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INTRODUCTION

The problem of the assimilation of observational
data in the hydrodynamical ocean circulation model
belongs to the most urgent problems of present�day
oceanology. The difficulty is in the optimal combining
of the computational characteristics of a hydrodynam�
ical model with the observational information. The
problem of the assimilation emerged in meteorology
in the early 1960s, and, presently, assimilation meth�
ods are an important component of numerical weather
forecasting. Present�day oceanology needs further
improvement of the methods and computational
schemes for observational data assimilation in the
context of the explosion of observational techniques
and mathematical tools. 

The main goal of any assimilation method is the
optimal accounting for observational information in
the equations of a model and in using it as a basis for
correcting the model’s calculations. The assimilation
procedures are distinguished precisely by the specific�
ity of the implementation of these ideas. From the
viewpoint of physics, the problem concerns such a
change in the model field and in the adjustment of the
latter to observations resulting in the validity of the
principle of least action. Having this in mind, one can
subdivide all of the methods of data assimilation into
two large groups. The first group of dynamical�sto�
chastic assimilation techniques involves the estima�
tion (optimal linear filter) of an unknown signal from
the observations in the background of “noise” having

specified stochastic characteristics. In this case, the
principle of least action is valid at the minimum dis�
persion of the sought�for estimate (or filter). The sec�
ond group of methods implies the searching for the
optimal field as the minimum of a specified functional
that comprises both the model calculations and the
difference between the model field and the observa�
tions. The first group of methods involves, for
instance, the Kalman–filter [12, 13], while the second
one comprises the modern 3D�Var and 4D�Var
schemes developed as a consequence of the theory of
inverse problems [1, 6, 7].

In the present study, we compare the assimilation
procedures from the first group. Figure 1 illustrates the
geometry of the assimilation scheme based on the
dynamical�stochastic ideology. Let us assume that the
measurement is performed at the instant t1 at the point
of the coordinate plane A2 and that the model’s value
at this point equals A, while the measured value is A1.
It is required to correct the model’s value at point B2 at
the instant t2 where the model’s before�correction
value is B but there are no measurements. To do this
requires knowledge of the association of the points A
and B, which depends on a multitude of factors. This
dependence may be expressed by the model’s equa�
tions, but, as a rule, the respective formulas are essen�
tially unusable in the calculations. In the linear
approximation, this association is determined as a
covariance function between the points A2 and B2 or
between the values A and B. 
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Different procedures are being proposed for calcu�
lations of the covariance function. The simplest prac�
tically feasible approach used in meteorology in the
1960s is the optimal interpolation method, according
to which the covariance was given as a known function
of two points in the coordinate plain [5]. The chain
lines in Fig. 1 show the relation between A2 and B2. In
the Kalman�filter theory, the relation is given not
between points A2 and B2 in the coordinate plain but in
the hyperplane of the A and B values. To this end, a
variety of calculations are performed using different
initial conditions (an ensemble). Next, the respective
values of A and B are found for each calculation, and
the covariance between these values is computed from
a standard expression for the sampled data covariance;
i.e., one applies the Monte�Carlo method well known
in statistics [10]. The bold line in Fig. 1 shows the rela�
tion between A and B. The procedure based on the the�
ory of random diffusion processes and the Fokker–
Plank equation implies the searching for the relation
between the points A and B using the method of the
generalized Kalman filter. However, in contrast to the
preceding scheme, this dependence is expressed
through the coefficients with the help of which one
describes the “relief” of the model surface shown in
Fig. 1. The determination of these coefficients and the
necessary mathematical tools are described at length
in a number of works [2, 3, 4, 8].

When analyzing the proposed assimilation proce�
dure, one has to have in mind the advantages and dis�
advantages: a priori specifying the covariance function
in the scheme of the objective analysis does not actu�
ally reflect the intricate physics of the interaction of
the parameters in question. Therefore, the correction
of a model calculation can result in strongly mutilated
or simply wrong fields of oceanographic characteris�

tics. At that, this scheme is easy to implement and its
results are easy to interpret.

When using generalized Kalman filtering, the
dependence between the physical quantities at points
A and B is evaluated as reliably as the model itself
reproduces these relations. However, the implementa�
tion of such an approach is difficult because it requires
sophisticated calculations and higher computer power
(memory, time for the computations, etc). Besides,
the computational accuracy grows proportionally to

( )–1, where P is the number of necessary opera�
tions. This means that a 10�fold increase in accuracy is
achievable at the expense of a 100�fold increase in the
number of calculations, which weights the calculation
process.

The scheme based on the Fokker–Planck equa�
tions is easier to implement as compared to the gener�
alized Kalman filter, although it uses the same type of
relation between points A and B determined by the
surface geometry. It is necessary, however, that the
time gaps between the subsequent assimilations were
short against the total integration time of the model. In
addition, the hyperplane given by the model has to be
fairly smooth involving no deep depressions and eleva�
tions. In practice, this means that the scheme is inap�
plicable to a model that describes an environment with
sharply changing characteristics such as shock waves,
strong separated jets, and the like.

In the present work, we use a modern version of the
HYCOM hydrodynamical model (version 2.2 of the
Hybrid Coordinate Ocean Model) [10]. The original
description of this model is available in [9]. This is an
isopycnal model in which the whole thickness of the
ocean is subdivided into layers of constant density. The
dynamics of the basic hydrophysical characteristics
occur inside these layers (Fig. 2). At that, layers of
fixed thickness are considered instead of constant den�
sity layers at the ocean’s surface and in marginal shal�
low areas (that is why the model is referred to as a
hybrid one). The complete equations of the ocean’s
dynamics describe the motion of these layers and their

P

*T, S A1

B1

A

B

A2

B2

x

y

*

Fig. 1. Geometry of the general scheme of the data assim�
ilation. See the text for details. 
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Fig. 2. Example of dividing the model’s calculation
domain into equal vertical layers of density ρ (ρ1 = 24.0;
ρ2 = 24.5; ρ3 = 25.0; …).
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configuration relative their position inclusive. The
number of layers is to be set in advance and does not
change in the process of the calculations. A detailed
description of the model’s version used can be found
on the Internet at http://hycom.org/attachments/
063_hycom_users_guide.pdf.

By now, there are a number of studies dedicated to
the assimilation of observational data into the
HYCOM model. Let us notice studies [10, 11, 14].
The expendable bathimetric thermograph data (XBT)
were assimilated in [14] in accordance with the opti�
mal interpolation scheme. It was expressly noticed in
the above work that it is necessary to know both the
temperature and salinity for the correct reproduction
of the calculated field. Relatively recent studies
[10, 11] have demonstrated considerable progress in
this direction. Advantage was taken of the Kalman fil�
ter scheme when assimilating the altimetry, the XBT
data, and the others.

The present work is dedicated to the assimilation of
the ARGO drifters' data in the HYCOM model (ver�
sion 2.2) and based on the above methods of assimila�
tion. The ARGO drifters' data (involving profiles of
the temperature, salinity, and pressure) were taken
from the data base (www.argo.ucsd.edu) for 2008–
2010. Prior to the assimilation in the model, the data
were checked for their quality and rejected in the case
of profiles with wrong coordinates, the wrong rated
time of the data transmission, and with the fraction of
unreliable data exceeding the tolerable level (60% in
our research). The data of the observations that passed
the quality check were assimilated in the model
according to the computational schemes described in
what follows.

DESCRIPTION OF THE MODEL 
AND THE DATA ASSIMILATION 

TECHNIQUES

As was noted in the Introduction, we used the
Hybrid Circulation Ocean Model (НYСОМ), which
is the next generation of the Miami University Ocean
Circulation Model of 1981 (MICOM) [9, 10]. Version
2.2.14 is used in the present study.

The scheme of breaking into the vertical layers is
based on [11]. Use has been made of 21 vertical layers.
The depth of the three upper layers is fixed, while the
remaining 18 layers were chosen as layers of equal den�
sity ρ.

The whole model area is located between 78°S–
55° N, 100° W–20° E. It covers the Caribbean Sea
and the main part of the Atlantic Ocean. The spatial
resolution is 0.25° in latitude and slightly varies
around this value in longitude. The relaxation condi�
tion is set on the ocean’s surface, and the values of the
observed temperature are taken from the climatic
atlas. More specifically, the boundary condition for
the temperature on the ocean’s surface is set in the

model as  = F + κrlx(To – T), where F are the fluxes

of heat (explicit and latent), and T and To are the
model and observable temperatures, respectively. The
relaxation coefficient κrlx is set constant and equals 0.8
in the respective units. The relaxation of the tempera�
ture and salinity at the side boundaries is taken from
the climatic atlas too. Moreover, the condition of the
constancy of the fluxes is set for the velocities: zero flux
through the northern boundary, a constant eastbound
flux of 110 Sv in the region of the Drake Passage, and
the westbound fluxes of 10 Sv each at 12 points of the
grid lengthwise the 20° E line south of Southern
Africa. 

MPI libraries were used in the model for the paral�
leling. The studied region was subdivided into 64 sub�
regions for parallel computing. The description of this
part of our study is omitted since the details of the par�
allel computing are of minor importance for our paper.

The climatic atlas of Levitus (NOAA,
http://www.noaa.gov/) for the values of the temperature
and salinity at zero values of the velocity was chosen as
the initial condition for the model’s integration. Next,
the model is integrated for 40 years under the forcing of
data from the COADS archive (http://icoads.noaa.gov);
i.e., the spin�up run is performed. After the spin�up
run, every month from January to December for the
last decade is used as the initial condition for creating
the 20�year ensemble of the modeling. At that, ten
members of this ensemble are created under the forc�
ing of the atmospheric data taken from the NCEP
archive (http://www.ncep.noaa.gov/) for 2007–2008
with 6 hour resolution. Another ten members of the
ensemble are created under the forcing of the data
from the Global Forecast System National Climatic
Data Center (GFS) archive with 24 h resolution for
the same period. The HYCOM model is forced by data
on the wind, the precipitation, and the fluxes of heat
and moisture at the ocean’s surface with the data being
correspondingly transformed into the boundary con�
ditions for the equations of motion. The discharge of
the main rivers of the Atlantic Ocean are taken into
account too. These values of the ensemble are subse�
quently used for computing the statistics in the scheme
of the Kalman filter.

The following algorithm underlies the assimilation
schemes. 

Let X be the vector of the model’s state, i.e., the val�
ues of the model’s variables at the grid points X  RN,

and Y be the vector of the observations at Y  
Each of the elements of Y, Yi, i = 1, NOBS represents an
r�dimensional vector because we consider the joint
assimilation of several quantities, for instance, the
temperature and salinity. The corrected model field
(or the so�called analysis) is constructed according to
the formula 

 (1)

dT
dz

∈

∈
OBS.NR

( ).aX X K Y HX= + −
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The designations in (1) are as follows: K is the
unknown weighting matrix (the Kalman gain matrix),
and HX is the horizontal projection of the model’s
state vector at the site of the observations with the pro�
jection being produced with the help of the operator
Н. If the dimensionality of the state vector (N) exceeds
that of the observations vector (NOBS), the redundant
dimensionalities are believed to be equal to zero. The
weighting matrix is found from the following equation:

 (2)

Equation (2) comprises the matrix B = E[(X –
EX)(X – EX)'], which represents a covariance matrix
of the model’s state, and the matrix R as a covariance
matrix of the measurement errors. As usual, the sym�
bol “ ' ” designates the transposition of a vector or a
matrix, while the symbol EX indicates the mathemat�
ical expectation (the mean over the ensemble of states)
of the random variable X. To avoid overloading of the
text, we refrain from strict definitions of the respective
quantities but instead provide constructive methods of
the calculations.

The matrix R is supposed to be specified; it is
believed that the measurement errors are mutually
independent and that their dispersion is known. Thus,
the matrix R represents a diagonal matrix whose diag�
onal is occupied by known quantities (dispersions of
measurements errors) while all of the off�diagonal ele�
ments are equal to zero.

The determination of the covariance matrix B is the key
problem of the assimilation. In the present study, we exam�
ine three assimilation schemes, each of which is distinctive
in the method of the determination of this matrix. 

1. Scheme of the Extended Kalman Filter (the Kal�
man Ensemble Filter (EnKF)). In this scheme, the
parameterization of the matrix B = [Bij], B  RN × N is
performed in the following way:

 (3)

Here, Xk  RN is the implementation of the k�th
member of the ensemble, which comprises in total М
implementations: k = 1, …. M, M = 20. For this
method, B depends on the number of grid points and
on M. This scheme requires considerable computa�
tional resources because the number of grid points is of
the order of 106 and, respectively, the size of the matrix
is 1012. In order to minimize the required computer
memory, we computed this matrix in the following
sequence: First, we calculated and stored the anoma�
lies Φ = [φ1φ2…φM] for every instant of the assimila�
tion. Next, we serially computed the projection HBH '
as HΦ and Φ'H ', and, finally, we multiplied these
matrices. Thanks to the fact that the projection sub�
stantially reduces the dimensionality, the described

' '( ).BH K HBH R= +

∈

'1
1

B
M

= ΦΦ

−

1 2

1

1[ ... ], .
M

M k k m

m

X X
M

=

⎛ ⎞
Φ = φ φ φ φ = −⎜ ⎟⎜ ⎟

⎝ ⎠
∑

∈

scheme allows us to calculate the matrix HBH '
required in (2) but not the matrix В itself. The same
idea is used to calculate the matrix BH '. In addition,
the so�called truncation radius is introduced equaling
ten grid points. This means that the covariance
between any two quantities at a distance exceeding two
truncation radii is supposed to be equal to zero. Exper�
iments show that no substantial difference occurs if
the radius is 15 points large, but, increasing it up to 100
points, results in numerical instability and difficulties
concerning the covariance matrix inversion. 

2. Optimal Interpolation (OI). According to this
scheme, the matrix B is simply specified indepen�
dently of the grid point and time. In the present work,
B is specified as B(x, y) = σ2exp(–λd), where

The quantity d means the distance between the grid
points and is measured in units of the grid. Therefore,
the λ parameter is of inverse dimensionality. It was
chosen according to the distance between the grid’s
nodes and equals 0.25. 

3. The Hybrid Method Based on the Application of
the Theory of Stochastic Diffusion Processes and the
Fokker–Planck Equation (FP). This is an original
method of authorship first published in [8]. According
to this scheme, the covariance matrix is specified as

 (4)

In (4), the quantity u = (ui, uj) = (u(x), u(y)) repre�
sents the value of the error at an arbitrary point of the
domain x, y, and p(ui, uj) is the probability density of
this error. As was shown in [3], under certain condi�
tions, this density satisfies the Fokker–Planck equa�
tion (Kolmogorov’s second equation):

 (5)

In (5), the quantities А and b2 (the drift vector and
the matrix of diffusion) are determined from the values
of the model and the observations. The procedure for
their determination is described at length in [8] and is
omitted here. It is worth noting that the present work
involves a multiprocessor modification of this method
based on the use of the MPI library.

Equation (5) is solved under the Somerfeld bound�
ary conditions p(t, ±∞) = 0 and the initial condition
p(0, u) = f(u) for the specified f(u). In practice, the ini�
tial condition is specified at points of the observations
where the initial error is known. In other words, the

initial function is f(u) = δ(u –  u – ) if the values

of the errors are  . In this way, the right side of (2),

OBS

OBS

2

2 1
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.

N
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N
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namely, the matrix (HBH ' + R), is determined. In
order to determine the left side of (2) of the matrix
BH ', it is necessary to specify the distribution of the
initial error at an arbitrary point of the grid. It can be
specified as a Gaussian one having a zero mean and
dispersion equal to the average error’s dispersion over
the whole domain. This completely determines the
error distribution for any instant of time and, conse�
quently, the weighting matrix K.

It can be noticed that the OI scheme is a particular
case of general Scheme 3. Indeed, if the drift vector

and the diffusion matrix are constant, then the Gaus�
sian distribution with a covariance function as in the
OI scheme is the solution of equation (4).

These three assimilation schemes were applied
jointly with the HYCOM model and the vertical pro�
files of the temperature and salinity from the ARGO
drifters. In total, we used about 1800 profiles of the
temperature and salinity (about 30 profiles per day on
the average). After passing the aforementioned quality
control procedures, the values of the temperature and
salinity were interpolated to the middle of the respec�
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tive level determined by the model density and con�
verted into the potential temperature relative to the
surface. The difference (Yi – HiX) for every station i
was independently calculated for each level.

The experiments were performed for January 2008
and January 2010 with daily assimilation according to
the above scheme. A control experiment was concur�
rently performed; i.e., the same model was integrated
for the same period but without the assimilation.

CALCULATIONS RESULTS

Figure 3 demonstrates the calculation results in the
following order: the control (Fig. 3a), the EnKF
(Fig. 3b), the OI (Fig. 3c), and the FP (Fig. 3d). Inde�
pendently, Fig. 4 displays the SST observed on the
same date (from the Reynolds SST archive at
http://www.nhc.noaa.gov/aboutsst.shtml).

The comparison of these figures shows that the
control of the model overestimates the temperature
magnitude in reference to the observations. It is easy to
see that the 27°С isotherm passes far south in Fig. 3a
as compared with Fig. 4. Moreover, it is evident that
the localizations of the 21°C isotherm usually occur�
ring west of Southern Africa and associated with the
Benguela Current markedly differ in Fig. 3a and Fig. 4.
All the calculations involving assimilation noticeably
diminish the SST in the tropical domain and west of
Southern Africa near 30° S. The correction makes the

analysis closer to the Reynolds’ SST in the main part
of the calculation domain. However, the correction in
the equatorial Atlantic and in the Caribbean Sea is too
strong and the fields obtained are cooler than those on
the Reynolds’ SST maps. The strongest correction
took place in the case of the EnKF method. As a
result, the EnKF produces the maximal temperature
gradients and the strongest spatial variability. On the
contrary, the OI scheme results in minimal changes in
the control field. There is virtually no synoptic vari�
ability, and the spatial gradients are weak in the result�
ing SST field. The FP method yields an intermediate
outcome between the OI and EnKF schemes.

To facilitate the comparison of the assimilation
methods, Fig. 5 displays the vertical distributions of
the corrected model temperature field across the
equator at the depths down to 500 m. All the calcula�
tions show a well expressed thermocline inclination
and an east�bound decrease in the temperature. Nev�
ertheless, the outcomes of the application of these
methods exhibit noticeable differences. The EnKF
method gives a more fuzzy thermocline with its
noticeable heating and cooling in different regions at
the depths below 200 m, which leads to evident hori�
zontal temperature gradients. The OI scheme pro�
duces a smoother pattern close to the control calcula�
tions. The well�expressed thermocline to the west
resulting from the control calculations takes place in
the OI experiment too, but the isotherms below the
150 m depth level obtained during the control calcula�
tions exhibit oscillations characteristic of any assimi�
lation method because the assimilation itself generates
internal slowly attenuating waves. Strong oscillations
of the isotherms below the 200 m depth and the
upward bending of the 8, 10, and 12°C isotherms are
typical of the FP method. The FP method’s results
appear more realistic relative to the EnKF calcula�
tions.

COMPARING THE QUALITY
OF THE METHODS

The following characteristic is traditionally intro�
duced to compare the assimilation methods: the
average dispersion of the error of the forecast and
the analysis relative to all the assimilation points
and its behavior in time are considered. More pre�
cisely, let σs be the mean square deviation of the
model’s error relative to the observations, i.e.,

σs =  (see above for all the designa�

tions). In addition to σs, two more quantities are intro�

duced, namely, σf =  and σa =

 where Xf, Xa are the model field
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values after the start from the preceding assimilated
value, respectively, before and after the next assimila�
tion. In other words, the quantity σf determines the
mean square deviation of the forecast error per one
assimilation step, while the quantity σa reproduces the
mean square deviation of the analysis error.

The time dependence of three variables σs, σf, and
σa for the temperature dispersion is shown in Fig. 6 for
every method in question: the EnKF (Fig. 6a), OI

(Fig. 6b), and FP (Fig. 6c), respectively, during the
period of January 1– 29, 2008. In Fig. 6, the upper
curve describes the control value, while two the lower
ones represent the quantities σf and σa, respectively.
According to these figures, the EnKF method initially
gives values exceeding the control estimates. This is
due to the inertia, because the model does not adjust
immediately to the data and for some time may yield a
forecast of poorer quality than in the case of no assim�
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Fig. 5. Vertical temperature distribution (°C) lengthwise the equator for January 29, 2008. (a) control; (b) EnKF; (c) OI; (d) FP. 
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ilation. Nevertheless, the forecast error diminishes
from the second day, and the general trend of the less�
ening of this error with time becomes evident. At the
end of the calculations, the value of the analysis error
is as low as 0.8°C compared to the initial 1.5°С.

In the case of the EnKF method, the mean square
value of the analysis error behaves in the same manner:
starting from 1.0°C and finally dropping to 0.3°C. As
for the OI method, its forecast error oscillates around
values of 0.6 and 1.4°C. This error does not change in
time: the amplitudes of the initial and final errors are
virtually indistinguishable. The analysis error of the OI
method is exactly the same in character as the forecast
error; its absolute value is lower by 0.1°C. The forecast
error of the FP method oscillates between 0.7 and
1.5°C during the first 15 days, but it diminishes by the
end of the experiment. Among all the schemes exam�
ined, the FP method secures the lowest analysis error.
It changed only slightly during the whole month but
exhibited three evident peaks at 13, 22, and 29 days.
This error makes up about 0.3°C not counting these
spikes.

The salinity errors were examined in the same way;
see Fig. 7. The latter does not show the mean square
analysis error because it changes only slightly depend�
ing on the method. 

For all of the three methods, the mean square fore�
cast error is much lower in value than the estimates

from the control calculations. It should be noticed
that, in contrast to the temperature, the forecast error
for the control calculation does not reduce but instead
grows with time. This is due to the fact that the bound�
ary condition on the surface for the temperature dif�
fers from that for the salinity, which was mentioned
above when describing the model. The EnKF method
leads to reduced forecasting errors and reaches the
absolute minimum of 0.05 psu among all three meth�
ods. The OI method results in oscillations of the mean
square forecast error around 0.18 psu. The FP method
leads to almost monotonous diminishing of the fore�
cast error with time during the first 20 days finally
reaching a value of about 0.1 psu.

In any circulation model, the assimilation of the
temperature and salinity results in changes in the fields
of the density, the currents, and so on. Figure 8 dem�
onstrates the changes in the subsurface equatorial
countercurrent produced by the HYCOM model after
assimilation. The control calculations (Fig. 8a) clearly
indicate the west�bound surface flow lengthwise the
equator and the subsurface flow near the South Amer�
ican continent. Also evident is the east�bound flow
with its core at 36° W at the 120 m depth level. Any
assimilation method results in upwelling of the zero
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velocity isoline. Therefore the west�bound flow mark�
edly diminishes both in intensity and in area. The
0.2 m/s isoline in the subsurface current expands up to
5° to the east (Figs. 8b–8d); the assimilation of the
temperature and salinity produces a weak east�bound
flow in the region east of 5° W. The EnKF and OI
methods are very close to each other in their results.

The surface velocities from the FP method exhibit
minor differences too, but markedly stronger distinc�
tions are characteristic of the subsurface current. For
instance, this is easy to see in the isolines of 0 and
0.2 m/s, which are deepening in reference to the con�
trol at 25° W and at 35° W below the 300 m depth level.
The core of the subsurface current with the 0.8 m/s
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maximum is easy to see in Fig. 8d. In total, the FP
method produces markedly more intensive currents as
compared to other assimilation schemes.

For comparison, Fig. 9 demonstrates the currents
obtained at the Navy Supercomputer Research Center
(NSRC) in Miami, USA from the global analysis of
the HYCOM + NCODA system. The data were taken
from the database www.hycom.org. The intensity of
the subsurface core is almost the same as in the control
calculations and in the assimilation experiment, but
the core area itself is more extended in the NSRC cal�
culations. The western surface current is well deter�
mined in the global analysis, but it does not cover the
whole region, as was done in the control calculations;
the east�bound flow in the east takes place in the global
analysis. The weakening of the surface current and the
surfacing of the zero isoline eastwards observed in the
assimilation experiments demonstrates the coinci�
dence of the surface currents’ pattern with the global
analysis. In the west, the control calculations and the
EnKF and OI methods demonstrate different depth
levels of the 0 m/s isoline from 200 to 500 m in refer�
ence to the global analysis. The pattern of the currents
according to the FP method is closer to the NSRC
currents than the remaining schemes.

CONCLUSIONS AND INFERENCES

Our study shows that different methods of data
assimilation (the extended Kalman filter (EnKF),
optimal interpolation (OI), and the schemes based on
the application of the theory of random diffusion pro�
cesses (FP)) produce different corrections of the
model’s state. However, by and large, all of the above
schemes correct the model field in due direction,

actually make it closer to the observational data and
improve the consequent forecast when using the cor�
rected field as the initial one. It can be noticed too that
the OI correction is less significant, and the resulting
field is closer to the control field as compared with the
EnKF and/or FP methods.

The calculated fields of the temperature, salinity,
and current’s velocity constructed from the assimila�
tion schemes demonstrate the increased sharpness of
both the vertical and horizontal gradients of any quan�
tities involved. The synoptic variability and oceanic
turbulence become more evident. Quantitatively, the
EnKF method gives variability 25% higher against the
rest of the assimilation methods. At that, the FP calcu�
lations of the temperature and velocity better corre�
spond to the observational data and to the data from
the independent HYCOM + NCODA calculations
(quantitative estimates are given in Figs. 4–7 and 9). The
EnKF methods provide certain quantitative advan�
tages in relation to the other methods (Fig. 8).

Taking into account these results, it is possible to
infer that the FP and EnKF schemes deserve further
development. Specifically, these schemes can be
extended to the assimilation of altimetry, satellite SST
data, and other available observational information. In
addition, a reasonable balance is needed concerning
the desired accuracy of the estimates, the computa�
tional sophistication, and the calculation efficiency.
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