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Deformed defects
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We introduce a method to obtain deformed defects starting from a given scalar field theory which possesses
defect solutions. The procedure allows the construction of infinitely many new theories that support defect
solutions, analytically expressed in terms of the defects of the original theory. The method is general, valid for
both topological and nontopological defects, and we show how it extends to quantum mechanics and how it
works when the scalar field couples to fermions. We illustrate the general procedure with several examples,
which support kinklike or lumplike defects.
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Defects play an important role in modern developments
several branches of physics. They may have a topologica
nontopological profile, and in field theory the topologic
defects usually appear in models that support spontan
symmetry breaking, with the best known examples be
kinks and domain walls, vortices and strings, and monopo
@1#. Domain walls, for example, are used to describe p
nomena having rather distinct energy scales, as in high
ergy physics@1,2# and in condensed matter@3#.

The defects that we investigate in this Rapid Commu
cation are topological or kinklike defects, and nontopologi
or lumplike defects. They appear in models involving
single real scalar field, and are characterized by their am
tude and width, the width being related to the region in sp
where the defect solution appreciably deviates from
vacuum states of the system. Interesting models that sup
kinklike defects involve polynomial potentials such as thef4

model, periodic potentials such as the sine-Gordon mo
and even the vacuumless potential recently considere
@4,5#. We shall investigate defects by examining their so
tions and the corresponding energy densities, to provid
quantitative profile for both topological and nontopologic
defects.

We introduce a general procedure to create deformed
fects, starting from a known solvable model in one spa
dimension. We start with topological defects, and we sh
below that the proposed scheme generates, for each g
model having topological solutions, infinitely many ne
solvable models possessing deformed topological defe
We examine the stability of kinklike defects to exten
the procedure to quantum mechanics. We also investi
lumplike defects to generalize the procedure to both to
logical and nontopological defects. Finally, we couple t
scalar field to fermions to show how the procedure works
the Yukawa coupling.

The interest in kinklike defects is directly related to t
role of symmetry restoration in cosmology@1,2# and in con-
densed matter@3#. Also, they are particularly important in
other scenarios, where they may induce interesting effect
significant example concerns the behavior of fermions in
background of kinklike structures@6#. The main point here is
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that symmetry breaking induces an effective mass term
fermions. In the background of the kinklike structure t
fermionic mass varies from negative to positive values, a
this fractionalizes the fermion number@6#. The topological
behavior of the kinklike defect is central to fermion numb
fractionalization@6,7#. In the language of condensed matte
spontaneous symmetry breaking may be interpreted as
opening of a gap, and may be of good use in seve
situations—see, for instance@8–10#, and references therei
for applications. Another possibility concerns the role
kinklike defects as seeds for the formation of no
topological structures@11,12#. This line of investigation has
been implemented in case the discrete symmetry is chan
to an approximate symmetry@13,14#, and also when the sym
metry is biased to make domains of distinct but degene
vacua spring unequally@15#.

In our procedure to create deformed defects, we defo
the system in a way such that one increases or decrease
amplitude and width of the defect, without changing the c
responding topological behavior. Within the condensed m
ter context, one provides a way to increase or decrease
mass gap for fermions, introducing an important mechan
to tune the gap for practical purpose.

The interest in lumplike defects renews with the expr
sive number of recent investigations on issues related to
chyons in string theory, since there are scenarios wh
branes may be seen as lumplike defects which engende
chyonic excitations@16–25#.

We consider a single real scalar field. The equation
motion for static solutionsf5f(x) is given by

d2f/dx2 5V8~f!. ~1!

Here V5V(f) is the potential, and the prime stands for
derivative with respect to the argument. We search for fi
configurations which ‘‘start’’ in a given minimumf̄ of
V(f), with zero ‘‘velocity,’’ that is, which obey the bound
ary conditions: limx→2`f(x)→f̄ and limx→2`df/dx→0.
Thus, we use the equation of motion to get

df/dx56A2V~f!. ~2!
©2002 The American Physical Society01-1
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The energy associated with these solutions is equally sh
between gradient and potential portions

E52Eg5E
2`

`

dxS df

dx D 2

~3!

52Ep52E
2`

`

dx V~f!. ~4!

We now deal with topological or kinklike defects. In th
case we consider

V5 1
2 @W8~f!#2, ~5!

whereW(f) is a smooth function of the fieldf. We assume
that there existv i , i 51, . . . ,n such thatW8(v i)50. These
singular points ofW(f) are absolute minima of the poten
tial. In such a large class of models the equation of mot
becomesd2f/dx25W8(f)W9(f). The energy associate
with f(x) can be minimized to

EBPS
6 56E

2`

`

dx W8~f!
df

dx
~6!

if the field configuration obeys

df6/dx56W8~f6!. ~7!

Their solutions are named Bogomol’nyi-Prasad-Sommerfi
~BPS! states@26,27#. As we know, for kinklike defects the
equation of motion exactly factorizes@28# into the two first-
order equations~7!. Thus, we can introduce the topologic
current

Ja5eab]bW~f!, ~8!

which makes the topological charge equal to the energy
the topological solution.

Let us now consider a well-defined bijective functionf
5 f (f) with a nonvanishing derivative. This function allow
introducing a new theory, defined by thef-deformed potential

Ṽ~f!5
V@ f ~f!#

@ f 8~f!#2
5

1

2 S W8@ f ~f!#

f 8~f!
D 2

. ~9!

In this caseṽ i5 f 21(v i), i 51,2, . . . ,n are minima, and the
new theory possesses topological defects which are obta
from the solutionsf6(x) of the previous theory through th
relation

f̃6~x!5 f 21@f6~x!#. ~10!

To prove this statement we notice that the first-order eq
tions of the new theory are

df

dx
56W̃8~f!56

W8„f ~f!…

f 8~f!
. ~11!
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Thus, the solutions satisfyf @f̃6(x)#5f6(x), or better
f̃6(x)5 f 21@f6(x)#, as written in Eq.~10!.

We notice that the deformed defectsf̃6(x) connect
minima corresponding to those interpolated by the soluti
f6(x) of the original potential. The energy of the deforme
defects depends on the deformation one introduces. It ca
written as

ẼBPS5E
2`

`

dxS df̃

dx
D 2

5E
2`

`

dxS d f21

df D 2S df

dx D 2

. ~12!

We see that for the class of deforming functionsf (f) satis-
fying u f 8(f)u>1 (<1), the energy is decreased~increased!
relative to the undeformed defect. In particular, the deform
tion f (f)5rf leads to trivial modifications of parameters
the potential, decreasing (ur u.1) or increasing (ur u,1) the
energy of the defect.

At this point, two important remarks are in order: firstl
by taking f 21 instead off one defines the inverse deform
tion, that is thef 21 deformation ofṼ(f) recovers the poten
tial V(f). Secondly, thef ~or the f 21) deformation can be
applied repeatedly leading to an infinitely countable num
of solvable problems for each known potential bearing to
logical solutions. In fact, each pair (V, f ) defines a class o
solvable problems related to each other through repeated
plications of thef ~or f 21) deformation prescription.

We concentrate on investigating stability of defects. T
leads us to quantum mechanics, where the Schro¨dinger-like
Hamiltonian has the form

H52 d2/dx2 1U~x!. ~13!

Here the quantum mechanical potentialU(x) is given by

U~x!5
d2V~f!

df2 U
f5f(x)

, ~14!

wheref(x) is the defect solution under investigation. In th
case of kinklike defects the potential is written asV(f)
5(1/2)@W8(f)#2, and the Hamiltonian can be factorize
@29,30# asH5S†S, where the first-order operatorS has the
form

S5 d/dx1u~x! ~15!

and u(x)5d2W/df2, to be calculated at the kinklike solu
tion f5f(x). We use this to obtain the~bosonic! zero mode
in the form

h0~x!;e2*xdy u(y). ~16!

We now usef (f) to deform the model. The modified Hami
tonian can be written asH̃5S̃†S̃, whereS̃ is now given by
S̃5d/dx1ũ(x), with

ũ~x!5W9~ f ~f!!2
W8~ f ~f!!

f 8~f!

f 9~f!

f 8~f!
~17!
1-2
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to be calculated at the kinklike solutionf(x). Thus, the de-
formed bosonic zero mode is given by

h̃0~x!;e2*xdy ũ(y). ~18!

Let us now consider some examples. Firstly, we cons
f (f)5sinhf, in which case thef deformation is referred to
as the sinh deformation. For this choice, Eqs.~9!, ~10!, and
~12! are easily rewritten and one sees that the Bogomol
bound is lowered by the deformation. On the other hand
one considers the inverse deformation, takingf (f)
5arcsinhf, the energy of the deformed defects is grea
than that of the original potential. Specifically, let us discu
the f4 theory, for which the potential is given byV(f)
5(1/2)(12f2)2 ~we take the rescaled theory with dime
sionless field and coordinates!. The kinklike topological de-
fects for this model are well known:f6

(0)(x)56tanhx ~us-
ing the translation invariance, we fixx050). They have
energyEB

(0)54/3, distributed around the origin with densi
«0(x)5sech4(x). In quantum mechanics, the related pro
lem is described by the modified Po¨sch-Teller potential
U(x)5426 sech2(x), which supports the normalized zer
mode h0(x)5A3/4 sech2(x) ~at zero energy! and another
bound state, with higher energy.

The sinh-deformedf4 model has potential given by

Ṽ~f!5 1
2 sech2f~12sinh2f!2 ~19!

for which the deformed defects connecting the minima
6arcsinh(1) are

f̃6
(1)~x!56arcsinh@ tanh~x!#. ~20!

See Fig. 1 for a plot of the topological defects.
The W̃ function for this example is given by

W̃~f!54 arctan~ef!2sinhf. ~21!

The deformed defects~20! have energyEB5(p22), which
is slightly smaller than the energy of the defects of thef4

potential. The energy density of the deformed defects
given by

«̃1~x!5
sech4~x!

11tanh2~x!
~22!

which is more concentrated around the origin than the rela
quantity, in thef4 case, as expected. See Fig. 2 for a plot
the energy density of the topological defects.

Consider now thef4 potential deformed withf (f)
5arcsinhf, that is, take the potential

Ṽ~f!5 1
2 ~11f2!~12arcsinh2f!2. ~23!

This is the potential which, by performing the deformati
with sinh as discussed above, leads to the undeformedf4

model. The BPS solutions, in this case connecting minim
6sinh(1), are given by
10170
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f̃6
(21)~x!56sinh@ tanh~x!#. ~24!

These are deformed defects; see Fig. 1.
The correspondingW function is given by

W̃(21)f)52 1
6 arcsinh3f1~ 3

4 1 1
2 f2!arcsinhf

1 1
4 fA11f2~122arcsinh2f!. ~25!

The energy of the deformed defects in Eq.~24! is ẼB
51.641, which is greater than that for thef4 model and has
a broader distribution

«̃21~x!5cosh2~ tanhx!sech4~x!, ~26!

which is depicted in Fig. 2.
We see that the sinh deformation diminishes the energ

the BPS solutions narrowing its distribution, and the arcs
deformation operates in the opposite direction, increasing
energy and spreading its distribution. These deformations
smooth deformations, which lead to potentials similar to
original potential. They map the interval (2`,`) into itself,
and their derivativesf 8(f) have no divergence at any finit
f. They teach us how to deform a given defect, changing
parameters in the two possible directions, decreasing or

FIG. 1. Plot of the deformed defects. The thick line shows
kink of the thef4 model. The other lines show deformed kinks, t
dashed-dotted line represents the sinh deformation, and the d
line represents the arcsinh deformation.

FIG. 2. Plot of the energy density of the deformed defects. T
thick line refers to thef4 model. The other lines refer to the othe
cases, as explained in the previous figure.
1-3
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creasing the amplitude and width of the original defe
Since the amplitude and width of the defect are importan
characterize the defect, the proposed deformations are o
rect interest to applications involving kinks and walls in hi
energy physics and in condensed matter.

The recent interest in tachyons@18–25# has inspired us to
extend the above procedure to nontopological or lump
defects. We see that iff(x) solves the equation of motio
~1!, then f̃(x)5 f 21(f) solves the equation of motion fo
the deformed model with potential Ṽ(f)
5V@ f (f)#/@ f 8(f)#2. This is always true, for solutions tha
obey the first-order Eqs.~2!, with energy density equally
shared between the gradient and potential portions.

A model which supports nontopological or lumplike sol
tions is

Vl~f!5 1
2 f2~12f2!. ~27!

It has the solutions

f6
l ~x!56sech~x!. ~28!

In quantum mechanics, the related problem has the pote
U(x)5126 sech2(x). This potential has the same form a
the modified Po¨sch-Teller potential@see the comments jus
above Eq.~19!#. However, it plots differently, shifting the
values ofU(x) in such a way that the zero mode is no
identified with the upper bound state, making the low
bound state negative, signaling for tachyonic excitation.

We now consider deforming the lumplike solutions wi
sinhf. We get

Ṽl~f!5 1
2 tanh2f~12sinh2f!. ~29!

The equation of motion forf5f(x) is

d2f

dx2
5tanhf~12sinh2f22 tanh2f!. ~30!

It supports the deformed lump solutions

f̃6
l 56arcsinh@sech~x!# ~31!

as we can verify straightforwardly. The deformation proce
may continue, and may also be done in the reverse direc
using arcsinhf.

Similar investigations apply to other potentials. For i
stance,V(f)52f2(12f) supports the lumplike solution
f l(x)5sech2(x)—see Ref.@17# for further details on thef3

model. We deform the lumplike solution with arcsinhf. We
get

Ṽl~f!52~11f2!arcsinh2f~12arcsinhf!. ~32!

The deformed lumplike defect is

f̃ l~x!5sinh@sech2~x!#. ~33!
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We can make the model supersymmetric introducing
propriate Majorana spinors. In this case, in general
Yukawa coupling is controlled byY(f), which has the form

Y~f!5
d

df
A2V~f!. ~34!

This leads to the usual couplingY(f)5W9(f) when the
potential is given byV(f)5(1/2)@W8(f)#2, which is the
form one uses to investigate kinklike structures. If one u
f (f) to change the model fromV(f)5(1/2)@W8(f)#2 to
Ṽ(f)5(1/2)@W8„f (f)…/ f 8(f)#2, the Yukawa coupling
should also change fromY(f)5W9(f) to

Ỹ~f!5W9„f ~f!…2
W8„f ~f!…

f 8~f!

f 9~f!

f 8~f!
. ~35!

The importance of the deformation procedure that
have introduced enlarges if one recognizes that it admits
formations which lead to very different potentials, bearing
similarity to the original potential. Such deformations a
different, and may lead to further interesting situations. F
instance, we consider the functionf (f)5tanhf. It maps the
interval (2`,`) into the limited interval (21,1), and this
allows the introduction of new effects, as we illustrate belo

We consider the potential

V~f!5 1
2 ~12f2!3. ~36!

This potential is new. It is unbounded below, containing
maximum atf50 and two inflection points at61. In this
case the modified potential becomes

Ṽ~f!5 1
2 sech2f, ~37!

which is the vacuumless potential considered in@4,5#. In Ref.
@5# the vacuumless model was shown to support kinkl
solutions of the BPS type. This result indicates that
model ~36! may also support this kind of solution. Indee
it is astonishing to see that the potential~36! supports the
kinklike defects

f~x!56
x

A11x2
~38!

which connect the two inflection points of the potentia
These defects are stable, and they can be seen as defo
tions of the defects

f~x!56arcsinh~x!, ~39!

which appear in the model defined by the potential of E
~37!. As far as we know, this is the first example whe
kinklike defects connect two inflection points. In the rece
Ref. @31# one has found another model, somehow similar
the above one, but there the solution connects a local m
mum to an inflection point.
1-4
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The solutions~38! are stable, and the Schro¨dinger-like
equation that appears in the investigation of stability is
fined by the Hamiltonian

H52
d2

dx2
112

x221/4

~x211!2
. ~40!

The potential is a volcanolike potential, which supports
zero mode and no other bound state. The~normalized! wave
function of the zero mode ish0(x)52(2/3p)1/2(x2

11)23/2. This should be contrasted with the zero mode
the vacuumless potential, which is given by@5#: h̃0(x)
5(1/p)1/2(x211)21/2. We notice that the two zero mode
localize very differently in space.

The present work is of direct interest to investigatio
concerning systems described by two real scalar fields
r
e,

Re

s.

10170
-

e

f

as

considered, for instance, in Refs.@32,33#. Also, it may be of
some use in more complex situations, involving three
more scalar fields, in scenarios such as the one where
deal with the entrapment of planar network of defects@34#,
or with the presence of nontrivial solutions representing
bits that connect vacuum states in the three-dimensional
figuration space@35#.

The deformation scheme that we have presented may
work in other contexts, in particular in the case where o
couples the scalar field to gravity in higher dimensions.
have found interesting investigations in Refs.@36–38#, and
we are now considering the possibility of extending the d
formation procedure to brane-world scenarios.

We would like to thank C.G. Almeida, F.A. Brito, and R
Menezes for discussions, and CAPES, CNPq, PROCAD
PRONEX for partial support.
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