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Spin-orbit interaction strength and anisotropy in III-V semiconductor heterojunctions
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The spin-orbit interaction strength for electrons in III-V semiconductor heterojunctions and the corresponding
in-plane anisotropy are theoretically studied, considering Rashba and Dresselhaus contributions. Starting from a
variational solution of Kane’s effective Hamiltonian for the Rashba-split subbands, the total spin-orbit splitting
at the Fermi level of the two-dimensional electron gas in III-V heterojunctions is calculated analytically, as
a function of the electron density and wave-vector direction, by adding the Dresselhaus contribution within
quasidegenerate first-order perturbation theory. Available GaAs and InGaAs experimental data are discussed.
Effects of the barrier penetration are identified, and the spin-orbit anisotropy is shown to be determined by more
than one parameter, even in the small-k limit, contrary to the commonly used α/β (where α is the Rashba and β

the Dresselhaus interaction) single-parameter picture.
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With the goal of further pushing the limits of data storage
and processing devices, research in semiconductor spintronics
has been largely based on the Datta-Das spin transistor.1,2 The
functioning of such an ideal device is based on gate control
of the spin precession of the conducting electrons through the
Rashba [or structure inversion asymmetry (SIA)] spin-orbit
(SO) coupling in semiconductor heterojunctions. However,
despite recent and promising progress,3,4 we are still far from a
real device. In particular, the SO interaction in an active III-V
heterojunction is still not well known, especially regarding
its in-plane anisotropy, which is mainly due to corrections
from the intrinsic or bulk inversion asymmetry (BIA) SO
contribution (the Dresselhaus contribution). In this Rapid
Communication, an accurate and particularly transparent
solution for the spin-orbit splitting in the conducting electron
states in III-V semiconductor heterojunctions is presented. It
includes both Rashba and Dresselhaus contributions and is
shown to be in reasonable agreement with experiment.

This anisotropy is special because it can also be tuned
with the gate voltage so as to make, for example, the SO
splitting at the Fermi energy negligible for electrons moving
along given in-plane directions, suppressing the relaxation of
their spins and forming the so-called persistent spin helix
modes, as recently observed.5,6 Such anisotropy can be seen
to be due to the interplay (or interference) between the two
contributions mentioned above. For instance, it is known that in
III-V heterojunctions grown along the [001] crystallographic
direction, the splitting is maximum for electrons traveling
along the direction [110] (constructive interference) and
minimum along [11̄0] (destructive interference).7–10 However,
this picture with a simple twofold rotational symmetry (with
respect to the direction of �k‖) is exact only in the linear-k‖
and infinite-barrier approximation.7 In this approximation, the
in-plane SO anisotropy is determined by a single parame-
ter, the so-called α/β ratio (i.e., the ratio of the Rashba
to the Dresselhaus interaction), and the above mentioned
zero-splitting situation occurs along [11̄0] when α/β = 1,
corresponding to Rashba and Dresselhaus SO terms with the
same strength.7 However, as shown here, barrier penetration
effects as well as higher-order terms in k‖ cannot be neglected

in the determination of the SO in-plane symmetry of actual
III-V semiconductor heterojunctions. Including these effects,
the total SO splitting in III-V heterojunctions is calculated here
in a particularly transparent and accurate way. Specific results
for AlGaAs/GaAs and InAlAs/InGaAs structures are shown to
be in much better agreement with the experimental data than
the simplified and commonly used α/β parametrization.

We start from a recently proposed spin-resolved variational
solution for the Rashba-split electronic subbands.11,12 Within
the standard envelope function approximation based on the
Kane �k · �p model for the bulk, the envelope function of such
split subbands satisfies

HR|�↑↓〉 = εR
↑↓(k‖)|�↑↓〉, (1)

where the effective Hamiltonian HR includes penetration and
renormalized parameters in the barrier, as well as band non-
parabolicity in the well;11,12 and |�↑↓〉 = ei�k‖·�r‖ |f↑↓(z)〉χ↑↓(ϑ)
are the variational envelope functions for the electrons with
spins up and down along the direction perpendicular to
�k‖ = (k‖,ϑ). The spin part

χ↑(ϑ) =
(

cos(ϑ/2)

−i sin(ϑ/2)

)
, χ↓(ϑ) =

(−i sin(ϑ/2)

cos(ϑ/2)

)
(2)

depends only on the �k‖ direction ϑ (the angle it makes with
the x axis; note that for simplicity the spin is quantized along
the y direction), while the scalar part |f↑↓(z)〉 depends only on
its modulus k‖. With the interface at z = 0, the trial functions
for such an envelope function read

〈z|f↑↓〉 =
{

A↑↓ekbz/2, z � 0,

B↑↓(z + c↑↓)e−bz/2, z � 0,
(3)

where the variational parameter b (determined by minimizing
the total energy) and the parameters A, B, and c (determined
by the boundary and normalization conditions) do not depend
on ϑ . The details of such a variational solution are given in
Ref. 12. The resulting spin splitting

�R(k‖) = |εR
↑ (k‖) − εR

↓ (k‖)| (4)
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does not depend on the direction of �k‖ and represents the
usual Rashba splitting, which in the linear approximation is
commonly written as �R = 2αk‖.13

The effects of the Dresselhaus bulk contribution14 are
due to remote bands not included in the Kane model.15

They can be studied by treating within quasidegenerate first-
order perturbation theory the additional contribution HD to
the conduction band effective Hamiltonian,8 which is given
by

HD = γ
[
σxkx

(
k2
y − k2

z

) + σyky

(
k2
z − k2

x

) + σzkz

(
k2
x − k2

y

)]
,

(5)

where x, y, and z correspond to the cubic crystallographic
directions and �σ to the Pauli matrix vector. The total
Hamiltanian H = HR + HD is then written in the basis set
formed with the above unperturbed eigenstates, i.e.,

H =
(

H↑↑ H↑↓
H↓↑ H↓↓

)
,

where H↑↑ = 〈�↑|H |�↑〉, H↓↓ = 〈�↓|H |�↓〉, and so on,
given by

H↑↑ = εR
↑ (k‖) + 〈γ (z)k2

z 〉↑↑ sin(2ϑ)k‖ − 1
2 〈γ (z)〉↑↑ sin(2ϑ)k3

‖,
(6)

H↓↓ = εR
↓ (k‖) − 〈γ (z)k2

z 〉↓↓ sin(2ϑ)k‖ + 1
2 〈γ (z)〉↓↓ sin(2ϑ)k3

‖,
(7)

and

H↑↓ = i〈γ (z)k2
z 〉↑↓ cos(2ϑ)k‖ = H ∗

↓↑; (8)

with 〈γ (z)〉↑↑ = 〈f↑|γ (z)|f↑〉, 〈γ (z)k2
z 〉↑↑ = 〈f↑|(−id/dz)

γ (z)(−id/dz)|f↑〉, and so on (note that the bulk γ parameter
varies along the growth direction z and it is then necessary to
symmetrize these integrals).8 Then, after straightforward di-
agonalization, we obtain the following perturbed eigenvalues:

ε±(k‖,ϑ) = ε̄(k‖,ϑ) ± 1
2�s(k‖,ϑ) (9)

where the spin-independent part reads

ε̄(k‖,ϑ) = 1
2

{
εR
↑ (k‖) + εR

↓ (k‖) + [〈
γ (z)k2

z

〉
↓↓ − 〈

γ (z)k2
z

〉
↑↑ + 1

2 [〈γ (z)〉↑↑ − 〈γ (z)〉↓↓]k2
‖
]
k‖ sin 2ϑ

}
(10)

and the SO splitting is given by

�s(k‖,ϑ) =
√{

�R(k‖) − [〈
γ (z)k2

z

〉
↑↑ + 〈

γ (z)k2
z

〉
↓↓ − 1

2 [〈γ (z)〉↑↑ + 〈γ (z)〉↓↓]k2
‖
]
k‖ sin 2ϑ

}2 + 4
〈
γ (z)k2

z

〉2
↑↓k2

‖ cos2 2ϑ. (11)

In the infinite-barrier limit, this expression for the SO splitting
exactly reproduces Eq. (19) in Ref. 16, extending it to
the general finite-barrier case. Barrier penetration leads to
corrections in the unperturbed Rashba-split subbands12 and, in
combination with the Dresselhaus contribution, is responsible
for the anisotropy in ε̄ and for the corrections in the total spin-
splitting anisotropy, given by the allowed different expectation
values (or matrix elements) designated as 〈 〉ss ′ . Note that the
± sign above stands for spin up or down along the polarization
direction of the perturbed eigenstates, which are given by

|�±〉 = |H↑↓|√|H↑↓|2 + (ε± − H↑↑)2

×
(

1

H ∗
↑↓

(
ε± − H↑↑

)
/|H↑↓|2

)
. (12)

Note also that ε± = ε±(k‖,ϑ), so that such spin polarization
depends now on both the absolute value and the direction of
�k‖. In particular, for a fixed wave-vector direction, the spin
polarization direction now changes with increasing k‖.

From the above equations, one clearly sees that in general
the heterojunction in-plane SO anisotropy cannot be described
by a single parameter. It is easy to see that only in the infinite-
barrier and small-k‖ limit does the splitting obtained above
reduce exactly to the commonly used expression �s(k‖,ϑ) =
2k‖

√
α2 + β2 − 2αβ sin 2ϑ where β = γ 〈k2

z 〉, 〈k2
z 〉 being the

average momentum squared along the growth direction and γ

the k3 bulk parameter for the well material [note that in this
limit 〈γ (z)k2

z 〉↑↑ = 〈γ (z)k2
z 〉↑↓ = 〈γ (z)k2

z 〉↓↓ = β].
In the much studied two-dimensional electron gas (2DEG)

formed in AlGaAs/GaAs heterojunctions, such SO anisotropy
is particularly evident. In Fig. 1, using a color scale, the
obtained SO splitting for electrons in these structures (at the
Fermi energy) is plotted as a function of the 2DEG electron
density ns and of the �kF direction (low-temperature bulk
parameters are used17,18). It is interesting to note that the �k
direction with maximum splitting varies with ns . We note

FIG. 1. (Color online) Total spin-orbit splitting (in color scale) at
the Fermi level as a function of the 2DEG carrier concentration and
Fermi wave-vector direction in an Al0.3Ga0.7As/GaAs heterojunction.
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also that even for small ns (small k‖) the SO splitting in
these structures does not present the above mentioned twofold
symmetry determined only by α/β. This is due to the barrier
penetration and can be understood by recalling that, when one
reduces the barrier height at the interface and at the same time
decreases ns , the confinement and SIA are decreased so that
HD (with fourfold symmetry) eventually dominates. Indeed,
in the bulklike zero-barrier-height and very-small-ns limit, one
has only the Dresselhaus SO term. For the same reason, even in
narrow-gap-based heterojunctions HD should not be neglected
(as is usually done) when barrier penetration is considerable
(in this respect, see also the discussion below about αSdH ).

Experimentally such anisotropy in GaAs heterojunctions
has been most directly probed with the spin photocurrent9

(SPC) and ballistic electron spin resonance10 (BSR) tech-
niques. Giglberger et al.9 interpreted their SPC data on the
SO anisotropy with the α/β ratio and obtained values for this
ratio equal to 7.6, 2.8, and 1.5 for the samples with ns equal
to 1.1 × 1011, 1.3 × 1011, and 1.8 × 1011 cm−2, respectively.
Instead, with BSR Frolov et al.,10, also in an ns = 1.1 ×
1011 cm−2 AlGaAs/GaAs heterojunction, measured |α − β| =
(2 ± 0.5) × 10−13 eV m and |α + β| = (0.6 ± 0.2) × 10−13

eV m, which correspond to α/β in the 1.4–3.2 range. There
are thus still large experimental uncertainties with respect to
the SO anisotropy. Nevertheless, we can compare our results
with these measurements by taking our total splitting �s for
�kF along the two explored directions ([110] and [11̄0]) and
writing them as

�[110]
s = |α + β|k[110]

F and �[11̄0]
s = |α − β|k[11̄0]

F . (13)

From these relations we obtain effective α/β ratios equal to
1.3, 1.2, and 1.1 for the same electron concentrations, i.e.,
for ns = 1.1 × 1011, 1.3 × 1011, and 1.8 × 1011 cm−2 respec-
tively; which reproduce well the observed ns dependence
and are quantitatively much closer to the experimental data
than other independent calculations of α and β separately, in
agreement with our conclusions with respect to the limitations
of such α/β parametrization.

The SO splitting in 2DEGs is also often studied using
analysis of the beating pattern in Shubnikov–de Haas (SdH)
oscillations, from which the electron density in the split
subbands can be measured. The densities n+ and n− (with
n+ + n− = ns), in accord with the low-temperature occupa-
tion of each SO-split subband, can be easily calculated as

n± = 1

4π2

∫ 2π

0

∫ ∞

0
�[εF − ε±(k‖,ϑ)]k‖dk‖dϑ. (14)

As is usually done in SdH data analysis, the difference δn =
|n+ − n−| can then be used to obtain an effective Rashba

coupling parameter αSdH given by

αSdH = δn
h̄2

m∗

√
π

2(ns − δn)
. (15)

It is clear though that for the present III-V heterojunctions
with SO anisotropy, this expression can give a measure of
only the averaged splitting around the Fermi line, which will
be an estimation of the usual Rashba coupling parameter α

only in structures with negligible Dresselhaus contribution,
as for example in insulator/InAs and insulator/InSb hetero-
junctions. With an InGaAs-based heterojunction (ns = 1.4 ×
1012 cm−2), Yang et al.19 observed a very clear beating pattern
in the SdH oscillations corresponding to αSdH = 0.63 ×
10−11 eV m. Using the dispersion relations in Eq. (9) we find,
in reasonable agreement, αSdH = 0.55 × 10−11 eV m. If we
neglect HD , instead of 0.55 we get 0.72, with a slightly larger
deviation from the experimental value.

Another example is the InGaSb/InAlSb 2DEG spin-
splitting data of Akabori et al.,20 with a dominant Dresselhaus
contribution in spite of its narrow gap, which can be understood
with the barrier penetration effect discussed here. Finally,
in agreement with our results there are also the recent data
of Kohda et al.6 on the 2DEG persistent spin helix modes
in InAlAs/InGaAs quantum wells (QWs) (with considerable
barrier penetration) that do not fit with the α/β = 1 condition.
However, it is clear that further measurements are still neces-
sary in order to determine the SO anisotropy in III-V QWs. In
particular, the observation and analysis of anomalous beating
patterns in the magneto-oscillations have been very useful in
similar studies in the bulk,21 and could be helpful in 2D systems
as well, where they seem to have not been much explored yet.

In summary, we have seen that the present variational
theory for the Rashba effect in semiconductor heterojunctions,
with the Dresselhaus corrections included perturbatively, is
able to give a good description of the spin-orbit anisotropy
in III-V 2DEGs. The interpretation of the corresponding
measurements has also been discussed, and the standard α/β

parametrization criticized. Effects of the barrier penetration
in the 2DEG SO splitting and anisotropy have been identified.
The anisotropy was shown to be determined in general by more
than one parameter, even in the small-k limit (as opposed to
the commonly used single α/β parameter). Reasonably good
agreement with the available data indicates that the model
calculation presented can be useful in the development of
semiconductor spintronics.
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