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Global monopole in scalar-tensor theories of gravity
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The gravitational field of a global monopole in the context of scalar-tensor theories of gravity is investigated.
The spacetime is determined by solving the equation for the scalar field and using the global monopole solution
of Barriola and Vilenkin, in the weak-field approximation. A comparison is made with the results predicted by
Brans-Dicke theory and general relativity.
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. INTRODUCTION ds’=(1-87G7n?)dT?— (1+87G7?)dR>*— R?(d#?
Topological defects may arise in gauge models with spon- +sin*de?). ()

taneous symmetry breaking. They can be of various types,
such as monopoles, domain walls, strings, and their hybrids
[1,2]. Their nature depends on the topology of the vacuum
manifold of the field theory under consideration.

Among the topological defects mentioned previously, in _ 2
this paper we will focus on global monopoles. The simplest r=({1+4mGr)R, @
model that gives rise to a global monopole is described by § ig easy to see that line element given by E8). assumes
system composed of a triplet of isoscalar fields whose origithe form
nal global d3) gauge symmetry was spontaneously broken
to U(1). ds’=dt?—dr?—b?r2(d6*+sirfod¢?), (5)

The solution corresponding to a global monopole in an
O(3) broken symmetry model has been investigated by Barwhereb?=1—-87G7?<1.
riola and Vilenkin[3] in the context of general relativity. This metric corresponds to a spacetime with a deficit solid

The energy-momentum tensor of a global monopole conangle A = 327G 7?: test particles are deflectétbpological
figuration in regions far away from the core can be approxiscattering by an angler(A/2) irrespective of their velocity

If we introduce the coordinate transformation

t=(1—47G 5T,

mated by and impact parameter. In spite of having constant coefficients
Jgo andg,, , this metric represents a curved spacetime whose
2 curvature vanishes in the cabe=1 (flat spacetimg For 6
-r§=-r:=7]_2, ngTizo_ (1) = /2, the metric(5) is exactly the same as that of a gauge
r cosmic string, in which case the azimuthal anglehas a

deficit A=27(1—b). Therefore, the gravitational field of a
It is worth noticing that far from the global monopole global monopole exhibits some interesting properties, par-

core, the main effects are produced by the deficit solid angldicularly those concerning the appearance of nontrivial

thus we can neglect the mass term, and the respective metfPacetime topologies. _
in Einstein’s theory of gravity can be written E3] The scalar-tensor theory of gravity was proposec_i some
years agd4] and represents a generalization of the simplest

scalar-tensor theory of gravity, namely the Brans-Dicke
ds’=(1-87G7*)dT*~(1-87G»?) 'dR*~R*(d¢? theory [5]. In general scalar-tensor theories of gravity, the
+ si0de?), @) gravitational field is not Qgscribed orl1lly by the usual tensor
field g,, of general relativity. In addition, we have one or
several long-range scalar fields that also mediate gravita-
whereG is the Newtonian gravitational constant ands the  tional interaction.
energy scale of symmetry breaking. Scalar-tensor theories of gravity have been a subject of
Let us consider the weak-field approximation. Then, inrenewed interest. Certainly, one motivation for this is the
this case, metric coefficients should be computed up to firsbelief that, at least at sufficiently high-energy scales, gravity
order inG7?, and the line element reads becomes scalar-tensorial in naty@ and therefore these
theories are important in the very early Universe. On the
other hand, two important theoretical developments have
*Electronic address: rmuniz@fisica.ufpb.br been achieved in, for example, unification models based on
"Electronic address: valdir@fisica.ufpb.br superstrings that naturally associate long-range scalar part-
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ners to the usual tensor gravity of Einst¢if]. Another mo-

tivation for the investigation of scalar-tensor theories is that Ry =20,40,¢+87C, | T),=59,uT),
inflationary cosmology in this framework seems to solve the

fine-tuning problem and in this way gives us a mechanism of Ogb=—41G, a($)T, @)

terminating inflationary erals8].

Apart from the solution of thi_s pro_blerr_l, the scalar-tensorwherea( $)=[ d In A(¢)]/d¢, which can be interpreted as the
theories by themselves have direct implications for cosmoltfie|d-dependentcoupling strength between matter and the

ogy and for experimental tests of gravitational interactionscalar field, and the energy-momentum tensor is obtained
[9], and they have importance in the early Universe in whichfrom

scenario topological defects may have been produced. There-
fore, it is important to consider the topological defects in this 2 &S,
context, and for this reason some authors have obtained T’”E\/: Sa_ 9
gravitational fields of cosmic strings and domain wall§)] —9 Yur
and the global monopolgll,12 in the Brans-Dicke theory
of gravity. Also, solutions corresponding to a cosmic string
[13] "?md a dom_aln wal[14] in more general scalar-tensor will expand Eqgs.(8) to first order inG, A%(¢,) in such a
theories of gravity have been obtained.
) . . way that

In this paper, we consider the global monopole and inves-
tigate its gravitational field in the scalar-tensor theories of
gravity using the weak-field approximation. Our approach

In what follows, we will consider the solution of a global
monopole in the weak-field approximation. Therefore, we

g/.LV: 7]/.LV+ h;uﬂ

consists of working out the field equation corresponding to b= ot b1,

the scalar fielddilaton), determining its solution, and then

incorporating it with the global monopole solution of general A(p)=A(po)[ 1+ albo) b1,
relativity [3], with the appropriate modifications, in the weak

approximation in order to construct the solution correspond- TE=TH),+TH),, (10)

ing to the global monopole in scalar-tensor theories.
where ¢, denotes a determined value of the scalar field.
Il. THE METRIC OF A GLOBAL MONOPOLE IN In this approximation,

THE WEAK-FIELD APPROXIMATION ) _
T =A T 11
In this section, we will derive the metric of a global ©pr=A(S0) Topur @)
mOﬂOpOle in the framework of massless scalar-tensor theqS the energy-momentum tensor of a scalar-tensor g|0ba|

ries. Let us consider the action describing the class of Scalafﬁonopole, wheré’f‘o)y is the energy-momentum tensor of a

t(in_sor the;ones dfevelop?rc]i n Fi@"]'fm the ﬁp'ﬁ"’:ued IIEIE_ | global monopole in general relativity and is given by Ep.
stein (conforma) frame, the action from whic € globa In the linearized regime, Eq$8) can be written as

monopole solution is obtained reads

1
1 V?h,,=167G, | To)u—5 7., T (12)
_ 4 — _ v nv * O)uv 2 Nuv!(0)
S 1@;7G*fd x\—g[R—29""d,¢d,¢]
1 and
= [ a=ome) 300,000 -vi@)|. ©
2 a V2¢1y=4mG, (o) T (o) 13
whereg,,, is a pure rank-2 metric tensdR is the curvature Let us begin by solving the equation for the dilaton field

scalar associated to it ar@, is some “bare” gravitational ¢,y in Eq. (13). We have that

coupling constant. The second term on the right-hand side of

Eq. (6) is the matter action representing a model of a real 5 7?

Higgs scalar fieldDd, and V(®) is the symmetry-breaking Vi 1)=87Goa(do)—, (14
potential. Action(6) can be obtained from the original action '
that appears in Ref4] by a conformal transformatio(see,

- whose solution is
for instance[15]),

r 2Ma’(¢o)

9 =AA($)9ur (@) $w=8mGoa(doln—+————, (19

whereg «v 1S the physical metric and contains both scalar andvhere Go=G,A?(¢o) is a ¢po-dependent effective gravita-
tensor degrees of freedom aAd( ) is an arbitrary function  tional constant, and, and 2Vl a?(¢,) are integration con-

of the scalar field. stants,M being the mass of the monopole core. This last
In the Einstein frame, the field equations are written asntegration constant was obtained in analogy with the proce-
follows: dure done in Ref[11].
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Now, the linearized Einstein equation in H42) with the  rather than 4rr2. Therefore, the deficit solid angle becomes
source given by Eq1) multiplied by the factoA?(¢) isjust  ¢o-dependent as compared with the result in general relativ-
the same as in general relativity witB changed byG, ity.

:{1/[1+a2(¢0)]}e_ This relation betwee® and G, was Concerning the light deflection in the spacetime of a
derived taking into account the corresponding one in Bransscalar-tensor global monopole, one can follow the arguments
Dicke theory, in which case this relation is valid fa?  Of Barriola and Vilenkin[3], also used by Barros and
=1/(2w+3). Then, in order to construct the solution that Romero[11] in the context of Brans-Dicke theory, to show

corresponds to a global monopole in scalar-tensor theories @at ?] light Soigna|dprr?pagating flrom a sou;&tol an Igbseorlver
gravity, we can use the linearized form of the Barriola and®: WhensS O, and the monopole are perfectly aligned, pro-

Vilenkin [3] solution given by Eq(5) with G interchanged duces an image with the form of a ring of angular diameter

by Go={1[ 1+ a*($)1}G, together with Eq(15), in which ~ 9'VE" Y

we drop the mass term as it is totally negligible on the as- 877°G |

trophysical scale. Doing this we have that, in the weak-field = o itd (20
approximation, the metric that represents the gravitational 1+ a“( o)

field of a scalar-tensor global monopole reads

2
1+ 1677L¢°)c5772|n(L
1+ a?(g) ro

whered and| are the distances from the monopole to the
observer and to the source, respectively. This result reduces

{dtz—drz to those obtained in the framework of general relativity and
Brans-Dicke theory in the appropriate limit, as it should be.

ds’=A%(¢o)

Ill. CONCLUDING REMARKS

G7? |r3(de>—sirfod¢?) |, (16)

8
(1 1+ a?( o) In this work, we have extended the monopole solution in
the context of general relativit)3] to scalar-tensor theories
where we have used the fact that the physical metric, in thigf gravity. Naturally, from our results, the corresponding so-
approximation, is given by lution [11] in the context of Brans-Dicke theory as well as
~ the solution in general relativity3] are reobtained in the
9., =A%(Po)[1+2a( o) b1)l(m,thy,). (A7) appropriate limit, as was already pointed out. For example,
we can obtain the solutiofill] in Brans-Dicke theory by
etaking ?=1/(2w+3), wherew is a dimensionless coupling
constant. The solution in general relativjty] is obtained by
taking a— 0, which is equivalent to takinfl6] w— .
The method we have used is simpler than the one used in
)Hdtz—drz—(l

The factorA?(¢,) appearing in the above expression can b
absorbed by a redefinition of the coordinates (@, ¢). We
obtain finally

[11], which worked out a set of Brans-Dicke equations. In
the present case, we just solved explicitly the equation for
the scalar fielddilaton) and used the argument that the so-
8m lution of the equation foh,,, can be obtained directly from
1+ (o) the global monopole solution in general relativity, inter-
changing the Newtonian gravitational constant by the
Thus, we have shown that in the weak-field approxima-dependent effective gravitational constarby={1/1
tion, Eq.(18) represents the spacetime generated by a globat a?(¢,)]}G. This solution can be used, in principle, to
monopole in scalar-tensor theories of gravity. Analogously tostudy some effects due to geometrical and topological fea-
the general relativity and Brans-Dicke cases, this curvedures of spacetime, thereby providing ways to compare with
spacetime also presents a deficit solid angle in the hypersuthe corresponding results in general relativity and Brans-
facet=const. The area of a sphere of radiuis this space Dicke theory.
would be given by

ds?=|1+167

(o) 2|n(L

1+ a?( o) 7

. (18

Gn2> r2(de?—sirfod¢?)
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