PHYSICAL REVIEW D, VOLUME 64, 084009

Gravitational field of a rotating global monopole
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By applying the method of complex coordinate transformation, the rotating global monopole solution is
obtained from the nonrotating counterpart solution that corresponds to the global monopole of Barriola and
Vilenkin.
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[. INTRODUCTION described by a static and spherically symmetric metric with
an additional solid angle deficit. The spacetime metric de-
Different types of topological objects may have beenscribing the region outside the core of the global monopole is
formed during phase transitions in the early universe. Thesgiven by Ref[2]:
include domain walls, cosmic strings, and monopéldsand
have attracted much attention because of their peculiar, »
physical properties, spacetime geometries, and astrophysicglsz_
and cosmological implications. These topological defects ap- D oo o
pear as a consequence of a breakdown of local or global XdR"—R*(d6”+sin6°de”), @
gauge symmetries of a system composed by self-couplin
isoscalar Higgs field®?2. In the case of global monopoles
[2], the model that gives rise to these defects is described b@W
a triplet of scalar fields. The model has a glob&BCOsym-
metry spontaneously broken down tg1)l
There is a curious relationship between the nonrotatin
and rotating spacetime solutions of Einstein theory discov- t=br. r=b'R @)
ered by Newman and Jar{i3], obtained by applying a com- ' '
plex coordinate transformation. Using this method it was L 2
possible to construc3] the Kerr solution from the supplemented by the redefinitidd =b "M, whereb”=1

_ 2 . . . .
Schwarzschild solution and also constryef] from the 87Gx”. Doing this, the line element given by Eq1)

5 2GM ) 5 2GM\ 1t
1-87Gy “ R d—|1-87Gy “ R

%/here ,R,0,¢) are spherical coordinatesg,is the symme-
breaking scale, anM is the mass.

In order to write the metric given by Eql) in a more
appropriate form, let us introduce the following coordinate
éransformations:

Reissner-Nordstm solution its rotating counterpart that cor- turns into

responds to the Kerr-Newman solution. More recently, the oGM oom) !

rotating Bamdos-Teitelboim-ZanelliBTZ) black hole solu- ds2=(1— _> dt2—|1— _)

tion was derived5] from its nonrotating counterpalr6] us- r r

ing the complex coordinate transformation method intro- X dr2—b2r2(d 62+ sin 6%d ). 3)

duced by Newman and Jarji3].
In this paper we use the method of complex coordinaternis metric can be rewritten as

transformation discovered by Newman and Jd8isto de-

termine the metric of a rotating global monopole from its M

nonrotating counterpart that corresponds to the solution ofd32:<1— —— |du?+2dudr—b?r?(d 6%+ sin #?d¢?),

Barriola and Vilenkin[2].

4
Il. ROTATING GLOBAL MONOPOLE SPACETIME where the new variabla is defined by
The static solution of a global monopole in #3pbroken o
symmetry model has been investigated by Barriola and u=t-r—2GMIn —1]. (5)
Vilenkin [2]. They have shown that the gravitational field is 2GM

It is worth noting that in the transformation given by Eq.
*Electronic address: rmuniz@fisica.ufpb.br (5) we are considering the region outside the monopole core,

TElectronic address: valdir@fisica.ufpb.br in which case the madd can be considered as a constant.
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From Eq.(4) we can read the contravariant components ofwherer is the complex conjugate af Following Newman

the metric, namely,

2GM
900:0’ g11:_<1_ . )’ 901: 1,
(6)
1
22_ _ ¥ _
J b2 9 b2r?sir? ¢’

which can be written in the alternate form
g*’=1*n"+1"n*—m*m’—m"m*,

()

where the null tetrad vectors are

., L1 2GM ’

lh=of, nr=dp— S| 1-——| ok,
P PR 8
M= aor 1 2 sing 3 ) ®

1
— L Ve
\Qbr(az sin053)’
with m* being the complex conjugate af*.

Now, the radial coordinate is allowed to take complex
values and the tetrad can be rewriten as

mi

and Jani¢ 3] let us perform the complex coordinate transfor-
mation

u’'=u—iacosf, r’'=r+iacosb,
0'=0 and o' =¢ (10

on the tetrad vetor§*, n*, andm*. If one now allowsu’
andr’ to be real, we obtain

1 — r'
T i = b | 1— "
|'e=g, n't=54 2[1 2GM| oo 0,) 8,
1 L
m’'#= - iasing' (85— 67)+ 8%
v2b(r'+iacosg’)
i
L
T Sing % @)
_ 1 L
m'#= - —iasing’' (85— of)+ o5
v2b(r'—ia cos#’)

i
. SM
sin0’5

wherem'# is, as stated, defined as the complex conjugate of
m’#,

[“= §¥ n“=6”—£ 1—GM 1+i SH The metric
’ 0 2 ror '
g/IU,VZI!/.Ln/V+|IVnI/.L_m!/.Lm/V_mVVm!/_L (12)
i
mf‘:‘fsz o5+ —Sin05§)7 (9 can be shown to correspond to a rotating global monopole
with angular momentum per unit maasFrom Eq.(11) we
. can read off the contravariant and covariant components of
= (55_ i 55), the metric. The covariant components of the metti2) in
V2br siné terms of coordinatesu(,r’,6’,¢’) reads
2GMr’ 0 2GMar’ sir? ¢’ ]
r'?+a’cos 6’ r'’+a’cos 6’
9,,= 0 0 —a?sir? 6’ , (13
—b?(r'?+a’cos ¢') 0
L gcp’cp’ .
where
2GMa?r’ sir? ¢’
’ — i ’ 2,12 2( 2 ’ H ’
gcp’cp’ S|r120 ber +72+—am+a(b C0829 +S|n20) . (14)

The metric given by Eq(13) is not in the appropriate form to investigate if it corresponds to a rotating global monopole.
Thus one might want to further transform it into one written in Boyer-Lindgui$tcoordinates:
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r'—GM
Jaz— g2m2
Va2 g2M2 '

2G2M?2 arctar(

t=u'—r'—GMIn(r'’2—2GMr’ +a?)—

r—-GM™M
aarctal a—
,[aZ_GZMZ
p=¢'+ = : (19
,/aZ_GZMZ

Using these transformations, the metric given by 84) turns into

. 2GMr 0 0 2GMar sir? 6]
" r?+a?cod 6 ~ r?+a%cod 9
Our= Orr 0 Oro (16)
—b?(r?+a?co< 6) 0
| . . . ng i
where
—r2+a?(1-b?)sir? 6—cog 6] 1o aZsir? [2GMr —a2(1—sin’ )]
O = - !

r2—2GMr +a? (r2—2GMr +a?)?

- (1—b?a[r?sir? —a?cos 6(1+cos 6)]

r . ]
¢ r’—2GMr +a?

9,,=—Sir? 0{b?r*+[1—(1—2b?)cog ¢]ar2+ 2GMa?r sir? 6+ a* cog 6(b? cod 6+ sir? 6)}/(r?+ a2 cog 6).

Settingb=1 in the metric(16), we get the Kerr metric in Boyer-Lindquist coordinates, as it should be. On the other hand, if
we seta=0 (with b# 1), we obtain the solution of Barriola and Vilenkin given in Ea).
Now, consider the approximation in which we neglect terms of ordaf/r?. Therefore, metrid16) becomes

1_ZGM 0 0 _2aGMS|r120
r r
. (1-b?asirt 0
2GM 0 _—ZGM
9ur= I - . (17)
r
—b?r? 0
I —br2sir? 9
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Note that if we seb=1 we get the Lense-Thirring metric which is the Einstein tensor corresponding to the global
and if we simultaneously set=0 and neglect terms contain- monopole solution of Barriola and Vilenkin far from the

ing M, we get the point global monopol&].

In the approximation in which we are neglecting terms of
ordera?/r2 and up, the Einstein tensor is given by

monopole cordpoint global monopole

Therefore, for suficiently large value of the energy-
momentum tensof’, associated with metri¢l6) is the same
as the global monopole of Barriola and Vilenkin; thatT$,

[1-p2 2aGM(1—b?) | =T/=7?/R?, and the other components are, approximately,

%2 0 - ™ I zero. In other words, for sufficiently large values rpfthe

metric given by Eq.(16) obeys Einstein’s equations with
) a(1—b?)?2 energy-momentum tensor, which is the same of the global
e 1-b 2GM monopole solution.
: b®r? b4r4( 1- )
r I1l. CONCLUDING REMARKS

0 0 The metric obtained in this paper and given by Etf)

0 corresponds to the nonrotating global monopole solution of

(18

Barriola and Vilenkin[2] in the limit when the angular mo-
mentum vanishes. In the rotating case we get the Kerr solu-

It is worth commenting that the off-diagonal elements gotion settingb=1, and in the nonrotating case we get the
to zero more quickly than the diagonal ones. Thereforer for Schwarzschild solution for this same value of paraméter

sufficiently large, we get

We also get from our results that the Einstein tensor corre-
sponding to the static solution is reobtained in the appropri-

[1—b? ] ate limit whenr is sufficiently large.
b2 0 00 The method of complex coordinate transformation to ob-
) tain a rotating solution from its static counterpart works for a
G~ 1-b 0 0 (19 class of solutions that contains the Schwarzschild solution as
v b?r? ' a special case. Taking into account the fact that we can ob-
00 tain the Schwarzschild solution from the global monopole by
settingb=1, we may conclude that this method works also
L 0] in this case. Therefore, the metric we have found bears the

Doing the inverse coordinate transformation correspondin

to Eq.(2) and substituting?=1—87G 7%, we get

same relation to the corresponding static solution as the Kerr
$netric bears to the Schwarzschild metric. As this method
works to construct the Kerr solution from the Schwarzschild

[ 87G 7 7 one, we can conclude that it works to contruct the solution
= 0 0 0 given by metric(16)—that is, the one that corresponds to the
rotating counterpart of the static solution of Barriola and
87G7? Vilenkin [2], which we are calling the rotating global mono-
Gt~ Rz~ 0 0, (200 pole solution.
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