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We use a stochastic Markovian dynamics approach to describe the spreading of vector-transmitted diseases,
such as dengue, and the threshold of the disease. The coexistence space is composed of two structures representing
the human and mosquito populations. The human population follows a susceptible-infected-recovered (SIR)
type dynamics and the mosquito population follows a susceptible-infected-susceptible (SIS) type dynamics.
The human infection is caused by infected mosquitoes and vice versa, so that the SIS and SIR dynamics are
interconnected. We develop a truncation scheme to solve the evolution equations from which we get the threshold
of the disease and the reproductive ratio. The threshold of the disease is also obtained by performing numerical
simulations. We found that for certain values of the infection rates the spreading of the disease is impossible, for
any death rate of infected mosquitoes.
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I. INTRODUCTION

Dengue is a vector-borne infectious disease with very
complex dynamics, whose spreading is a relevant problem
of public health. The disease is transmitted to human mainly
by the mosquito Aedes aegypti. Many factors are determinant
for the transmission of dengue in urban centers, such as the
climatic conditions for the vector proliferation, and the human
concentration and mobility. Although much effort is expended
in the development of a vaccine against the four types of virus,
until now the only available strategy to reduce the spreading
of the disease [1] is the control of the vector population.
Therefore, it is very important to analyze the effect of vector
control in avoiding the occurrence of dengue epidemics. In
this context, the interhost modeling of dengue dynamics and
control may be a very useful tool for helping our understanding
and for the establishment of vector control strategies.

Different techniques and approaches are used to model the
dynamics of transmitted diseases [2,3] such as deterministic
differential equations [4], stochastic dynamics [5–7], cellular
automata [8], and complex networks [9]. Concerning vector
transmitted diseases including dengue modeling, there are also
different schemes and approaches [2,3] based on deterministic
models of differential equations [10–12], probabilistic cellular
automata [13–16], and complex networks [17,18]. Although
a description in terms of a master equation defined on a
lattice has been used to investigate epidemic models of direct
transmitted diseases [5], this approach has not been explored
in the investigation of a vector-borne infectious disease. This
approach takes into account in an explicit way the spatial
structure of the environment and, in contrast to mixing
models, it predicts stochastic fluctuations and correlations in
the number of individuals, features that are inherent in real
population dynamics. As we shall see, it allows a definition of
the basic reproduction ratio in terms of conditional probability,
which is nontrivial only when correlations are taken into
account.

As in other works [10–12,15], the present approach is
also motivated by actual data of dengue epidemics [19];
in particular, by two outbreaks of dengue that occurred in

Salvador, Bahia, Brazil in 1995 (without vector control) and
2002 (with vector control). Those data had also motivated a
previous analysis based on the basic reproductive ratio [10].

The first dengue model was proposed by Newton and
Reiter [20] in 1992 assuming a susceptible-exposed-infected-
recovered (SEIR) structure for humans and susceptible-
exposed-infected (SEI) structure for mosquitoes due to the
fact that the mosquitoes die before being removed. This
framework has been followed by other continuous and discrete
dengue models [10–12,14,15]. Here we consider a simpler
model, illustrated in Fig. 1, assuming a susceptible-infected-
recovered (SIR) structure for humans and susceptible-infected-
susceptible (SIS) structure for mosquitoes. The infection of
humans is due to mosquitoes and the infection of mosquitoes
is due to humans. In other words the infection reactions,
S→I, on both structures are catalytic and not autocatalytic
as happens in the original SIR and SIS models [5–7]. The
other reactions, I→R in the SIR structure and I→S in the SIS
structure, are spontaneous reactions. The mosquito structure
has been simplified by suppressing the death and the birth of
mosquitoes which amounts to saying that a dead mosquito is
immediately replaced by a newborn (susceptible) mosquito.
We are, therefore, assuming that the number of mosquitoes
remains constant throughout the outbreak of the epidemics.

The features of our model that differ from that of Newton
and Reiter [20] are as follows. First, we do not distinguish
between susceptible and exposed states both for humans and
mosquitoes. Second, deaths of humans are not considered
since the human lifetime is much larger than the period of the
disease. The deaths of the mosquitoes are implicit in the model
in the following sense. The reaction I→S for the mosquitoes
is to be interpreted as the death of an infected mosquito and
the simultaneous birth of a susceptible mosquito. The major
difference, however, rests on the use of a stochastic lattice
model, which takes into account the spatial distribution of
humans and mosquitoes.

After setting up the master equation we develop two
truncation schemes to solve the evolution equations from
which we get the threshold of the disease and the reproductive
ratio. From the second truncation scheme we found that, for
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FIG. 1. Illustration of the reactions. Left panel: SIR structure. A
susceptible human (HS) becomes infected (HI ) through a catalytic
reaction mediated by infected mosquitoes (MI ). An infected human
becomes recovered (HR) spontaneously and remains permanently in
this state. Right panel: SIS structure. A susceptible mosquito (MS)
becomes infected through a catalytic reaction mediated by infected
humans. An infected mosquito spontaneously becomes susceptible.

a range of values of the infection rates, the disease does not
spread no matter how small is the rate at which the infected
mosquitoes disappear. This result is confirmed by numerical
simulations performed on a square lattice.

This paper is organized as follows. In Sec. II, we introduce
the model and derive from the master equations the evolution
equations for the densities. We also define in this section the
quantities that characterize the spreading of the epidemics, the
reproductive ratio, and the size of the epidemics. In Sec. III,
we develop the simplest truncation scheme and show how
some classic results are obtained. In Sec. IV, we introduce the
second truncation scheme and set up the evolutions equations
for densities and pair correlations. The stability analysis of
these equations allows us to obtain the threshold of epidemics
from which we get the phase diagram. Section V is reserved
for the numerical simulations of the model on a square lattice.
Concluding remarks and discussion are placed in the last
section.

II. MODEL AND EVOLUTION EQUATIONS

The modeling of disease spreading that we consider here
corresponds to a continuous time stochastic Markovian process
defined on a lattice, with periodic boundary conditions,
where the sites are occupied by human individuals or by
mosquitoes. In order to properly describe the human and
mosquito populations we consider two sublattices of the whole
lattice, one for each population. The sublattices, named H and
M , are interpenetrating in such a way that the nearest neighbor
sites of a site of one sublattice belong to the other sublattice.
The number of nearest neighbors, the coordination number γ ,
is the same for both sublattices. Each site of the sublattice M

can be in one of two states, either occupied by a susceptible
mosquito (MS) or by an infected mosquito (MI ). Each site of
the sublattice H can be in one of three states, occupied by a
susceptible human (HS), occupied by an infected human (HI ),
or occupied by a recovered human (HR). The system evolves
in time according to the following stochastic dynamics.

Each site changes its state, independently of the others, at
waiting times distributed exponentially with rates that depend
on the state of the site and its neighborhood. (a) If a site is
occupied by a susceptible human then it becomes infected
at rate a times the fraction of infected mosquitoes in its
neighborhood. If the site is occupied by an infected human

then it recovers spontaneously with rate c. Once recovered
the individual remains permanently in this state which means
that, if the site is occupied by a recovered human, it remains
unchanged. (b) If a site is occupied by a susceptible mosquito
then it becomes infected at a rate b times the fraction of
infected humans in its neighborhood. If the site is occupied
by an infected mosquito it spontaneously becomes susceptible
with rate e. Our simple model is therefore described by four
parameters a, b, c, and e. In the applications we will further
simplify by setting a + e = b + c.

For convenience we introduce a stochastic variable ηi

associated with each site i of the lattice that takes the values
0, 1, 2, 3, or 4 according to whether the site i is occupied,
respectively, by a susceptible mosquito, an infected mosquito,
a susceptible human, an infected human, or a recovered human.
The time evolution of the probability distribution P (η) of
configuration η = {ηi} is governed by the master equation

d

dt
P (η) =

∑
i

{wi(A−
i η)P (A−

i η) − wi(η)P (η)}, (1)

where wi(η) is the transition rate from η to η′ = Aiη, and Ai

is the operator that changes ηi → η′
i as follows: 0→1, 1→0,

2→3, 3→4; and A−
i is the inverse of Ai . The transition rate

wi(η) is defined according to the rules stated above. The time
evolution of an average 〈f (η)〉 = ∑

η f (η)P (η) is obtained
from the master equation and is given by

d

dt
〈f (η)〉 =

∑
i

〈[f (Aiη) − f (η)]wi(η)〉. (2)

Instead of using the full probability distribution P (η) we
consider an equivalent description in terms of the various
marginal probability distributions, obtained from P (η). The
time evolution of the several marginal probability distributions
is obtained from the master equation (1) and comprises a
hierarchic set of coupled equations which is equivalent to
the master equation. This approach is convenient because it
allows us to obtain a solution of the set of equations by a
truncation scheme to be explained shortly. In what follows
we assume invariance of the properties by a translation of the
lattice by two lattice spacings so that a site of one sublattice
goes into another site of the same sublattice. Isotropy is also
assumed. At t = 0, a fraction ε of the mosquito sites, which
we consider to be very small, are infected and all the human
sites are susceptible.

Let us denote by P (ηi) the marginal one-site probability
that represents the probability that a site i is in state ηi and
by P (ηi,ηj ) the marginal two-site probability that represents
the probability that site i is in state ηi and a neighboring
site j is in state ηj . Other marginal probabilities are denoted
in an analogous way. The evolution equation of the one-site
probability P (1), which represents the density of infected
mosquitoes, can be obtained from Eq. (2) if we recall that
P (1) = 〈δ(ηi,1)〉 and is given by

d

dt
P (1) = bP (03) − eP (1), (3)

where we used the definition P (03) = 〈δ(ηi,0)δ(ηj ,3)〉. The
notation δ(x,y) stands for the Kronecker delta. The time
evolution equation for P (0), the density of susceptible
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mosquitoes, can be obtained from Eq. (3) by using the property
P (0) + P (1) = 1.

The evolution equations for P (2) and P (3), the densities
of susceptible and infected humans, respectively, are obtained
similarly from Eq. (2) and are given by

d

dt
P (2) = −aP (12), (4)

d

dt
P (3) = aP (12) − cP (3). (5)

The evolution equation for P (4), the density of recovered
humans, is

d

dt
P (4) = cP (3) (6)

and can also be obtained from Eqs. (4) and (5) by taking into
account the property P (2) + P (3) + P (4) = 1.

To characterize the threshold of the epidemic it is conve-
nient to write Eq. (3) for the density of infected mosquitoes
and Eq. (5) for the density of infected individuals in the forms

d

dt
P (1) = bP (0|3)P (3) − eP (1), (7)

d

dt
P (3) = aP (2|1)P (1) − cP (3), (8)

where P (2|1) = P (12)/P (1) is the conditional probability of
occurrence of a susceptible individual given an infected neigh-
boring mosquito and P (0|3) = P (03)/P (3) is the conditional
probability of occurrence of a susceptible mosquito given an
infected neighboring individual. Using the simplified notation
x = P (1) and z = P (3) the set of equations (7) and (8) can be
written as(

dx/dt

dz/dt

)
=

(−e bP (0|3)

aP (2|1) −c

)(
x

z

)
. (9)

At the early stages of the epidemic the cross-transmission
probabilities P (0|3) and P (2|1) can be considered to be
constant (independent of time) and the set of equations (7)
and (8) becomes a linear set of equations. A fundamental
quantity that characterizes the spreading of the disease is the
so-called reproductive ratio R0, which is defined here as

R0 = ab

ce
P (2|1)P (0|3). (10)

The threshold of epidemic is determined by the largest
eigenvalue λ of the matrix (9), which is related to the
reproductive ratio by

R0 =
(

1 + λ

e

) (
1 + λ

c

)
, (11)

or by

λ = 1
2 {−(e + c) +

√
(e − c)2 + 4ecR0}. (12)

According to the linear analysis, the threshold of epidemic
occurs when the largest eigenvalue vanishes, which happens,
according to Eq. (11), when R0 = 1. Moreover, when λ < 0
there is no transmission of disease. According to Eq. (11) this
happens when R0 < 1. The spreading of the disease occurs

when λ > 0, that is, when R0 > 1. The reproductive ratio
characterizes not only the threshold of the disease but also
its strength.

An epidemic is usually characterized by the epidemic curve
defined as the number of cases occurring in unit time, for
instance, in a day or in a weak, plotted as a function of time.
In other terms it is the number of susceptible individuals that
are being infected per unit time. In the place of number of
individuals we may use the density of individuals so that the
epidemic curve is defined as the density of individuals that are
being infected per unit time ζ = −dy/dt , where y = P (3)
is the density of susceptible individuals. Using the initial
conditions x = ε, y = 1, and z = 0 where ε is a small quantity,
ζ increases and then decreases in time and vanishes when
t → ∞.

The density of recovered individuals ρ = P (4) increases
with time, as implied by Eq. (6), and approaches its maximum
value in the limit t → ∞. This final density of recovered
individuals is the integral of the epidemic curve, that is,∫ ∞

0
ζdt = ρ, (13)

obtained by integrating ζ = −dy/dt , and by using the initial
condition y(0) = 1 and the result that the final density of
infected individuals vanishes, z(∞) = 0, and the constraint
ρ + y + z = 1. The final density of recovered individuals,
which is a measure of the size of the epidemic, may be
understood in this approach as the order parameter in the sense
that it vanishes in the nonspreading regime and is nonzero in
the regime where the disease spreads. Strictly speaking the
vanishing only occurs when ε vanishes. Notice that the limit
ε → 0 should be taken after the limit t → ∞, which is the
proper way to get the transition from the spreading to the
nonspreading regime.

III. SIMPLE MEAN-FIELD APPROXIMATION

The three equations for the time evolution of P (1), P (2),
and P (3) are not a set of closed equations because they depend
on the two-site probabilities P (12) and P (03). To get closed
equations, we first use a scheme, called the simple mean-field
(SMF) approximation, which consists of writing a two-site
probability as the product of one-site probabilities; that is,
P (ηi,ηj ) = P (ηi)P (ηj ). Using the abbreviations P (1) = x,
P (2) = y, and P (3) = z, respectively, the densities of infected
mosquitoes, susceptible individuals, and infected individuals,
this approximation gives P (12) = xy and P (03) = (1 − x)z
so that Eqs. (3), (4), and (5) are reduced to the forms

dx

dt
= b(1 − x)z − ex, (14)

dy

dt
= −axy, (15)

dz

dt
= axy − cz. (16)

To describe the spreading of the disease we consider an
initial condition such that all individuals are susceptible so
that y = 1 and z = 0. Moreover we consider a very small
density of infected mosquitoes, that is, x = ε where ε � 1.
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Then, we look for solutions for x, y, and z in the limit
t → ∞. In this limit the densities of infected mosquitoes
and infected individuals vanish, x → 0 and z → 0. If the
density of recovered individuals ρ = 1 − y − z approaches
a nonzero value than the disease spreads. On the other hand if
ρ approaches zero (when ε → 0) the disease does not spread.
This means that the stationary solution x = 0, z = 0, y = 1
(ρ = 0) is the solution corresponding to the nonspreading
regime.

To obtain the stability of this solution we linearize the above
equations around this solution to obtain

dx

dt
= bz − ex, (17)

dρ

dt
= ax, (18)

dz

dt
= ax − cz. (19)

A linear analysis of stability amounts to determining the
eigenvalues of the matrix composed of the coefficients of the
right-hand side of these equations, given by⎛

⎜⎝
−e 0 b

a 0 0

a 0 −c

⎞
⎟⎠ . (20)

One eigenvalue is zero and the others are the roots of

λ2 + (e + c)λ + ec − ab = 0, (21)

that is,

λ± = 1
2 {−(e + c) ±

√
(e − c)2 + 4ab}. (22)

The solution is stable as long as λ+ < 0, that is when ec > ab.
The threshold of the spreading occurs when

ab

ec
= 1. (23)

For a + e = b + c, the threshold line is described by e = b as
shown in the phase diagram of Fig. 2.

The threshold obtained by the above linear analysis can
equivalently be obtained from the condition R0 = 1; that is,
when the reproductive ratio R0 given by Eq. (10) equals 1. In
the present case of the simple mean-field approach, P (2|1) =
P (2) and P (0|3) = P (0). The initial condition gives P (2) = 1
and P (0) = 1 so that

R0 = ab

ce
, (24)

which coincides with the condition (23) when R0 = 1.
Near the threshold of epidemic the density of infected

mosquitoes is much smaller than unity and we may neglect
x in the first term on the right-hand side of Eq. (14). The
evolution equation for x becomes then

dx

dt
= bz − ex, (25)

which together with Eqs. (15) and (16) allows us to determine
explicitly the size of the epidemic ρ. This is possible because
these equations imply a conservation law obtained as follows.
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FIG. 2. Phase diagram in the plane h = e/(e + a) vs p = b/(b +
c) for the case e + a = b + c, showing the regions of spreading (S)
and nonspreading (NS) of the disease for the SMF approximation,
PMF approximation for coordination number γ = 4, and Monte
Carlo (MC) simulations on a square lattice. When e → 0, the value
of b approaches zero for the SMF, the value p = 1/3 for the PMF,
and the value p = 0.621 for numerical simulations.

We start by defining the quantity φ = cx + bz. From Eqs. (25)
and (16) its evolution equation is given by

dφ

dt
= −cex + abxy. (26)

The ratio of Eqs. (26) and (15) gives

dφ

dy
= ce

ay
− b, (27)

which can be integrated to give

cx + bz = ce

a
ln y + b(1 − y), (28)

which is the desired conservation law. The constant of integra-
tion was obtained by remembering that at t = 0, x = ε → 0,
y = 1, and z = 0.

When t → ∞, then x = 0, z = 0, and 1 − y = ρ so that

ln(1 − ρ) + R0ρ = 0, (29)

where we used the relation R0 = ab/ce. This equation
determines the size of the epidemic ρ and may be written
in the form

1 − ρ = e−R0ρ. (30)

This equation is the same equation obtained by Kendall [21]
for the model introduced by Kermack and McKendrick [22] to
describe directed transmitted epidemics [2,3] and also obtained
by means of the simple mean-field approach to the SIR model
on a lattice [7]. Near the threshold it is given by ρ = 2(R0 − 1).

IV. PAIR MEAN-FIELD APPROXIMATION

Next we set up equations for the pair mean-field (PMF)
approximation. To this end we begin by writing the equations
for the two-site probabilities. The evolution equation for the
probability P (03) of a site being occupied by a susceptible
mosquito and a neighboring site by an infected individual is
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given by

d

dt
P (03) = eP (13) − (c + rb)P (03)

+ (1 − r)aP (021) − (1 − r)bP (303), (31)

where r = 1/γ , and γ is the coordination number of the
lattice. The notation P (ηi,ηj ,ηk) stands for the joint three-site
probability where i and k are nearest neighbor sites of j . The
evolution equation for the probability P (12) of a site being
occupied by an infected mosquito and a neighboring site by a
susceptible individual is given by

d

dt
P (12) = −(e + ra)P (12)

+ (1 − r)bP (302) − (1 − r)aP (121). (32)

The equations for the other two-site probabilities, P (02),
P (04), P (13), and P (14) are not necessary because they can
be written in terms of P (03), P (12), P (1), P (2), and P (3).

Let us consider now the evolution equations for P (1), P (2),
P (3), P (03), and P (12), given by Eqs. (3), (4), (5), (31),
and (32). These five equations are not closed because (31)
and (32) include three-site probabilities. To get a set of closed
equations we now use a truncation at the level of two-site
probabilities [23–25]. This truncation amounts to use the
following approximation for the three-site probability:

P (ηi,ηj ,ηk) = P (ηi,ηj )P (ηj ,ηk)

P (ηj )
. (33)

This approximation is used in Eqs. (31) and (32) to get a set of
closed equations in the variables P (1) = x, P (2) = y, P (3) =
z, P (03) = u, and P (12) = v. With this approximation the
model is described by the set of five equations

dx

dt
= bu − ex, (34)

dy

dt
= −av, (35)

dz

dt
= av − cz, (36)

du

dt
= e(z − u) − (c + rb)u

+ (1 − r)a
(y − v)v

y
− (1 − r)b

u2

1 − x
, (37)

dv

dt
= −(e + ra)v + (1 − r)b

u(y − v)

1 − x
− (1 − r)a

v2

y
. (38)

We have solved the above set of equations using the initial
condition x = 10−4, y = 1, z = 0, u = 0, and v = 10−4. From
the numerical solution we have obtained the epidemic curve;
that is, the density of individuals that are being infected per unit
time, ζ = −dy/dt . Figure 3 shows examples of the epidemic
curve obtained in the PMF approximation for b/c = 2 and
a + e = b + c.

To obtain the threshold of the spreading of the disease we
analyze the stability of the solution x = 0, y = 1, z = 0, u = 0,
and v = 0, which characterizes the state where the disease does
not spread. To get the stability of this equation we linearize
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FIG. 3. Epidemic curves according to the PMF approximation.
Each curve represents the density of individuals that are being infected
per unit time ζ = −dy/dt as a function of time for the values of e/c

indicated and for b/c = 2 and a + e = b + c. The area below the
epidemic curve ζ equals the final density of recovered individuals ρ

and becomes negligible as one approaches the threshold of epidemic.

the evolution around this solution to obtain
dx

dt
= −ex + bu, (39)

dρ

dt
= av, (40)

dz

dt
= −cz + av, (41)

du

dt
= ez − (e + c + rb)u + (1 − r)av, (42)

dv

dt
= (1 − r)bu − (e + ra)v, (43)

where ρ = 1 − y − z. A linear analysis of stability amounts
to calculating the eigenvalues of the matrix composed of the
linear coefficients of the right-hand side of the above equations,
given by⎛

⎜⎜⎜⎜⎜⎝

−e 0 0 b 0

0 0 0 0 a

0 0 −c 0 a

0 0 e −(e + c + rb) (1 − r)a

0 0 0 (1 − r)b −(e + ra)

⎞
⎟⎟⎟⎟⎟⎠

. (44)

Two eigenvalues are λ1 = 0 and λ2 = −e. The others are the
roots of

−(λ + c)(λ + e + c + rb)(λ + e + ra) + ea(1 − r)b

+ (λ + c)(1 − r)2ab = 0. (45)

The line of stability is obtained by setting λ = 0 in this
equation, to get

−c(e + c + rb)(e + ra) + (1 − r)abe

+ (1 − r)2abc = 0. (46)

As before, we consider b + c = a + e and write the
equation that describes the threshold line as

rc2 + [e − (1 − 2r)b]c − (1 − r)(b − e)e = 0. (47)
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DE SOUZA, TOMÉ, PINHO, BARRETO, AND DE OLIVEIRA PHYSICAL REVIEW E 87, 012709 (2013)

In Fig. 2 we show the line described by this equation for
the case of coordination number γ = 4. This line represents
the phase transition between the spreading and nonspreading
regimes. Below the transition line the nonspreading solution
becomes unstable, giving rise to the spreading solution.
Comparing the pair and simple mean-field approximations we
see that the inactive region of the phase diagram is larger for
the pair approximation, as can be seen in Fig. 2.

When e = 0, the threshold of the disease occurs at b/c =
r/(1 − 2r), a nonzero value. In terms of the quantity p =
b/(b + c), used in the phase diagram of Fig. 2, it occurs at
p = r/(1 − r) = 1/(γ − 1). This result leads us to conclude
that there is a range of values of b/c, as can be seen in Fig. 2,
for which there is no spreading of the disease for any e/c. This
result is qualitatively distinct from the SMF result for which
the threshold occurs at b = 0 when e = 0. As we shall see this
PMF prediction is confirmed by numerical simulations.

The threshold of epidemic obtained by the above lin-
ear analysis can equivalently be obtained in terms of the
reproductive ratio. In the present case of the pair mean-
field approach, P (2|1) = P (12)/P (1) = v/x and P (0|3) =
P (03)/P (3) = u/z so that

R0 = abuv

ecxz
. (48)

The reproductive ratio R0 depends on the parameters a, b, c,
and e only through the ratios e/c, b/c, and a/c. Indeed, if we
substitute λ given by Eq. (11) into Eq. (45) we get an equation
that gives R0 in an implicit form. It is easy to see that this
equation contains the parameters a, b, c, and e only through
the ratios e/c, b/c, and a/c.

It is worth mentioning that in the early stages of spreading of
epidemics the quantities x, z, u, and v increase exponentially,
that is, the increase in time of each of these quantities is
proportional to eλt , where λ is the largest eigenvalue of
the matrix (44). From this behavior we see that the ratios
v/x = P (2|1) and u/z = P (0|3) are independent of time at
the early stage of the spreading of disease, and so is the
reproductive ratio R0.

An important aspect of our pair approach concerns the
relation of the epidemic curve to the conditional probabilities
P (2|1) and P (0|3), which are treated exactly in this approach.
Remember that P (2|1) is the conditional probability of the
occurrence of a susceptible individual in the presence of a
infected mosquito and P (0|3) is the conditional probability of
the occurrence of a susceptible mosquito in the presence of a
infected individual.

V. NUMERICAL SIMULATIONS

Numerical simulations were performed on a square lattice
according to the following rules. At each time step, a site
is chosen from a list of infected sites; that is, a list of sites
that are either occupied by an infected mosquito or by an
infected human individual. (i) If the chosen site is MI then
with probability h it becomes MS and, with the complementary
probability 1 − h, a neighboring site is chosen at random; if
this neighboring site is HS then it becomes HI . (ii) If the
chosen site is HI then with probability q it becomes HR and
with the complementary probability p = 1 − q, a neighboring

site is chosen at random; if this neighboring site is MS then it
becomes MI . The time is then increased by 1/NI where NI

is the number of sites in the list. These rules are not the most
general that one can conceive from the original definition of the
model but are very simple and valid as long as e + a = b + c.
Since the transition rates must be proportional to the transition
probabilities, it follows that a = α(1 − h), b = α(1 − q), c =
αq, and e = αh. From these relations we see that e + a =
b + c = α and may write h = e/(e + a), q = c/(b + c), and
p = b/(b + c).

At t = 0 all sites of sublattice H were occupied by
susceptible human individuals and all sites of sublattice M

were occupied by susceptible mosquitoes except one site
which is occupied by an infected mosquito. We use lattice
sizes sufficiently large so that the cluster of infected sites
never reached the border of the lattice. The simulation was
repeated a number of times, on the order of a thousand, and the
averages of relevant quantities were obtained. For instance, we
measured the mean number of infected human individuals and
the mean number of infected mosquitoes as functions of time.
The location of the critical point was obtained by assuming an
algebraic behavior of these quantities at the critical point.

The results are shown in the phase diagram of Fig. 2. When
h = 0 (e = 0), we have obtained for p a nonzero value, a result
qualitatively distinct from the SMF approximation and similar
to the PMF approximation, although the value is a bit larger
than that of the PMF approach, namely p = 0.621. Therefore,
our model predicts a range of values of p = b/(b + c)c for
which the epidemic is impossible for any h.

VI. CONCLUDING REMARKS AND DISCUSSION

In this work we have applied stochastic dynamics to a
dengue bipartite lattice model to analyze the transition between
epidemic and nonepidemic states in terms of the probability
of human-mosquito and mosquito-human transmission and
vector control parameters. We have presented a precise
definition of the reproductive rate R0 which is appropriate for
systems described by stochastic dynamics, that characterizes
the spreading of the disease, and we have related it to the
largest eigenvalue of the matrix associated with the evolution
equations. This definition can be generalized to other types of
disease transmission and seems to be promising in the analysis
of epidemics. According to our definition, the reproductive rate
is directly related to the conditional probability of the occur-
rence of a susceptible human (mosquito) given the presence
in the neighborhood of an infected mosquito (human). At the
early stages of the epidemic, these conditional probabilities are
simply equal to unity in the SMF approach but are nontrivial in
the PMF, which makes this approach a richer description when
compared to the SMF. Another quantity that characterizes
the epidemic is ρ, the quantity that measures the size of the
epidemic and vanishes in the nonspreading regime. It was also
determined by means of the SMF and PMF approaches.

It is worth mentioning that the initial conditions we have
used in the mean-field approach are translational invariant.
If we had used an initial condition such that a finite number
of mosquito sites were infectious, the initial state would not
be translational invariant and the mean-field calculation we
have employed here would no longer be valid. For this initial
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condition the disease may go to an early extinction even if
R0 > 1, and the growth of the epidemic may no longer be
exponential.

A qualitative relevant result that we have obtained from the
PMF approximation, and confirmed by numerical simulations,
is that for small values of p there is no epidemic. The minimum
value for the spreading of the disease, that occurs for h = 0, is
p∗ = 1/(γ − 1) for the PMF approximation and p∗ = 0.621
for numerical simulations on a square lattice. This result can be
understood by relating the present model with percolation. It
is well established that the SIR model has a close relation with
percolation [6,7], so that it is to be expected that the present
model is also related to percolation growth.

To appreciate the relation with percolation we consider the
spreading of the disease on a Cayley tree of coordination γ

when h = 0, starting from one single infected mosquito, and
observing the growth of the cluster of infected mosquitoes and
infected individuals. A site MI will remain forever in this state
because e = 0, and a site HI will eventually become HR , so
that in the stationary state the percolating cluster is formed
by infected mosquitoes in sites belonging to sublattice M and
recovered individuals in sites belonging to sublattice H . In the
process of cluster growth we may ask for the probability that
a site next to the border of the growing cluster will belong to
the stationary cluster. If the site belongs to the H sublattice
the probability is 1. If the site belongs to the M sublattice, a
calculation similar to that of Tomé and Ziff [6], gives the value

pM = p

γ − (γ − 1)p
. (49)

Therefore, we may say that the present model as defined on
a Cayley tree can be exactly mapped into an inhomogeneous
site percolation on a Cayley tree such that a site of sublattice
H is permanently active and a site of sublattice M is active
with probability pM . The critical value of pM for percolation
in such a lattice is 1/(γ − 1)2 instead of 1/(γ − 1), as
happens in homogeneous site percolation [26]. If we substitute
this value into Eq. (49), we get p = 1/(γ − 1), which is
the critical value we have found by means of the PMF
approximation.

The relation to percolation allowed us to understand the
existence of the minimum value of p for the spreading of the
disease and therefore a range of values of infection rates for
which the epidemic is impossible for any death rate of infected
mosquitoes. This result might be relevant in order to get the
optimal intervention scenario in the control of the disease.
In future work we intend to analyze other important issues
such as the role of diffusion. Specifically, we wish to know
whether this scenario is preserved or not by the inclusion of
diffusion.
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[25] T. Tomé and K. C. de Carvalho, J. Phys. A 40, 12901 (2007).
[26] D. Stauffer and A. Aharony, Introduction to Percolation Theory

(Taylor and Francis, London, 1991).

012709-7

http://dx.doi.org/10.1098/rspb.1999.0716
http://dx.doi.org/10.1016/j.physa.2009.10.039
http://dx.doi.org/10.1103/PhysRevE.82.051921
http://dx.doi.org/10.1088/1751-8113/44/9/095005
http://dx.doi.org/10.1088/1751-8113/44/9/095005
http://dx.doi.org/10.1098/rstb.1996.0150
http://dx.doi.org/10.1098/rstb.1996.0150
http://dx.doi.org/10.1103/PhysRevLett.86.3200
http://dx.doi.org/10.1103/PhysRevLett.86.3200
http://dx.doi.org/10.1098/rsta.2010.0278
http://dx.doi.org/10.1098/rsta.2010.0278
http://dx.doi.org/10.1098/rstb.1999.0428
http://dx.doi.org/10.1098/rstb.1999.0428
http://dx.doi.org/10.1016/S0035-9203(01)90184-1
http://dx.doi.org/10.1103/PhysRevE.62.7024
http://dx.doi.org/10.1080/08898480600950515
http://dx.doi.org/10.1080/08898480600950515
http://dx.doi.org/10.1103/PhysRevE.80.016102
http://dx.doi.org/10.1103/PhysRevE.80.016102
http://dx.doi.org/10.1103/PhysRevE.83.037101
http://dx.doi.org/10.1103/PhysRevE.83.037101
http://dx.doi.org/10.1016/j.physa.2006.11.027
http://dx.doi.org/10.1016/j.physa.2006.11.027
http://dx.doi.org/10.1103/PhysRevE.76.036112
http://dx.doi.org/10.1186/1471-2458-8-51
http://dx.doi.org/10.2307/2342553
http://dx.doi.org/10.1098/rspa.1927.0118
http://dx.doi.org/10.1098/rspa.1927.0118
http://dx.doi.org/10.1103/PhysRevE.49.5073
http://dx.doi.org/10.1088/1751-8113/40/43/005



