unique mobility measurement of silver done in glass
systems, by means of the Hall effect on 𝑥AgI ⋅ (1 − 𝑥)AgPO

3

glasses [36]. The experimental value for mobility obtained
from 0 < 𝑥 < 0.5 was (6 ± 2) × 10

−4 cm2/V ⋅ s at
25∘C. Thus, our mobility results are in agreement with the
hypothesis formulated by the weak electrolyte theory, that is,
the independence of the mobility of the ionic carrier with
glass composition. Analysis performed in such systems [37]
showed similar results and conclusions as done in the present
work.

In ionic crystals, the separation of the charge carri-
ers formation enthalpy from the charge carriers migration
enthalpy is done by the comparison of the conductivity
activation enthalpies in the intrinsic and extrinsic domains
[32].The difference in activation enthalpy in the two domains
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Figure 6: Determination of the mobility 𝜇
+
from data in Table 1

following (8) in wide temperature and composition ranges.

corresponds to the defect formation enthalpy. In other words,
for ionic crystals, it is a discontinuity in the origin of the
charge carriers which allows to separate the two enthalpic
terms. In the present case, it is not a discontinuity in the
origin of the charge carriers formation but a discontinuity
in the migration mechanism, over and below the glass
transition temperature, which allows to separate the two
contributions.

A possible error source on our calculations would be on
fixing the jumping distance 𝜆 = 3.5 Å for all systems under
study, following (7). Other possible error concerns with few
experimental data above𝑇

𝑔
[8]. Finally, the obtained 𝐵

𝜎
< 𝐵
𝜂

values are quite acceptable, and it is possible to conclude that
the proposal determination route to distinguish activation
enthalpies of formation and migration is valid.

6. Conclusions

We verified two microscopic models developed to inter-
pret both the ionic conductivity and viscosity variations
in large temperature range surrounding the glass transi-
tion delimiting the supercooled liquid and vitreous solid
domains. Below 𝑇

𝑔
, the analyzed model shows that the

conductivity obeys an Arrhenius law and that the rel-
evant activation enthalpy 𝐸

𝐴

𝜎
is a simple function of

the migration and formation enthalpies. Above the ideal
glass transition temperature 𝑇

0
a cooperative displace-

ment process, described by the free volume approach, is
superposed onto the activated mechanism. Microscopically,
this implies that the ionic displacement occurs either because
the interstitial pair jumps over an energy barrier separating

two adjacent sites or because this energy barrier vanishes con-
sequently to a local rearrangement of surrounding atoms.The
latter mechanism results in a conductivity increase appearing
for temperatures higher than the transition temperature 𝑇

𝑔
.

A numerical fit of experimental data to viscosity-temperature
model enables the determination of the characteristic param-
eters of both migration and formation processes, that were
used to compare with similar model applied to conductivity
data in the same temperature range. Moreover, by means of
this identification, it becomes possible to calculate separately
the migration and formation enthalpies. All determined
preexponential parameters for viscosity and conductivity
are consistent with the values expected from our current
knowledge of ionic crystals and supercooled liquids.

About the conductivity mechanism below 𝑇
𝑔
, the main

interest of the Ravaine-Souquet model is to introduce,
in addition, the concepts of solution and statistical ther-
modynamics to quantitatively justify the variations of the
concentration in charge carriers with composition. This
thermodynamic approach allows to justify the variations
of the preexponential term and activation enthalpy with
composition. Moreover, the weak electrolyte theory appears
to be confirmed by this work, because the mobility of the
ionic charge carriers is independent of their concentration,
and the determination route to split activation enthalpies
seems to work well, giving reasonable results. This work
aims to contribute to future discussions to connect the
full temperature dependence of the ionic conductivity from
below 𝑇

𝑔
to above 𝑇

𝑔
.
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