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a b s t r a c t

In this paper we analyse price fluctuations with the aim of measuring how long themarket
takes to adjust prices to weak-form efficiency, i.e., how long it takes for prices to adjust to a
fractional Brownian motion with a Hurst exponent of 0.5. The Hurst exponent is estimated
for different time horizons using detrended fluctuation analysis – a method suitable for
non-stationary series with trends – in order to identify at which time scale the Hurst
exponent is consistent with the efficient market hypothesis. Using high-frequency share
price, exchange rate and stock data, we show how price dynamics exhibited important
deviations from efficiency for time periods of up to 15 min; thereafter, price dynamics
was consistent with a geometric Brownian motion. The intraday behaviour of the series
also indicated that price dynamics at trade opening and close was hardly consistent with
efficiency, which would enable investors to exploit price deviations from fundamental
values. This result is consistent with intraday volume, volatility and transaction time
duration patterns.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Themarket efficiency hypothesis [1,2] states that asset prices adjust to fully reflect all available information and so show
martingale behaviour. Although the formulation of this hypothesis refers to a rapid and unbiased price adjustment process,
in practice, prices tend not to adjust to new information instantly but after a certain amount of time. During this time
investors take actions to exploit temporary profit opportunities arising from new information, ultimately pushing prices
towards efficiency. The time the market takes to adjust prices to market efficiency is an important dimension of the market
efficiency hypothesis [3], with notable practical implications for trading and risk management.

The adjustment of asset prices to information has been widely studied at the theoretical and empirical level. Theoretical
models have been developed by Grossman [4], Grossman and Stiglitz [5] and Cornell and Roll [6], in which the incorporation
of stock price information depends on the cost of information production. For a rational expectation framework, Brown
and Jennings [7] and Grundy and McNichols [8] show how prices adjust in a sequence of trades to fully reveal all relevant
information. For a model populated by Bayesian traders, Chakrabarti and Roll [9] found, in a simulation study, that the
market usually converged more rapidly to an equilibrium price when arbitrageurs reacted to one another. Behavioural
finance models have been developed by Barberis et al. [10], Daniel et al. [11] and Hong and Lee [12] to provide explanations
for empirically documented under- and over-reactions of stock prices to news.
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Empirically, several studies have examined market efficiency in terms of the speed with which prices react to new
information arising from any specific event e.g., [13] or in a more general setting with no specific event identified e.g.,
[14]. Early tests of weak-formmarket efficiency employed the linear autocorrelation test and the Lo andMackinlay variance
ratio test [15] for daily, weekly and monthly stock returns. However, those tests assume linearity e.g., [16,17,12], so they
only check for serial uncorrelatedness rather than for the martingale property of asset returns.

There is no reason to suppose that stock prices are intrinsically linear. Humanerror in reasoning or informationprocessing
(e.g., information bias or overconfidence)may explain information imperfections in financialmarkets [18] thatmay give rise
to price nonlinearity. Nonlinearity may also arise from price fads, rational speculative bubbles [17] or the assumption that
prices are the result of complex interactions between informed and uninformed traders in the market place. Nonlinearity
in stock returns is crucial for forecasting see, e.g., [19,20] and for determining the speed of convergence to market efficiency
since zero autocorrelation does not imply the martingale property of asset returns. Statistical tests developed by Hurst
[21], Brock et al. [22] and Peng et al. [23] are considered superior to the linear autocorrelation tests as they are able to
detect the presence of short- and long-term dependence. Based on those tests, we propose a different approach to the
problem of measuring the adjustment time of security prices towards weak-formmarket efficiency. This approach is based
on employingdetrended fluctuation analysis (DFA) [23] for different intraday time scales in order to identify the timehorizon
necessary for prices to adjust to a fractional Brownian motion (fBm) with a Hurst exponent of 0.5. The chief advantages of
the DFA methodology compared with traditional methods (e.g., Hurst analysis, rescaled range statistic, root mean square,
time-varying long-range dependence) are that (a) it allows self-similarity to be detected in nonstationary time series and
so allows, in turn, log price to be analysed, and (b) it avoids the spurious detection of apparent long-range correlation by
excluding the intrinsic trend of the financial time series.

DFA has been used for dynamic analysis, among others, of heart rate variability [24], human electroencephalographic
fluctuations [25] and economic and financial series [26–32]. In particular, DFA has been recently employed to study market
efficiency [33–37], even though all the existing empirical studies using DFA have analysed the efficiency at specific time
scales without analysing the time the market takes to achieve weak-form efficiency. This is the focus of our study.

The remainder of the article is organized as follows. Section 2 provides a brief theoretical review and describes the DFA
methodology for estimating the Hurst parameter to quantify the speed of adjustment of prices to a randomwalk; Section 3
describes our data; Section 4 reports our empirical results; and, finally, Section 5 concludes the article.

2. Methodology

The time dependence structure of a stochastic process can be captured by the autocorrelation function. Long memory,
characterized by autocorrelations at very high lags, creates persistence (anti-persistence) in the series over long time
horizons. In such cases, autocorrelation declines at a hyperbolic rate that is slower than the exponential rate in standard
autoregressive moving average (ARMA) processes. Mills [38] suggested that many empirically observed time series, even
though theymay appear to satisfy the assumptionof stationaritywith orwithout differentiation, seem to exhibit dependence
between distant observations that, even if small, is by no means negligible. The many approaches to estimating the long
memory parameter (fractional differencing) include, in financial time series, the autoregressive fractionally integrated
moving average model, ARFIMA (p, d, q), which has the desired ability to match the slow decay of the autocorrelation
functions. The difference between the ARFIMA (p, d, q) model and the autoregressive integrated moving average model,
ARIMA (p, d, q), is that the former does not restrict the parameter d to being an integer value but allows it to take a fractional
value. For noninteger values of d, the autocorrelation declines hyperbolically. When 0 < d < 0.5 the ARFIMA process is said
to exhibit long memory with positive dependence. For d = 1 the ARFIMA process is therefore identical to an ARIMA in that
the autocorrelations decay exponentially. For d = 0, the ARFIMA process is reduced to an ARMA process and exhibits only
short memory and for −0.5 < d < 0 the ARFIMA process exhibits long memory with negative dependence.

2.1. Hurst exponent

To quantify financial fluctuations it is necessary to calculate and graph the autocorrelation function for price changes
in a log–log plot. Obtained is a power law equation where the slope is the scaling exponent H , invariant under appropriate
changes. Different techniques based on fractal analysis suggest that market data exhibit temporal correlations and fat-tailed
probability distributions. Temporal correlation means that volatile fluctuations tend to occur with a particular trend, while
fat-tailed probability distribution means that a more extreme event might be more frequent than a normally distributed
event. The fractal concept, which is linked to time scale invariance, is used to identify the order in characteristic nonlinear
problems.

DFA is a method developed by Peng et al. [23], Moreira et al. [39], Peng et al. [40] and used to determine the quantitative
Hurst exponent H , which represents the correlation properties of a signal. Based on analysing fluctuations in a time series
for different time scales, DFA focuses on removing the trend of a signal, which should not be related to the correlation
properties of the signal. A trend may be produced by joint price movements in other markets. Under these circumstances it
is very important to be aware if the trend can be filtered, as an intrinsic trend may be related to the local signal fluctuation
properties. In general, DFA-q is the variable used to eliminate the first-order trend q = 1; in other words, the function
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is adjusted by a first-order polynomial equation. Therefore, in order to determine the DFA-q order it is crucial to consider
external factors that could constitute the cause of a trend. The DFA method thus enables a quantitative parameter H to
be identified that represents the correlation properties of a signal. We propose using this method to quantify the period
of time during which a market behaves like an fBm, measured through the timing behaviour of the parameter H . Many
other methods based on DFA have been developed recently, e.g., the detrended cross-correlation analysis (DCCA), which is
a generalization of detrended fluctuation analysis and is based on detrended covariance [41,42].

The DFA algorithm has six basic steps.

1. If we start with a series of equidistant time increments {x(t)}, t = 1, . . . ,N , we can obtain the path (or the profile)

y(t) =

t
j=1

x(j). (1)

2. The entire interval [1,N] can be divided into a series of Mν boxes of length ν, not necessarily self-excluding. Each box
receives a label (m, ν), m = 1, . . . ,Mν . In our calculations, we considered a certain level of overlap between the boxes
for the purpose of increasing the number of boxes where the method is applied and, hence, to improve the statistics. To
evaluate the magnitude of fluctuations in the box (m, ν) and, concomitantly, eliminate the trend of order q, we consider
the difference

ys(t) = y(t) − pq(t; (m, ν)), (2)

3. where pq(t; (m, ν)) represents the polynomial of order q that minimizes the sum of ys(t)2 when t spans all points of the
considered box. To be more precise, we consider the residue

f (m, ν) =
1
ν

Imax(m,ν)
j=Imin(m,ν)

y2s (j), (3)

4. where Imin(m, ν) and Imax(m, ν) are the lower and upper limits of the (m, ν) box. When q = 0, f (m, ν) corresponds to
the roughness functionW (m, ν) of the (m, ν) box. Subsequently, we consider the average

F(ν) =

 1
Mν

Mν
m=1

f (m, ν)
1/2

, (4)

5. which expresses the average detrended roughness at length scale ν of the entire profile. If the original series presents
long-range correlations, it is expected that the values of F(ν) follow a power law

F(ν) ∼ νH , (5)

6. where the roughness exponent H = 1 − γ /2 is related to the exponent describing the decay of the correlation function
C(j) = E[y(t)y(t + j)] ∼ j−γ [38].

In practice, this means the exponent can be calculated with a linear adjustment to the logarithmic scale of ν in function
of F(ν). The fluctuation exponent can be classified according to a dynamic band of values:

• H < 0.5: anti-correlated, anti-persistent signal.
• H = 0.5: non-correlated signal, white noise, no memory.
• H > 0.5: long-range correlated signal.

The temporal correlation properties of a series are given by the correlation persistence, which can be characterized by the
Hurst exponent. An exponent H > 0.5 for a series indicates persistent behaviour: positive (negative) increments are more
likely to be followed by positive (negative) increments in the future. If market fluctuations are persistent, price changes
would be much more frequent in the long run, which is very attractive to speculators interested in earning extra returns.
An exponent H < 0.5 for a series indicates anti-persistent behaviour: positive (negative) increments are more likely to be
followed by negative (positive) increments in the future. If market fluctuations are anti-persistent, they would be smaller
than the persistent fluctuations since anti-persistent fluctuations have smaller variance. Brownian fluctuations are a balance
between persistent and anti-persistent behaviours because price changes are independent of each other. In fact, if H = 0.5
the time series is uncorrelated and its movements cannot be predicted, which is consistent with the market efficiency
hypothesis. Therefore, a Hurst exponent can identify the characteristics of a system’s self-regulatory mechanism. This is
useful in quantifying the adjustment speed of prices to a random walk; its value at different time frequencies is considered
in order to determine the time horizon in which the Hurst exponent becomes permanently equal to 0.5.

3. Data

We studied intraday tick-by-tick data for different stocks: two market indexes (the DJIA for the USA and IBEX-35 for
Spain); the EUR–USDexchange rate; andTelefónica España stock (TEF). The data for 74 trading days covering 1 February 2011



1634 J.C. Reboredo et al. / Physica A 392 (2013) 1631–1637

9.34

9.36

9.38

9.40

9.42

9.44

9.46

9.48

9.22

9.24

9.26

9.28

9.30

9.32

2.82

2.84

2.86

2.88

2.90

2.92

2.94

0.28

0.30

0.32

0.34

0.36

0.38

0.40

Lo
g-

pr
ic

es
Lo

g-
pr

ic
es

DJIA IBEX

Time (seconds)

TEF

may 2011april 2011march 2011feb 2011

----- EUR-USD

may 2011feb 2011 march 2011 april 2011

may 2011april 2011march 2011feb 2011may 2011feb 2011 march 2011 april 2011

Fig. 1. Log prices for DJIA, IBEX-35, Telefónica España stock (TEF) and EUR–USD exchange rate indexes.

to 13 May 2011 were obtained from Bloomberg through Infomercados. The graphical representation of log price dynamics
for all series is illustrated in Fig. 1 for time intervals of 1 min (the representative price was taken as the price closest to the
end of the time interval, taking temporal intervals for each trading day from opening to closing times). As usual, intraday
continuous stock returns for the different indexeswere computed as the first difference for the logarithmic stock price index
and filtered through an autoregressive process of order 1; Fig. 2.

Intraday data were subjected to two types of treatment depending on the type of response obtained from the DFA
methodology. The first possibility provided by the DFA analysis was to observe the overall behaviour of a time series (overall
time scale analysis). In this response format, the intraday time series was sampled at different time intervals. Specifically,
we obtained 30 series of periods of 1 to 30 min for each of the 4 series analysed. For each of these series, we calculated
the Hurst exponent for time scales between 5 and 120 min. We could thus determine the specific time scale (minute) from
which prices adjusted to fBm with a Hurst exponent of 0.5.

The second possibilitywas to observe the behaviour of theHurst exponent in a series for a pre-determined temporal level.
This was done by time-varying Hurst through different days for the same time points (e.g., at 9:45:30 or 13:20:30, etc.) in
order to locally obtain the Hurst exponent for each time (intraday second analysis). Taking intraday time series every 30 s
after opening, we calculated the Hurst exponent for all moments of the trading day. Observing the average behaviour of the
Hurst exponent for 74 trading days provided insights into the times of the day when prices tended to converge to an fBm.

4. Results

The Hurst exponent was calculated for the temporal intraday series for 1 to 30 min according to the methodology
described in Section 2. The overall time scale analysis results are depicted in Fig. 3, whereas Fig. 4 displays results for the
temporal intraday series for 30 s in a moving window of 400 observations (intraday second analysis).

The results for the overall time scale analysis depicted in Fig. 3 indicate that, for large time scales, all series show
Brownian motion with an average roughness exponent of H = 0.5; this is evidence of uncorrelated behaviour, suggesting
that price differences cannot be predicted. However, for small time scales, the results show two different tendencies:
(a) price difference dynamics was persistent for the two share indexes and Telefónica stock; and (b) dynamics for the
EUR–USD exchange rate was anti-persistent, suggesting a mean-reverting behaviour for small time scales. The time scale
was different for each of the markets considered. In particular, persistent behaviour for the DJIA, IBEX-35 and Telefónica
stock lasted for periods of less than 14 min, 17 min and 16 min, respectively, whereas the anti-persistence period for the



J.C. Reboredo et al. / Physica A 392 (2013) 1631–1637 1635

-0.01

0.00

0.01

-0.02

-0.01

0.00

0.01

0.02

-0.02

-0.04

-0.03

-0.01

0.00

0.01

0.02

0.002

-0.002

-0.004

-0.006

-0.008

-0.010

0.000

0.004

0.006

0.008

0.010

re
tu

rn
s

 DJIA

feb 2011 march 2011 april 2011 may 2011 

feb 2011 march 2011 april 2011 may 2011 feb 2011 march 2011 april 2011 may 2011 

 IBEX
re

tu
rn

s

Time (seconds)

 TEF EUR-USD

feb 2011 march 2011 april 2011 may 2011 

Fig. 2. Returns for DJIA, IBEX-35, Telefónica España stock (TEF) and EUR–USD exchange rate indexes.

Fig. 3. Time series intraday scale convergence: upper left panel, DJIA index; upper right panel, IBEX-35 index; lower left panel, Telefónica España stock
index (TEF); lower right panel, EUR–USD exchange rate index. The error bar is obtained from the standard error adjustment (ordinary least squares) for
the Hurst exponent.
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area indicate, respectively, the Hurst exponent value and the Hurst exponent standard deviation during the 74 days. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

EUR–USD exchange rate lasted amere 7min. These results suggest different speeds of convergence in different markets and
would corroborate the evidence that exchange rate markets converge to an fBm much more quickly than stock markets.
This reaffirms the general perception that the exchange market is much more efficient than stock markets. Our results are
also consistent with the evidence reported in the literature by Hillmer and Yu [43], Chordia et al. [3,44] and Visaltanachoti
and Yang [45], suggesting that prices adjust quickly in the efficient market.

Fig. 4 depicts the behaviour of the mean Hurst exponent throughout the trading day by averaging the Hurst exponent
calculated for each intraday time for the 74 trading days. Two different types of scaling behaviour can be observed.
For the stock and the indexes, price differences were weakly persistent at the opening and closing trading times, with
uncorrelated or unpredictable behaviour for the remainder of the day. This evidence is consistent with intraday volume,
volatility and transaction time duration patterns [46]. On the other hand, anti-persistent behaviour can be observed for the
EUR–USD series at the beginning and end of the trading day, indicating mean reversion at those times. At midday and in the
afternoon, however, the series fluctuated around H = 0.5 (random walk). Comparing Figs. 3 and 4, it can be observed that
Hurst exponent behaviour for small time scales in the DJIA, IBEX-35 and Telefónica stock series was produced by changes
throughout the day. In Fig. 4 theHurst exponent shows small changes throughout the day; in the EUR–USD series the changes
in behaviour are much greater and interfere in the small scale fluctuations shown in Fig. 3.

5. Final remarks

We analysed the speed of convergence to market efficiency by using DFA to examine the scaling properties of intraday
prices. We focused on estimating the Hurst exponent for different intraday time scales in order to determine the time scales
during which price differences converged to an fBm.

The EUR–USD exchange rate, DJIA, IBEX-35 and Telefónica stock results indicate that there was rapid adjustment to fBm
and, throughout the trading day and on small time scales, there was a tendency to assume randomwalk behaviour, meaning
that traders could earnmore only in thosemoments. The results also show that the exchangemarket is muchmore efficient
than the stockmarket, since the former convergesmore quickly to a randomwalk. For small time scales the exchangemarket
has anti-persistent behaviour, which means behaviour reverts to the mean; stocks, however, start to converge to an fBm
with persistent behaviour, which means that future events would have the same behaviour as that previously observed.
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The intraday second analysis results show that, on average, behaviour over the trading day tends to converge to an fBm at
the beginning and end of the day and does not tend to converge to a random walk as happens in the overall analysis. In
conclusion, therefore, persistent behaviour is evident in the stock market, whereas anti-persistent behaviour features the
exchange market.
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