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Gravitational field of a rotating global monopole
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By applying the method of complex coordinate transformation, the rotating global monopole solution is
obtained from the nonrotating counterpart solution that corresponds to the global monopole of Barriola and
Vilenkin.
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I. INTRODUCTION

Different types of topological objects may have be
formed during phase transitions in the early universe. Th
include domain walls, cosmic strings, and monopoles@1# and
have attracted much attention because of their pecu
physical properties, spacetime geometries, and astrophy
and cosmological implications. These topological defects
pear as a consequence of a breakdown of local or glo
gauge symmetries of a system composed by self-coup
isoscalar Higgs fieldsFa. In the case of global monopole
@2#, the model that gives rise to these defects is describe
a triplet of scalar fields. The model has a global O~3! sym-
metry spontaneously broken down to U~1!.

There is a curious relationship between the nonrota
and rotating spacetime solutions of Einstein theory disc
ered by Newman and Janis@3#, obtained by applying a com
plex coordinate transformation. Using this method it w
possible to construct@3# the Kerr solution from the
Schwarzschild solution and also construct@4# from the
Reissner-Nordstro¨m solution its rotating counterpart that co
responds to the Kerr-Newman solution. More recently,
rotating Bañados-Teitelboim-Zanelli~BTZ! black hole solu-
tion was derived@5# from its nonrotating counterpart@6# us-
ing the complex coordinate transformation method int
duced by Newman and Janis@3#.

In this paper we use the method of complex coordin
transformation discovered by Newman and Janis@3# to de-
termine the metric of a rotating global monopole from
nonrotating counterpart that corresponds to the solution
Barriola and Vilenkin@2#.

II. ROTATING GLOBAL MONOPOLE SPACETIME

The static solution of a global monopole in a O~3! broken
symmetry model has been investigated by Barriola a
Vilenkin @2#. They have shown that the gravitational field
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described by a static and spherically symmetric metric w
an additional solid angle deficit. The spacetime metric
scribing the region outside the core of the global monopol
given by Ref.@2#:

ds25S 128pGh22
2GM

R Ddt22S 128pGh22
2GM

R D 21

3dR22R2~du21sinu2dw2!, ~1!

where (t,R,u,w) are spherical coordinates,h is the symme-
try breaking scale, andM is the mass.

In order to write the metric given by Eq.~1! in a more
appropriate form, let us introduce the following coordina
transformations:

t5bt, r 5b21R, ~2!

supplemented by the redefinitionM̄[b23M , whereb251
28pGh2. Doing this, the line element given by Eq.~1!
turns into

ds25S 12
2GM̄

r
D dt22S 12

2GM̄

r
D 21

3dr22b2r 2~du21sinu2dw2!. ~3!

This metric can be rewritten as

ds25S 12
2GM̄

r
D du212dudr2b2r 2~du21sinu2dw2!,

~4!

where the new variableu is defined by

u5t2r 22GM̄ lnS r

2GM̄
21D . ~5!

It is worth noting that in the transformation given by E
~5! we are considering the region outside the monopole c
in which case the massM̄ can be considered as a constan
©2001 The American Physical Society09-1
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From Eq.~4! we can read the contravariant components
the metric, namely,

g0050, g1152S 12
2GM̄

r
D , g0151,

~6!

g2252
1

b2r 2 , g3352
1

b2r 2 sin2 u
,

which can be written in the alternate form

gmn5 l mnn1 l nnm2mmm̄n2mnm̄m, ~7!

where the null tetrad vectors are

l m5d1
m , nm5d0

m2
1

2
S 12

2GM̄

r
D d1

m ,

mm5
1

&br
S d2

m1
i

sinu
d3

mD , ~8!

m̄m5
1

&br
S d2

m2
i

sinu
d3

mD ,

with m̄m being the complex conjugate ofmm.
Now, the radial coordinater is allowed to take complex

values and the tetrad can be rewriten as

l m5d1
m , nm5d0

m2
1

2 F12GM̄S 1

r
1

1

r̄ D Gd1
m ,

mm5
1

&br̄
S d2

m1
i

sinu
d3

mD , ~9!

m̄m5
1

&br
S d2

m2
i

sinu
d3

mD ,
08400
fwhere r̄ is the complex conjugate ofr. Following Newman
and Janis@3# let us perform the complex coordinate transfo
mation

u85u2 ia cosu, r 85r 1 ia cosu,

u85u and w85w ~10!

on the tetrad vetorsl m, nm, andmm. If one now allowsu8
and r 8 to be real, we obtain

l 8m5d1
m , n8m5d0

m2
1

2 F122GM̄S r 8

r 821a2 cos2 u8D Gd1
m ,

m8m5
1

&b~r 81 ia cosu8!
F ia sinu8~d0

m2d1
m!1d2

m

1
i

sinu8
d3

mG , ~11!

m̄8m5
1

&b~r 82 ia cosu8!
F2 ia sinu8~d0

m2d1
m!1d2

m

2
i

sinu8
d3

mG ,
wherem̄8m is, as stated, defined as the complex conjugate
m8m.

The metric

g8mn5 l 8mn8n1 l 8nn8m2m8mm̄8n2m8nm̄8m ~12!

can be shown to correspond to a rotating global monop
with angular momentum per unit massa. From Eq.~11! we
can read off the contravariant and covariant component
the metric. The covariant components of the metric~12! in
terms of coordinates (u8,r 8,u8,w8) reads
pole.
gmn8 5F 12
2GM̄r 8

r 821a2 cos2 u8
1 0

2GM̄ar8 sin2 u8

r 821a2 cos2 u8

• 0 0 2a2 sin2 u8

• • 2b2~r 821a2 cos2 u8! 0

• • • gw8w8
8

G , ~13!

where

gw8w8
8 52sin2 u8Fb2r 821

2GM̄a2r 8 sin2 u8

r 821a2 cos2 u8
1a2~b2 cos2 u81sin2 u8!G . ~14!

The metric given by Eq.~13! is not in the appropriate form to investigate if it corresponds to a rotating global mono
Thus one might want to further transform it into one written in Boyer-Lindquist@7# coordinates:
9-2
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t5u82r 82GM̄ ln~r 8222GM̄r 81a2!2

2G2M̄2 arctanS r 82GM̄

Aa22G2M̄2D
Aa22G2M̄2

,

r 5r 8, u5u8,

w5w81

a arctanS r 2GM̄

Aa22G2M̄2D
Aa22G2M̄2

. ~15!

Using these transformations, the metric given by Eq.~13! turns into

gmn5F 12
2GM̄r

r 21a2 cos2 u
0 0 2

2GM̄ar sin2 u

r 21a2 cos2 u

• grr 0 grw

• • 2b2~r 21a2 cos2 u! 0

• • • gww

G , ~16!

where

grr [
2r 21a2@~12b2!sin2 u2cos2 u#

r 222GM̄r 1a2
1~12b2!

a2 sin2 u@2GM̄r 2a2~12sin4 u!#

~r 222GM̄r 1a2!2
,

grw[2
~12b2!a@r 2 sin2 u2a2 cos2 u~11cos2 u!#

r 222GM̄r 1a2
,

gww[2sin2 u$b2r 41@12~122b2!cos2 u#a2r 212GM̄a2r sin2 u1a4 cos2 u~b2 cos2 u1sin2 u!%/~r 21a2 cos2 u!.

Settingb51 in the metric~16!, we get the Kerr metric in Boyer-Lindquist coordinates, as it should be. On the other ha
we seta50 ~with bÞ1!, we obtain the solution of Barriola and Vilenkin given in Eq.~1!.

Now, consider the approximation in which we neglect terms of order>a2/r 2. Therefore, metric~16! becomes

gmn.3
12

2GM̄

r
0 0 2

2aGM̄ sin2 u

r

• 2S 12
2GM̄

r
D 21

0
2

~12b2!a sin2 u

12
2GM̄

r

• • 2b2r 2 0

• • • 2b2r 2 sin2 u

4 . ~17!
084009-3
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Note that if we setb51 we get the Lense-Thirring metri
and if we simultaneously seta50 and neglect terms contain
ing M̄ , we get the point global monopole@2#.

In the approximation in which we are neglecting terms
ordera2/r 2 and up, the Einstein tensor is given by

Gn
m.3

12b2

b2r 2 0 0 2
2aGM̄~12b2!

b4r 5

•

12b2

b2r 2 0
2

a~12b2!2

b4r 4S 12
2GM̄

r
D

• • 0 0

• • • 0

4 .

~18!

It is worth commenting that the off-diagonal elements
to zero more quickly than the diagonal ones. Therefore, fr
sufficiently large, we get

Gn
m'3

12b2

b2r 2 0 0 0

•

12b2

b2r 2 0 0

• • 0 0

• • • 0

4 . ~19!

Doing the inverse coordinate transformation correspond
to Eq. ~2! and substitutingb25128pGh2, we get

Gn
m'3

8pGh2

R2 0 0 0

•

8pGh2

R2 0 0

• • 0 0

• • • 0

4 , ~20!
A.

08400
f

g

which is the Einstein tensor corresponding to the glo
monopole solution of Barriola and Vilenkin far from th
monopole core~point global monopole!.

Therefore, for suficiently large value ofr, the energy-
momentum tensorTn

m associated with metric~16! is the same
as the global monopole of Barriola and Vilenkin; that is,Tt

t

.Tr
r.h2/R2, and the other components are, approximate

zero. In other words, for sufficiently large values ofr, the
metric given by Eq.~16! obeys Einstein’s equations wit
energy-momentum tensor, which is the same of the glo
monopole solution.

III. CONCLUDING REMARKS

The metric obtained in this paper and given by Eq.~16!
corresponds to the nonrotating global monopole solution
Barriola and Vilenkin@2# in the limit when the angular mo
mentum vanishes. In the rotating case we get the Kerr s
tion setting b51, and in the nonrotating case we get t
Schwarzschild solution for this same value of parameteb.
We also get from our results that the Einstein tensor co
sponding to the static solution is reobtained in the appro
ate limit whenr is sufficiently large.

The method of complex coordinate transformation to o
tain a rotating solution from its static counterpart works fo
class of solutions that contains the Schwarzschild solution
a special case. Taking into account the fact that we can
tain the Schwarzschild solution from the global monopole
settingb51, we may conclude that this method works al
in this case. Therefore, the metric we have found bears
same relation to the corresponding static solution as the K
metric bears to the Schwarzschild metric. As this meth
works to construct the Kerr solution from the Schwarzsch
one, we can conclude that it works to contruct the solut
given by metric~16!—that is, the one that corresponds to t
rotating counterpart of the static solution of Barriola a
Vilenkin @2#, which we are calling the rotating global mono
pole solution.
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