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Abstract The purpose of this paper is to prove a Hitchin–Thorpe inequality for a four-
dimensional compact almost Ricci soliton. Moreover, we prove that under a suitable integral
condition, a four-dimensional compact almost Ricci soliton is isometric to standard sphere.
Finally, we prove that under a simple condition, a four-dimensional compact Ricci soliton
with harmonic self-dual part of Weyl tensor is either isometric to a standard sphere S

4 or is
Kaehler–Einstein.
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1 Introduction and Statement of the results

The study of an almost Ricci soliton was introduced in a recent paper due to Pigola et al. [13],
where essentially the authors modified the definition of Ricci soliton by adding the condition
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1852 A. Brasil et al.

on the parameter λ to be a variable function. More precisely, we say that a Riemannian
manifold (Mn, g) is an almost Ricci soliton, if there exists a complete vector field X and a
smooth soliton function λ : Mn → R satisfying

Ric + 1

2
LX g = λg, (1.1)

where Ric and L stand, respectively, for the Ricci tensor and the Lie derivative. We shall
refer to this equation as the fundamental equation of an almost Ricci soliton

(
Mn, g, X, λ

)
.

It will be called expanding, steady or shrinking, respectively, if λ < 0, λ = 0 or λ > 0.
Otherwise, it will be called indefinite. When the vector field X is a gradient of a smooth
function f : Mn → R, the manifold will be called a gradient almost Ricci soliton. In this
case, the preceding equation turns out to be

Ric + ∇2 f = λg, (1.2)

where ∇2 f stands for the Hessian of f .
Moreover, when either the vector field X is trivial, or the potential f is constant, the almost

Ricci soliton will be called trivial, otherwise it will be a nontrivial almost Ricci soliton. We
notice that when n ≥ 3 and X is a Killing vector field, an almost Ricci soliton will be a Ricci
soliton, since in this case, we have an Einstein manifold, from which we can apply Schur’s
lemma to deduce that λ is constant. Taking into account that the soliton function λ is not
necessarily constant, certainly comparison with soliton theory will be modified. In particular,
the rigidity result contained in Theorem 1.3 of [13] indicates that almost Ricci solitons should
reveal a reasonably broad generalization of the fruitful concept of classical soliton. In fact,
we refer the reader to [13] to see some of these changes. Ricci solitons model the formation
of singularities in the Ricci flow, and they correspond to self-similar solutions, i.e., they are
stationary points of this flow in the space of metrics modulo diffeomorphisms and scalings;
see [10] for more details. Thus, classifying Ricci solitons or understanding their geometry is
definitely an important issue.

In the direction of understanding the geometry of almost Ricci soliton, Barros and Ribeiro
Jr proved in [1] that a compact almost Ricci soliton with nontrivial conformal vector field
is isometric to a Euclidean sphere. In the same paper, they proved an integral formula for
compact case, which was used to prove several rigidity results, for more details see [1]. Pigola
et al. proved a classification to gradient almost Ricci soliton under Einstein assumption, see
Theorem 1.3 in [13]. In [5], Catino proved that a locally conformally flat gradient almost Ricci
soliton, around any regular point of f , is locally a warped product with (n − 1)-dimensional
fibers of constant sectional curvature.

In the compact case, a simple example of almost Ricci soliton appeared in [1]. It was
built over the standard sphere

(
S

n, g0
)

endowed with the conformal vector field X = a�,
where a is a fixed vector in R

n+1 and a� stands for its orthogonal projection over T S
n . We

notice that a� is the gradient of the height function ha ; for more details see the quoted paper.
In the non-compact case, an another example appeared in [2]. It was obtained in a warped
product manifold Mn+1 = R ×cosh t S

n with metric g = dt2 + cosh2 tg0, where g0 is the
standard metric of S

n . More precisely, taking
(
Mn+1, g,∇ f, λ

)
, where f (x, t) = sinh t and

λ(x, t) = sinh t + n, it is easy to check, by using Lemma 1.1 of [13], that
(
Mn+1, g,∇ f, λ

)

is an almost Ricci soliton.
We also detach that in [14] Perelman proved that every compact Ricci soliton is gradient.

Recently, Pigola et al. [13] asked under which conditions a compact almost Ricci soliton is
necessarily gradient. To answers this problem Barros et al. [3] proved that every compact
almost Ricci soliton with constant scalar curvature is gradient.
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1.1 Hitchin–Thorpe inequality for almost Ricci soliton

From now on, we consider M4 be a compact-oriented four-dimensional manifold with Euler
characteristic χ , signature τ , volume V and volume element dμ. Hitchin [11] and Thorpe [17]
have proved, independently, that if M4 is an Einstein manifold, then χ ≥ 3|τ |

2 . This inequality
is known as Hitchin–Thorpe, and it has various geometric implications. Since almost Ricci
soliton is natural generalization to Einstein metrics, it is very interesting to obtain a Hitchin–
Thorpe inequality type to almost Ricci soliton. Indeed, by using the previous notation, we
obtain the following theorem.

Theorem 1 Let
(
M4, g, ∇ f, λ

)
be a four-dimensional compact almost Ricci soliton with

positive scalar curvature R.

(1) If
∫

M

R2dμ ≤ 6
∫

M

λRdμ,

then χ ≥ 3τ
2 . In particular, if λ is constant and

∫
M R2dμ ≤ 24λ2V, then χ ≥ 3|τ |

2 .

(2) If (M4, g) is Kaehlerian, then

2χ + 3τ = 1

2π2

∫

M

λRdμ.

We point out that Theorem 1 can be viewed as a generalization of Ma’s theorem [12], which
was proved to λ constant.

In [16], Seshadri proved that a compact-oriented four-dimensional manifold with Euler
characteristic χ , Weyl tensor W and positive scalar curvature satisfies the following inequality

8π2(χ − 2) ≤
∫

M

|W |2dμ. (1.3)

In fact, this result was already contained in the proofs of the results of M. Gursky in [9].
The equality holds in (1.3) if and only if M4 is isometric to a standard sphere S

4. By using
Seshadri-Gursky theorem, we obtain the following rigidity theorem.

Theorem 2 Let
(
M4, g, ∇ f, λ

)
be a four-dimensional compact gradient almost Ricci soli-

ton with positive scalar curvature R. If
∫

M

R2dμ ≤ 6
∫

M

λRdμ − 192π2,

then M4 is isometric to a standard sphere S
4.

As a consequence of Theorem 2, we deduce the following result.

Corollary 1 Let
(
M4, g, X, λ

)
be a four-dimensional compact Ricci soliton. Then, M4 is

isometric to a standard sphere S
4 provided

∫

M

R2dμ ≤ 24
(
λ2V − 8π2) ,

where R stands for the scalar curvature of M4.
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Proceeding, we recall that Polombo [15] proved that if M4 is a compact-oriented four-
dimensional Riemannian manifold with (2/3)-pinched Ricci curvature, then the Euler charac-
teristic of M4 and its signature satisfies the Hitchin–Thorpe inequality. Moreover, in [18], Xin
proved that if M4 is a compact-oriented four-dimensional Kaehler manifold with (

√
2/2)-

pinched Ricci curvature, then the Euler characteristic of M4 and its signature satisfies the
Hitchin–Thorpe inequality. The next result improves Polombo’s theorem and Xin’s theorem.
More precisely, we have the following result.

Theorem 3 Let M4 be a four-dimensional compact manifold with scalar curvature R and
Ricci curvature Ric.

(1) If Ric ≥ ρ > 0 and R ≤ 6ρ or Ric ≤ −ρ < 0 and R ≥ −6ρ, then χ ≥ 3|τ |
2 .

(2) Let M4 Kaehlerian endowed with its natural orientation. If Ric ≥ ρ > 0 and R ≤
(6 + 2

√
3)ρ or Ric ≤ −ρ < 0 and R ≥ −(6 + 2

√
3)ρ, then χ ≥ − 3τ

2 .

1.2 Harmonic self-dual Weyl tensor in four-dimensional manifolds

The bundle of two forms of M4 splits �2 M = �+ ⊕ �− into ±-eigenspaces of the Hodge
∗-operator. The Weyl tensor W is an endomorphism of �2 M such that

W = W + ⊕ W −,

where W ± : �± −→ �± are, respectively, the self-dual and anti-self-dual parts of W.

Viewing W + as a tensor of type (0, 4), we say that W + is harmonic if δW + = 0, where δ is
the formal divergence defined for any (0, 4)-tensor T by

δT (X1, X2, X3) = −traceg{(Y, Z) 
→ ∇Y T (Z , X1, X2, X3)},
where g is the metric of M4.

Let λ+ ≤ μ+ ≤ ν+ be the eigenvalues of W +. It is known that if M4 is Kaehlerian
endowed with natural orientation, then W + has eigenvalues R/6,−R/12 and −R/12, where
R is the scalar curvature of M4 and so μ+ = −R/12 is a necessary condition for the metric
of a 4-manifold to be Kaehlerian. Inspired by ideas of Derdzinsky developed in [7] we obtain
the following theorem.

Theorem 4 Let M4 be a compact-oriented four-dimensional manifold with negative scalar
curvature R and harmonic tensor W +. Let λ+ ≤ μ+ ≤ ν+ be the eigenvalues of W +. If
μ+ ≥ −R/12 in M4, then M4 or the twofold covering of M4 admits a Kaehler metric.

Notice that if M4 is a four-dimensional Einstein manifold, then M4 has harmonic tensor
W + (for more details see 16.65 in [4]). Therefore, it is very interesting to know when the
reverse holds. Recently, Barros et al. [2] proved that an n-dimensional locally conformally
flat compact almost Ricci soliton

(
Mn, g, ∇ f, λ

)
satisfying a suitable integral condition

must be isometric to a Euclidean sphere S
n . The next result gives a condition for a compact

almost Ricci soliton with harmonic tensor W + to be Kaehler–Einstein. More precisely, we
have the following theorem.

Theorem 5 Let
(
M4, g, ∇ f, λ

)
be a four-dimensional compact gradient almost Ricci soli-

ton with harmonic tensor W +. If W + has constant norm equal or less than
√

6
3V

∫
M λdμ, then

either W + = 0 or |W +| =
√

6
3V

∫
M λdμ. In the last case, M4 is Kaehler–Einstein

In [6] was proved that any four-dimensional complete gradient shrinking Ricci soliton
with bounded curvature and W + = 0 must be isometric to a finite quotient of R

4, S
3 × R, S

4
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or CP
2. Here, as consequence of Theorem 5, we deduce a rigidity result for a Ricci soliton

with harmonic self-dual part of Weyl tensor. More exactly, we have the following result.

Corollary 2 Let
(
M4, g, λ

)
be a four-dimensional compact Ricci soliton with harmonic

tensor W +. If W + has constant norm, then either M4 is isometric to sphere S
4 or M4 is

Kaehler–Einstein.

2 Proof of the results

Throughout this section, we collect some definitions and results that will be useful in the
proofs of our results. We start by presenting the following lemma.

Lemma 1 Let
(
M4, g,∇ f, λ

)
be a four-dimensional compact gradient almost Ricci soliton.

Then
∫

M

|Ric|2dμ = 1

2

∫

M

(R2 − 2λR)dμ. (2.1)

Proof Since
(
M4, g,∇ f, λ

)
is a compact gradient Ricci almost soliton, by using equation

(2.15) of [13], we have

1

2

R − 1

2
〈∇ R,∇ f 〉 = λR− | Ric |2 +3
λ. (2.2)

Applying Green’s formula in the previous expression we deduce
∫

M

〈∇ R,∇ f 〉dμ = −
∫

M

R
 f dμ.

Comparing the last equation and the first item of Proposition 1 in [1] we obtain (2.1), which
finishes the proof of the lemma. �
2.1 Proof of Theorem 1

Proof First, let W ± be the self-dual and anti-self-dual parts of the Weyl tensor W of M4,
respectively. Then, the Euler characteristic χ of M4 and its signature τ satisfies

8π2χ =
∫

M

(
|W +|2 + |W −|2 + R2

24
− 1

2
|B|2

)
dμ (2.3)

and

12π2τ =
∫

M

(
|W +|2 − |W −|2

)
dμ, (2.4)

where B is the traceless of Ric tensor of M4 given by B = Ric − R
4 g. In particular, |B|2 =

|Ric|2 − R2

4 . Follows from (2.3) and (2.4) that

4π2(2χ ± 3τ) ≥
∫

M

( R2

24
− 1

2
|B|2

)
dμ. (2.5)
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By using |B|2 = |Ric|2 − R2

4 we obtain

4π2(2χ ± 3τ) ≥
∫

M

( R2

6
− | Ric |2

2

)
dμ.

Now, applying Lemma 1 in the previous inequality we deduce

4π2(2χ ± 3τ) ≥
∫

M

(
− R2

12
+ λR

2

)
dμ,

hence, the first item follows.
Next, since (M4, g) is Kaehlerian, it is well known that |W +| = R2

24 , where W + is the
self-dual part of the Weyl tensor. Comparing (2.3) with (2.4) we obtain

8π2χ + 12π2τ =
∫

M

(
|W +|2 + R2

24
− 1

2
|B|2

)
dμ.

On the other hand, using again that |B|2 = |Ric|2 − R2

4 , we deduce

8π2χ + 12π2τ =
∫

M

R2

4
dμ − 1

2

∫

M

|Ric|2dμ,

therefore, we may use again Lemma 1 to conclude the proof of the theorem. �
2.2 Proof of Theorem 2

Proof First, we assume that
(
M4, g, ∇ f, λ

)
is a four-dimensional compact gradient almost

Ricci soliton with positive scalar curvature R satisfying
∫

M R2dμ ≤ 6
∫

M λRdμ − 192π2.
Now, we suppose by contradiction that M4 is not isometric to a standard sphere. Therefore,
we may use the Gursky-Seshadri theorem to infer

8π2(χ − 2) >

∫

M

|W |2dμ =
∫

M

(
|W +|2 + |W −|2

)
dμ.

Next, comparing equation (2.3) with the previous inequality we obtain

∫

M

|B|2dμ >
1

24

∫

M

R2dμ − 16π2.

On the other hand, since |B|2 = − R2

4 + |Ric|2, we may use (2.1) to deduce

∫

M

R2dμ > 6
∫

M

λRdμ − 192π2,

which gives a contradiction. So, we have finished the proof of the theorem. �
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2.3 Proof of Corollary 1

Proof Since
(
M4, g, X, λ

)
be a four-dimensional compact Ricci soliton, we may invoke

Perelman’s Theorem [14] to deduce that the Ricci soliton is gradient. Moreover, using Propo-
sition 3.4 of [8], we conclude that its scalar curvature is positive. Therefore, we may apply
Theorem 2 to conclude the proof of the corollary. �
2.4 Proof of Theorem 3

Proof We assume that M4 satisfies Ric ≥ ρ > 0 and R ≤ 6ρ. Let r1 ≤ r2 ≤ r3 ≤ r4 be the
eigenvalues of the Ricci tensor of M4. Then R = ∑

ri and

|B|2 =
∑

r2
i − R2/4 = R2 − R2/4 − 2

∑

i< j

ri r j = 3R2/4 − 2
∑

i< j

ri r j . (2.6)

Now,

(ri − ρ)(r j − ρ) ≥ 0 (2.7)

for all i < j . From this it follows that
∑

i< j

ri r j ≥ −6ρ2 + 3ρR. (2.8)

By using (2.6), (2.8) and (2.5) we obtain

4π2(2χ ± 3τ) ≥
∫

M

(
− R2

3
+ 3ρR − 6ρ2

)
dμ = −1

3

∫

M

(R − 3ρ)(R − 6ρ)dμ ≥ 0,

(2.9)

since R ≤ 6ρ and Ric ≥ ρ we have 6ρ ≥ R ≥ 4ρ > 3ρ, which implies χ ≥ 3|τ |
2 .

On the other hand, we consider Ric ≤ −ρ < 0 and R ≥ −6ρ. Then (ri +ρ)(r j +ρ) ≥ 0
for all i < j , where r1 ≤ .... ≤ r4 are the eigenvalues of the Ricci tensor of M4. In this case,
the proof is analogous. So, we conclude the proof of the first item.

Next, let M4 be Kaehlerian endowed with its natural orientation. Since |W +|2 = R2

24 , we
can use (2.3) and (2.4) to obtain

4π2(2χ + 3τ) =
∫

M

( R2

12
− 1

2
|B|2

)
dμ. (2.10)

Now, let r1 ≤ · · · ≤ r4 be the eigenvalues of the Ricci tensor of M4. Assume that the Ricci
curvature of M4 and the scalar curvature of M4 satisfy Ric ≥ ρ > 0 and R ≤ (6 + 2

√
3)ρ,

respectively (the proof of the other case is similar). Comparing (2.6) and (2.8) with (2.10)
we have

4π2(2χ + 3τ) ≥
∫

M

(
− R2

4
+ 3ρR − 6ρ2

)
dμ ≥ 0.

From this it follows that χ ≥ − 3τ
2 , which finishes the proof of the theorem. �
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2.5 Proof of Theorem 4

Proof Let M4 be a compact-oriented Einstein four-dimensional manifold with negative scalar
curvature R and let λ+ ≤ μ+ ≤ ν+ be the eigenvalues of W + such that μ+ ≥ −R/12. Note
that λ+ + μ+ + ν+ = 0 and

μ+ ≥ −R/12 ⇒ −λ+ = μ+ + ν+ ≥ 2μ+ ≥ −R/6 ⇒ λ+ ≤ R/6 < R/12. (2.11)

Since λ+, μ+ and ν+ are continuous eigenvalues of the symmetric operator W +, if λ+ < 0
and ν+ ≥ μ+ > 0, we have λ+ �= μ+ and λ+ �= ν+. Therefore, λ+ is an eigenvalue of W +
with constant multiplicity on M4 and so λ+ is differentiable on M4. As W + is a harmonic
tensor, then (see equation (35) in [7]) there exists an open set A in M4, such that for all x ∈ A
there exist 1-forms a, b and c defined near of x such that


λ+
2

= λ2+ + 2μ+ν+ − R

4
λ+ + (ν+ − λ+) | b |2 +(μ+ − λ+) | c |2 . (2.12)

Therefore, from (2.12) we deduce


λ+
2

≥ λ2+ + 2μ+ν+ − R

4
λ+

holds on A, thus we obtain

0 =
∫

M


λ+
2

dμ ≥
∫

M

(
λ2+ + 2μ+ν+ − R

4
λ+

)
dμ. (2.13)

On the other hand, we have

0 < μ+ ≤ ν+ and μ+ ≥ −R

12
,

which implies

2μ+ν+ ≥ 2μ2+ ≥ R2

72
.

From what it follows that

λ2+ + 2μ+ν+ − R

4
λ+ ≥ λ2+ − R

4
λ+ + R2

72
.

Now, we may use (2.11) to obtain

λ2+ − R

4
λ+ + R2

72
= (λ+ − R/6)(λ+ − R/12) ≥ 0.

Therefore, (2.13) becomes an equality, which implies λ+ = R/6, μ+ = ν+ = −R/12 and
|W +| �= 0 on M4. Now, we may invoke Proposition 5 of [7] to deduce that M4 or the twofold
cover of M4 admits a Kaehler metric, which finishes the proof of the theorem. �
2.6 Proof of Theorem 5

Proof Since W + is harmonic, we recall the Weitzenbock formula (see 16.17 in [4]) to deduce


|W +|2 = −R|W +|2 + 36 det W + − 2|∇W +|2, (2.14)

where R is the scalar curvature of M4 and det W + is the product of the eigenvalues of W +.
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Taking into account that |W +| is constant, we deduce from (2.14) that

0 ≤ −|W +|2
∫

M

Rdμ + 36
∫

M

det W +dμ. (2.15)

By use of Lagrange multipliers we have

det W + ≤
√

6

18
|W +|3. (2.16)

Moreover, the equality is attained at points where W + �= 0 if and only if W + has precisely
two different eigenvalues at each point. On the other hand, the trace of the fundamental almost
Ricci soliton equation implies

∫

M

Rdμ = 4
∫

M

λdμ,

therefore, comparing the previous equation with (2.15) we obtain

0 ≤ −|W +|2
∫

M

(−4λ + 2
√

6|W +|)dμ. (2.17)

Our assumption in the previous inequality implies that either |W +| = 0 or |W +| =√
6

3V

∫
M λdμ. In the last case, we can use Proposition 5 of [7] to conclude that M4 is Kaehler–

Einstein, which finishes the proof of the theorem. �
2.7 Proof of Corollary 2

Proof Indeed, using Perelman’s theorem [14], we may assume that the Ricci soliton is gra-
dient. Moreover, since |W +| is constant, up to rescaling the metric, we may assume that

λ =
√

6
2 |W +|. On the other hand, since the self-dual part of the Weyl tensor is harmonic, it

is well known that the self-dual part of the Weyl tensor obtained after rescaling the metric
will be harmonic. Therefore, the proof of the corollary follows from Theorem 5. �
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