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a b s t r a c t

Experimental data of phase transformation kinetics was used to fit a newmodel based on a
non-extensive formalism derived from Tsallis thermostatistics and another based on the
Johnson–Mehl–Avrami–Yerofeyev–Kolmogorov (JMAYK) theory. For this we considered
the same experimental parameters such as crystal geometric factor g , the density of
nucleation sites, NS and crystal growth rates U on glass powders. The kinetics of nucleation
and growth of diopside crystals (MgO · CaO · 2SiO2) on the glass surface at 825 °C (Tg ∼

727 °C) were studied. Treatments for sinter-crystallization were performed in compacts
of diopside glass particles by varying the treatment time. The crystallized fraction of the
samples subjected to such treatments, which develop from the particles’ surface toward
their volume, was characterized by means of optical microscopy and X-ray diffraction. The
two models were then fitted to the measured crystallized fraction data and compared to
each other. It was found that surface nucleation occurs very rapidly from a randomnumber
of active sites. The JMAYK theory describes the case of fast heterogeneous nucleation froma
constant number of sites on the glass surface. The Tsallis approach is better than the JMAYK
model considering that the q factor equals 1.268 ± 0.062 and does not require taking into
account the change in crystallization mode from three dimensional to one dimensional as
JMAYK predicts, and this is advantageous. Furthermore, Tsallis thermostatistics contains
the Austin–Rickett model as a special and limiting case study for this system. A generalized
Avrami plot is also presented.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Overall crystallization from a melt is a complex process involving simultaneous nucleation and growth of separate
crystallites [1]. While most types of glass display surface crystallization when properly heated, only a few show internal
nucleation in the absence of nucleating agents [2]. The process can be described by determining the surface or volume
fraction of the transformed phase, and this is an important goal when a correct description for a material fraction
transformed at a given time in terms of nucleation and growth processes is required. The formal theory of crystallization
kinetics under isothermal conditions was independently developed in the late 1930s–1940s by Kolmogorov [3], Johnson
and Mehl [4], Avrami [5–7], and Yerofyeyev [8], and it is well-known as the JMAYK theory. It is widely used to infer the
mechanism of phase transformations in metals [9], polymers [10] and inorganic glass [11].
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The most universal form of the theory for the (extended) fraction transformed α as a function of the annealing time t in
isothermal heat treatment conditions is:

α(t) = 1 − exp

−α∗(t)


(1)

where α∗ is the extended or fictitious volume, which is calculated by neglecting impingement effects, allowing each crystal
to nucleate and grow naturally. This quantity can be calculated if the nucleation, I , and growth rate, U , are known at the
temperature T of interest.

Avrami proposed that [5–7], in general, the following relation should be used:

α(t) = 1 − exp

−Ctn


. (2)

According to Kolmogorov [3] α(t) can be interpreted as the probability for crystallizing for example the glass until time
t after the onset of the process. In typical applications the equation above is used in the form [6]:

ln [−ln (1 − α)] = ln C + n ln t. (3)

The values of C and n can be obtained from experimental data by Eq. (2), and their specific values depend on the nature of
nucleation and growth processes. The Avrami coefficient, n, depends on both the nucleation and growth mechanisms, and
can be written for the case of three-dimensional growth as:

n = c + 3m (4)

where c and m describe the variation in the crystal number with time (N ≈ tc) and the dependence of crystal size on time
(r ≈ tm) [1,12].

A knowledge of the Avrami coefficient, n, is helpful to understand the mechanism of phase transformation at a given
temperature [13]. When it is possible to independently measure the crystal growth rate, one can then calculate the
nucleation rate from the coefficient C . This method is not as precise as direct measurements, but it can provide useful
information about nucleation in the advanced stages of crystallization, when the application of other methods is hindered.

For the special case under study, i.e. fast nucleation of square shaped crystals from a fixed number of sites on the glass
surface, NS , the fictitious extended area, α∗, is:

α∗(t) = gNSr2(t) (5)

where r is the edge crystal size and g a shape factor (in this work, equal to four).
If the growth rate, U , is time independent, the crystal dimension can be related to the heat treatment time, t , by the

simple relation:

r(t) = Ut. (6)

Therefore, the actual crystallized fractional area is easily computed by the combination of the previous equations:

α(t) = 1 − exp

−4NSU2t2


. (7)

For this particular glass system, nucleation occurs rapidly from a fixed number of (unknown) sites NS in the very early
stages of crystallization [14]. In the vast majority of types of glass, crystallization starts on athermal surface sites, such as
scratches, solid impurities, etc. [15,16].

2. Nonextensive JMAYK brief theory

According to Avrami, Eq. (1) comes from the differential equation [6]:

dα(t)
dα∗

= 1 − α(t). (8)

Kayacan and Cetinel [17,18] proposed a similar equation, as described below:

dα(t)
dα∗

= [1 − α(t)]q (9)

based on Tsallis thermostatistics [19], where q is called the entropic index andmeasures the ‘‘nonextensivity’’ of the system.
In the limit of q → 1, Eq. (9) reduces to the JMAYK equation.

The index q comes from the entropy definition [19]:

Sq = k
1 −

W
i=1

pqi

q − 1
(q ∈ ℜ,W ∈ N) (10)

where k is a constant, pi is the probability of the system in the i microstate, W is the total number of configurations and q
as previously defined. More details can be found in Ref. [20], in particular on deformed q-algebras [21] and possible new
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expressions. It is important to note that Kayacan and Cetinel’s proposal is not based on a rigorous physical model but on the
physical meaning of the exponent q, which comes from the entropy definition, and seems reasonable.

Tsallis proposed Eq. (10) as an entropy definition in 1988 [19]. In the limit q → 1, this equation is reduced to the
Boltzmann–Gibbs (BG) entropy [19]. In otherwords, Eq. (10) contains Boltzmann–Gibbs statistics [1,12] as a special case [18].
BG statistics is a powerful and well known tool for the study of a variety of physical systems, as the present case. However,
it fails for systems which (i) have long-range interactions (ii) have long-range memory effects and (iii) evolve in multi-
fractal space–time [18]. Systems which have these properties are called ‘‘nonextensive’’ [20] and if a system does obey
these restrictions, BG statistics seems to be inappropriate and a nonextensive formalism is needed to study the physical
system [17].

The solution of Eq. (9) is [22]:

α(t) = 1 −

1 − (1 − q) α∗

 1
1−q (11)

where we consider α∗(t) = 4NSU2t2 in this work.
Eq. (11) can be also written as α(t) = 1 − expq [−α∗], following the q-exponential function definition [22] expq(x) =

[1 + (1 − q) x]
1

1−q , if [1 + (1 − q) x] > 0 and expq(x) = 0 if [1 + (1 − q) x] < 0.
In this study, the adjustable parameter is the entropic index q and it comes from the definition of Tsallis entropy [19].

Moreover, Kayacan and Cetinel’s kinetic proposal covers not only JMAYK (i.e. q → 1), but also the Austin–Rickett (AR)model
(i.e. q = 2) [23]. It is important to note that the Austin–Rickett proposal was drawn up at the same time as the Johnson and
Mehl theory [4]. Thus it is very reasonable that the new equation containing the q parameter could give new insights into our
understanding of the nucleation and growth processes in a glass system with heterogeneous nucleation such as diopside.

Based on the assumptions described above, our aim is thus to consider fixedNS andU previously obtained for a powdered
diopside glass [15,16]—to compare the JMAYK and Tsallis theories based on Kayacan and Cetinel’s proposal. For this we have
experimental volume fraction crystallized α(t) from null to almost 100% crystallized glass. As far the author is aware, this
work is the first experimental verification of surface crystallization using Tsallis thermostatics.

3. Experimental

A glasswith the stoichiometric composition of diopside (CaO·MgO·2SiO2)was prepared bymixing the correct proportion
of high grade chemicals [15]. We use diopside as a suitable model glass, due to (i) the high confidence we have in the values
of crystal growth rate (U) as a function of temperature for this system and the insensitivity of U to small compositional
differences between different glass melts [24] (ii) the fact that only one crystal phase develops on heating and (iii) its high
chemical durability, which prevents the formation of extra nucleation sites (by chemical attack) after sample preparation.
Experimental data was obtained from previous work [15,16].

The chemicals were mixed in a Fritsch Pulverisette 6 high impact mill with Si3N4 jar and balls. The batch was then
melted in a Pt crucible at 1500 °C for 4 h. The liquid was poured into a stainless steel mold and left to cool down in air. Minor
devitrification patches formed on the surface of the glass plaque, whichwere ground off. The glass blockwas hammered and
the ground pieces were further milled in the high impact mill for short time periods (30 s at 350 rpm) to keep the particle
sizes in the desired range without introducing toomany defects on the newly created surfaces. The glass powder was sieved
through a 38–75 µm polymer mesh. The collected powder was washed in water to eliminate most of the fine particles that
usually attach to the coarse ones [16].

To prepare compacts for sintering the collected powder was mixed with 20 wt% oleic acid. Details of sintering process
in glass particles can be found elsewhere [15]. This powder was subsequently heated to 500 °C for some seconds to remove
the excess acid, acquiring a gray color, which indicated that burning was only partial and that some residue remained. We
proceeded in this way to enhance particle packing when pressing the powder into disks. Approximately 25 mg of powder
was pressed under 2500 kgf in a stainless steel die into 1.5 mm thick disks of 10 mm in diameter. The acid was totally
eliminated by subsequently heating of the samples at 500 °C for 1 h, resulting in white disks. Details of sintering process
theory in glass particles can be found elsewhere [25].

It is important to note that the original glass grains considered in this work are not spherical and have a size distribution.
The particle size distribution of the powder usedwas between 38 and 75µmandwas characterized in a Horiba LA-930 laser
scattering particle size analyzer [15].

Two sets of samples for crystallizationmeasurements were independently produced following the above procedure, and
are indicated in the next figures as OM (Optical Microscopy) or XRD (i.e. X-Ray Diffraction) due to the experimental process.
All these samples were heat treated at 825 °C, for 30min to 8 h, for simultaneous sintering and crystallization. For each heat
treatment experiment the samples were heated together.

The sintered disks were sectioned through half the diameter and one of the sectioned faces was polished for microscopy.
We used a Leica DMRX optical microscope with digital image capture and Zeiss KS200 software for image analysis. Ten
images of each section, randomly taken, were analyzed. Samples treated for time periods shorter than 2 h presented very
thin surface crystallized layers, and it was difficult to analyze them in an optical microscope. Therefore these samples were
only analyzed by XRD to estimate their crystallized volume fraction. For one batch we analyzed by means of atomic force
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Fig. 1. Atomic force micrograph of polished (with cerium oxide) diopside crystal one micron length heat treated for 2 h at 820 °C. This glass is similar to
another batch heat treated in equal conditions with NS ≈ 8 × 1010 m−2 [26].

microscopy (Digital Nanoscope IIIa), contact mode, 1.969 Hz scan rate and 3.325 scan size growing crystals from a polished
glass surface with CeO2.

Although the microscopy method briefly explained above can give precise results, it requires several micrographs and is
quite time consuming. Alternatively, X-ray diffraction has the advantage of sampling a large area in a single test, allowing
the rapid determination of α(t). We used a Siemens D5005 XRD operated at 40 kV and 40 mA. More details on sample
preparation can be found elsewhere [15].

4. Results and discussion

Fig. 1 shows an example of the crystal aspect ratio on the surface of a diopside glass mechanically polished with CeO2,
just to observe the squared crystal morphology. These crystals are similar to those obtained in Ref. [26], where the main
goal was the study of concurrent sintering with crystallization process in this particular system. In this work we deal with
jagged particles, as shown in Refs. [15,16], where it is possible to observe sectioned sintered grains whose centers are still
glassy but whose surfaces have crystallized. The thickness of the crystallized surface layer increased with heat treatment
time up to a point when the glass grains were completely consumed by the crystals.

Fig. 2 shows linear fits from Eq. (3) to experimental data, considering as variables the time t and the crystallized fraction
α. According to this equation, plotting ln [−ln (1 − α)] versus ln t for an isothermal experiment yields a linear dependence
with the JMAYK parameters C and n. According to Zanotto and Galhardi [27], it should be emphasized that the Avrami plots
are insensitive to variations of α and t and that the value of the intercept C is seldom compared to the theoretical value.

The plot can be divided into two parts: the initial, ranging up to the time t∗, which depends on temperature and is
around 4 h for isothermal heat treatment at 825 °C; and the next regime above t∗. A linear regression fit of the both regimes
leads to the parameters which are indicated in Fig. 2. For t < t∗, n is of the order of 2 (a two dimensional growth, as
explained by Avrami [6]) with parameter ln C ≈ ln gNSU2 within the same order or magnitude found on the plot. However,
for t > t∗ it is found that n is near 1, which indicates controlled diffusion or first-order kinetics or indicates athermal
nuclei/needle-like crystals growing from the surface toward the volume of the particle. It is important to note that the
coefficient ln C = ln gNSU2 does not match at high α values and with the linear regression plot in Fig. 2. As pointed out by
Price [28] when linear Avrami plots (Eq. (3)) are obtained, n frequently differs from values expected, for example by that
used in Eq. (7).

The number of crystals per unit area,NS , and crystal growth rate,U , used are similar to previous results [14,29], i.e.within
the same order of magnitude, even considering the difference in composition (1% Al2O3 addition in diopside for previous
cases) or heat treatment temperatures. Zanotto [14] and Zanotto and Basso [29] found squared crystals growing from 1 to
4 hwithNS = 7.874×1010 m−2 and linear behavior (following Eq. (6)) U = 2.48×10−10 m/s with 15 < α < 70% at 820 °C
by means of optical and scanning electron microscopies. In this work samples were heat treated at 825 °C, with parameters
fixed as NS = 4 × 1010 m−2 and U = 2 × 10−10 m/s [15]. Unfortunately, the optical determination of NS is very difficult
and not a practical task, especially in the case of small jagged particles prepared for sintering (as the present case). This is



Author's personal copy

M.L.F. Nascimento / Physica A 391 (2012) 6077–6083 6081

Fig. 2. Avrami plot for the formation of crystallized diopside samples from optical microscopy (OM) and X-ray diffraction (XRD) results for a fixed
temperature 825 °C. Line fits of different crystallization behaviors are indicated (n = 1 and 2, dashed line). Just for comparison, the best Tsallis fit using
q = 1.268 (full line) as a continuous curve.

Fig. 3. Experimental volume fractions crystallized in sintered diopside glass compacts as a function of time at 825 °C, by means of optical microscopy
(OM) and X-ray diffraction (XRD) results. Curve fits of different expressions to the experimental data (lines) considering geometric factor g = 4, crystal
density NS = 4 × 1010 m−2 and growth rate U = 2 × 10−10 m/s. Best fits were found using the Tsallis approach with q between 1.1 and 1.3.

the reason why we and other authors have used models that allow an indirect estimation of NS (more details in Ref. [15]).
Diopside crystal growth rates were analyzed in a broad temperature range [30].

Fig. 3 shows the experimental volume crystallized fraction in sintered diopside glass–ceramic compacts as a function
of time at 825 °C. We omit the error bars for simplicity. Part of the potential experimental variation was eliminated by
heat treating the samples together, but the results can be strongly affected by the surface condition of the particles, whose
effect on NS has been reported [31]. Despite the significant scatter, Fig. 3 shows that, on average, the experimental volume
crystallized fraction increases with time at 825 °C and achieves about 100% after 10 h of heat treatment at this temperature.
The validity of the JMAYK theory has been experimentally confirmed for heterogeneous surface nucleation for the limiting
case of a large number of nucleation sites in diopside [14].We verified this validity in awide range of crystallization kinetics,
from almost null to a completely crystallized sample comparing with the Tsallis and AR equations.

For comparative purposes Fig. 3 shows the JMAYK, Tsallis and AR curves calculated by the different models
described in the introduction. The Tsallis approach best fits the experimental data with q = 1.268 ± 0.062 considering
a Levenberg–Marquardt non-linear fitting and using OriginTM software, with all other parameters fixed. In the figure we
present curves between 1.1 and 1.3 to give a better idea of how the fitting procedure worked. Fig. 2 shows a comparison
of a linear and the best Tsallis fit on an Avrami plot—as the curve is continuous though the crystallization range (similar to
the JMAYK continuous curve in Fig. 3), no transition break was required from n = 2 to 1. The small discrepancy with the
experimental data can perhaps be explained if we recall that the glass particles have a relatively wide size distribution [15].
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Fig. 4. Generalized Avrami plot considering in ordinate ln

−lnq (1 − α)


, following the q-logarithm definition, where is possible to note a straight line

for the proper value of q = 1.268.

Another important point is that one could argue that JMAYK is still valid for representing the overall crystallization process
shown in Fig. 3, apart from some discrepancies from experimental data. The AR adjustment is shown for comparison with
othermodels and because Tsallis thermostatistics contains the Austin–Rickettmodel [23] as a special and limiting case study
for this system.

Fig. 4 shows another way to calculate q by means of q-logarithm definition. This generalized plot can also be used to
choose the proper value of q: i.e. one that aligns the data to a straight line. It is important to note that, in the generalized
Avrami plot, the ordinate uses both ordinary logarithm and q-logarithm, defined as lnqx =

x1−q
−1

1−q , which is the inverse of
the q-exponential function that appears in Eq. (11) [21]. Consequently, in the new generalized Avrami plot, the case q = 1
does not appear as a straight line.

Eq. (11) would be useful for lower NS values due to the limitations of the JMAYK theory according to Todinov [32].
Weinberg [33] also pointed out that other practical limitations are due to transient/heterogeneous crystallization,
non-spherical crystal growth, metastable crystallite formation, multiple phase formation, compositional change upon
crystallization and combined surface and bulk crystallization. According to Weinberg, even for very large volume fractions
(α) computer modeling using lower NS = 107 m−2 and U = 10−6 m/s was in good agreement with JMAYK simulations, in
the same way as Eq. (7) used in this work [33].

Conclusions

In this study we have presented a new generalized kinetic equation to study the nucleation and growth of a diopside
glass system which nucleates heterogeneously. We have tested the kinetic equation based on a nonextensive formalism. In
contrast to JMAYK and AR kinetic equations, we use an index q coming from the entropy definition of the physical system
whichmeasures the nonextensivity of the system. This generalized kinetic equation recovers both JMAYK and AR equations
as special cases, for q → 1 and 2, respectively.

In fact, Tsallis statistics, more precisely the Kayacan and Cetinel proposal, handles the kinetics of phase transformation
with a q value close to unity (between 1.2 and 1.3), lower than 2 following the ARmodel, and besides such a small correction
could improve the predictions of the JMAYK equation, mainly because it is simple and does not involve an exponential
function. JMAYK still represents the temperature behavior of crystallization processes considering a high crystal density per
unit area NS and low crystal growth U . JMAYKwas tested without any adjustable parameter, and the Tsallis approach works
well considering one adjustable parameter q. In particular, the Avrami plot resulted in a parameter ln C = ln gNSU2 similar
to expected values considering the range t < t∗. The surface nucleation occurs very rapidly from some random number of
active (impurity) sites.

In fact, a test considering the generalized Avrami plot would be helpful to future analysis due to their facility on
recognizing linear plots by means of reasonable q-values.

However, wemust keep inmind that better agreement with experiment (or even simulation) obtained by employing the
generalized JMAYK equation does not mean a validation of the generalized theory. To see whether it can be relied on or not,
more studies are needed into its applications to the kinetics of phase transformation considering glass-forming systems. The
Tsallis approach can possibly provide more insight into the open problems of Classical Nucleation Theory (CNT).
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