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In this paper, we study singular systems with complete sets of involutive con-
straints. The aim is to establish, within the Hamilton-Jacobi theory, the relationship
between the Frobenius’ theorem, the infinitesimal canonical transformations gen-
erated by constraints in involution with the Poisson brackets, and the lagrangian
point (gauge) transformations of physical systems. C© 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4900921]

I. INTRODUCTION

Symmetries become the cornerstone of the modern physics, from the advent of the special theory
of relativity to the standard model of the elementary particles. Among the physical requirements for
the construction of fundamental interactions in quantum field theory is the concept of gauge symmetry
and, for the gravitational field, the concept of diffeomorphism invariance in a Riemannian space-
time. In the mathematical sense, integrability of ordinary (ODEs) and partial differential equations
(PDEs) is usually related to the existence of certain integrals of motion of dynamical systems,
and when the physical systems to which those equations belong can be described by variational
problems, symmetries are found to be related to the existence of these integrals of motion. The
astounding beauty of the subject is that mathematical symmetries determine the physical interaction
of the matter fields in nature.

The study of symmetries in field theory is historically linked to the lagrangian and hamiltonian
formalisms. In the lagrangian picture we have the Noether’s theorems, which relate symmetries
of a fundamental integral to conserved currents and geometrical identities in the context of the
calculus of variations. The hamiltonian formalism, on the other hand, deals with symmetries in
the context of canonical transformations. Even in classical mechanics, where both formalisms
are completely equivalent, there is no general and unique correspondence between canonical and
lagrangian symmetries.

In field theories, the existence of lagrangian symmetries implies singularity of the lagrangian
function, which means that there are constraints relating some of the phase-space variables.1, 2 In
this case, the hamiltonian picture must be constructed to be equivalent to the lagrangian one. The
first and most used method to build this equivalence is Dirac’s hamiltonian method,3 which consists
in the construction of the hamiltonian picture by consistency. For detailed textbooks on the subject,
we refer to Ref. 4.

Dirac found that symmetries of a singular system are related to the existence of a subset of
the so called primary first-class constraints, which are generators of “gauge transformations” in the
hamiltonian method. However, this relationship has no general rule in sight of the applications, and
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he found himself obligated to conjecture that the complete generator of the lagrangian symmetries
of a system must be a linear combination of all first-class constraints.5 In the mathematical point
of view, this problem is still considered unsolved, despite some results in the literature,6 and the
success in applying the conjecture in the analysis of gauge theories.7

On the other hand, the Hamilton-Jacobi (HJ) formalism provides a very natural way of dealing
with symmetries, and also with singular systems. Carathéodory8 was the first to notice that this
formalism is the unifying theory between the theory of first-order PDEs, the theory of first-order
ODEs, and the calculus of variations. Lagrangian and hamiltonian dynamics find place as direct
mathematical consequences of the HJ theory. With the suggestive name of “the complete figure” of
the variational calculus, the HJ formalism was extended to treat singular systems by Güler,9 followed
by generalizations for higher order derivative lagrangians,10 Berezin systems,11 linear actions,12 and
applications, specially in the gravitational field13 and topologically massive theories.14 In the HJ
formalism, canonical constraints form a set of PDEs of the first-order, and the dynamical evolution is
generated by a complete set of independent hamiltonian functions, resulting in a system with several
independent variables. In general, a system presents two different sets of constraints, which are
called non-involutive and involutive constraints. In Ref. 15, systems with non-involutive constraints
are studied, and it is shown that these constraints are responsible to change the symplectic structure
of the phase space.

In this paper, we provide a continuation of the work,15 and study systems with involutive
constraints in sight of the Frobenius’ integrability theorem. In Sec. II, we make a review of the HJ
formalism. In Sec. III, we present an analytic derivation of the Frobenius’ integrability conditions.
In Sec. IV, we turn to a geometrical description of the HJ formalism to show that involutive
constraints are generators of canonical transformations on a complete phase space, also discussing the
relationship between these transformations and the lagrangian transformations in singular theories.
In Sec. V, we present three applications: the first two are mechanical models for gauge theories, the
first one having just involutive constraints, the second one presenting involutive and non-involutive
ones. The last example is the free Yang-Mills field.

II. THE HAMILTON-JACOBI FORMALISM

In this section, we make a brief review of the HJ formalism for singular systems. Let us consider
a system described by the action

I =
∫ t1

t0

dt L
(
t, qi , q̇ i

)
, (1)

where qi are N generalized coordinates of a configuration manifold QN , and q̇ i are their respective
velocities. Solutions of a variational problem involving (1) are trajectories qi = qi(t) parametrized by
the time t. Although we are dealing with a classical mechanical approach, extension to field theories
is straightforward.

According to Carathéodory,8 the necessary condition for the existence of an extreme configu-
ration of (1) is the existence of a function S(t, qi) that obeys

∂L

∂ q̇ i
= ∂S

∂qi
, (2a)

∂S

∂t
+ ∂S

∂qi
q̇i − L = 0. (2b)

The HJ formalism emerges by making (2b) a PDE for S. This can be accomplished if we are
able to find expressions of the velocities q̇ i in terms of the coordinates and derivatives of S. Equation
(2a) can be inverted to give such expressions if the Hessian condition

det Wi j = det

(
∂2L

∂ q̇ i∂ q̇ j

)
�= 0 (3)

is satisfied.
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However, let us suppose that the Hessian has rank P ≤ N. This implies a split of QN in two
subspaces: the first, QP , is spanned by the P coordinates qa related to the regular part of the Hessian
matrix. The second, �R, is spanned by R = N − P variables tz ≡ qz related to the null space of Wi j .
Then, we are allowed to invert the equations for q̇a that give us P velocities

q̇a = φa

(
t, t z, qb,

∂S

∂qb

)
, z = 1, . . . , R; a, b = 1, . . . , P. (4)

The remaining equations cannot be inverted, but they must be valid nevertheless. We may write them
as

∂S

∂t z
+ Hz

(
t, t z, qa,

∂S

∂qa

)
= 0, Hz ≡ − ∂L

∂ ṫ z

∣∣∣∣
q̇=φ

. (5)

We suppose that the functions Hz do not depend on ṫ z , because otherwise, the relations (5) would
be invertible. We could allow dependence on ṫ z in a non-invertible way, but this dependence would
come from very strange lagrangian functions, which we will not consider here.

Using (4) in (2b) we can show that, when (5) are obeyed, the hamiltonian function

H0 ≡ ∂S

∂t z
ṫ z + ∂S

∂qa
φa − L

(
t, t z, qa, ṫ z, φa

)
(6)

does not depend on ṫ z . Then, (2b) becomes the desired PDE

∂S

∂t
+ H0

(
t, t z, qa,

∂S

∂qa

)
= 0, (7)

known as the Hamilton-Jacobi equation.
Along with (7), (5) are also valid, and together they form a set of PDEs for S. Let us define t0

≡ t, then we are able to write these equations in a unified way:

∂S

∂tα
+ Hα

(
tβ, qa,

∂S

∂qa

)
= 0, α, β = 0, 1, · · · , R. (8)

These are the Hamilton-Jacobi partial differential equations (HJPDEs).

A. The canonical description and characteristic equations

In the HJ theory, the conjugate momenta are defined to be in the direction of the gradient of the
function S:

πα ≡ ∂S/∂tα, pa ≡ ∂S/∂qa . (9)

Now, we define the functions

H ′
α

(
tβ, qa, πβ, pa

) ≡ πα + Hα

(
tβ, qa, pa

)
. (10)

In this case, Eq. (10) is identified with a set of canonical constraints H ′
α = 0. Therefore, the system

should be completely described by the set of HJPDEs

H ′
α

(
tβ, qa, πβ, pa

) = 0, (11a)

πα = ∂S

∂tα
, pa = ∂S

∂qa
. (11b)

The HJ equations (11a) form a set of R + 1 PDEs of the first-order. If tα are independent among
each other, we may find a related set of total differential equations (TDEs)

dqa = ∂ H ′
α

∂pa
dtα, dpa = −∂ H ′

α

∂qa
dtα, (12a)

d S = padqa + παdtα − H ′
αdtα. (12b)
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These are the characteristic equations (CEs) of the HJPDEs. Independence between tα is assured
by an integrability theorem, which will be discussed in Sec. III, but it is important to remark that
full integrability of the HJ equations is a necessary condition for the derivation of (12).

The CEs have the form of canonical equations with several independent variables tα as evolution
parameters. Complete solutions are congruences of (R + 1)-parameter curves

qa = qa (tα) , pa = pa (tα) (13)

of a reduced phase space T∗QP spanned by the variables qa and the conjugate momenta pa. Observing
(13), we call the set ξA ≡ (qa, pa) the dependent variables of the theory, and the set tα the independent
variables, or parameters. Therefore, it is possible to describe the dynamical evolution of any function
F(tα , πα , qa, pa) in an extended phase space T∗QN+1 spanned by the complete set of variables ξ I ≡
(tα , πα , qa, pa). This is achieved by the fundamental differential

d F = {
F, H ′

α

}
dtα, (14)

with the extended Poisson brackets (PBs)

{A, B} ≡ ∂ A

∂tα

∂ B

∂πα

− ∂ B

∂tα

∂ A

∂πα

+ ∂ A

∂qa

∂ B

∂pa
− ∂ B

∂qa

∂ A

∂pa
. (15)

The functions H ′
α are the very generators of the dynamical evolution (14), acting as hamiltonian

functions. Therefore, the HJ formalism describes singular systems as several independent variable
systems.

III. INTEGRABILITY

The HJ equations (12) become the necessary conditions for the existence of extreme configu-
rations of the action (1), but they are still not sufficient. In deriving the CEs we used the fact that
the independent variables of the system must be mutually independent. However, this cannot be
generally assured only by the HJ equations. Independence of the parameters is related to the fact that
the evolution of the system in the direction of an independent variable should be independent of the
other variables. On the other hand, this is related to the very integrability of the theory, which means
the existence of complete solutions of the HJPDEs, as well as the existence of a unique solution of
the CEs once given a set of initial conditions. In this section, we discuss what are the conditions that
the HJ equations must obey to be a complete integrable system of PDEs. This can be accomplished
in several ways. In our discussion, we generalize the method presented in Ref. 16.

A. The Lagrange brackets

Let us suppose the set of HJ equations (11a) to be satisfied. If they form a complete integrable
set, there exists a complete solution with the form

S = S
[
tα, qa (tα)

]
. (16)

The function S is submitted to the conditions (11b), and the functions qa = qa(tα), pa = pa(tα) are
supposed to be solutions of the CEs (12a).

We may take the derivative

d S

dtα
= ∂S

∂tα
+ ∂S

∂qa

dqa

dtα
= πα + pa

dqa

dtα
≡ pi ′

dqi ′

dtα
,

{
i ′} = {0, 1, · · · , N } .

The second derivative results

d2S

dtαdtβ
− pi ′

d2qi ′

dtαdtβ
= dqi ′

dtα

dpi ′

dtβ
.

The left-hand side is symmetric in α and β, so the skew-symmetric part of the right-hand side must
be zero. This yields the condition (

tα, tβ
) = 0, (17)
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where we define the Lagrange brackets on the complete phase space:

(
tα, tβ

) ≡ dqi ′

dtα

dpi ′

dtβ
− dqi ′

dtβ

dpi ′

dtα
. (18)

Therefore, the condition (17) is necessary for the existence of a complete solution of the HJ equations.
To show that (17) is also sufficient, let us suppose a set of functions

qi ′ = qi ′
(tα) , pi ′ = pi ′ (tα)

that obeys (17). Taking total derivatives of (17), we have

d

dtβ

[
dqi ′

dtα
pi ′

]
= d

dtα

[
dqi ′

dtβ
pi ′

]
.

Observing the above expression, there must be a function S
[
qi ′

(tα)
]

such that

dqi ′

dtα
pi ′ = d S

dtα
. (19)

In this case, derivation of S yields

d S

dtα
= ∂S

∂qi ′
dqi ′

dtα
, (20)

and comparing (19) and (20),

pi ′ = ∂S

∂qi ′ ⇒ pa = ∂S

∂qa
, πα = ∂S

∂tα
. (21)

Therefore, (17) is the necessary and sufficient condition for the existence of a function S(tα , qa)
whose gradient follows the direction of the conjugate momenta.

If we take the derivative

d

dtα

[
pi ′ − ∂S

∂qi ′

]
= dpi ′

dtα
− ∂2S

∂qi ′
∂tα

− ∂2S

∂qi ′
∂q j ′

dq j ′

dtα
= 0,

and use (12a), we see that

d H ′
α

dqi ′ = 0.

The general solution is given by

H ′
α

(
tβ, qa, πβ, pa

) = constant, (22)

where the constant can be taken to be zero without loss of generality.
Therefore, (16) is a solution of the HJPDEs, and the conditions (17) are the necessary and

sufficient conditions for the existence of a complete solution of these equations. They become our
first version of the integrability conditions.

B. Frobenius’ integrability conditions

The conditions (17) are not very useful, since they demand knowledge of the solutions of the
variational problem. However, using the CEs (12a) we may show that

(
tα, tβ

) = ∂ H ′
α

∂tγ

∂ H ′
β

∂πγ

− ∂ H ′
β

∂tγ

∂ H ′
α

∂πγ

+ ∂ H ′
α

∂qa

∂ H ′
β

∂pa
− ∂ H ′

β

∂qa

∂ H ′
α

∂pa
= {

H ′
α, H ′

β

}
.

Therefore, the integrability conditions (17) can be written as{
H ′

α, H ′
β

} = 0. (23)
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The conditions on the Lagrange brackets of the independent variables becomes conditions on the
Poisson brackets of the generators. Equation (23) is known as the Frobenius’ integrability conditions
(FICs).

Note that

d H ′
α = {

H ′
α, H ′

β

}
dtβ,

and, if tα are independent parameters, the FICs imply

d H ′
α = 0. (24)

The conditions (24) and (23) are completely equivalent, but the latter is more convenient to analyze
systems that are not integrable at first sight. As shown in Ref. 15, application of (24) may reveal
dependence of the independent variables, in the form of total differential equations, leading naturally
to the introduction of generalized brackets. Moreover, (24) states that the generators H ′

α are also a
set of dynamical invariants.

We may generalize (23) to {
H ′

α, H ′
β

} = C γ

αβ H ′
γ . (25)

The proof for the case of classical mechanics can be found in Ref. 17, but involves a highly
mathematical labor. However, we can easily convince ourselves that (25) is a proper generalization.
First, we notice that the meaning of (24) is that the generators must be dynamical invariants. Second,
we may use the Jacobi identity to show that the PBs of two dynamical invariants are another
dynamical invariant. If the set H ′

α closes the Poisson algebra (25), it means that this set is a complete
set of invariants. In this case, we clearly have preserved the relations (24) in the reduced phase space,
where H ′

α = 0, since (25) implies

d H ′
α = {

H ′
α, H ′

β

}
dtβ = C γ

αβ H ′
γ dtβ = 0.

Therefore, even if (25) are obeyed instead of the stronger conditions (23), (24) still hold in T∗QP ,
and the dynamics in this reduced phase space is independent for each parameter tα .

IV. CANONICAL TRANSFORMATIONS GENERATED BY A COMPLETE SET
OF INVOLUTIVE CONSTRAINTS

In regular classical mechanics, temporal evolution can be seen as a set of successive infinitesimal
canonical transformations.18 This becomes evident since we may write solutions of Hamilton’s
equations as hamiltonian flows generated by the hamiltonian function, and these flows are canonical
in the sense that they preserve the volume of the phase space (Liouville theorem). For constrained
systems we may show that this picture is also valid. In order to build this picture we now turn to the
geometrical aspects of the HJ formalism.

A. The geometric approach

Let us define the set of vector fields

Xα ≡ d

dtα
= χ I

α

∂

∂ξ I
, χ I

α ≡ {
ξ I , H ′

α

}
, (26)

where ξ I = (tα , qa, πα , pa). With these vector fields, the fundamental differential (14) can be written
as

d F = dtα Xα F. (27)

We may also rewrite the CEs using (27). They have the form of the TDEs

dξ I = dtα Xαξ I , d S = dtα Xα S. (28)

Now we compute the Lie derivative between two of these vector fields:

LXα Xβ F = [
Xα, Xβ

]
F = {{

F, H ′
β

}
, H ′

α

} − {{
F, H ′

α

}
, H ′

β

}
.
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Applying the Jacobi identity on the right-hand side, also considering (25), we have

Lxα Xβ F = −C γ

αβ Xγ F +
{

C γ

αβ , F
}

H ′
γ .

If the structure coefficients are independent of ξ I, the integrability conditions become conditions
over the Lie brackets between the vector fields,[

Xα, Xβ

] = f γ

αβ Xγ , f γ

αβ ≡ −C γ

αβ . (29)

These are also sufficient conditions for a set of vectors Xα to be a complete basis, therefore these
vectors span a vector space of dimension R + 1. We may identify this vector space with �R + 1,
which is the space of the independent variables tα .

B. The symplectic structure

We may build the symplectic structure considering the Pfaffian 1-form defined by θ c ≡ dS.
According to the CE (12b),

θc = padqa + παdtα − H ′
αdtα. (30)

The symplectic 2-form is defined by ω ≡ − dθ c, which gives the expression

ω = ωP + a, (31)

where

ωP ≡ dqa ∧ dpa, (32a)

a ≡ dtα ∧ dπα + d H ′
α ∧ dtα. (32b)

The 2-form ωP can be written by

ωP = dqa ∧ dpa = 1

2
dξ AωABdξ B, (33)

where ξA = (qa, pa). The matrix ωAB is given by

ωAB ≡
(

0 δab

−δab 0

)
. (34)

On the other hand, since d H ′
α = 0,

a = dtα ∧ dπα =
(

∂2S

∂tα∂tβ

)
dtα ∧ dtβ. (35)

The expression in brackets is symmetric in α and β, therefore a is identically zero.
We see that the symplectic structure ω is singular. Under the assumption of integrability, it

becomes the sum of a regular 2-form ωP and a null 2-form a. We notice that ωP is non-degenerate.
This is not the case of the full 2-form ω: if we take the vectors Xα we get the contraction

d H ′
α = iXα

ω = 0, (36)

if (24) hold. Therefore, we recover the geometric nature of the singularity of a given system: it comes
from the fact that the symplectic structure is degenerate, and the vector fields Xα are the eigenvectors
that correspond to its null space. We also have

iXα
iXβ

ω = {
H ′

α, H ′
β

}
, (37)

so the FICs (23) can also be written as iXα
iXβ

ω = 0.
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C. Canonical transformations and characteristic flows

Now let us see how the vector fields Xα generate active canonical transformations in T∗QN+1.
The general form of these transformations is naturally given by the structure of the fundamental
differential (27). Let us define an infinitesimal transformation δtα ≡ t̄α − tα on the independent vari-
ables. In principle, δtα are arbitrary (small) functions of ξ I. In this case, it implies the transformation

δF = δtα Xα F, (38)

for any function F(ξ I) of T∗QN+1. We remark that this transformation is not generally related to
the dynamics, so the characteristic equations and the HJ equations H ′

α = 0 may not be satisfied.
However, if we choose δtα = dtα , (38) becomes the fundamental differential (27) of the system.
Therefore, the dynamical evolution becomes a special case of the transformation (38).

If F = ξ I, (38) defines transformations in the coordinates of T∗QN+1. We may write these
transformations as

ξ I (t̄α) = gξ I (tα) , (39)

where we define the operator

g ≡ 1 + δtα Xα. (40)

In this case we say that g carries the infinitesimal flows generated by Xα . Let us call these flows the
characteristic flows (CFs) of the system.

The CFs are active canonical transformations. We may see this by taking the application gωg− 1,
where g− 1 ≡ 1 − δtαXα is the inverse transformation. Supposing integrability, we have

gg−1 = g−1g = 1, (41)

and then,

gωg−1 = ω − δtαδtβ iXα
iXβ

ω = ω. (42)

So ω is preserved by (38). Of course, invariance of the symplectic 2-form ω is reflected in any
2p-form

ω∧p ≡ ω ∧ ω ∧ · · · ∧ ω︸ ︷︷ ︸
p

,

specially the volume 2(N + 1)-form v ≈ ω∧2(N+1), whose invariance is known as the Liouville
theorem. Because ω = ωP + a, and a is a null-form, the volume element a∧2(R + 1) is identically
zero, and all the above properties are also applied to ωP.

Now, suppose a 2-dimensional surface � ⊂ T∗QN+1. The area of this surface is calculated by

I� =
∫

�

ω = −
∫

�

dθc = −
∮

∂�

θc.

Then, invariance of ω implies that I� is preserved by the CFs. On the right side we have the integral
of the canonical 1-form θ c over a closed curve ∂�. If this integral is preserved, the integral

S =
∫

C
θc (43)

is path independent. This integral defines a canonical fundamental integral in T∗QP , canonical
action that was already found in the form of the total differential equation (12b). This action is, then,
invariant under the transformations (38) apart of boundary terms.

Let us suppose the case in which the FICs (25) imply[
Xα, Xβ

] = f γ

αβ Xγ , (44)

which happens to be the necessary and sufficient conditions for Xα to be a complete basis of �R + 1.
Supposing a function F ∈ T∗QN+1, we may build the composition of two flows gε and gλ

gε ≡ 1 + εα Xα, gλ ≡ 1 + λα Xα.
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This composition yields the Lie bracket

[gε, gλ] F = gυ F, gυ ≡ 1 + υα Xα, υγ ≡ εαλβ f γ

αβ .

Therefore, the composition of two characteristic flows is another characteristic flow. This is the
group property that allows the finite composition

g (�tα) = exp
[
�tα Xα

]
, (45)

to become an element of a Lie group of canonical transformations. In other words, if the algebra of
the involutive constraints is reflected on the vector fields Xα , we may build a Lie group out of the
Lie algebra of those vector fields.

As result, we reach our first objective, which is to show that a complete set of involutive
constraints H ′

α = 0 are generators of infinitesimal canonical transformations with the form

δξ I = {
ξ I , H ′

α

}
δtα, (46)

which are called the characteristic flows of the system.

D. Connection to gauge transformations

Among the CFs (46), we may define a special class of transformations. We set δt0 = δt = 0,
which means that these transformations are taken at constant time. They are given by

δξ I = {
ξ I , H ′

z

}
δt z . (47)

Although (47) has the same structure of the canonical flows, this is not sufficient to assure canonicity.
The generators must be in involution among themselves,{

H ′
z, H ′

x

} = C y
zx H ′

y . (48)

Remember that the algebra that assures integrability is the complete Poisson algebra given by
(25), which includes the generator of time displacement H ′

0. The components (z, x) of that expression
are given by {

H ′
z, H ′

x

} = C y
zx H ′

y + C 0
zx H ′

0,

so (48) does not hold unless the structure coefficients C 0
zx are zero, or the constraints H ′

α = 0 are
valid. If we impose C 0

zx = 0, it is implied that the bracket
{

H ′
z, H ′

0

}
must be identically zero in the

complete phase space T∗QN+1. This restriction is simply too strong and cannot be accomplished in
general. On the other hand, we may demand that the HJ equations H ′

α = 0 are valid. In this case, the
algebrae (25) and (48) become Abelian, and the transformations (47) become restricted to T∗QP .

Therefore, along with the condition that δξ I are taken at constant t, we may impose that they
cannot leave the reduced phase space. In this case, (47) become the same transformations that were
called “point transformations” by Dirac,5 in the hamiltonian picture.

The point transformations (47) are generated by the function

G = H ′
zδt z, (49)

since

δGξ I = {
ξ I , G

} = {
ξ I , H ′

z

}
δt z, (50)

when H ′
z = 0. Therefore, δGξ I becomes equal to (47) in T∗QP , and G is called their generating

function. These transformations are canonical symmetries, since the algebra (48) assures that the
symplectic structure is not changed by (50).

On the other hand, gauge transformations are Noether symmetries of the fundamental integral.
Suppose a set of infinitesimal transformations δt = t̄ − t and δqi = q̄ i − qi , the change in the action
(1) is given by

δ I =
∫

dt

[(
∂L

∂qi
− d

dt

∂L

∂ q̇ i

)(
δqi − δt

dqi

dt

)
+ d

dt

(
∂L

∂ q̇ i
δqi − Hδt

)]
, (51)
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where

H ≡ ∂L

∂ q̇ i
q̇ i − L (52)

is the hamiltonian function in terms of coordinates and velocities. Equation (51) provides the
equations of motion

∂L

∂qi
− d

dt

∂L

∂ q̇ i
= 0, (53)

and the conjugated momenta pi = ∂L/∂q̇ i of the system, when Hamilton’s principle is applied.
To be lagrangian symmetries, however, the transformations (50), with δt = 0, must obey the Lie

equation19

δL =
(

∂L

∂qi
− d

dt

∂L

∂ q̇ i

)
δqi + d

dt

(
∂L

∂ q̇ i
δqi

)
= 0, (54)

for the coordinate transformations δqi = {
qi , H ′

z

}
δt z = χ i

zδt z . In the following applications, we
will see that (54) implies linear dependency between some of the variations δtz. The generator of
the CFs (49), then, becomes the generator of the point transformations, usually up to a total time
derivative. For field theories, (51), (52), and (54) have straightforward generalizations.

V. APPLICATIONS

In this section, we apply the ideas discussed in Secs. II–IV in specific examples. The main
script is the following: first we find the complete set of involutive constraints of the theory, therefore
building its integrability. If necessary, non-involutive constraints are treated by the method developed
in Ref. 15, and all Poisson brackets must be changed to generalized brackets. We then build the CEs of
the theory, and proceed to the analysis of their characteristic flows and related gauge transformations.

A. The Christ-Lee model

We begin with the Christ-Lee model.20 It can be considered a toy model in classical mechanics,
but unlike the usual toy models in the literature, the Christ-Lee system is a very conceivable
mechanical system, although a very special one. It is simply a particle on a plane, whose position is
given by a vector x = (x1, x2), submitted to the constraint that its position and momentum lie in the
same direction.

The lagrangian of the Christ-Lee model is given by

L (x, ẋ, q) = 1

2
ẋ2 − q x · ε · ẋ + 1

2
q2x2 − V

(
x2) . (55)

The matrix ε is the skew-symmetric matrix

ε =
(

0 1

−1 0

)
. (56)

In this, and in the next example, we use the dot “ · ” to denote a scalar product. In this case ẋ2

represents xixi, x · ε · ẋ actually means εi j x i ẋ j , and ε · x states for εijxi = − εjixi, where i, j = 1, 2.
The Euler-Lagrange equations of the Christ-Lee model are

x · (qx − ε · ẋ) = 0, (57a)

ẍ + 2q ε · ẋ + q̇ ε · x − q2x = −∇V, (57b)

and the momenta

p ≡ ẋ − q x · ε, π = 0, (58)
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conjugated with the variables x and q, respectively. The definition for p gives equations for the
velocities

ẋ = p + q x · ε, (59)

and the last momentum is a canonical constraint

H ′
1 ≡ π = 0. (60)

The canonical hamiltonian is given by

H0 = 1

2
p2 + V + q L, (61)

where L ≡ x · ε · p = x1 p2 − x2 p1 is the angular momentum in two dimensions. In this case we
have two HJ equations:

H ′
0 ≡ π0 + H0 = 0, (62a)

H ′
1 ≡ π = 0. (62b)

Using the fundamental PBs {x, p} = 1 and {q, π}= 1, where 1 is the identity in two dimensions,
we verify that the PB between (62) are

{
H ′

1, H ′
1

} = 0, and
{

H ′
1, H ′

0

} = −L. Then the system of HJ
equations is not integrable, requiring the imposition of another constraint,

H ′
2 ≡ L = 0. (63)

It is straightforward to show that the system (62) and (63) is completely integrable. The final algebra
is given by {

H ′
1, H ′

0

} = −H ′
2, (64)

with all other PBs identically zero.
The fundamental differential of an observable F is given by

d F = {
F, H ′

α

}
dtα = {

F, H ′
0

}
dt0 + {

F, H ′
1

}
dt1 + {

F, H ′
2

}
dt2, (65)

where tα = (t0 = t, t1 = q, t2) are the independent variables. Because H ′
2 comes from the integrability

conditions, we must expand the parameter space, and therefore the complete phase space, with a
new parameter t2. This is done so that H ′

2 becomes a generator of the dynamics in the direction of t2.
The characteristic equations are given by

dq = dt1, (66a)

dπ = −H ′
2dt, (66b)

dx = [p − q ε · x] dt + ε · xdt2, (66c)

dp = − [q ε · p + ∇V ] dt + ε · pdt2. (66d)

Since integrability is assured, t2 and t are linearly independent, then the time evolution gives the
set of equations

q̇ = 0, (67a)

π̇ = −H ′
2 = 0, (67b)

ẋ = p − q ε · x, (67c)

ṗ = −q ε · p − ∇V . (67d)

Relation (67c) reproduces (59). Taking the derivative in t, substituting (67d) and using (67c)
again, we have the Euler-Lagrange equations (57b). Then, equivalence is actually assured between
the time evolution of the CEs and the Euler-Lagrange equations.
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Apart of the time evolution, the generators H ′
1 and H ′

2 give the canonical transformations
δF = {

F, H ′
z

}
δt z , for z = 1, 2. It results in

δq = δt1, δx = ε · xδt2, δp = ε · pδt2. (68)

The transformation on q is just arbitrary, it depends of the form of δt1. On the other hand, the CT
on x and p are infinitesimal rotations. The generator of the characteristic flows in the directions of
t1 and t2 is given by

GC F = H ′
zδt z = H ′

1δt1 + H ′
2δt2. (69)

As we saw earlier, the algebra of the generators H ′
1 and H ′

2 is Abelian.
Now, the first variation of (55) under infinitesimal transformations δx ≡ x′ − x and δq = q′ −

q is given by

δL = d

dt
[(ẋ − q x · ε) · δx]

−δx · [
ẍ + 2q ε · ẋ + q̇ ε · x − q2x + ∇V

]
+δq x · (qx − ε · ẋ) . (70)

If (68) are symmetries of the lagrangian function, δL must be zero. Then, substituting (68) in (70),
and considering V = V

(
x2

)
, we have

δL =
(

d

dt
δt2 + δt1

) (
qx2 − x · ε · ẋ

)
. (71)

In this case δL = 0 if δt1 = − d(δt2)/dt, independently of the Euler-Lagrange equations. Let us
suppose that δt2 = θ (t). In this case, δt1 = −θ̇ , and

Gg = −H ′
1θ̇ − H ′

2θ = − (
πθ̇ + Lθ

)
(72)

is the generator of the gauge transformations

δq = {q, G} = −θ̇ , (73a)

δx = {x, G} = −x · ε · {x, p} θ = ε · x θ. (73b)

B. Chern-Simons quantum mechanics

Now let us consider the two dimensional movement of a charged particle in a constant magnetic
field B, and a quadratic scalar potential. This system is described by the Lagrange function

L (x, ẋ) = 1

2
mẋ2 + B

2
x · ε · ẋ − k

2
x2,

and it is known to be the mechanical analogous of the three-dimensional topologically massive
electrodynamics in the Weyl gauge. The term of the magnetic field actually corresponds to a pure
Chern-Simons term in the three-dimensional gauge theory. In the limit m, k → 0 the quantization of
this model results in a quantum mechanical theory with interesting topological effects.21

This model can be made more interesting with the inclusion of another Chern-Simons term, so
we will work with the system described by the function

L (x, ẋ, q) = B

2
x · ε · Dx + νq, Dx ≡ ẋ + qε · x. (74)

As in the past example, x is a position vector in two dimensional euclidian space, q is an auxiliary
scalar variable, and ν is a numerical parameter. The matrix ε is the same defined in (56).

The equations of motion of the Chern-Simons quantum mechanics are

ν = B

2
x2, (75a)

Dx = 0, (75b)
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and the conjugate momenta of the variables q and x,

πq = 0, p = − B

2
ε · x, (76)

respectively. The canonical hamiltonian takes the form

H0 = −q

(
ν − B

2
x2

)
. (77)

Therefore, we have the following set of HJPDEs:

H ′
0 ≡ πt + H0 = 0, (78a)

H ′
1 ≡ πq = 0, (78b)

ψ ≡ p + B

2
ε · x = 0. (78c)

We notice that the last constraint is a 2-vector.
This system is not integrable: here we have an example where non-involutive constraints are

present. This can be seen by the PB

{ψ,ψ} = Bε, (79a){
ψ, H ′

0

} = q Bx, (79b){
H ′

1, H ′
0

} = ν − B

2
x2. (79c)

Following the procedure outlined in Ref. 15, (79a) indicates that we may introduce the GB

{F, G}∗ = {F, G} − 1

B
{F,ψ} · ε · {ψ, G} , (80)

which define the fundamental relations{
q, πq

}∗ = 1, {x, x}∗ = 1

B
ε, {x, p}∗ = 1

2
1, {p, p}∗ = − B

4
ε. (81)

Because {ψ, F}∗ = 0 identically for any F, all GB between the constraints are zero, except{
H ′

1, H ′
0

}∗ = ν − B

2
x2. (82)

Therefore, a new HJ equation

H ′
2 ≡ ν − B

2
x2 = 0 (83)

should be added to the system (78). It is straightforward to show that integrability for H ′
3 is obeyed,

then the system is completely integrable with the GB (80). Particularly, we have
{

H ′
2, H ′

1

}∗ = 0.
Equations of motion are calculated by the fundamental differential

d F = {
F, H ′

α

}∗
dtα = {

F, H ′
0

}∗
dt0 + {

F, H ′
1

}∗
dt1 + {

F, H ′
2

}∗
dt2, (84)

where tα = (t0 = t, t1 = q, t2) are the independent variables. As in the preceding example, the
generator H ′

2 demands the expansion of the parameter space with the inclusion of a new independent
variable t2. The characteristic equations are given by

dq = dt1, (85a)

dπ = H ′
2dt, (85b)

dx = −qε · xdt + ε · xdt2, (85c)

dp = 1

2
Bqxdt − 1

2
Bxdt2. (85d)
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The first equation identifies t1 with q apart of an arbitrary constant. Equation (85b) reproduces
the IC for the involutive constraint H ′

1. This is equivalent to the constraint H ′
2 = 0, as expected, and

therefore Eq. (75a) is achieved.
For the remaining equations, we see that time evolution alone gives

ẋ = −qε · x, (86)

which is the same as the Euler-Lagrange equation (75b). On the other hand, (85d) becomes

ṗ = 1

2
Bqx. (87)

This equation is the time derivative of ψ = 0 when (86) is considered. It actually gives Newton’s
second law for this system.

In addition to this analysis, we write down the canonical transformations δF = {
F, H ′

z

}
δt z , for

z = 1, 2,

δq = δt1, δx = ε · xδt2, δp = −1

2
Bxδt2. (88)

The transformation for q is an arbitrary rescaling, and δx is again an infinitesimal rotation. On the
other hand, δp is a transformation that mixes positions and momenta of the phase space. It is also
straightforward to write the generator of the CFs

GC F = H ′
zδt z = H ′

1δt1 + H ′
2δt2. (89)

Now, the first variation of the lagrangian function (74) under transformations of the form
δx ≡ x′ − x and δq ≡ q′ − q is given by

δL = d

dt

(
B

2
x · ε · δx

)
− B Dx · ε · δx +

(
ν − B

2
x2

)
δq. (90)

For the transformations (88), the variation (90) becomes

δL = − B

2
x2

(
d

dt
δt2 + δt1

)
+ νδt1

= − B

2
x2

[
d

dt
δt2 + δt1 − δt1

]
= − B

2
x2 d

dt
δt2, (91)

where (75a) is used. If δq and δx are symmetries of the lagrangian, i.e., δL = 0, we should consider
δt2 = θ a time-independent constant. In any case, δL is independent of δω, which means that any
transformation in q is a lagrangian symmetry. The generator takes the form

Gg = −πδt1 +
(

B

2
x2 − ν

)
θ, (92)

and the gauge transformations are finally given by

δq = {q, G} = δt1, (93a)

δx = {x, G} = ε · xθ. (93b)

C. The free Yang-Mills theory

Now let us turn to an example of field theory, the Yang-Mills (YM) theory without sources,
described by the fundamental integral

I ≡ −1

4

∫
�

dωFa
μν Faμν. (94)
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In our notation, � is 4-volume in a Minkowski space-time with metric η = diag(+ − −−), and dω

is its volume element. The field strength is defined by

Fa
μν ≡ ∂μ Aa

ν − ∂ν Aa
μ − g f abc Ab

μ Ac
ν, (95)

where g is a coupling constant and fabc are the structure coefficients of an su (n) algebra.
Let us define the covariant derivative

Dab
μ ≡ δab∂μ − g f acb Ac

μ. (96)

The field equations are

Dab
μ Fbμν = 0, (97)

and the conjugated covariant momenta are given by

πaμν ≡ Faμν. (98)

We remark that the gauge transformations related to the fundamental integral I are

δg Aa
μ = Dab

μ εb, (99)

where εa are the gauge parameters. These transformations leave I invariant up to a boundary term.
To get to the HJ formalism for singular field theories, it is necessary to choose a particular

parametrization for the fields. Here, we will work with the “Galilean time” t ≡ x0, choice that
is known as the instant-form dynamics.22 In this case, the conjugated momenta are given by the
projection of (98) in a unit 4-vector u ≡ (1, 0, 0, 0):

πaμ ≡ πaμνuν = πaμ0 ≡ −Fa0μ. (100)

For μ = 0 it gives

πa0 = 0, (101)

while for μ = i, where {i} = {1, 2, 3}, (100) gives an equation for the velocities Ȧa
i ,

Ȧa
i = Dab

i Ab
0 − πa

i , (102)

where we use the notation Ȧa
ν ≡ ∂0 Aa

ν .
We also have the (not symmetric) energy-momentum density:

Hμν ≡ −Fa
μγ ∂ν Aγ

a + 1

4
δμν Fa

αβ Fαβ
a . (103)

With (100), (101), and (102), we have the canonical hamiltonian density Hc ≡ Hμνuμuν = H00,
which up to a total divergence can be written by

Hc = −1

2
πaiπa

i − Aa
0 Dab

i πbi + 1

4
Fa

i j Fai j . (104)

Therefore, the system obeys two HJ equations,

H ′
0 ≡ π0 + Hc = 0, (105a)

�a ≡ πa0 = 0. (105b)

For the theory to be integrable we calculate the PB between (105), using the fundamental
relations

{
Aa

μ (x) , πbν (y)
} = δabδν

μδ3 (x − y). The only non-zero bracket is given by{
�a, H ′

0

} = Dab
i πbi , (106)

which implies non-integrability. This can be solved by imposing a new set of constraints

�a ≡ Dab
i πbi = 0. (107)
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Now it is necessary the set (105), (107) to be in involution. The global sub-algebra of �a(x),
calculated with the PB of the variables

�a [h] ≡
∫

�

dσh (x) �a (x) (108)

is given by {
�a [h1] , �b [h2]

} = −g f abc�c [h3] , (109)

where h3(x) = h1(x)h2(x), up to a boundary term in ∂�. In (108) the integration is performed in a
3-surface section � of � at constant t, whose volume element is dσ . The remaining PB is{

�a, H ′
0

} = g f abc Ab
0�

c. (110)

The algebrae (106), (109), and (110) indicate that the set
(
H ′

0,�
a, �a

)
is involutive with the PBs,

therefore integrability is achieved. With the definition Tb ≡ (i/g)�a, (109) becomes precisely the
su (n) algebra.

Now that we have the complete involutive system of HJ equations for the YM theory, the
characteristic equations can be calculated by the fundamental differential

d F =
∫

�

dσy
[{

F, H ′
0 (y)

}
dt + {

F,�a (y)
}
ωa (y) + {

F, �a (y)
}

dλa (y)
]

where (t, ωa, λa) is the set of independent variables, each one related to its respective generator.
Again, because �a come from integrability, the new set of independent variables λa is introduced.

For the variables Aa
μ we have

d Aa
μ (x) =

∫
�

dσy
{

Aa
μ (x) , H ′

0 (y)
}

dt + δ0
μdωa (x) − δi

μ Dab
i (x) dλb (x) . (111)

Since (t, ωa, λa) are independent among themselves, we may write

Ȧa
μ (x) = δi

μ

[
Dab

i (x) Ab
0 (x) − πa

i (x)
]
, (112a)

δAa
μ (x)

δωb (y)
= δabδ0

μδ3 (x − y) , (112b)

δAa
μ (x)

δλb (y)
= −δi

μ Dab
i (x) δ3 (x − y) . (112c)

Equation (112b) indicates that Aa
0 = ωa plus an arbitrary function independent of the fields,

which is a very property of a degenerate variable in the action. Equation (112c) indicates that the
dynamics involves the variables λa in the form of the CT δAa

i = −Dab
i δλb, which depends on the

variables Aa
i . Time evolution is given by (112a) that yields

Ȧa
0 = 0, Ȧa

i = Dab
i Ab

0 − πa
i . (113)

The equation for Aa
i reproduces (102), as expected.

For the variables πaμ we have

dπaμ (x) =
∫

�

dσy
{
πaμ (x) , H ′

0 (y)
}

dt + g f abcδ
μ

i πbi (x) dλc (x) . (114)

Again, independence of the parameters yields

π̇aμ (x) = δ
μ

0 �a (x) − δ
μ

i

[
g f abc Ac

0 (x) πbi (x) + Dab
j (x) Fbi j (x)

]
, (115a)

δπaμ (x)

δλb (y)
= −g f abcδ

μ

i π ci (x) δ3 (x − y) . (115b)

Equation (115a) represents time evolution:

π̇a0 = �a, Dab
0 πbi = −Dab

j Fbi j . (116)
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From the first equation, we notice that �a = Dab
i πbi = Dab

i Fbi0, that gives (97) for ν = 0. The
second equation is the field equation (97) for ν = i, if they use the definition πai = Fai0. Therefore,
time evolution is equivalent to the field equations (97) for the YM field.

We now turn to the problem of finding the generator of the canonical transformations defined
by Eqs. (112b), (112c), and (115b). They can be written by

δAa
μ = δ0

μδωa − δi
μ Dab

i δλb, (117a)

δπaμ = g f abcδ
μ

i πbiδλc. (117b)

It is straightforward to show that

GCT =
∫

�

dσ
[
�aδωa + �aδλa

]
(118)

is the generator of the transformations (117).
The goal, now, is to find the generator of the gauge transformations. The first-order variation of

the action (94) under a set of infinitesimal transformations δxμ = x̄μ − xμ and δAa
μ = Āa

μ − Aa
μ is

given by

δ I =
∫

�

dω
[
∂μ

(
FaμνδAa

ν − Hμ
νδxν

) + (
δAa

ν − δxγ ∂γ Aa
ν

)
Dab

μ Fbμν
]
. (119)

As in the previous examples, the generator can be achieved with (119), under the transformations
characterized by δxμ = 0 and δAa

μ = δ0
μδωa − δi

μ Dab
i δλb. After some algebra, and the use of the

identities Dab
μ Dbc

ν Fcμν = 0, the following expression arises:

δL = ∂μ

[(
δωa + Dac

0 δλc
)

Fa0μ
] + (

δωa + Dac
0 δλc

)
Dab

μ Fbμ0. (120)

If the action is invariant under the transformations (117a), δL = 0 implies that the correct relationship
between the independent variables of the theory is given by δωa = −Dab

0 δλb. If we define �a ≡
− δλa as the gauge parameters, then δωa = Dab

0 �b. Of course, the transformation in πaμ has no
analogous in the lagrangian picture. In this case, the generator (118) becomes

Gg =
∫

�

dσ
[
�a Dab

0 �b − �a�a
] =

∫
�

dσπaμ Dab
μ �b, (121)

up to a boundary term. To check this generator, we calculate

δg Aa
μ (x) = {

Aa
μ (x) , Gg

} = Dab
μ (x) �b (x) , (122)

which are in fact the gauge transformations (99) of the theory. We may perform a further calculation,

δgπ
a
μ (x) = {

πa
μ (x) , Gg

} = −g f abcπb
μ (x) �c (x) , (123)

which agrees with (117b), considering the HJ equation πa
0 = 0.

VI. FINAL REMARKS

As a continuation of the work,15 we analyzed the integrability of constrained systems within
the Hamilton-Jacobi formalism, and studied how this approach links complete sets of involutive
HJ equations with canonical and lagrangian point (gauge) symmetries, as named by Dirac,5 of a
fundamental integral. Now let us highlight the main script of this study.

According to Carathéodory’s “complete figure” applied to singular systems, the necessary and
sufficient condition for the existence of an extreme configuration of the action (1) is the existence
of a function S(tα , qa) of the configuration space that obeys the conditions (11b), and is a complete
solution of the set of HJ equations (11a). If the independent variables tα are linearly independent
among themselves, the set of HJ equations are related to the characteristic equations (12), whose
solutions are trajectories ξA = ξA(tα) in a reduced phase space T∗QP , parametrized by tα .

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

200.130.19.138 On: Wed, 25 Mar 2015 14:54:30



112901-18 Bertin, Pimentel, and Valcárcel J. Math. Phys. 55, 112901 (2014)

The necessary and sufficient conditions for the linear independence of the parameters tα , and
therefore for the existence of the characteristic equations themselves, happen to be the same con-
ditions for the existence of a complete solution of the HJ equations. In Sec. III, we introduced the
Frobenius’ theorem: a system of first-order PDEs H ′

α

(
tβ, πβ, qa, pa

) = 0 is completely integrable
if, and only if, the functions H ′

α obey the Frobenius’ integrability conditions (23). Sufficient condi-
tions for integrability can, on the other hand, be generalized to a Poisson algebra (25). Since H ′

α = 0
are also canonical constraints, integrability demands these constraints to be in involution with the
PBs. Therefore, a complete set of integrable HJ equations are also a set of involutive constraints.

If H ′
α = 0 is a complete set of involutive constraints, Sec. IV shows that they are generators

of active canonical transformations in the complete phase space T∗QN+1. This is done by building
the symplectic structure: first, we introduced the vector fields Xα , related to the functions H ′

α . With
integrability, the symplectic 2-form ω splits in two 2-forms ωP and a, Eq. (31), such that a is
identically a null form. In this case, we have shown a known result that singular systems have a
degenerate symplectic structure, whose vector fields Xα form a basis of the null space of ω, as can be
seen by the relations (36) and (37). Infinitesimal transformations (38), generated by the involutive
constraints, preserve the symplectic structure (42), and therefore Liouville’s theorem is implied.
Moreover, a canonical action defined in (43) is invariant under the so called characteristic flows (46).
For constant structure coefficients, the Poisson algebra (25) implies the Lie algebra (29), and a Lie
group of transformations can be built form the Lie algebra of the characteristic vector fields.

The connection between the characteristic flows and lagrangian point (gauge) transformations
is discussed in Sec. IV D. Point transformations (47) are CFs in which δt = 0, i.e., time-independent
canonical transformations. However, to be canonical, the transformations themselves must be re-
stricted to T∗QP , since their generators Hz

′ must obey their own Poisson algebra (48). Because
point transformations are Noether symmetries, characterized by a set of gauge parameters ε, the
Lie equation (51) can be used to relate δtα to this set. In general, it results in linear dependency
between the independent variables tα , as shown directly in the examples of Sec. V. We notice that
no analogous of Dirac’s conjecture is needed in these results, but the generator of the characteristic
flows depends on a complete set of involutive constraints H ′

z , as a direct result of Frobenius’ theorem.
The dependency between the parameters tα , on the other hand, is used to build the generator of gauge
transformations directly from the generator of the characteristic flows.

ACKNOWLEDGMENTS

M. C. Bertin was partially supported by FAPESP. B. M. Pimentel was partially supported by
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Valcárcel, “Two-dimensional background field gravity: A Hamilton-Jacobi analysis,” J. Math. Phys. 53, 102901 (2012).
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