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Scalar and spinor particles in the spacetime of a domain wall in string theory
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We consider scalar and spinor particles in the spacetime of a domain wall in the context of low energy
effective string theories, such as the generalized scalar-tensor gravity theories. This class of theories allows for
an arbitrary coupling of the wall and the~gravitational! scalar field. First, we derive the metric of a wall in the
weak-field approximation and we show that it depends on the wall’s surface energy density and on two
post-Newtonian parameters. Then, we solve the Klein-Gordon and the Dirac equations in this spacetime. We
obtain the spectrum of energy eigenvalues and the current density in the scalar and spinor cases, respectively.
We show that these quantities, except in the case of the energy spectrum for a massless spinor particle, depend
on the parameters that characterize the scalar-tensor domain wall.
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I. INTRODUCTION

Topological defects arise whenever a symmetry is spo
neously broken. They can be of various types according
the topology of the vacuum manifold of the field theory b
ing under consideration. In this work, we will concentra
our attention on domain walls which are defects arising fr
a breaking of a discrete symmetry by means of a Higgs fi
@1–3#.

Domain walls have been extensively studied in the lite
ture. In particular, it was soon realized that they may lead
a cosmological catastrophe@2#, even if they were produced
in a late time phase transition@4#. From the gravitational
point of view, an interesting feature of the wall’s gravit
tional field is that its weak field approximation does not c
respond to any exact static solution of the Einstein’s eq
tions, hence implying that they are gravitationally unsta
@5#. In Ref. @6#, a time-dependent metric was obtained and
was shown that observers experience a repulsion from
wall. Current-carrying walls and their cosmological cons
quences were also object of investigations. In Ref.@7#, the
internal structure of a surface current-carrying wall was st
ied and the internal quantities such as the energy per
surface and the surface current were calculated numeric

The above-mentioned features of a domain wall were a
lyzed in the framework of Einstein’s theory of gravity. How
ever, it has been argued that gravity may be described
scalar-tensorial gravitational field, at least at sufficiently h
energy scales. Indeed, a scalar fieldf, which from now on
we will call generically adilaton, appears as a necessa
partner of the graviton fieldgmn in all superstring models
@8,9#. Topological defects of various types and their gravi
tional effects have already been studied in the framework
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various low energy effective string models@10,11#. In what
concernes the domain wall solutions, these configurati
were the object of Ref.@12#, in which the authors studied th
properties of the wall’s gravitational field in Brans-Dicke an
in dilatonic gravities. In this class of solutions, the dilato
can couple to the matter potential forming the wall. It
shown that the dilaton’s solution varies with the spatial d
tance from the wall giving rise to a defect called the ‘‘dil
tonic domain wall.’’

The aim of this paper is twofold. First, we investigate t
gravitational field of a domain wall in the context of a ge
eralized scalar-tensor gravity. Second, we analyze how
ticles are affected by this particular gravitational field. T
gravitational interaction on quantum mechanical systems
been studied by many authors@13#. For this purpose the
Klein-Gordon and Dirac equations in covariant form ha
been used and solved in curved spacetimes. The searc
these solutions is very interesting and may be accounted
by the scheme of unifying quantum mechanics and gen
relativity. As examples of works concerning this subject w
can mention Audretsch and Scha¨fer @14# who presented a
detailed analysis of the energy spectrum of the hydro
atom in Robertson-Walker universes and Parker@15,16# who
studied a one-electron atom in a curved spacetime.

In the present work, we are particularly interested
studying scalar and spinor particles in the spacetime o
scalar-tensorial domain wall. In Sec. II we derived the me
of a wall in the weak field approximation. We show that
depends on the wall’s surface energy densitys and on two
post-Newtonian parameters,G0 anda2(f0). In Sec. III we
solve the Klein-Gordon equation, we find the energy eig
values and we point out the dependence of the current on
parameters that characterize the scalar-tensor domain wa
Sec. IV we first consider the Dirac equation for a mass
spinor field. Then, we solve explicitly the Weyl equations f
a massless spinor field and we determine the expression
the energy spectrum and for the current. Finally, in Sec
we present our concluding remarks.
©2002 The American Physical Society27-1
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II. THE METRIC OF A DOMAIN WALL
IN THE WEAK-FIELD APPROXIMATION

In this section we will derive the metric of a domain wa
in a low energy effective string model, in which the axio
field is vanishing. This action is analogous to the class
scalar-tensor theories developed in Refs.@17# and, in the case
of the scalar sector of the gravitational interaction, is ma
less. For technical purposes, it is better to work in the
called Einstein~conformal! frame in which the kinematic
terms of tensor and scalar fields do not mix. Then, a dom
wall solution arises from the action

S5
1

16pG*
E d4xA2g@R22gmn]mf]nf#

1E d4xA2gA2~f!F1

2
gmn]mF]nF2V~F!G , ~1!

wheregmn is a pure rank-2 metric tensor,R is the curvature
scalar associated with it andG* is some ‘‘bare’’ gravitational
coupling constant. The second term in the right-hand sid
Eq. ~1! is the matter action representing a model of a r
Higgs scalar fieldF and the symmetry breaking potenti
V(F) which possesses a discrete set of degenerate min
Action ~1! is obtained from the original action appearing
Refs. @17# by a conformal transformation~see, for instance
@18#!

g̃mn5A2~f!gmn , ~2!

whereg̃mn is the physical metric which contains both sca
and tensor degrees of freedom, and by a redefinition of
quantities

G* A2~f!5
1

F̃
,

whereF̃ is the original scalar field, and

a~f![
] ln A

]f
5

1

@2v~F̃!13#1/2
,

which can be interpreted as the~field-dependent! coupling
strength between matter and the scalar field. We choos
leaveA2(f) as an arbitrary function of the dilaton field.

In the Einstein frame, the field equations are written
follows:

Rmn52]mf]nf18pG* S Tmn2
1

2
gmnTD

hgf524pG* a~f!T ~3!

where the energy-momentum tensor is obtained as

Tmn[
2

A2g

dSm

dgmn
.
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In what follows, we will consider the solution of a doma
wall in the yz plane in the weak-field approximation. Ther
fore, we will expand Eqs.~3! to first order inG* A2(f0) in
such a way that

gmn5hmn1hmn

f5f01f (1)

A~f!5A~f0!@11a~f0!f (1)#

Tn
m5T(0)n

m 1T(1)n
m . ~4!

In this approximation,T(0)n
m 5A2(f0)T̃(0)n

m is the energy-
momentum tensor of a static domain wall with negligib
width and lying in ayz plane. Therefore,

T(0)n
m 5A2~f0!sd~x!diag~1,0,1,1! ~5!

in the Cartesian coordinate system (t,x,y,z). The parameter
s is the wall’s surface energy density. In our convention,
metric signature is22.

Equations~3! in the linearized regime reduce to

¹2hmn516pG* S T(0)mn2
1

2
hmnT(0)D

¹2f (1)54pG* a~f0!T(0) . ~6!

Let us begin by solving the equation for the dilaton fie
f (1) in Eq. ~6!:

¹2f (1)512psG0a~f0!d~x!

f (1)56psG0a~f0!uxu, ~7!

whereG0[G* A2(f0).
Now, the linearized Einstein’s equation in Eq.~6! with a

source given by Eq.~5! are just the same as in Vilenkin’
paper@5#, except that in our case the metric is multiplied b
the linearized factorA2(f). Therefore, we have~to first or-
der in G0):

ds25A2~f0!@114psG0uxu~3a2~f0!21!#

3@dt22dx22dy22dz2#. ~8!

The factorA2(f0) appearing in the above expression can
absorbed by a redefinition of the coordinates (t,x,y,z). We
finally, then, obtain

ds25~114Duxu!@dt22dx22dy22dz2#, ~9!

whereD[psG0(3a221).
This is the line element corresponding to a domain wal

the framework of scalar-tensor gravity in the weak-field a
proximation. The geometry given by Eq.~9! is only valid for
Duxu!1.
7-2
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III. KLEIN-GORDON EQUATION IN SCALAR-TENSOR
DOMAIN WALL

Let us consider a scalar quantum particle embedded
classical background gravitational field. Its behavior is d
scribed by the covariant Klein-Gordon equation

F 1

A2g
]m~A2ggmn]n!1m2Gc50, ~10!

wherem is the mass of the particle,g is the determinant of
the metric tensorgmn and we are considering a minimal co
pling.

In the space-time of a scalar-tensor domain wall given
metric ~9!, Eq. ~10! takes the form

F 1

114Duxu S ] t
22]x

22]y
22]z

22
4D

114Duxu
duxu
dx

]xD1m2Gc
50. ~11!

Multiplying this equation by 114Duxu and neglecting terms
of order D2 and up~because we are working in the wea
field aproximation!, we get

F] t
22]x

22]y
22]z

224D
duxu
dx

]x1m2~114Duxu!Gc50.

~12!

Since Eq.~12! is invariant under the transformationx→
2x, we shall restrict the allowed values ofx to the interval
x.0. Then, we have

@] t
22]x

22]y
22]z

224D]x1m2~114Dx!#c50. ~13!

Let us assume that

c~ t,x,y,z!5e2 i (Et2kyy2kzz)X~x!, ~14!

whereE, ky and kz are constants. If we substitute relatio
~14! into Eq. ~13!, we obtain

d2X~x!

dx2
14D

dX~x!

dx
10402
a
-

y

1@E22ky
22kz

22m2~114Dx!#X~x!50, ~15!

whose general solution is

X~x!5$C1Airy Ai @2~21!1/3224/3~m2D !22/3

3~m22E21ky
21kz

214m2Dx14D2!#

1C2Airy Bi @2~21!1/3224/3~m2D !22/3

3~m22E21ky
21kz

214m2Dx14D2!#%e22Dx,

~16!

with functions Airy Ai(x) and Airy Bi(x) being the Airy
functions andC1 andC2 are integration constants. Note th
the arguments of the Airy functions have only terms of ord
less thanD2. Neglecting terms of order>D2, we get

X~x!.$C1Airy Ai @2~21!1/3224/3~m2D !22/3

3~m22E21ky
21kz

214m2Dx14D2!#

1C2Airy Bi @2~21!1/3224/3~m2D !22/3

3~m22E21ky
21kz

214m2Dx14D2!#%~122Dx!,

~17!

In order to determine the bound states energies we mus
quire periodicity conditions in directionsy andz, with peri-
odsLy andLz , respectively, supplemented by the bounda
conditions that the solution vanishes atx5a andx5b, with
a,b and such thatDa!1 andDb!1. These boundary con
ditions can be expressed as

c~ t,x,y,z!5c~ t,x,y1Ly ,z!

c~ t,x,y,z!5c~ t,x,y,z1Lz!

c~ t,a,y,z!5c~ t,b,y,z!50. ~18!

These boundary conditions lead us to the following resul
X~x!5C1H Airy Ai @2~21!1/3224/3~m2D !22/3~m22E21ky
21kz

214m2Dx14D2!#

2
Airy Ai @2~21!1/3224/3~m2D !22/3~m22E21ky

21kz
214m2Da14D2!#

Airy Bi @2~21!1/3224/3~m2D !22/3~m22E21ky
21kz

214m2Da14D2!#
Airy Bi @2~21!1/3224/3~m2D !22/3

3~m22E21ky
21kz

214m2Dx14D2!#J ~122Dx!, ~19!
7-3
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where

ky5
2pny

Ly
, ny50,61,62, . . . ~20!

kz5
2pnz

Lz
, nz50,61,62, . . . , ~21!

and

X~b!50. ~22!

The boundary condition given by Eq.~22! determines the
energy levels of the particle in the stationary state in
region under consideration. It should be stressed that in o
to solve this problem we must impose thatum22E21ky

2

1kz
214m2Dxu@u(m2D)2/3u, in which case the absolut

value of the argument of Airy’s functions are much grea
than unity, which allows us to use the following assympto
expansions@19#:

Airy Ai ~z!;
1

2Ap
z21/4e2j(

k50

`

~21!kckj
2k

Airy Bi ~z!;
1

Ap
z21/4ej(

k50

`

ckj
2k ~23!

where

j5
2

3
z3/2

c051, ck5
~2k11!~2k13!•••~6k21!

216kk!
. ~24!

In this approximation, Eq.~22! can be written as

e2(2/3)W3/2(b)(
k50

`

~21!kckF2

3
W3/2~b!G2k

2e2(4/3)W3/2(a)

3

(
k50

`

~21!kckF2

3
W3/2~a!G2k

(
k50

`

ckF2

3
W3/2~a!G2k

e2/3W3/2(b)

3 (
k50

`

ckF2

3
W3/2~b!G2k

50, ~25!

where W(x)52(21)1/3224/3(m2D)22/3(m22E21ky
21kz

2

14m2Dx14D2).
Considering only the first two terms of the summation a

neglecting terms of order>D2, we find

ei2AE22ky
2
2kz

2
2m2(b2a)F12 i

4m2D~b22a2!

AE22ky
22kz

22m2G51.

~26!
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Now, let us takeE22ky
22kz

22m2.0, then we can rewrite
Eq. ~26! as a system of equations involving its real a
imaginary parts as follows:

11
4m2D~b22a2!

AE22ky
22kz

22m2
tan@2AE22ky

22kz
22m2#~b2a!

5sec@2AE22ky
22kz

22m2#~b2a!, ~27!

tan@2AE22ky
22kz

22m2#~b2a!5
4m2D~b22a2!

AE22ky
22kz

22m2
.

~28!

As the function tan(x) is of orderD, we can make the as
sumption that tan(x).x. Then, Eq.~28! results in

2AE22ky
22kz

22m2~b2a!.
4m2D~b22a2!

AE22ky
22kz

22m2
1np,

n50,61,62, . . . . ~29!

Equation~27! is assured ifn is even. Then, we have

2AE22ky
22kz

22m2~b2a!.
4m2D~b22a2!

AE22ky
22kz

22m2
12np,

n50,61,62, . . . . ~30!

From the previous equation we get, finally, that

E25m21ky
21kz

21
n2p2

~b2a!2

1S 21
np

b2aDm2D~b1a!, n51,2, . . . . ~31!

It is worth noting that the presence of the wall increases
energy eigenvalues with parameters1 s, a(f0) andG0 and
that for D50 ~absence of the wall! we recover the resul
corresponding to the Minkowski spacetime as it should b

In what concerns the current associated with the sc
field given by

Jm5
iA2g

2m
~c* ]mc2c]mc* !, ~32!

1Just as a reminder for the reader,s,a(f0) andG0 are the wall’s
surface energy density, the coupling strength between the wall
the dilaton, and the effective gravitational constant, respectively
7-4
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it is clear that the current depends on the parameters
characterize the scalar-tensor domain wall throughA2g and
the solutionc of the Klein-Gordon equation.

IV. DIRAC EQUATION IN A SCALAR-TENSOR DOMAIN
WALL

Now, let us consider a spinor particle embedded in a c
sical gravitational field. The covariant Dirac equation go
erning the particle in a curved spacetime for a spinorC may
be written as

@ igm~x!]m1 igm~x!Gm2m#C~x!50, ~33!

where gm(x) are the generalized Dirac matrices and a
given in terms of the standard flat space Dirac matri
(g (a)) as

gm~x!5e(a)
m ~x!g (a), ~34!

wheree(a)
m (x) are tetrad components defined by

e(a)
m ~x!e(b)

n ~x!h (a)(b)5gmn. ~35!

The productgm(x)Gm that appears in Dirac equation can
written as

gm~x!Gm5g (a)@A(a)~x!1 ig (5)B(a)~x!#, ~36!

with g (5)5 ig (0)g (1)g (2)g (3) andA(a) andB(a) are given by

A(a)5
1

2
~]me(a)

m 1e(a)
r Grm

m ! ~37!

and

B(a)5
1

2
e (a)(b)(c)(d)e

(b)me(c)n]men
(d) , ~38!

where e (a)(b)(c)(d) is the completely antisymmetric fourth
order unit tensor.

In the spacetime of a scalar-tensor domain wall given
metric ~9!, let us choose the following set of tetrads:

em
(a)5@114Duxu#1/2dm

a , ~39!

which implies that

gm5@122Duxu#g (m), ~40!

in which we have neglected terms of order>D2.
Computing the expressions forA(a) andB(a) and putting

these results into Eq.~36! and neglecting terms of orde
>D2, we get

gm~x!Gm53Dg (1). ~41!

Now, using Eqs.~40! and~41!, the Dirac equation~33! in the
spacetime of a scalar-tensor domain wall reads

$ ig (m)]m1 i3Dg (1)2@112Dx#m%C~x!50, ~42!
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in which we neglected terms of order>D2 and considered
only the intervalx.0. In order to determine the solutions i
the spinoral case, let us choose the following representa
of Dirac matrices:

g (0)5S 1 0

0 21D ,

g ( i )5S 0 s i

2s i 0 D , i 51,2,3 ~43!

wheres i ( i 51,2,3) are the usual Pauli matrices.
Since we are interested in the qualitative behavior of

particle with respect to the parameters that define the w
we will simplify our analysis considering the solution of th
Dirac equation corresponding to the massless spinor par
in which case Eq.~42! reduces to

$ ig (m)]m1 i3Dg (1)%C~x!50, ~44!

and is supplemented by the helicity condition

~11g5!C~x!50, ~45!

where

g55S 0 1

21 0D .

Equations~44! and ~45! are the Weyl equations for a mas
less spin-12 particle. The condition given by Eq.~45! implies
that the four-spinorC(x) is such that

C~x!5S C1~x!

C2~x!
D ,

with C1(x)5C2(x).
A suitable set of solutions of Weyl’s equations is of th

form

C~ t,x,y,z!5S u~x!

u~x!
D e2 i (Et2kyy2kzz), ~46!

where

u~x!5S u1~x!

u2~x!
D .

If we substitute relation~46! into Eq. ~44!, we obtain

i
du1~x!

dx
2~ky23D !u1~x!1~E1kz!u2~x!50

~47!

i
du2~x!

dx
1~ky13D !u2~x!1~E2kz!u1~x!50.

Neglecting terms of orderD2 and up, the set of Eqs.~47! can
be written as
7-5
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d2u1~x!

dx2
16D

du1~x!

dx
1~E2ky

22kz
2!u1~x!50,

~48!
d2u2~x!

dx2
16D

du2~x!

dx
1~E2ky

22kz
2!u2~x!50,

whose general solution reads

u~x!5C1e
(23D1 iAE22ky

2
2kz

2)x1C2e
(23D2 iAE22ky

2
2kz

2)x,
~49!

whereC1 andC2 are constant bispinors. Neglecting terms
orderD2 and up, we get

u~x!5~123Dx!~C1e
iAE22ky

2
2kz

2x

1C2e
2 iAE22ky

2
2kz

2x!. ~50!

Again, we notice that the solutions depend ons, a andG0,
as expected.

Now, let us compute the currentj m, which is defined by

j m5C̄gmC. ~51!

Using Eq.~40!, the expression for the current in the appro
mation considered turns into

j m5~124Dx!C†g (0)g (m)C. ~52!

Substituting Eqs.~46! and~50! into Eq.~52! and considering,
for simplicity, the case in whichC250, we get

j m5~1210Dx!~C1
† C1

†!g (0)g (m)S C1

C1
D . ~53!

In order to obtain the energy spectrum, let us consider
same boundary conditions given by Eq.~18! for the scalar
field. Thus, we have

C~ t,x,y,z!5C~ t,x,y1Ly ,z!

C~ t,x,y,z!5C~ t,x,y,z1Lz!

C~ t,a,y,z!5C~ t,b,y,z!50. ~54!

Analogously to the case of a scalar field, from these bou
ary conditions we get

u~x!5C1e
iAE22ky

2
2kz

2x~12e22iAE22ky
2
2kz

2(x2a)! ~55!

where

ky5
2pny

Ly
, ny50,61,62, . . . ~56!

kz5
2pnz

Lz
, nz50,61,62, . . . , ~57!

and

u~b!50. ~58!
10402
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The energy levels arrive from Eq.~58! and are given by

E25ky
21kz

21
n2p2

~b2a!2
. ~59!

Note that the energy spectrum is the same as in the
Minkowski spacetime case. This result comes from the f
that the spinor field is massless. The same coincidence
curs in the case of a massless scalar field.

From previous results we conclude that the current diff
from that in the Minkowski spacetime by the terms conta
ing the parameterss, a andG0 used to describe the scala
tensor domain wall and tends to the corresponding resu
Minkowski spacetime in the absence of the wall as it sho
be.

V. CONCLUDING REMARKS

Recently there has been growing interest in domain w
as brane world scenarios and also in scalar-tensor theorie
gravity due to its possible role in the understanding of
physics of the early Universe when topological defects l
domain walls were formed. At that time the dilaton fields
well as the topological defect, such as a scalar-tensor dom
wall, were, certainly, very relevant. These points constit
the main motivation for this work.

A scalar or spinor particle placed in the spacetime o
scalar-tensor domain wall is perturbed by this backgrou
due to the geometrical and topological features of the spa
time under consideration. In other words, the dynamic
atomic systems is determined by the curvature at the pos
of the system and also by the topology of the backgrou
spacetime.

Summarizing our conclusions we can say that the me
of a scalar-tensor domain wall depends on the wall’s surf
energy densitys and on two post-Newtonian paramete
a(f0) andG0. The solutions for the scalar and spinor cas
differ from the flat Minkowski spacetime case by the pre
ence of these parameters. The presence of the wall shif
energy levels and alters the current in the scalar case as
pared with the flat spacetime. In the massless spinor par
case, there is no shift in the energy spectrum, but the cur
is altered by the presence of the scalar-tensor domain w

Finally, it is worth commenting that the study of a qua
tum system in a gravitational field such as, for example,
one considered in this paper, may shed some light on
problems of combining quantum mechanics and gravity.
the other hand, the investigation of topological defects in
framework of general scalar-tensor theories seems to be
portant in order to understand the role played by these s
tures in this general context.
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