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ABSTRACT: A method to solve the electronic Schrödinger equation based on the
modified partitioning procedure (MPP) and here denominated extended MPP (EMPP) is
presented. We apply this procedure to molecular systems using the Møller–Plesset
Hamiltonian. As we will show, it is possible with our approach to develop an
optimization procedure to the electronic energy of many-electron systems. An
advantage of the EMPP approach is that, in general, its results, with a minor number of
configuration state functions, are better than various configuration interaction
calculations with a larger number of configurations. © 2002 Wiley Periodicals, Inc. Int J
Quantum Chem 90: 1586–1595, 2002
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1. Introduction

M any problems in quantum theory cannot be
solved exactly. Except for some special

cases, in which it is possible to solve the Schröd-
inger equation analytically—such as for a particle
in the box, a harmonic oscillator, a rigid rotor, and
the hydrogen atom—it becomes extremely compli-

cated mainly for many-electron problems due to dif-
ficulty of separating the repulsion terms between elec-
trons. In this context, in atomic and molecular
problems the Hartree–Fock (HF) approximation is im-
portant as a starting point for more accurate proce-
dures that include the effects of electron correlation
as, for example, in cases of configuration interaction
(CI) and many-body perturbation theory (MBPT).
However, there are in the literature other methods
that have not been sufficiently explored yet. One of
these procedures is the so-called partitioning tech-Correspondence to: J. D. M. Vianna; e-mail: david@ufba.br
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nique (PT). During 1959–1965, Löwdin [1–3] was in-
terested in the PT as a valuable procedure to deter-
mine the solution of eigenvalue problem

Ĥ���� � E�����, (1)

where

Ĥ � Ĥ0 � V̂

is the Hamiltonian operator. Löwdin’s studies,
however, were basically restricted to theoretical
analysis to show the connection of the PT approach
with the infinite-order perturbation theory and the
interaction-variational methods [4]. In more recent
years [5], the PT procedure has been used as a
numerical tool for solving higher-order secular
equations. Recently, one of us has shown [6, 7] that
it is possible, by means of a new form of the PT
equations, to determine the eigenvalues and eigen-
vectors of Eq. (1) explicitly. For this, the original
development of the partitioning approach is modi-
fied in two aspects: (1) The partitioning technique is
applied directly to auxiliary problem Ĥ0��� � E�

(0)���
instead of Eq. (1); (2) as reference ket it is used the
eigenket ���� of Ĥ instead of ��� eigenket of Ĥ0. As
a consequence, differently from Löwdin’s develop-
ment [5], the reduced resolvent R̂ in this new ap-
proach does not depend on Ĥ and we obtain a set of
nonlinear algebraic equations for the wave operator
matrix elements Ws�. Hence, we can determine E�

directly in terms of Ws� and the potential matrix
elements Vs�. In this article, we apply this modified
PT approach [modified partitioning procedure
(MPP)] to molecular systems using the Møller–
Plesset Hamiltonian and develop a procedure we call
the extended MPP (EMPP), through which we can
optimize the electronic energy of systems. The article
is organized as follows: In Section 2, we present a
summary of the MPP and obtain the fundamental
equations to determine the eigenvalues and eigenvec-
tors of Ĥ. In Sections 3–5, we consider the many-
electron problems. Specifically, we discuss basis sets
and apply the MPP and EMPP to LiH, Li2, BH, NH,
HF, LiF, CO, N2, BF, and F2 systems. In these sections,
the MPP and EMPP equations are also presented.
Section 6 contains an analysis of the results and Sec-
tion 7 our concluding remarks.

2. Modified Partitioning Procedure

We assume that the eigenvalues and eigenvec-
tors of Ĥ0 are known. It is not necessary that V̂ in Ĥ

� Ĥ0 � V̂ be small. In the following, we would like
to determine the eigenvalues and eigenstates of Ĥ.
In the usual notation, the auxiliary problem is

Ĥ0��� � E�
�0����, � � 0, 1, . . . (2)

and the principal problem is to solve

Ĥ���� � E�����, � � 0, 1, . . . (3)

Now, we introduce the projection operator Q̂ out of
����

Q̂ �
��������

C , (4)

and let P̂ be its complement

P̂ � 1̂ � Q̂, (5)

with

C � �������, (6)

and the intermediate normalization condition

������ � 1 (7)

satisfied.
Operators Q̂ and P̂ correspond to the projection

operators introduced by Löwdin [2], but here the
reference ket that defines Q̂ and P̂ is not normal-
ized. An analysis of Löwdin’s development shows
that the partitioning technique procedure is valid
for any Ĥ subjected to the condition that Ĥ is a
self-adjoint operator and describes a bound state; in
particular, it is valid for Ĥ0. In this case, the funda-
mental operators in the theory are the reduced re-
solvent R̂ defined by

R̂ � P̂�1̂E�
�0� � P̂Ĥ0P̂��1P̂, (8)

and the operator 	̂ given by

	̂ � �1̂ � R̂Ĥ0�Q̂, (9)

where R̂ is the resolvent operator of the electronic
Schrödinger equation of the auxiliary problem (2). It
differs from the operator obtained by Löwdin [2] be-
cause it contains E�

(0) and Ĥ0 instead of E� and Ĥ,
respectively, and P̂ is defined in terms of ����, while in
Löwdin’s development it is defined by ���. Therefore,
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	̂ is an operator that also differs from the correspon-
dent operator found by Löwdin because it contains
Ĥ0 instead of Ĥ and Q̂ is defined in terms of ����.
These differences have useful consequences in the
applications [see Eqs. (18)–(21) below]. Similarly to
Löwdin’s development, it is possible to show that
Ĥ0	̂ � E(0)	̂ under a certain condition. In fact, we
have

�Ĥ0 � E�0��	̂ � �P̂ � Q̂��Ĥ0 � E�0��	̂. (10)

Hence, using proprieties of P̂, Q̂ and 	̂, if the con-
dition

Q̂E�0�Q̂ � Q̂�Ĥ0 � Ĥ0R̂Ĥ0�Q̂ (11)

is satisfied, we have

�Ĥ0 � E�0��	̂ � 0. (12)

Substituting expression (8) into Eq. (11) and using
(4), we find

��� � 	̂
����

C . (13)

As P̂Q̂ � 0, then R̂Q̂ � 0, from which results that
R̂Ĥ0Q̂ � �R̂V̂Q̂ (note that from ĤQ̂ � E�Q̂ it fol-
lows: R̂ĤQ̂ � 0 and hence R̂Ĥ0Q̂ � �R̂V̂Q̂). Con-
sequently, 	̂ can be written as

	̂ � �1̂ � R̂V̂�Q̂. (14)

From Eqs. (13) and (14), we define a modified wave
operator Ŵ as

Ŵ � C�1̂ � R̂V̂��1 (15)

or

Ŵ � 1̂C � R̂V̂Ŵ. (16)

Hence, from (13), (14), and (15), we obtain

���� � Ŵ���. (17)

In other words, Ŵ is such that when it acts on the
known eigenvector ��� one obtains the eigenvector
of interest ���� of Eq. (1).

To apply Eq. (17), we consider an orthonormal
complete set of eigenkets of Ĥ0, {�k�, k � 0, 1, . . .}.

Hence, using (16) and the completeness relation ¥k

�k��k� � 1̂, we obtain

Ws� � C�s� � �
j,k

RsjVjkWk�, (18)

where Rsj � �s�R̂�j�, Vjk � �j�V̂�k�, and Wk� � �k�Ŵ���.
In this notation, � is fixed and s � 0, 1, . . . . In view
of Eq. (18), the matrix elements Ws� are not fully
determined because we still do not have the ele-
ments Rsj of the resolvent R̂. They are obtained
through the identity

�1̂E�
�0� � P̂Ĥ0P̂��1̂E�

�0� � P̂Ĥ0P̂��1 � 1̂,

the relationships (4) and (5), and the expression

���Ĥ0R̂ � C��� � ����, (19)

obtained from (13). It follows, after some algebraic
manipulation (see Appendix B), that

�E�
�0� � Es

�0�� Rsj � �sj � Ws���j. (20)

Therefore, substituting (20) into (18) for s 
 �, we
obtain

�E�
�0� � Es

�0��Ws� � �
k

�Vsk � Ws�V�k�Wk� � 0,

k, s � 0, 1, . . . �s � ��, (21)

with [see (7) and (17)]

W�� � 1. (22)

With the matrix elements Ws� obtained from (21),
we can write ���� and E� using (17) (note that E� �
����Ĥ0 � V̂��� � E�

(0) � ���V̂Ŵ���). In fact, if we
consider a subset of N eigenkets of Ĥ0 the set of Eqs.
(21) and (22) is a nonlinear algebraic system for Ws�

with N equations and N unknown Ws�, whose so-
lution is given for

���� � �
k

Wk��k�, (23)

E� � E�
�0� � �

k

V�kWk�, (24)

which is the explicit solution of Eq. (1). In this article,
the system of nonlinear equations has been solved
with Brown’s algorithm [8]. This algorithm solves a
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system of N nonlinear equations in N unknown vari-
ables. The method is based on an iterative procedure
that is a variation of Newton’s method using Gauss-
ian elimination in a similar manner to the Gauss–
Seidel process, with quadratic convergence. Conclud-
ing this section, we note that (21), (22), (23), and (24)
are the fundamental equations of the MPP. From
these equations it follows that our procedure is valid
for any potential V̂ (small or large), whose elements
V�k exist. Hence, it can be applied to many-electron
atomic and molecular systems.

3. Application to Many-Electron
Systems

To apply the MPP to many-electron problems,
we consider LiH, Li2, BH, NH, HF, LiF, CO, N2, BF,
and F2 systems and the Møller–Plesset Hamiltonian
[9]. In this case, the Hamiltonian operator Ĥ0 will be
defined by

Ĥ0 � �
i

F̂�i�, (25)

where F̂(i) is the Fock operator, given (in usual
notation) by

F̂�i� � ĥ�i� � �
j

� Ĵj�i� � K̂j�i��. (26)

For the potential V̂, we have

V̂ � Ĥ � Ĥ0 � �
i
� ĥ�i� � �

j
i

1
rij

� F̂�i��
or

V̂ � �
i
��

j
i

1
rij

� �
j

� Ĵj�i� � K̂j�i��� . (27)

To apply Eqs. (21) and (22), it is necessary to
choose a basis set {�k�} to determine the matrix
elements Vs�. In this context, there are two possibil-
ities: In Section 4, we consider the case where the
basis set {�k�} is composed by the eigenfunctions of
Ĥ0 and in Section 5 we take for {�k�} a basis set
whose elements depend on an arbitrary parameter
to be determined by a variational procedure.

4. MPP With Basis Set of Ĥ0

A usual basis set for many-electron calculations
is formed by Slater determinants that are eigenfunc-

TABLE I ______________________________________________________________________________________________
LiH molecule.

CSFs Type CI and MPM energy (a.u.) � EMPP energy (a.u.)

1 Ref. �7.9807468540 0.9826706486 �7.9893663622
86 S � D �7.9992894548 0.9823435936 �8.0082391018

246 S � T �7.9992969153 0.9823434620 �8.0082466963
418 S � Q4 �7.9992986321 0.9823434317 �8.0082484440

Experimental, �8.0703 a.u. [15]; equilibrium bond length, 3.015 a.u. [16].

TABLE II ______________________________________________________________________________________________
Li2 molecule.

CSFs Type CI and MPM energy (a.u.) � EMPP energy (a.u.)

1 Ref. �14.8680656776 0.9837757308 �14.8821481949
97 S � D �14.8788590814 0.9836736781 �14.8931201708

360 S � T �14.8788605277 0.9836736644 �14.8931216412
858 S � Q4 �14.8788610640 0.9836736593 �14.8931221863

1236 S � Q5 �14.8788610640 0.9836736593 �14.8931221863
1378 S � S6 �14.8788610640 0.9836736593 �14.8931221863

Experimental, �14.9944 a.u. [15]; equilibrium bond length, 5.051 a.u. [16].
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tions of Ĥ0 � ¥i F̂(i). Here, we consider this basis
set. It is composed with Hartree–Fock–Roothaan
reference function ��0�, and configuration state
functions (CSFs) {����} obtained from ��0� �
��1�2 . . . �a�b . . . �N�, by excitations to virtual mo-
lecular spin–orbitals (MSOs) �r, �s, . . . . In this basis
set, we have for matrix elements of V̂

V�k � ����V̂��k� � �. . .�a�b. . .�V̂�. . .�r�s. . .�.

And, by the Condon–Slater rules [10, 11], we obtain

where ��i�j��i�j� is the usual notation for an anti-
symmetrized two-electron integral, equal to
��i�j��i�j� � ��i�j��j�i�.

The results for the ground state of LiH, Li2, BH,
NH, HF, LiF, CO, N2, BF, and F2 systems are pre-
sented in Tables I–X for several MPP basis sets {�k�}
and compared to CI calculations with the same
basis set. We note that our results agree with the CI
results in all cases.

5. MPP With a General Basis Set

The fundamental equations of the MPP can be
used with an arbitrary basis set {�k�}. In particular,
we can consider for {�k�} a basis set composed from
atomic orbitals (AOs) that depend on a variational
parameter �. We will call such a formulation EMPP
and show that the EMPP is an optimization process
to the electronic energy. In fact, it is this aspect of
the approach that has augmented our interest in
developing the MPP because a limited configura-
tion interaction can give results that are better that
various CI calculations with a larger number of
configurations (e.g., see Tables I and III–V). For this,
we remember that in the atomic Gaussian functions
we have for exponents the expression �	ri

2. Then,

TABLE IV _____________________________________________________________________________________________
NH molecule.

CSFs Type CI and MPM energy (a.u.) � EMPP energy (a.u.)

1 Ref. �54.8488173383 0.9906733487 �54.8655336256
75 S � D �54.9069568851 0.9905210699 �54.9242250356

287 S � T �54.9119972471 0.9905078681 �54.9293136659
747 S � Q4 �54.9169194336 0.9904949758 �54.9342830546

1166 S � Q5 �54.9169855568 0.9904948026 �54.9343498123
1385 S � S6 �54.9169955515 0.9904947764 �54.9343599029
1429 S � S7 �54.9169955535 0.9904947764 �54.9343599049
1436 S � O �54.9169955537 0.9904947764 �54.9343599051

Experimental, �55.252 a.u. [17]; equilibrium bond length, 1.9614 a.u. [17].

TABLE III _____________________________________________________________________________________________
BH molecule.

CSFs Type CI and MPM energy (a.u.) � EMPP energy (a.u.)

1 Ref. �25.1133952951 0.9877538256 �25.1265931780
133 S � D �25.1715988609 0.9874202431 �25.1855283040
561 S � T �25.1723535334 0.9874159177 �25.1862925928

1455 S � Q4 �25.1740141708 0.9874063999 �25.1879744022
2247 S � Q5 �25.1740148562 0.9874063960 �25.1879750963
2575 S � S6 �25.1740150341 0.9874063950 �25.1879752765

Experimental, �25.273 a.u. [15]; equilibrium bond length, 2.336 a.u. [16].

V�k �

� �
1
2 �

i, j

��i�j��i�j�
if the determinants

���� and ��k�
are identical
�a � r and b � s�

� ��a�b��r�s� if the determinants
differ by two MSOs
�a � r and b � s�

� 0 in the other cases,
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we introduce a variational parameter � as
��	/�2� ri

2, which can be written as

�	
r�i

�
�
r�i

�
� �	r��i � r��i, (28)

with r��i�r�i/�. In this case, we have

E� � �����Ĥ�����, (29)

where we write ����� to indicate that the wave func-
tion depends on �, that is, the atomic Gaussian
functions in ����� depend on electronic coordinates
as �	r�i

2. A mathematical development shows that
the parameterized energy E�(�) can be written as

E���� � �����Ĥ������, (30)

with

Ĥ� � �
i
��

1
2�2 ��i

2 � �
A

ZA

��r��i � R� A�
� �

j
i

1
��r��i � �r��j��,

(31)

where ��i
2 denotes the Laplacian in the variable r��i.

We note that for � � 1, E� (� � 1) � E� � ����Ĥ����.
Now we can replace, without generality loss, r��i

by r�i in Ĥ� and ����� and note that

Ĥ� �
1
�2 T̂e � V̂�Ne��� �

1
�

V̂e, (32)

where T̂e is the kinetic energy operator of the elec-
trons for � � 1, V̂e is the electronic repulsive poten-
tial operator for � � 1, and

V̂�Ne��� � � �
iA

ZA

��r��i � R� A�
(33)

TABLE V ______________________________________________________________________________________________
HF molecule.

CSFs Type CI and MPM energy (a.u.) � EMPP energy (a.u.)

1 Ref. �100.0218947997 0.9926522720 �100.0409092529
78 S � D �100.1059072605 0.9925323727 �100.1255486955

298 S � T �100.1067029401 0.9925312372 �100.1263503621
751 S � Q4 �100.1088256690 0.9925282077 �100.1284890677

1163 S � Q5 �100.1089101927 0.9925280870 �100.1285742277
1380 S � S6 �100.1089174070 0.9925280768 �100.1285814963
1428 S � S7 �100.1089176378 0.9925280764 �100.1285817289
1436 S � O �100.1089176379 0.9925280764 �100.1285817289

Experimental, �100.527 a.u. [15]; equilibrium bond length, 1.733 a.u. [16].

TABLE VI _____________________________________________________________________________________________
LiF molecule.

CSFs Type CI and MPM energy (a.u.) � EMPP energy (a.u.)

1 Ref. �106.9542217784 0.9878079573 �107.0117294363
111 S–D �106.9544485936 0.9878076616 �107.0119590510
501 S–T �106.9544531704 0.9878076556 �107.0119636843

1479 S–Q4 �106.9544531884 0.9878076556 �107.0119636025
2649 S–Q5 �106.9544531884 0.9878076556 �107.0119637025
3429 S–S6 �106.9544531884 0.9878076556 �107.0119636025
3659 S–S7 �106.9544531884 0.9878076556 �107.0119637025
3700 S–O �106.9544531884 0.9878076556 �107.0119637025

Experimental, �107.502 a.u. [15]; equilibrum bond length, 2.8535 a.u. [16].
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is the Coulombian attractive potential between elec-
trons and nuclei in terms of the parameter �. We
remember that in MPP the Møller–Plesset Hamilto-
nian Ĥ0 for molecular systems is given by (25), i.e.,

Ĥ0 � �
i
��

1
2 �i

2 � �
A

ZA

�r�i � R� A�
� �

j

�Ĵj�i� � K̂j�i���
� T̂e � V̂Ne � 
̂HF,

where 
̂HF is the effective one-electron potential
operator called HF potential and the operator V̂ of
Eq. (27) can be rewritten as

V̂ � �
i
��

j
i

1
�r�i � r�j�

� �
j

� Ĵj�i� � K̂j�i���
� V̂e � 
̂HF. (34)

Hence, the electronic functional obtained from MPP
is

E� � ����Ĥ����

� E�
�0� � �

k

V�kWk�

� ���T̂e��� � ���V̂Ne��� � �
k

���V̂e � 
̂HF�k��k�.

(35)

Then, performing in (35) the necessary mathemati-
cal steps to introduce the transformation (28), it
follows from Eqs. (30)–(33) that

E���� �
1
�2 ���T̂e��� � ���V̂�Ne������

�
1
�
�

k

Wk����V̂ � 
̂HE�k��k�. (36)

Equation (36) is the �-parameterized functional.
The first and second variations relative to parame-
ter � in E�(�) give the extreme condition and its
respective classification. In fact, from Eq. (36) the
condition

�E����

��
� 0 (37)

gives

TABLE VII ____________________________________________________________________________________________
CO molecule.

CSFs Type CI and MPM energy (a.u.) � EMPP energy (a.u.)

1 Ref. �112.6848351562 0.9733710155 �112.9893752392
81 S � D �112.7341415581 0.9733124849 �113.0400320634

310 S � T �112.7373165600 0.9733087159 �113.0432941278
813 S � Q4 �112.7378138944 0.9733081255 �113.0438051010

1213 S � Q5 �112.7378372637 0.9733080978 �113.0438291110
1378 S � S6 �112.7378376116 0.9733080974 �113.0438294685

Experimental, �113.377 a.u. [15]; equilibrium bond length, 2.1318 a.u. [16].

TABLE VIII ____________________________________________________________________________________________
N2 molecule.

CSFs Type CI and MPM energy (a.u.) � EMPP energy (a.u.)

1 Ref. �108.8781363898 0.9711235381 �109.2266689781
81 S � D �108.9541114491 0.9710307133 �109.3049069032

310 S � T �108.9552637513 0.9710293054 �109.3060935834
813 S � Q4 �108.9578747128 0.9710261154 �109.3087824475

1213 S � Q5 �108.9578853931 0.9710261023 �109.3087934465
1378 S � S6 �108.9578864353 0.9710261010 �109.3087945198

Experimental, �109.586 a.u. [15]; equilibrium bond length, 2.073 a.u. [16].
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2���T̂e��� � �3��� �

��
V̂�Ne�����	

� � �
k

Wk����V̂ � 
̂HF�k��k� � 0. (38)

One way of solving Eq. (38) is to use a self-consis-
tent process in the integral that involves the oper-
ator ��/��� V̂�Ne. Another form is to expand this
operator in a Taylor power series (developed in
Appendix A) about � � 1 and consider only the
first-order terms, for example. Then, we obtain

V̂�Ne��� � �2 � ��V̂Ne.

And, Eq. (38) becomes

�3���V̂Ne��� � � �
k

Wk����V̂ � 
̂HF�k��k�

� 2���T̂e��� � 0. (39)

Here, the process consists of the following steps: (1)
After solving the system of Eqs. (21)–(22), obtaining
unknowns Ws�s, we determine the parameter � us-
ing Eq. (39); (2) from Eq. (36) we find the optimized
electronic energy. A fact to note is that

�2E����

��2 � 0,

i.e., the parameter � obtained from (39) gives a
minimum value for E�(�).

6. Results

In Tables I–X, we present the results obtained for
LiH, Li2, BH, NH, HF, LiF, CO, N2, BF, and F2
systems using the CI, MPP, and EMPP approaches
with double-zeta valence (DZV) basis set [12, 13].
All calculations were carried out using the
GAMESS software package [14] with the modifica-
tions we introduced to implement equations of
MPP and EMPP. In Tables I–X, we have the
ground-state energy and also the value of � ob-
tained for each case; the notation S � T, for exam-
ple, means that the calculations have been per-
formed with single, double, and triple excitations.
From Eq. (28), the parameter � modifies the expo-
nents of basis set used; so, the EMPP allows us to
define an atomic basis set that is good for the atom
in that particular molecule. An analysis of the re-
sults shows some important facts. For example, for

TABLE IX _____________________________________________________________________________________________
BF molecule.

CSFs Type CI and MPM energy (a.u.) � EMPP energy (a.u.)

1 Ref. �124.0810197206 0.9795286204 �124.2748212479
81 S � D �124.0988769803 0.9795090242 �124.2930518928

310 S � T �124.0993883276 0.9795084631 �124.2935739374
813 S � Q4 �124.0994669009 0.9795083768 �124.2936541544

1213 S � Q5 �124.0994675475 0.9795083761 �124.2936548146
1378 S � S6 �124.0994675531 0.9795083761 �124.2936548203

Experimental, �124.777 a.u. [15]; equilibrium bond length, 2.3848 a.u. [16].

TABLE X ______________________________________________________________________________________________
F2 molecule.

CSFs Type CI and MPM energy (a.u.) � EMPP energy (a.u.)

1 Ref. �198.7075347784 0.9793584644 �199.0244658394
86 S � D �198.7933972619 0.9792998760 �199.1121406336

246 S � T �198.7934503352 0.9792998398 �199.1121948288
418 S � Q4 �198.7934923465 0.9792998111 �199.1122377281

Experimental, �199.670 a.u. [15]; equilibrium bond length, 2.679 a.u. [16].
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systems Li2, CO, N2, LiF, BF, and F2 an EMPP
calculation with the reference function ���0� only (in
���0� the atomic basis set is modified by the inclusion
of the parameter �) gives a better result than a CI
with the original atomic basis set. A similar result is
verified for systems LiH, BH, NH, and HF when we
compare the value for ground-state energy ob-
tained by a CI in the original basis set and the
results from EMPP with mono- and double excita-
tions only but using the modified atomic � basis set.
In the results, the basis of CSFs for systems LiH and
BH correspond to a full CI while for the others to a
truncated CI. So, our results indicate that EMPP can
be used with two finalities: to reduce the number of
CSFs in the determination of correlated electronic
energy and determine Gaussian exponents for the
atomic basis set considering the atom in molecules.

7. Summary

In this article we presented a procedure to solve
the electronic Schrödinger equation for molecular
systems based on the partitioning technique of Hil-
bert space of the problem. This approach is a gen-
eralization of the Löwdin technique, which allows
us to introduce a variational parameter out of
which we can optimize the electronic energy of a
particular state of the studied systems.

A characteristic of the MPP is that it has no
dependence on the particular form of the Hamilto-
nian Ĥ (Ĥ0 � V̂), i.e., the V̂ potential in Ĥ may be
small or large. Besides, the MPP does not present
problems of convergence, typical of perturbation
theory. Another characteristic of this approach is
that all the results of the MPP reproduce the CI
calculations for the same configuration space func-
tions, as shown in Tables I–X. The MPP, however,
does not use any matrix diagonilization process
and allows us to introduce easily an optimization
procedure (EMPP) to electronic energy and the ba-
sis set used. The results obtained through the EMPP
in all cases are better than the corresponding CI
calculations for the original LCAO basis set. Except
for systems LiF and HF, the results obtained by
means of the EMPP are better than the correspond-
ing perturbation calculations, until second order,
according to Table XI. We remark that in some cases
the EMPP calculations, using only the HF reference,
are already better than various CI calculations. In
conclusion, our results indicate that the EMPP can
be used to reduce the number of configurations in a
CI calculation, optimize Gaussian basis sets, and,

more important, correct CI results a posteriori to
minimize the error arising from an inadequate
LCAO basis set; for this, the fundamental equations
are (21), (22), (36), and (39).

Appendix A

In this appendix, we present the expansion in
Taylor series, about � � 1, of the operator V̂�Ne of the
expression (33),

V̂�ne��� � � �
iA

ZA

��r�i � R� A�
.

The expansion gives us

V̂�Ne��� � V̂�Ne�� � 1�

� �� � 1�
�

��
V̂�Ne������1 � . . . . (40)

But, because

�r�i�2 � r�i � R� A � �r�i � R� A�2 � r�i � R� A � �R� A�2,

Eq. (40) becomes, until first order,

V̂�Ne��� � V̂Ne � �� � 1� �
iA

ZA

�r�i � R� A�
� . . . , (41)

where the other terms are smaller and therefore can
be neglected. Then, (41) is rewritten as

V̂�Ne��� � �2 � ��V̂Ne.

TABLE XI _____________________________________
MP(2) energies.

Molecule MP2 energy (a.u.)

LiH �7.9807
Li2 �14.8832
BH �25.1495
NH �54.9165
HF �100.1421
LiF �107.0827
CO �112.8877
N2 �109.1063
BF �124.2379
F2 �198.9556
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Appendix B

In this appendix, we will indicate the mathemat-
ical steps to obtain Eq. (20). We begin from

�1̂E�
�0� � P̂Ĥ0P̂��1̂E�

�0� � P̂Ĥ0P̂��1 � 1̂. (42)

Then, multiplying (42) by P̂ (note that P̂2 � P̂) we
have

P̂�1̂E�
�0� � P̂Ĥ0P̂��1̂E�

�0� � P̂Ĥ0P̂��1P̂ � P̂ (43)

and using (8) it follows that

E�
�0� � P̂Ĥ0R̂ � P̂. (44)

Now, with Eqs. (4)–(6) we obtain

�1̂E�
�0� � Ĥ0�R̂ �

��������
C Ĥ0R̂ � 1̂ �

�������
C .

(45)

And, if we multiply (45) on the left by �s� and on the
right by �j� we have

�s��1̂E�
�0� � Ĥ0�R̂�j� � �s�������� Ĥ0R̂

C
� j	

� �s�j� � �s����
����j�

C . (46)

Substituting Eq. (19) into Eq. (46) and utilizing Eq.
(17), we obtain

�s��1̂E�
�0� � Ĥ0�R̂�j� � �s�Ŵ������j� � �s�j� (47)

and, as

Ĥ0�s� � Es
�0��s�, (48)

it follows, finally, that

�E�
�0� � Es

�0�� Rsj � �sj � Ws���j. (49)
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3. Löwdin, P.-O. Phys Rev A 1965, 139, 357.
4. McWeeny, R. Methods of Molecular Quantum Mechanics; Aca-

demic Press: New York, 1978; p. 40.
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