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Abstract
In the last 40 years, low energy electron diffraction (LEED) has proved to be the most reliable
quantitative technique for surface structural determination. In this review, recent developments
related to the theory that gives support to LEED structural determination are discussed under a
critical analysis of the main theoretical approximation—the muffin-tin calculation. The search
methodologies aimed at identifying the best matches between theoretical and experimental
intensity versus voltage curves are also considered, with the most recent procedures being
reviewed in detail.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

The experimental use of electrons as a tool for probing surfaces
can be traced back to the time around the first quarter of
the 20th century when the wave character of electrons was,
for the first time, experimentally demonstrated. Preliminary
works by de Broglie, with respect to the wave nature of
particles, led Elsasser [1] to interpret the results by Davisson
and Kunsman [2] as somehow related to the crystal structure.
A more complete account of this possibility of electrons giving
information about crystal surfaces was provided by Davisson
and Germer in 1927 [3, 4]. The potential impact of electron
diffraction on surface structural determination is illustrated
by the fact that Wood [5], when presenting a seminal paper
about the nomenclature of surface crystallography, mentions
the activity in low energy electron diffraction (LEED; then
called slow electron diffraction) as an important reason for
such nomenclature.

Despite this early evidence of electron diffraction as
a phenomenon that could be applied to surface structural
determination, its use as a routine tool was partially prevented
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by the requirement of keeping the surface under study
uncontaminated (or contaminated in a controllable manner)
during the experiment. The experimental time interval is in
the range of hours, during which the pressure around the
sample must be kept at least at 10−10 Torr (1 Torr = 1 mm
Hg = 133.322 Pa). This became possible only after the
development of ultra-high-vacuum (UHV) techniques in the
1960s. Another aspect that contributed to the delay in an
effective application of LEED to surface studies was the lack
of a theoretical approach to deal with the strong interaction
of electrons with surface atoms. The large cross section
of electron–atom scattering, mainly due to particle charge,
results in an interaction that is much more complex than in
x-rays, requiring a dynamic (multiple scattering) treatment.
Besides, the computer codes and equipment presently used
in calculations were not available before the middle of the
20th century. Since then, LEED has been responsible for the
structural determination of most solved surfaces [6–8].

Traditional crystallographic methods, using x-ray scatter-
ing, give information about the bulk structure. This results
from the fact that, as each atomic plane scatters just a small
portion of the incident radiation, the collectible scattered
beams essentially come from internal planes of the crystal. The
strong electron–atom interaction in the case of LEED results
in a small penetration depth for the incident beam, with each
atomic plane scattering a significant portion of the incident
beam, so that information carried out by the scattered electrons
essentially describes the first few layers of the sample.

The low energy electrons used as a probe in LEED
have a complex interaction with the first few layers of
atoms, a phenomenon called the multiple scattering process
[9–11], where the incident electrons are elastically scattered
more than once. This multiple scattering process occurs
not only in the scattering of electrons by the atoms within
the layers, but also between different layers. Due to the
complexity of this scattering process, as compared with x-
ray diffraction, the LEED technique presents a significant
theoretical disadvantage: the impossibility (or at least a
difficulty) of directly ‘inverting’ experimental data using,
for example, an approach similar to the Patterson function
method [12].

The structural determination of a surface via LEED is a
process with two stages. First, after preparing the sample and
placing it in appropriate experimental conditions, the scattered
beam intensities are collected and numerically treated as a
function of energy of the incident beam, in different directions.
These curves are usually called LEED-IV curves, since the
incident electron energy is a function of the voltage applied to
the electron gun. Second, one must formulate models for the
surface and perform a theoretical calculation of the scattered
intensity as a function of voltage, assuming the existence of
long-range order on the surface. This is then followed by a
quantitative comparison of the two sets of curves, experimental
and theoretical. To perform the calculations, it is necessary
to assume values for a set of structural and non-structural
parameters, each significantly affecting the calculation output.
An eventual coincidence between theoretical and experimental
curves supports the belief that the set of parameters used in

the theory corresponds to the actual surface. Thus, structural
determination involves a search process of an adequate set of
parameters for which the degree of coincidence between the
two sets of curves is maximized.

As described above, LEED structural determination
requires a calculation process in order to computationally
mimic the structure of the real surface. A model for the
surface structure, having as an initial guess the bulk structure
and other information of experimental or theoretical nature,
is conceived and a set of theoretically calculated LEED-IV
curves are computed. To do this, it is necessary to assume
sensible values for a large number of structural and non-
structural parameters, namely inter-planar distances, atomic
coordinates within the unit cell, phase shifts associated to the
scattering potential, parameters related to thermal effects like
the Debye temperature for bulk and surface layers, the muffin-
tin zero potential, etc. Therefore, the structural determination
of surfaces using LEED essentially becomes a search problem.
The surface determination is ideally achieved when it becomes
possible to fit, up to an acceptable degree, the two sets
of curves, experimental and theoretical. These curves are
compared to each other using a reliability factor (R factor)
which constitutes a quantitative measure of the degree of
agreement between them [9]. There are several definitions for
the R factor but what matters the most is that it represents
the best fitting between the curves. A perfect fitting is, in
fact, impossible, as a result of experimental errors and the
not-so-perfect adequacy of the proposed theoretical model. It
is important to be aware that any theoretical model involves
approximations, to a higher or a lower degree. For carefully
obtained experimental curves, the search for the best agreement
between the two sets of LEED-IV curves is theoretically done
in two ways: (a) by perfecting and improving the theoretical
model that gives support to the calculations and (b) by varying
the structural and non-structural parameters for the adopted
theoretical model in a more efficient way. In the second case,
as the number of possible structures is large and the theoretical
curves are strongly dependent on the parameter values, it is
essential to establish a route for varying these parameters. The
R-factor values at each point in the parameter space form a
hypersurface with several maxima and minima. In the search
process the structural determination is achieved when it is
possible to identify the global minimum among the several
minima for the R factor. The R factor is then a cost function
that must be minimized. Despite being necessary to establish
a route for determining a global minimum [13], a critical
problem of the search is how to be sure that a global minimum
has been achieved as opposed to simply a local minimum.

In the last 15 years, higher quality datasets were made
possible by technical advances such as (a) the use of channel
plates as a detector for the diffracted beams instead of the
standard phosphor screen [6, 14, 15] and (b) the development
of low current electron guns that allowed the design of LEED
optics for applications on sensitive samples where nanoampere
or picoampere levels are required [16–19]. Despite these
technical advances, the technique still uses basically the
same procedures that were used when a computer-controlled
acquisition process was adopted [20, 21]. On the other hand,
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more advances have been observed in the analysis of the
experimental datasets. Therefore, in this review, we focus
on recent contributions to the theoretical aspects of LEED
structural determination.

This paper is organized as follows. In section 2, theoretical
approaches to the problem are discussed including approaches
for a better description of the scattering potential, the extension
of the LEED technique to single nanostructures, the tensor
LEED approximation and the use of direct methods to recover
structural information from the LEED pattern. In section 3
advances in the search process for maximizing the coincidence
between theoretical and experimental LEED-IV curves are
presented. Section 4 contains the conclusions and perspectives.

2. Theoretical aspects

2.1. The electron scattering potential

In the surface structure determination by LEED, the interaction
of the incident electrons with the crystal constituents has to
be described through a multiple scattering process and, thus,
the crystal potential has to be theoretically modeled. In fact,
nearly all previous LEED calculations have been performed
by employing an average potential, using a ‘muffin-tin’ (MT)
shape [22, 23] for the expansion of the wavefunctions in
order to describe the multiple scattering process. In this
approximation, the potential is averaged around the ionic core
within a chosen radius (rMT) and assumed constant in the
interstitial region between the atoms as shown in figure 1. The
assumption of a constant inter-atomic potential is certainly a
drastic approximation, particularly when the electron kinetic
energy is close to the value of the constant potential. However,
although this theoretical approximation has been generally
used in solid state physics and surface physics, and has shown
good results for several materials like metals, it does not work
so well for materials with covalent bonds, where the potential is
known to be much less isotropic. This inadequacy also occurs
for some classes of metal oxides, where effects of charge
transfer between oxygen and metal atoms must be taken into
account.

In order to obtain the theoretical LEED-IV curves, an
MT potential is considered for the process of electronic
scattering from individual atoms in the surface region and
these calculations yield the phase shifts for the scattering
process. As the phase shifts are the quantities that determine
the conditions for the diffraction process, the potential used
in the calculation is very important for the accuracy of the
structural determination. For typically covalent materials,
like semiconductors, the LEED analysis always shows a
poorer theory–experiment agreement (higher R factor) when
compared to the values obtained for metals. In fact, the choice
of the ‘right’ MT radii for the atoms is very difficult and,
usually, they have been arbitrarily adjusted in order to reach
a good theory–experiment agreement.

Ideally, the phase shifts should be evaluated employing
a full potential calculation. In fact, there are a number
of different approaches that have been proposed for bulk
electronic structures [24–27]. However, these approaches have

Figure 1. Schematic representation of the MT approximation used in
LEED to evaluate the scattering phase shifts.

not yet been applied to surfaces, mainly as a result of the
amount of computer time required.

Hence, no great advance in the phase shift calculations
for low energy electron scattering has been verified in the
last decade except for two approaches that seem to be useful
in LEED analysis, namely the optimized MT potential and
the multi-slice finite difference method. The optimized MT
potential proposed by Rundgren [28] allows a better estimation
of the MT radii, while the multi-slice finite difference method
for the full potential calculation, as proposed by Wu et al [29],
seems to be a promising procedure for theoretically obtaining
the low energy electron diffraction spectra.

2.1.1. The optimized muffin-tin potential. To improve the
scattering potential used to calculate the electron phase shifts,
Rundgren [28] suggested a procedure for elastic electron
scattering in a surface slab that searches for the best radius
of the MT sphere which minimizes the potential discontinuity
between the spherical and interstitial regions. These
discontinuities may produce standing electron waves in the
MT atoms, generating undesirable scattering resonances [30].
Thus, resonance features in phase shifts and differential
scattering cross sections are almost eliminated. Although this
effect is more pronounced in the low energy range, it has been
shown that such corrections may reduce the reliability factor,
leading to a more precise structural determination [30].

In the conventional MT potential calculations, electronic
densities are obtained from the contributions of neutral atoms,
usually from atomic self-consistent relativistic calculations.
The total potential for an electron moving elastically, with
energy E through the surface slab, is obtained from a
superposition of free-atom potentials. This procedure
generates spherical potential wells for the atoms of the surface
slab (Vsph(r)), associated with the Madelung potential (VM(r)),
this due to nonzero valence. There is also the measured
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surface core level shifts (VCL) and the inherent exchange–
correlation potential (Vxc(E, r)) of the free atoms modeled by
a local density functional. With the aim of taking into account
the surface core level shifts, Rundgren proposed a different
approach, which resulted in the methodology presented below
[28, 31].

The total potential can be written as

VT(E, r) = Vsph(r)+ VM(r)+ VCL + Vxc(E, r). (1)

A crystal atom i is modeled as a charged sphere of radius
Ri defined by the condition that the electron density ρi(r), for
r < Ri , matches the nuclear charge Zi and valence νi , so that

∫ Ri

0
4πρi(r)r

2 dr = Zi + νi . (2)

The MT spheres of potential VT(E, r) are assumed to be
centered onto the atomic lattice points, without overlapping but
touching each other at a point along the line between the nuclei,
with radii r(MT)i (in proportions determined by the atomic
species). In principle, such radii are constant with respect to
energy. The potential in the region between the spheres is also
assumed constant. This model shows a potential discontinuity
at the MT radii and, for the electron scattering process, these
steps are responsible for resonance effects in the phase shifts.
However, the definition of the MT radii for each system, as
well as the value of the potential at the MT radius [32], is not
straightforward.

According to Loucks’s prescription [23], the interstitial
potential of a surface slab with N atoms is

V0(E) =
N∑

i=1

wi

∫ Ri

i
4πVxc(E, r)r

2 dr (3)

where wi is a renormalization factor and ri is the radius of
shells surrounding the MT spheres. At the MT radii, r(MT)i , the
crystal potential has steps of height

si (E) = VT(E, ri )− V0(E, r1, r2, . . . , rN ) (4)

for r � ropt(i), where ropt(i) is the radius corresponding to the
optimum value. By imposing the minimization condition for
the quantity

N∑
i=1

wi

[
si (E)−

N∑
j=1

w j s j (E)

]2

(5)

the potential steps si (E) approach the step average as the
r(MT)i radii are successively adjusted and their optimum values
(ropt(i)) give rise to a common (averaged) potential step save(E)
at all MT radii. In fact, the best radius is the one which
minimizes the potential jump between the sphere and the
interstitial region. Thus, a continuous potential can be obtained
by

V opt
T (E, r) = VT(E, r)− save(E); (r � ropt(i)). (6)

This kind of potential is supposed to overcome difficulties
like defining an MT radii appropriate for the crystal under

study and to avoid resonance effects due to discontinuities
in the potential. Also, the inclusion of an energy-dependent
interstitial potential, related to the real part of the inner
potential (V0r ), as defined in LEED, is allowed in a natural way.
In the usual LEED energy range, the V0r versus E curve can
be well approximated by an analytical expression with three
adjustable parameters c0, c1 and c2 [33], given by

V0r (E) = E − V const
0r + c0 + c1√

E + c2
(7)

where the fit is a three-dimensional nonlinear minimization
problem. These parameters are adjusted according to the
specific sample composition (see, for example, [30, 34, 35]).

This optimized MT potential approach has proved to be
suitable for the calculations of the LEED-IV curves for metal
oxides and alloys. For example, Nascimento et al [30] have
used this approach in a structural LEED analysis of the (001)
surface of the metal oxide Ca1.5Sr0.5RuO4 and concluded that
an acceptable final theory–experiment agreement was obtained
when the optimized MT radii phase shifts were used. This
method has also been applied in the studies of the Fe3O4(100)
surface [36, 37], clean surfaces of α-Fe2O3(0001), to α-
Cr2O3(0001) bulk single crystals [38] and also for the partial
dissociation of water on Fe3O4(100) [39], where it has been
observed that it leads to reliable results. Derry et al [40] have
also used, with success, the optimized MT potential procedure
for the study of the structure and composition of the NiPd(110)
surface. On the other hand, Meyer et al [41], in a study of the
surface structure of polar Co3O4(111) films grown epitaxially
on Ir(100)-(1 × 1), compared the final theory–experiment
agreement, using phase shifts calculated by the optimized
MT potential (ionic crystal), with those from the neutral-atom
calculation on a rocksalt-type CoO and observed that the use
of the latter resulted in a better R-factor value. Also, in a
structural determination of Pd(100)(

√
5×√

5)-R27◦–O surface
oxide, Kostelnik et al [42] made use of Rundgren’s procedure,
allowing them to get an excellent agreement between LEED
and density functional theory (DFT) results. Finally, Li et al
[43] reported work where LEED analysis was used for the
determination of large molecule adsorption geometries and
also used the optimized MT potential approach. They then
determined the surface geometry of C60 on Ag(111) and
demonstrated that a monolayer of C60 on Ag(111) induces a
substrate reconstruction, producing vacancies that are occupied
by C60 molecules. However, it seems that the approach leads
to real improvement in the structure determination of some
systems and has little influence on other systems. Thus a priori
knowledge of which kind of system it will be more suitable for
is not yet clear.

2.1.2. A full potential for the multiple scattering. A more
accurate LEED structural determination may be achieved by
using a full potential to describe the multiple scattering.
To obtain a full potential calculation, the classical and
straightforward finite difference method (FDM) to solve partial
differential equations has been used [44–47]. The FDM
consists in transforming the continuous domain of the state
variables into a network or mesh of a set of discrete points

4



J. Phys.: Condens. Matter 23 (2011) 303001 Topical Review

and then replacing the derivatives in the differential equations
by a set of finite difference approximations involving the
neighboring points. In this way, the potential for a crystalline
solid can be calculated by dividing the unit cell in a three-
dimensional grid, with the Schrödinger equation being solved
in a discrete way at each node of the grid. The wavefunctions,
exactly the main unknown part of the problem, at the grid
points can be obtained by solving a system of linear equations.
In the vicinity of the atomic nuclei they are expanded into the
usual radial and spherical parts. Following this approach a
completely shape-free potential can be calculated in such a way
for which there is no constraining to the MT approximation.
However, at least up to now, this method has been shown to
be unfeasible for practical computer calculations, due to the
requirement of high memory and has been shown to be a very
time-consuming procedure.

In order to apply this finite differences scheme to LEED
calculations, Wu et al [29] proposed a new scheme for the
application of the FDM to calculate the full potential of the
crystal. In this approach, the unit cell is divided into thin slices,
parallel to the surface, and the reflection and transmission
coefficients of each slice are calculated by replacing the
Laplacian in the Schrödinger equation by a fourth-order finite
difference for each grid point. Slices with arbitrary thickness
are added together, starting from the deepest slice and up to
the top one, in order to calculate the total reflection coefficient.
This coupling process is similar to the ‘layer-doubling’ method
used in LEED multiple scattering calculations but with two
main differences: firstly, in the layer-doubling method pairs
of slices of the same thickness are combined, whereas in this
proposed method the slices can be of arbitrary thickness and,
secondly, in the former, each slice contains at least one layer of
atoms while in the latter the slices do not need to have any
atoms and so the thickness can be very small. They tested
this multi-slice finite difference approach for a Si(111)(1 × 1)
surface and obtained a set of LEED-IV curves in good
agreement with the experimental ones [29]. The authors claim
that, with today’s parallel computers, the use of a full potential
of the multiple-slice FDM may become of practical use.

2.2. Direct methods

The dynamical nature of the scattering process occurring in
LEED prevents a direct extraction of structural information
from the experimental data. Although the conventional LEED
analysis has been the main approach used to solve the majority
of known surface structures, several arbitrary processes in the
analysis greatly reduce the reliability of the results, because
it is impossible to verify the uniqueness of the structure
determination. This drawback places LEED dynamical
analysis in disadvantage over a method based on kinematic
diffraction, such as surface x-ray diffraction (SXRD), where
the crystallographic structure is obtained directly without a
prior assumption for the structural model. In this direct method
a dependence only on the measured data and an inversion
algorithm which is free from assumptions of structural and
calculated quantities are expected.

In the crystallography of bulk samples, the so-called direct
methods constitute a class of techniques that have been used

to recover the phases associated with the measured diffraction
intensities. The phases can be used to obtain the complex
amplitudes of the scattered waves and the sample structure
can be achieved by performing an inverse Fourier transform of
these amplitudes. This is the main methodology used in bulk
x-ray crystallography. This method has been extended to the
case of surfaces and, in order to get more intense scattering,
the radiation is incident at glancing angles with respect to the
surface. Although this SXRD approach has been showing
good results, it has some experimental difficulties, such as the
requirement of a synchrotron light source for a good structure
determination (for a good review, see [48]). Therefore, surface
structure determination by direct methods using techniques
other than SXRD is very demanding. Ideally, a direct method
starts with measured spectra and inverting them to obtain the
atomic geometry, without having to input model-dependent
factors such as scattering factor, electron mean free path,
thermal vibration amplitudes, etc.

The multiple scattering events occurring in electron
diffraction have prevented, for several years, the use of
the technique as a direct method. However, after the
works of Szoeke [49], Barton [50], Adams and Landman
[51] and Chang et al [52], two direct methodologies have
been developed for electron diffraction. In the first, a
Patterson function from LEED-IV spectra is recovered. In the
second, which is based on the idea of the optical holography
method, the sample atomic positions (�ri ) are obtained by
three-dimensional data inversion of the measured intensity
fluctuations of electron-diffracted beams. Interference of
diffracted waves is present in both methods and a direct
inversion scheme is performed, but these two methods are
conceptually different. In the holography, the interference
between a wave from a reference atom and object waves
from nearby atoms is considered. Therefore, the holographic
method is intrinsically a multiple scattering process. On
the other hand, single scattering processes also occur in
the electron diffraction and their interference pattern can, in
principle, be inverted to get a Patterson function, similarly to
single-energy x-ray diffraction pattern inversion. The problem
is how to separate the two contributions from the measured
diffraction pattern. Figure 2 shows schematically the two
processes, while the bases and performances of the methods
applied to LEED are presented in the following sections.

2.2.1. The Patterson function. In x-ray crystallography, the
experimental data are used by obtaining the Fourier inversion
of the diffracted intensities, the so-called Patterson function,
which gives the vector positions of every atom relative to every
other atom in the unit cell. Therefore, application of this
kinematic approach to LEED would make it a more useful
technique for surface crystallography. In the case of x-ray
diffraction, the Patterson function is the Fourier transform of
the diffracted intensities:

P(xyz) =
∑

h

∑
k

∑
l

Ihkl e
−2π i(hx+ky+lz) (8)

where Ihkl is the intensity of the hkl reflection. Usually,
symmetry can be considered and then, as the intensities of
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Figure 2. Schematic diagrams of the two direct methods. On the
right is the holographic diffraction process, and on the left is the
Patterson single scattering process.

symmetric beams are equal, P(xyz) turns out to be a real
even function. In the case of electron diffraction, the Laue
condition along the surface normal is not properly applied
and the intensity of an hk beam varies continually along the
l direction of the reciprocal space. Thus, the corresponding
Patterson function can be written as

P(xyz) =
∑

h

∑
k

e−2π i(hx+ky)

(∫
Ihke−iq⊥z dq⊥

)
(9)

where q⊥ is a surface normal component of a scattering vector
�q = �k f −�ki . In general, symmetry conditions cannot be applied
and P(xyz) is a complex function. The real-space structure is
obtained by the convolution square root of P(xyz). In LEED, a
two-dimensional periodicity requires that the diffracted beams
have a final momenta �k f ‖ = �ki ‖ + �g‖, where �g‖ is a two-
dimensional reciprocal lattice vector of the sample. Therefore,
the Patterson function can be obtained by a phase sum integral
over an extensive range of q values of the form

P( �R) =
∣∣∣∣∣∣
∑

�ki

∑
�g‖

∫
I ( �ki , �g‖ + q⊥êz)e

i�q· �R dq⊥

∣∣∣∣∣∣
2

(10)

where �R, in the phase factor ei�q · �R , is the vector position in real
space [53].

The LEED diffracted intensities can be written, in the far-
field approximation [54, 55], as

I ( �ki , �k f ) ∝
[

f1e−i�q · �r1 + f2e−i�q · �r2 + f1 f3e−i �k′ · �r f
e−ikr13

r13
e−i �ki · �r3

]2

.

(11)
This equation (11) represents the contributions to the diffracted
intensity from all scattering centers located at positions �r j ( j =
1, 2, 3, . . .) with respect to an arbitrary origin and fi is the
scattering factor of atom i . The single scattering events, at
�r1 and �r2, are given by the first two terms, respectively. The
third term in equation (11) corresponds to the second-order
event, with the incident electron first scattering at �r3, and
then at �r1, with | �r13| = | �r1 − �r3|. Thus, the cross-term
from single scattering events is I1,2( �ki , �k f ) ∝ f1 f2e−i�q · �r12 ,
where �r12 = �r1 − �r2. At �R = �r12 the phase e−i�q · �r12

is exactly the conjugate to that of the phase factor e−i�q · �R
of the integral in equation (10). Therefore, a maximum in
the Patterson function is created at �R = �r12. Hence, the
single scattering produces high-intensity spots in the Patterson
function which correspond to the vector positions of atomic

pairs. For crystalline materials, independent information is
provided by �ri j within the two-dimensional unit cell. Thus,
by changing �R, all the relative positions between atoms can
be mapped. However, the presence of multiple scattering
events introduces modifications on the Patterson function spots
and, consequently, the solution is not unique anymore. Then,
the main challenge to get the surface structure from direct
inversion of the LEED-IV curves is to minimize the dynamical
effects.

It is well known that features present in the dynamical
LEED-IV curves strongly depend both on the incident angle
and on momentum transfer, while the kinematic components
mainly depend on the latter. Thus, keeping the momentum
transfer constant, it is expected that averaging several LEED-
IV curves over different incident angles eliminates the
dynamical components. This was first demonstrated by
Lagally et al [56] for an Ag(111) surface. They measured
the diffracted intensities at a constant momentum transfer (q)
for a range of vectors of the incident ( �k0) and scattered ( �k f )
beams of a specular reflection. By averaging the LEED-
IV curves, for all angles of incidence (θ ) and also azimuth
(φ), as a function of the momentum transfer, they showed
that the interference of the multiple scattering components
is, in fact, reduced to a slowly varying background. The
authors claim that this procedure allows us to recover very
well the kinematic intensities. This approach has been named
as constant momentum transfer averaging (CMTA). Later,
but following the same idea of measuring LEED-IV curves
for several angles of incidence, Adams and Landman [51]
tried to recover the structural parameters from experimental
LEED intensities via a deconvolution process, i.e. by
applying to LEED the Patterson function methodology of
x-ray crystallography. They worked with data from the
specularly diffracted beams of Cu(100), Ni(100), Al(100) and
Al(111) surfaces, measured at several angles of incidence.
The results obtained for these simple clean surfaces have led
the authors to conclude that the method could have success
in future applications to more complex systems. However,
they pointed out the difficulties with the problem of the non-
uniqueness of the solution for the convolution equation due to
data truncation and additional effects resulting from multiple
scattering in mixing the variables. In a more conclusive
work, Chang et al [52] proposed a Patterson-like scheme
for direct inversion of the conventional LEED-IV curves.
Using the Si(111)(7 × 7) and Si(113)(3 × 2) surfaces as
examples, they performed a Patterson inversion for a set
of integer-order and fractional-order LEED-IV curves for
a normal incidence configuration, using the integral-energy
phase-summing method [52]. The result produced high quality
3D atomic images with a resolution better than 0.5 Å of both
surface and bulk atoms.

Wu and Tong [55], using Lagally’s idea of averaging
several LEED-IV curves in order to eliminate multiple
scattering effects, proposed the use of multiple-incidence
LEED data to get the cancellation of phase shift effects
associated with multiple scattering in the Patterson function.
They demonstrated that a more accurate Patterson function can
be obtained by using a wide sampling of wavenumbers �k and
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directions �ki . They worked with the Si(111)(
√

3 × √
3)R30◦–

Ga system and proved that strong multiple scattering
contributions are not eliminated in the transforms of just
normal incidence LEED-IV spectra, either from measurement
or calculation. However, using calculated off-normal data,
the obtained Patterson function is completely artifact-free, that
is, every spot corresponds to a specific inter-atomic vector
distance. They also observed that the components parallel
to the surface are very accurately determined. These results
appears very encouraging for obtaining a way of determining
surface structures by direct inversion of the LEED spectra.

This methodology has been applied to the study of some
systems: GaN(0001)(1×1)–Ga surface [57], GaN(0001)(

√
3×√

3)-R30◦–Ga surface [58, 59], Si(111)(1 × 1)-YSi2 [60]
and Si(111)(4 × 1)-In surface [58, 59, 61]. More recently,
Kuzushita et al [62] used the Patterson function method to
compare images calculated from theoretical and experimental
LEED-IV curves of an Si(111)(1 × 1)-Fe surface, in order
to distinguish between the two proposed models (faulted and
unfaulted) for this surface. The authors concluded that,
by including several incidence angles, the relative atomic
positions in the plane parallel to the surface and in the
subsurface of the normal plane were obtained correctly. Also,
they observed that a faint peak in the image of the experimental
curves does not appear in the image constructed from the
unfaulted model, indicating then that the faulted model should
be preferable to describe the surface.

In principle, the values of the Patterson function,
calculated in a predefined real-space volume, consist of a set
of maxima corresponding to the positions of the atomic pairs,
the resultant map containing the relative positions of surface
atoms. However, in all the works mentioned above, the authors
complained about the occurrence of spots that do not come
from the structure under study. This fact brings difficulties to
the process of assigning spots, with the correct structure not
being obtained directly from the experimental LEED data but
also by the inversion of the calculated LEED-IV curves for
preconceived structural models. The reliability of the values
associated with the obtained atomic positions depends then
on the accuracy of the experimental data, as well as on the
errors introduced by multiple-incidence Patterson inversion.
Therefore, residual factors, such as anisotropic vibrations of
atoms near the surface, defects or disorder on the surface, may
result in a weak noise that can be misinterpreted with real
spots. On the other hand, the size of the integration domain
in the calculation of the Patterson function is the main factor
determining the occurrence of shifts at the spot positions, and
the broadening and overlapping of spots. However, it seems
that the results so far obtained with the application of the
method show that measurements made at low temperatures or
recorded on samples as perfect as possible, and also measuring
as many beams at different angles for as many energies as
possible, would cause the structural surface determination
via the Patterson function to be a more accurate process.
However, although the method has presented some relative
success, only limited progress has been made and it still
requires improvements to become a useful procedure. The
main advantage of the method is that the analysis, based on the

Patterson function, is very fast if compared with the standard
LEED procedure. So, although it may be difficult to determine
the surface structure correctly by using only the analysis of the
Patterson function, it can be useful at least as a supplementary
method of conventional LEED analysis. First, by using the
Fourier transform of the measured data, a structure that at
least is close to the real one can be obtained and then the
conventional refinement method can be used.

2.2.2. The holographic approach. In optical holography,
as originally proposed by Gabor [63], the light, with known
amplitude and phase in all directions coming from a point
source, illuminates an object. Using a beamsplitter, a
diffraction pattern on a detector can be observed far away from
the object as a result of the interference between the reference
wave (R) coming directly from the source and the object
scattered wave (O) (see figure 2). If the scattering is isotropic,
the object’s distance from the source can be determined by a
Fourier transformation of the measured intensity on a sphere
at the far-field. The condition for pattern formation is that the
relative phase between R and O is preserved.

To apply these optical ideas to electron diffraction, we
have to deal with the problem of defining the reference wave,
a challenge that arises from the difficulties in getting sources
of coherent electron beams. This problem was first overcome
with Szöeke’s suggestion [49] that the photoelectrons should
be an appropriate source for electron holography because the
photoelectrons coming out from a surface are originated from
an emitting atom or have first undergone scattering events by
the neighboring atoms located at atomic distances away from
the emitter. In fact, Barton [50] used the optical analogy
to propose that an image of the three-dimensional crystal
structure of a solid surface can be created by solving the
two-dimensional Kirchhoff–Helmholtz integral to reconstruct
a photoelectron diffraction pattern. Later on, this idea was
extended to the holographic properties of LEED patterns by
considering as a ‘splitter’, for the incident beam, an adatom
on a surface [64–67]. In this approach, the adatom acts
as an atomic source of electrons where the backscattered
electrons can be seen as the reference waves (R) and the
forward scattered electrons are scattered again by the nearby
atoms (substrate atoms) forming therefore the object waves
(O) and an interference pattern is generated at the position
of the detector. If the adatoms are disorderly distributed on
a crystalline surface, a diffused pattern is superimposed on
the substrate (discrete) pattern. The two-dimensional diffused
LEED pattern (DLEED) can be inverted by a Fourier transform
to reconstruct a real-space image of the adsorption site.

By following the optical principle for holography in order
to have a hologram [68, 69], the phases of the object wave (O)
have to be measured and the way to do that is recording the
interference between a reference wave (R) and the scattered
(object) waves, namely

A( �ki, �k f ) = R( �ki , �k f )+ O( �ki , �k f ). (12)

The intensities of the interference pattern can be obtained
by squaring the wavefield amplitudes A( �ki , �k f ):

I ( �ki , �k f ) = |R( �ki , �k f )+ O( �ki , �k f )|2
= |R|2 + |O|2 + [RO∗ + R∗O]. (13)
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The second term on the right-hand side of equation (13)
contains the interference between the scattered waves and is
usually referred to as the classical diffraction pattern. The
so-called holographic diffraction pattern comes from the third
term (in brackets) in equation (13), because it arises from
the superposition of the interference between the unscattered
reference wave from the source and the scattered wave from
the object. Holographic diffraction dominates the images for
small objects, that is, objects that block only a fraction of
the cone of radiation arriving at the screen. As the object
becomes larger, the reference wave weakens whereas the
scattered wave amplitude increases and, when it dominates the
image, we are in the classical optical regime described by the
diffraction of macroscopic objects. The two cross-terms inside
the brackets on the right-hand side of equation (13) generate,
under inversion by a Fourier transform, a real and a twin image.
Because the reconstruction procedure is phase-sensitive, it not
only gives an image at the position of the object, but also at the
same distance on the other side of the source.

Equation (13) can be better understood considering the
scattering of an atom (emitter) at a position �ra on a crystalline
surface. Let Aa(�k) be the total amplitude of incident waves
on this atom which will generate scattered waves that are
rescattered by the atoms in the vicinity of the emitter at position
�ra. The resultant amplitude of these scattered waves, at position
�r relative to �ra, can be written as [67, 70, 71, 54, 72]

As(�k) =
∑

j

A j
fs( �ki , �k f )

r j
ei(kr j −�k· �r j ) (14)

where A j accounts for the amplitude of the component
waves generated by the emitter in the direction of the nearby
scattering location ( �r j ) and fs( �ki , �k f ) is the scattering factor
of these nearby atoms. Hence, the reference and object waves
can be considered respectively as R(�k) = Aa(�k) and O(�k) =
As(�k). Thus, the intensities I ( �ki , �k f ) become

I ( �ki , �k f ) = |Aa(�k)|2+|As(�k)|2+ Aa(�k)∗ As(�k)+ Aa(�k)As(�k)∗.
(15)

By replacing As(�k) in equation (15) as defined in equation (14),
the dependence of the intensities of the LEED pattern on
the position �r j of the atoms in the vicinity of the emitter is
explicitly represented.

If we denote the source wave intensity as I0(�k) =
|Aa(�k)|2, a new function, normalized with respect to I0(�k), can
be defined by

χ(�k) = I ( �ki , �k f )− I0(�k)
I0(�k)

= |As(�k)|2 + Aa(�k)∗ As(�k)+ Aa(�k)As(�k)∗
I0(�k)

. (16)

As proposed by Saldin and Chen [71], the measured
intensities can be normalized by a function defined as
the inverse of the coefficients of the exponential terms in
equation (16), with the unknown atom positions �r j replaced
by a general vector �r :

1

K (�k, �r) = Aa(�k)A(�r) fs( �ki , �k f )

r
. (17)

Then, the real-space distribution around the emitter atom
(adsorbate) can be recovered from the measured intensities by
performing a Fourier transform of equation (16) normalized
by the function defined in equation (17), via the following
expression:

B(�r) =
∫ ∫

K (k⊥, �k‖, �r )χ(k⊥, �k‖)ei(kr j −k⊥z) dk⊥ei( �k‖· �r‖) d2 �k‖
(18)

where the Kirchhoff–Helmholtz integral has been divided into
two components: one surface integral over �r‖ and one over �r⊥
perpendicular to the surface. As the data are usually provided
on a Cartesian grid ( �r‖, �r⊥), this integration procedure is
important when working with ordered superstructures [73].

In fact, the function K (�k, �r) defined in equation (17)
represents some weighting factor for the reference wave and
it cancels the coefficients of the exponential when �r = �r j ,
allowing correction for the anisotropy of the reference wave.
This results in a good stationary phase condition in the integral
over �k, only for the real-space points, enabling a better imaging
reconstruction. Besides, it has been shown that the use of
such a χ function has some advantages [54, 73, 71, 74]. It
helps to filter out the self-interference terms |R|2 and |O|2 in
the DLEED intensity which are responsible for spurious high
values of the real-space distribution |B(�r)|2 in the region near
the origin. In addition, it helps to suppress modulations in the
DLEED patterns that arise from some partial ordering among
the emitter (adsorbate) atoms.

Ideally, to obtain a clear image, the Kirchhoff–
Helmholtz reconstruction formalism should be used without
approximations. However, there are several spurious scattering
contributions to the holographic intensities that, if they are
not determined in a correct way, the obtained image will be
‘noisy’, resulting in undesirable deviations of the determined
atomic positions. In fact, the main research efforts have been
directed towards minimizing such effects. It is expected that
the hologram reconstruction procedure will be much easier
if the reference wave is as simple as possible, such that
the first term on the right-hand side of equation (13) would
represent a ‘constant’ background that can be subtracted easily
and if the scattering process generates isotropic object waves
on the detector (small variation of |O(�r )|2). In addition, if
the reference wave is much stronger than the object wave
(|R(�k)|2 
 |O(�r )|2), the fourth term in equation (13) does not
contribute significantly to the image. Once these conditions
are satisfied, a reconstructed image can be obtained using
only the cross-terms of equation (13). Of course, the last
conditions are unlikely to hold generally. For example, a
small object wave amplitude compared to that of the reference
wave may occur, depending on the efficiency of the atoms to
scatter the incident electrons. For example, in the case of a
strong forward scattering, the object wave is originated from
an atom deeper in the surface and the term |O(�r)|2 cannot
be neglected. In this case, the Fourier transform results in
an autocorrelation function instead of a real-space image. On
the other hand, the object wave spatial distribution resulting
from multiple scattering processes is governed by anisotropy
of the scattering factors. Therefore, a serious difficulty is
how to deal with the complicated anisotropies and energy
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dependence of the reference and object waves. To overcome
this difficulty, some attempts have been made on designing
a more accurate integration kernel K (�k, �r). For example,
Seubert et al [75, 76] showed that the ‘ghost atoms’ appearing
on the reconstructed image of the (2 × 2) phase of 6H-
SiC(0001̄) were avoided by using a more accurate kernel,
based on an iterative procedure. Also, Wu et al [77] using
experimental data from the system Si(111)R30◦(

√
3 × √

3)–
Ga proposed a two-step method to overcome the problem of
multiple, nonequivalent reference atoms where a new non-
bulk bond kernel is used to point to the reference atom. In
addition, there are other problems in performing an image
reconstruction from an LEED holographic pattern such as the
multiple beamsplitter and twin image formation which may
cause serious distortions of the reconstructed image if the
distance from the source to the object is of the same order
of magnitude as the resolution of the method. A good review
about the errors involved in LEED holography reconstruction
can be found in [54].

All these proposed approaches have been tested in
different surfaces [65, 71, 73, 75, 76, 54, 77, 78] and
some advances have been made, but the technique still has
problems and more efforts directed toward the methodology
are necessary in order to get a more reliable technique,
especially for the case of more complex surfaces. Therefore,
the decision to apply the methodology of inversion of a
holographic LEED pattern has to be taken with great care.
However, there is the so-called ‘differential holography’
proposed by Omori et al [79] for the case of photoelectron
holography and it seems that it has not been applied to
the LEED case yet. The method consists in replacing the
normalized hologram χ(�k) based on intensities measured over
the three-dimensional �k space by its k derivative χ ′(�k) = ∂χ

∂k

or by a numerical difference between two χ(�k)’s at different
energies, that is δ�k = χ(�k +δ�k)−χ(�k). More recently, Suzuki
et al [80] applied this method to a holographic imaging of the
TiO2(110) surface structure. They claim that reduction of the
artifacts, twin images and distortions have been successfully
achieved and it may be useful for LEED holography. Finally, it
must be said that the surface structure determination, via LEED
holography, is still not a simple task and it only makes sense
if the conventional dynamical LEED calculations represent a
more complex procedure.

2.3. The tensor LEED approximation

With the goal of developing an approach to speed up the
calculation of the LEED-IV curves, perturbative methods have
been conceived, with the so-called tensor LEED method being
the most widely used [81–89]. The basic idea of the tensor
LEED approximation is as follows. Given a set of LEED-
IV curves calculated from an arbitrary ‘reference’ structure,
the changes in the diffracted intensities resulting from small
displacements of the atoms away from the reference structure
can be evaluated as a perturbation expansion in terms of those
displacements.

Let us assume that the atomic positions in the reference
structure are described by a set of �r j vectors. An incident

electron beam with energy E and wavevector parallel to the
surface �k‖ can be described as

〈�r |�k〉 = ei�k·�r (19)

where �k = ( �k‖, �kz) and | �kz| =
√

2E − | �k‖|2 is the wavevector
component perpendicular to the surface.

After interacting with the reference structure, the
incoming electrons are multiple scattered by the atoms,
generating the out-coming LEED states |ψ+( �k‖)〉. The
diffracted beams leaving the surface can be written as

〈�r |ψ+( �k‖)〉 =
∑

g

Agei �kg · �r j (20)

where �g is a reciprocal lattice vector of the reference structure,

�kg = ( �k‖ + �g, �kg,z) and kg,z =
√

2E − | �k‖ + �g|2.
It is then possible to see that the coefficient Ag is simply

the scattering amplitude and then

Ag =
∑

j

〈 �kg|t j |�k〉

where t j is the scattering matrix associated with atom j , with
the diffracted intensity being given by

I ≈
∣∣∣∣
∑

j

〈 �kg|t j |�k〉
∣∣∣∣
2

= |Ag|2.

The scattering matrix t j is normally evaluated in a standard
LEED program.

Another structure, related to the reference structure, can
be created by moving the atoms by δ �r j with respect to the
corresponding reference positions. The new atomic positions
are then defined by �r j +δ �r j , resulting in a new structure, known
as a trial structure. For the reference structure the scattering
matrix for atom j is expressed by

t j,l = e2iδ j ;l − 1

2ik
(21)

where �k is the incident wavevector inside the crystal and δ j;l
is the phase shift associated with the j th atom. In the tensor
LEED approximation the scattering matrix of the j th atom in
the trial structure can be given by

t ′′
j;l = t j;l + δt j;l(δ �r j ). (22)

After an expansion of δ �r j in an angular momentum basis,
it is possible to conclude that δ �r j depends only on the phase
shifts and the displacements of the j th atom [81–83]. Thus,
δ �r j is a geometrical quantity which does not depend on
the complex dynamic processes that occur in the reference
structure.

For a trial structure not very far from the reference one
(small values of δ �r j ), the scattering amplitude of a diffracted
beam is given by

Atrial
g = Ag + δAg (23)
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where, in a first-order approximation,

δAg =
∑

j

〈ψ+( �k‖ + �g)|δt j;l|ψ+( �k‖)〉 (24)

where |ψ+( �k‖ + �g)〉 are the LEED states from the reference
structure excited by an incident beam of parallel wavevector
�k‖ + �g.

The intensity of the diffracted beams from the trial
structure can be evaluated from

Ig ≈ |Ag + δAg|2. (25)

The last equation shows that, as δAg depends only on
the geometry, the new diffracted intensities can be obtained
without the necessity of performing a full dynamical LEED
calculation. This allows us to evaluate, in an efficient
and fast way, the diffracted intensities from an arbitrary
structure similar to the reference structure, thus resulting in
a powerful method for LEED analysis. This methodology
has been applied in a great number of surface structure
determinations [6, 89]. The method has been extended to the
problem of exploring the chemical composition and thermal
properties, resulting in the so-called chemical and thermal
tensor LEED [85, 86, 88].

2.4. The nanoLEED approach

With the boom in nanoscience and nanotechnology, knowledge
of the detailed atomic structure of low dimensionality systems
such as nanoparticles, carbon nanotubes and nanowires is
a real necessity in order to better understand their unique
physical, chemical and biological properties. However, many
of the relevant systems for technological applications may
not present a well-defined periodicity. As already pointed
out, standard LEED relies on long-range order to determine
the atomic geometry of surfaces and interfaces. The long-
range order requirement precludes the use of traditional LEED
in crystallographic studies of nanoscale aperiodic systems.
Grazing incidence small-angle x-ray scattering (GISAXS)
has already been used with some degree of success to gain
information about the shape and size distribution of metal
nanoclusters supported on oxide surfaces, but with little
detail about defects or bond length and bond angles between
atoms [90]. Scanning tunneling microscopy (STM) has also
been used to probe the structure of low dimensionality systems,
but STM results rely heavily on theoretical simulations that are
not always straightforward to perform [91].

In principle, reducing the lateral dimension of the electron
incident beam to the nanometer scale would allow to focus
the incident beam into a small region containing a single (or
a few) nanostructure. The coherent length of the incident
beam must be smaller than the nanoparticle size in order to
reduce contributions from defects and borders. As in the
calculations only elastically scattered electrons are considered,
improved energy filters must be used in the experiment. The
diffracted beams leaving the nanostructure could then be used
to probe the geometric structure of the nanostructure itself.
Experimentally, this could be achieved by using an STM tip

as an electron source [92] or using a convergent electron beam
as has already been proposed and dubbed convergent-beam
LEED (CBLEED) [93]. By comparing the experimental and
theoretical diffracted beam intensities, the structure of the
nanomaterial can, in principle, be solved. However, several
modifications must be done in the standard LEED theory to
perform LEED diffracted intensity curve simulations for a
single nanostructure.

Recently, the standard LEED theory was adapted to a
cluster approach where diffracted intensity curves can be
evaluated from ordered and disordered nanosystems [94–97].
In this approach, named nanoLEED, the cluster includes all
of those atoms of the nanoparticle that contributes for the
electron elastic scattering. Exit-direction-dependent diffracted
intensities by the whole cluster are calculated and compared
with the experimental data for ordered systems.

To evaluate the diffracted intensities it is necessary first to
calculate the scattering matrices Ti containing all the scattering
events inside the cluster ending at atom i by solving the
matrix–vector equation:

t = (I − tG)T = CT (26)

where t is a block-diagonal matrix composed of the atomic
scattering ti matrices for individual atoms, C is the complete
scattering matrix of the cluster, G is the free-electron
propagator function between two atoms and I is the identity
matrix. Since the computational effort of inverting the C
matrix scales with N3 or N2, where N is proportional to the
number of atoms in the cluster, the inversion method becomes
prohibitive in the cluster methodology and new approximated
methods must be used. In the nanoLEED approach, the total
scattering matrix C is split into three parts by grouping the
atoms according to their relative distances:

C = Cd<dCG + CdCG<d<dUV + Cd>dUV . (27)

For each distance range, a most efficient iterative method
for solving the multiple scattering problem is applied. The
first term in equation (27) contains only atoms closer than a
dCG distance from one another and the (bi)conjugate gradient
method (BiCG) [98] is used to evaluate the scattering Cd<dCG

matrix. In LEED we have to solve a matrix–vector equation
of the type Ax = b. Since usually A is non-Hermitian,
the BiCG method considers both the matrix–vector equation
Ax = b and its adjoint matrix–vector equation x∗ A∗ = b∗.
The BiCG method generates, at each step, the approximate
solution, the corresponding residuals, the search directions
that will be used in the next step and the two orthogonal
sequences that are simultaneously minimized. If the residual
norm satisfies a predefined stopping criterion, the algorithm
stops and the approximate solution is considered close enough
to the real solution. The efficiency of the BiCG method is
determined by the condition number of a matrix defined as
κ(Cd<dCG) = ‖C−1

d<dCG
‖ ∗ ‖Cd<dCG ‖. For a low condition

number, a reliable and fast convergence is usually obtained. In
practical calculations, a dCG value of about 0.2 nm has proven
to be adequate [95].

The second term in equation (27) contains only pairs of
atoms with intermediate separations in the range dCG < d <
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Figure 3. NanoLEED simulations of LEED-IV curves for Cu(111)(4 × 4)-C60 for different molecule radii demonstrating the structural
sensibility of the nanoLEED approach. Reproduced with permission from [94] (right) and [95] (left). Copyright 2006 and 2007 by the
American Physical Society.

dUV, where d is the separation between two atoms and dUV is a
system-dependent cutoff distance, above which the UV method
becomes inefficient. In this intermediate region the scattering
matrix rank r (the number of columns and rows that are linearly
independent) becomes nearly constant and has lower values
and a singular value decomposition method is more suitable
than the UV methodology. In the singular value decomposition
method, an N ×N matrix can be split into a product of a matrix
U with N × r and a matrix V with r × N [99]. Due to the low
value of the matrix rank, the UV method performs better than
the standard conjugated gradient method.

The sparse matrix canonical grid (SMCG) method [100] is
most effective in LEED when dealing with a large number of
atoms and large inter-atomic distances. For this reason, the last
term in equation (27) contains pairs of atoms that are relatively
distant from each other and the SMCG method is used to solve
the multiple scattering problem. First, a rectangular grid is
generated even if a random cluster is used. Then, each atom of
the cluster is assigned to its closest grid point and the electron
wave propagating from atom i to atom j is forced to pass
through the grid points nearest to the two atoms. The scattering
between the two grid points is efficiently calculated by the
SMCG method and, finally, the grid-related scattering matrix
is shifted back to the real atomic positions.

NanoLEED calculations were performed for ordered and
disordered nanosystems demonstrate the sensibility of the
diffracted intensities to changes in the nanostructure. For
Cu(111)(4 × 4)–C60, the simulations have shown that by
changing the C60 radius by 5%, corresponding to a change of
0.075 Å in the C–C distances, produces considerable shifts on
the peak positions of the LEED-IV curves (figure 3). These
shifts are the signature of high structural sensitivity. The same
structural sensitivity was observed in nanoLEED simulations
of the electron diffraction patterns and energy/angular-
dependent diffraction curves on silicon nanowires [96].

3. The conventional LEED analysis: searching for an
R-factor global minimum

Since the first days of LEED structural surface determination,
several optimization methods have been used to identify the
reliability factor minimum. This step of the LEED structural
analysis is strictly numerical and it is not related to the methods
for electron scattering calculations.

An exhaustive search for coincidence between two sets
of points representing two curves is a search process that
belongs to the class of an NP-complete optimization problem.
This usually requires a large computational effort to locate the
solution which is not bounded by a polynomial in N . This
special class of problems is of great importance in the theory
of numerical analysis, but it remains a problem of difficult
solution despite the great advances in computational capability.

In practical terms the search procedures have an efficiency
that is case-dependent. Thus, the scaling behavior obtained for
a specific problem does not necessarily match the solution of
similar problems.

The search methods used in LEED can be roughly
classified in two broad sets: (i) methods based on trial-
and-error search and (ii) methods based on some systematic
route for minimization of the cost function, i.e. the reliability
factor (R factor). The first structural determinations by LEED
involved a trial-and-error process [7, 10] with the values for
the parameters being assumed from a blend of indirect hints
and guesses in the process of trying to fit experimental and
theoretical curves. The parameters are correlated in such a way
that, when adjusting one parameter, this implies a readjustment
of the others. This was a strong limitation, restricting
application of LEED to simple structures, which prompted
the quest to find a more systematic route for the adjustment
process, i.e. an automated search. The first structural
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determination using an automated process was performed by
Powell and de Carvalho [101]. In that work, a variation of the
steepest descent method was used, i.e. the partial derivatives
of the R factor with respect to the N parameters were used as
a guide in the search for the minimum of the cost function.

A few months before the work by Powell and de Carvalho,
a theoretical work by Rous et al [81] was published reporting
the tensor LEED approach. This method, while not being
strictly a search method, is useful for structure refinement with
adjustment of structural parameters on a scale of a fraction of
an ångström.

Afterward, several approaches, sometimes a combination
of methods, have been used for LEED structural determina-
tions: tensor LEED with gradient methods [81, 89], the so-
called direct methods using approaches similar to the ones
adopted in x-ray crystallography [11, 102, 103] and methods
using the least-squares procedures [104]. Each of these
methods have their own deficiencies, either by being too time-
consuming for computational calculation or by being unable
to distinguish between local and global minima. Frequently, a
combination of optimization methods is used, with one method
exploring a wider area of the parameter space, followed by
another for a refinement in an area close to a previously
identified possible minimum. To avoid the possibility of
identifying a local minimum as a global one, Rous [105]
applied the method of the simulated annealing (SA) algorithm
to the search problem in LEED. His results, based on a
theory–theory comparison, present, for dependence of the
computational cost with the number of explored parameters,
a scaling relation given by N6, with N being the number of
parameters. Motivated by this first attempt of establishing a
global search method to the LEED problem, Nascimento et al
[106, 107] investigated an alternative approach to the SA, the
so-called fast simulated annealing (FSA) approach [108]. In
this method, the adopted random step distribution function is a
Cauchy–Lorentz function, instead of a Gaussian (or uniform)
one, as employed in the SA approach. This modification
has proved to be extremely useful, since the scaling factor
becomes linear with the number of parameters N1 at least for
the systems for which the procedure was tested.

Another approach for identifying the global minima in
the LEED search process was proposed by Kottcke and
Heinz [109], which includes an optimization of the theory–
experiment fitting process using a random sampling algorithm.
In contrast to the SA or FSA approaches, the random sampling
algorithm only takes into account downhill moves, with a
multiple launching process (several starting structures), thus
being a compromise between global and local search methods.
This procedure turns out to have an N2.5 scaling with the
number of parameters.

Blanco-Rey and de Andres [110], following the random
sampling algorithm idea, proposed a search method, called
combinatorial simultaneous optimization (SO), which works
on two levels. In the first level, good candidate structures
are determined using a simplified dataset chosen at random
inside the experimental database. Each element of the chosen
dataset yields one nonlinear equation, thus resulting in a system
of nonlinear equations that can be solved and the process is

repeated for different chosen datasets. In the second level, the
nature of the minimum (whether local or global) is tested by
selecting structures with a Gaussian distribution and therefore
allowing uphill moves. However, despite having nearly 100%
success rate, the method showed a not-so-good scaling (N4.1)
for an Ir(110)-p(2 × 1) missing-row surface theory–theory
comparison.

Motivated by the relative success of the SA algorithm,
as employed by Rous [105], which requires a high number
of structures to be tested, Döll and Van Hove [111]
proposed applying to the LEED structural determination
process another global search algorithm, called the genetic
algorithm (GA) [7, 112]. This is a method that mimics the
natural evolution of living organisms. Recently, some effort
has been done in testing, more systematically, the GA approach
to the LEED structural determination [113, 114]. The GA
methodology has proved to be a powerful tool for LEED
search, when used simultaneously with local search methods,
such as the Powell and simplex methods [113] and it exhibits a
favorable scaling behavior of N1.5.

Recently an approach that simultaneously increases the
radius of convergence (as compared with the tensor LEED) and
includes a global search for a minimum of the R factor was
proposed [115]. This new method uses a new approximation
for the tensor calculation, termed frozen LEED (FL), with the
important advantage of increasing the radius of convergence
to over 0.8 Å, while the tensor LEED is normally less than
0.4 Å. Of course, as previously pointed out, this procedure is
not a proper search method. However, unequivocally, it scans
new possible structures in the vicinity of a reference point in
the parameter space (a phase-space point). An SA algorithm is
also incorporated in the FL approximation, so that it becomes
possible to avoid the chance of ending in a local minima, which
is a deficiency of the tensor LEED.

Another approach to the search process in LEED was
recently published by Zhao et al [116]. In searching for
a global optimizer methodology, those authors adapted and
developed a pattern search method know as GPS (generalized
pattern search), and obtained results that had a better
performance than the genetic algorithm, while keeping the
necessary robustness of a search method.

3.1. Approaches based on simulated annealing

The SA algorithm is a mathematical model based on a process
commonly employed in metallurgy, by which molten metals
are systematically and gradually cooled and annealed. If the
temperature is reduced at a sufficiently low rate, the atoms
will line themselves up, reaching an organized distribution,
associated with a crystalline state that depends on specific
physical conditions, including the cooling rate. The final state
corresponds to the global minimum of the thermodynamical
energy associated with the specific physical conditions
prevailing during the cooling process. The mechanism of the
SA method employs an artificial ‘temperature’ as a source of
stochasticity, thus creating an artificial dynamics that prevents
the search process, associated with the minimization of the
cost function, from getting trapped in a local minima. After
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Figure 4. Flowchart of the SA algorithm implementation for the
LEED structure search.

several steps of the search process, the ‘temperature’ is very
low and hopefully the optimization process results in obtaining
a set of parameters such that the cost function is located inside
the basin of the global minimum. In this situation the search
steps behave asymptotically as a gradient descent local search
method. At the core of the SA method is the Metropolis
criterion [117] that controls the probability for a step being
accepted or not, during the search process. From a certain
point in the parameter space, �Xi , a new one is generated by
the addition of a random increment, namely �Xi+1 = �Xi + δ �X .
If the change in the cost function (or energy) is negative
or null (C = C( �Xi+1) − C( �Xi ) � 0) the movement is
accepted. However, if C > 0, the movement may be
accepted according to a probability given by a Boltzmann
distribution, i.e. if P(C) = e− C

T is greater than or equal
to a random number between 0 and 1. This probability is
controlled by the artificial ‘temperature’ parameter, which is
gradually reduced during the search process.

The first implementation of SA for LEED was performed
by Rous [105] using the Van Hove–Tong conventional LEED
code [10]. The basis of the structure of the search process is
illustrated in figure 4. The method was applied to locate the
global minimum for a Pendry R-factor (RP) [118] hypersurface
generated by a theory–theory comparison for the Ir(110)(2 ×
1) surface. A scaling relation was obtained that is able to
characterize how the number of structures explored before
convergence is related to the number of structural parameters.
This method has shown a dependence of N6.0. In this first
implementation for LEED, the random steps were randomly
chosen according to a uniform distribution, which was not
dependent on the ‘temperature’ parameter.

The main problem associated with the SA is that its
convergence is slow. Thus, to improve the efficiency of the

Figure 5. Comparison between Cauchy–Lorentz and Gaussian
distribution sampling at the same ‘temperature’.

SA, one needs to figure out how to improve the cooling
of the search process, turning it as fast as possible and,
simultaneously, avoiding an increase in the probability of the
search process to get trapped in a local minimum.

The most common approach, called classical SA, also
known as a Boltzmann machine [119], uses a Gaussian
distribution as a way to generate the random steps
taken during the search process. A Boltzmann–Gibbs
acceptance probability is then employed. In adopting the
Boltzmann machine, the cooling scheme is such that the
temperature decreases logarithmically with time along the
search steps [120].

Szu and Hartley [108] proposed an SA search machine that
uses a Cauchy–Lorentz distribution for the generation of the
random steps. This semi-local distribution, in contrast to the
Gaussian distribution, allows the occurrence of occasional long
steps. These long steps improve the probability of convergence
and allow a faster cooling scheme (see figure 5). A Boltzmann–
Gibbs acceptance probability is also adopted and a faster
cooling scheme is employed: the temperature decreases with
the inverse of time. This approach is known as FSA or a
Cauchy machine.

A generalization of both annealing schemes was
then proposed [121] based on the non-extensive Tsallis
statistics [122–124], which was able to provide annealing
schemes even faster than the FSA one. This non-extensive
statistics is based on the generalization of the Boltzmann–
Gibbs entropy [125], being now employed in a wide variety
of fields [126, 127].

The desirable features for a global search method in
LEED are: (1) a high probability of locating the global
minimum for the R factor among all other local minima
and (2) a favorable scaling relation with respect to the
number of parameters to be varied during the search
process. In the first SA implementation for LEED [105],
as previously discussed, an unfavorable scaling relation was

13



J. Phys.: Condens. Matter 23 (2011) 303001 Topical Review

obtained (N6), despite its success in locating the global
minimum. Motivated by the initial work of Rous [105]
and with the goal of obtaining a more favorable scaling,
Nascimento et al [106, 107] decided to investigate the possible
implementation of the FSA method to the search problem
in LEED, using the conventional Van Hove–Tong LEED
code [10]. The results obtained indicate the FSA algorithm as
a promising option for global optimization in LEED, since the
scaling factor becomes linear with the number of parameters
(N1). This conclusion results from the application of the
FSA approach in a CdTe(110) theory–theory comparison.
Another good point is that the probability of convergence,
as a function of the number of parameters, presented a
slowly decreasing behavior. The FSA algorithm was also
applied to real structural determinations, in theory–experiment
comparisons, for the Ag(111), Ag(110) and CdTe(110)
systems [106, 107, 128] showing the same behavior as that of
theory–theory comparison.

More recently, Correia et al [129] implemented the
generalized simulated annealing (GSA) approach for the
LEED problem, along the lines of the non-extensive statistical
mechanics [121–123]. A generalized distribution function was
adopted, according to the value associated with a parameter
qV [129]. Several different distribution functions (random
steps) and cooling schemes have been used in investigating
their influence on the performance of the GSA when applied to
the LEED search problem. Again, the algorithm was applied
to a theory–theory comparison for the CdTe(110) system, but
now for a normal incident geometry (in contrast to an off-
normal geometry in the previous work [107]). The results
indicate that, among the several values tested for the qV

parameter within the GSA approach, the FSA scheme was
the best one due to the favorable linear scaling (N1) and the
slowly decreasing probability convergence with the number of
structural parameters being optimized.

3.2. The genetic algorithm

GAs are gradient-free and parallel global optimization
algorithms. They use a performance criterion (fitness) for
evaluation and work with a population of possible solutions
in the search for a global minimum among several other local
minima. GAs are capable of handling complex and irregular
solutions in multidimensional spaces. They have been applied
to a wide range of difficult optimization problems, from
container loading optimization and learning robot behavior
to game theory [130]. In condensed matter physics, it has
been applied to optimize geometric structures [131–134],
tight-binding parameters [135] and shaping cluster expansion
Hamiltonians [136]. GAs are particularly useful in search
processes where the parameters are strongly correlated,
cases where other optimization methods can lead to a local
minimum, instead of a global one.

The GAs are a class of evolutionary algorithms inspired
by the biological Darwinian theory, mimicking the natural
evolution of living organisms through the process of natural
selection, using the ‘survival-of-the-fittest’ model from nature.
Good solutions are selected and manipulated to achieve new,

Table 1. Example of the binary (a) and the real (b) encode
representations used in the GA implementation in LEED.

(a) (b)
x1 x2 x3 x1 x2 x3

0101001011 1011001000 1000111010 0.85 0.72 −0.15

and possibly better, solutions. In the GA terminology, an
individual represents a set of parameters which, in principle,
is a candidate solution. The selection process is based on
the fitness of the individual, which is evaluated through a
function, not necessarily algebraically expressed, that defines
the problem. To perform the manipulation process, the
individuals must be encoded in strings, like ‘chromosomes’.
There are several ways by which the individuals can be
encoded, such as a binary or a real encode. For all kinds of
codifications there are manipulation devices that are able to
exchange information between individuals, giving rise to new
ones. The individuals are combined in a searching process that
maximizes the fitness, either by minimizing or maximizing
a ‘cost function’ [112]. The initial population is randomly
chosen and then individuals taken from different positions of
the solution space can have their ‘genes’ mixed by genetic
sequential operator devices, such as crossover, elitism and
mutation [137].

The GA has, with respect to other global search methods,
the advantage of having ‘memory’ from the past, as well
as the possibility of ‘learning’, as a route for improving
characteristics considered as adequate, while discarding others
assumed or considered as being inadequate under a previously
established criterion.

The codification of typical parameters, characteristics of
the LEED search process, is performed using a binary or real
representation by associating their values to the chromosomes,
which together form a string. In the realm of the GA, a
string represents an idea while each bit (its intrinsic value and
position on the string) is related to a notion.

The initial population consists of a certain number
of individuals, each one randomly generated within a set
of predetermined physical limits, according to physical
considerations. In a binary codification, the strings consist of
a series of bits, where each part of the string represents an xi

parameter to be optimized in the search process. For example,
in the case of three parameters, each parameter can be codified
by 10 bits resulting in a string of 30 bits, as illustrated in
table 1(a). If a real codification is used, the strings consist of a
series of real numbers, where each number corresponds to an
xi parameter to be optimized, as represented in table 1(b).

After generating the initial population, the strings are
tested, according to the LEED code, with the respective R
factors being used to calculate probabilities of selection for the
evolutionary devices. Once the individuals are encoded and
their fitness evaluated, the population is ready to be submitted
to the process of crossover, elitism and mutation in order to
give rise to a new generation. The process is successively
repeated, with each step having characteristics as described in
the following. The GA directs the process towards the best
region in the parameter space by crossover and elitism. In the
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Figure 6. Examples of crossover and mutation schemes in GAs for binary (a) and real (b) codification. (a) A pair of individuals blue (dark
gray) and red (gray) (parents) are mixed by the crossover operation, generating new individuals that will belong to the next generation. (b) In
the real codification, new individuals are created by initially selecting the parameters that will be modified, keeping the others only for
exchange, and then randomly choosing the λ coefficient that is used to generate the offspring parameters by a linear combination of the
parent’s parameters. Yellow (light gray) bits represent bits that were modified by mutation.

crossover, portions of the strings resulting from the previous
step are mixed together, giving a chance to create new strings
with different characteristics. The members of the population
to undergo the crossover are randomly chosen in pairs (obeying
a precalculated probability of selection) with the cut position
being also randomly chosen, followed by a permutation of
the parts. Alternatively, the members of the population with
higher fitness can have a corresponding higher probability of
being chosen to participate in the crossover. As illustrated in
figure 6(a), for a pair of individuals blue (dark gray) and red
(gray) (parents) in a binary representation, with cut position
between the second and third bit, the crossover mixes the
chromosomes of parents to generate individuals of the next
generation. The new individuals have inherited characteristics
from parents as illustrated by the blue–red and red–blue
individuals. To illustrate the crossover in the real codification,
there is shown in figure 6(b) one kind of crossover, where
new individuals are created as follows: the parameters that
will be modified are initially selected, keeping the others only
for exchange, as exemplified in the binary crossover. In the
following, the λ coefficient is randomly chosen and used to
generate the offspring parameters by a linear combination of
the parents’ parameters.

In the context of the GA, elitism refers to the process
of transferring to the next generation the best-fit individuals
of the preceding generation. In the paper by Döll and Van
Hove [111], this step was applied considering that ‘it turns out
that the convergence speed is increased by applying elitism,
whereby the best chromosome of the preceding population
enters the next one in any case’. Thus, those authors selected
the 10% individuals judged by their fitness as the most
suited for further generations, and directly transferred them
to the following generation. Thus, a possibility that can
be considered on implementing elitism is to do this before
crossover, i.e. to transfer to the next generation the X%

individuals with best fitness. After that, the crossover is
implemented among all individuals of the previous generation,
transferring to the next generation the (100 − X)% best suited
(for a fixed size of the population). Another approach for
applying elitism is to implement it after crossover. In doing so,
recombination, as described in the previous step, is performed
for all individuals, leaving the competition to occur between
parents and descendants, according to the respective fitness,
transferring to the next generation the ones most fitted (keeping
the population size constant). This change on the criterion for
fitness affects the convergence speed [114].

The following step is mutation. This step allows the
exploration of regions of the parameter space previously not
contained in the strings, by randomly changing values of the
bits. The mutation rate should not be too high, since that
would cause the loss of information contained in the original
population, and neither too low, otherwise nothing new would
be brought into the population.

In the example presented in figure 6, the mutation in
the binary representation consists in the change of a 0 to
a 1 (or vice versa) at one or more positions of the string
(yellow (light gray)). In the real representation, the mutation
operator randomly changes the value of the selected parameter
as illustrated in figure 6(b). This step of the process allows
the appearance of ‘new notions’ and this does not occur in any
other step, since elitism and crossover just copy or recombine
pre-existent notions already available in a previous generation.

A schematic flowchart of the GA algorithm implementa-
tion for LEED structure determination is presented in figure 7.
Initially, a population of N individuals is generated. Each
individual is a vector containing the P parameters to be
optimized in the structural analysis of the system. The value
of each parameter is randomly chosen within a physically
acceptable range for that system. Each individual is coded
as a binary or real string that will contain the displacements
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Figure 7. Flowchart of the GA algorithm implementation for the
LEED structure search.

to be added to the parameters of a reference initial surface
structure. The LEED-IV theoretical curves are then evaluated
for each individual I � N , and the comparison with the
experimental curves is carried out returning the R factor value
associated with each individual I . Based on its R-factor value,
the probability of being selected for crossover is calculated for
individual I . That probability should give rise to individuals
with lower R factors having higher chances to be selected
for the crossover process, without completely excluding the
worst ones. The search stops here if the best R factor has
not decreased after a preset number of generations or if a
preset maximum number of generations is reached. Then the
best individual in the last generation is selected as the best
solution. Otherwise, the best individual is cloned to the next
generation (by elitism) and the process continues. As in other
optimization methods, the stopping criterion changes from
case to case. If the stopping criterion is not achieved, N/2
pairs of individuals are chosen according to probabilities based
on their R factors. The crossover process then creates N new
individuals for the next generation. The worst one is discarded,
being replaced by the clone obtained by elitism. A number
between 0 and 1 is chosen randomly. If this number is smaller
than a previously chosen mutation rate, then a randomly chosen
individual is subjected to the mutation process. The new
generation is now ready, and the process restarts for the new
generation.

The GA implementation, as described above, was
applied to surface structural determination by LEED of three
previously solved systems: Ni(111)(

√
3 × √

3)-R30◦–Sn,

Figure 8. Scaling behavior for the standard GA and for the GA with
simultaneous local refinement applied to the
Ni(111)(

√
3 × √

3)-R30◦–Sn system.

InSb(110) and CdTe(110) and proved to be a very helpful
tool [138]. The structures found as the best ones in each case
are in close agreement with those previously published. The
scaling behavior analysis suggests a scaling factor of around
1.3, based on a theory–theory comparison for the CdTe(110)
system. This scaling factor is very competitive when compared
to previously applied methods.

What it is really expected from a global optimization
method such as the GA is to identify the ‘basin’ in which the
global minimum is located. Once inside this, conventional
local optimization methods like steepest descent are much
more efficient to find the optimum. One could have the benefit
from both methods by devising a hybrid approach in which
we alternate the global search capability of a GA and the
efficiency of a local optimization method. Viana et al [138]
have thus implemented a scheme by which each new trial
structure generated by GA is first locally optimized before
it is used in the next GA step of recombination (crossover).
Figure 8 shows the scaling behavior for the standard GA, and
for the GA with simultaneous local refinement applied to the
Ni(111)(

√
3 × √

3)-R30◦–Sn system. As can be seen, at least
for this system, the search was much faster (speeded up by
more than an order of magnitude) using the local refinement
simultaneously with the global search of the GA algorithm.

4. Final remarks

Detailed knowledge of the geometric structure of surfaces in
nanoscaled systems, including bond lengths and angles, is
essential for a complete understanding of their unique physical
and chemical properties. However, this is not a simple task.
There exist a few techniques that can be used for this proposal,
with all of them having been successful only for relatively
simple systems. The most widely used of these techniques is
LEED. For long-range ordered surfaces and interfaces LEED
has undoubtedly demonstrated its capability of quantitatively
probing the structural properties. It is the technique that has
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been used in the great majority of structural investigations up to
now. However, this technique still has difficulties in revealing
the structure of more complex surfaces, where a large number
of atoms has to be considered. In the last decade, LEED
has undergone some advances and the main objective of this
review was to illustrate the present status of the technique and
to demonstrate the considerable improvements that became
possible by recent methodological developments, mostly on
the theoretical and data analysis aspects.

The fascinating application possibilities of nanosystems
are a new source of motivation for the study of nanoscaled
systems and the complete understanding of their physical,
chemical and biological properties requires a detailed
knowledge of the geometric structure of nanoparticles. This
is a very exciting research field which makes it worth the
hard work of applying LEED to surface structure determination
of this class of systems. The recent development of the
nanoLEED approach has extended the LEED domains to
individual nanostructures, such as nanowires and nanotubes.
However, the lack of experimental data, due to technical
problems in focusing an electron beam within a region of a few
square nanometers, is, at least for a while, precluding the use of
LEED in the crystallographic studies of isolated nanostructures
and more effort must be made to develop appropriate electron
beam sources.

In the standard structural LEED determination, an R-
factor methodology has been intensively applied. In this
methodology, the search for the best structural model is
equivalent to a minimization problem, having the R factor
as the cost function to be minimized. However, due to the
dimension and complexity of the space of parameters to be
investigated, the application of this methodology is, in general,
a very time-consuming task. Local minima in the hyperspace
can result in trapping the solution and actions must be taken
to overcome this problem. The use of global optimization
methods in the search process seems to be a promising way
to speed up the LEED structure determination. Some of
these approaches have been used in LEED analysis, each one
showing advantages as well as limitations. All applied methods
have shown an improvement in the probability of escaping
from local minima and therefore have speeded up the search
process significantly.

A better description of the scattering potential seen
by the electrons has led to some improvements in the
structure determination by LEED, especially for those systems
with marked directional bonds, such as metal oxides and
semiconductors. Improvements in the electron scattering
description may play a key role in the future of the structural
determination of more complex systems.

The electron diffraction structure determination by direct
methods, namely Patterson function and LEED holography, are
much faster than the conventional LEED calculations, which
is certainly an advantage. However, several problems related
to experimental data collection have to be solved before this
methodology can be routinely applied. In fact, the use of
a direct method must, at least, be helpful when using it for
generating a more probable structure that may be used as a
starting point for the LEED analysis.

Finally, the development of novel materials and processes,
with both technological and scientific interest, requires
knowledge of the surface and interface properties at the atomic
scale. Thus, the main challenge for LEED is to be improved to
solve the structure of new complex systems.
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