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A proposal for measuring the phase distribution P (θ) of certain families of field states
is presented. This method is based on establishing the connection between the phase

distribution and the visibility of the (single-photon) interference in a Mach–Zehnder
device. Such a scheme can also be applied to determine relative phases of superposed
states.

PACS Number(s): 03.65.Bz, 06.20.-f, 42.50.Dv

1. Introduction

Although coherent1 and squeezed2 states are the most widely available pure states of

the electromagnetic field, the number and the phase states also occupy an important

place in quantum optics, mainly due to their wide use as mathematical tools in this

area. These two latter states are complementary in the sense that the number

operator n̂ and the phase operator φ̂ form a canonically conjugate pair.3–5

A property usually studied in the literature is the photon-number distribution

Pn = |〈n|Ψ〉|2 which gives a first characterization of a field state |Ψ〉. The exper-

imental determination of Pn is well known. The knowledge of Pn does not fully

characterize a field state |Ψ〉 at all: actually, there are many examples of distinct

field states having the same statistical distribution Pn.6–8 In such cases, the dis-

tinction among these fields can be obtained by looking at their complementary

distribution P (θ). To our knowledge, determining P (θ) experimentally is not a well

established procedure, so a proposal for its implementation is in order.

‡Corresponding author.
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Since the appearance of reliable phase states,3–5 various treatments about the

phase distribution P (θ) have appeared in the literature.9–16 The Pegg–Barnett

(PB) truncated phase states,

|θm〉 =
1√
s+ 1

s∑
n=0

exp(inθm)|n〉 , (1)

with

θm = θ0 +m

(
2π

s+ 1

)
, m = 0, 1, 2, . . . , s , (2)

and the PB phase operator,

φ̂ =
s∑

m=0

θm|θm〉〈θm| , (3)

were introduced in Refs. 3–5; the set of states {|θm〉} forms a complete orthogonal

set,
∑s
m=0 |θm〉〈θm| = 1̂ and 〈θm|θm′〉 = θm,m′ , in the truncated Hilbert space of

dimension s + 1, i.e. φ̂ is a Hermitian operator. The ideal phase state is obtained

in the limit s→∞. For an arbitrary pure-state |Ψ〉, P (θ) is defined as

P (θ) = lim
s→∞

s+ 1

2π
|〈θm|Ψ〉|2 =

1

2π

∞∑
n,n′=0

ρn,n′ exp[−i(n− n′)θ] , (4)

where ρn,n′ = 〈n|Ψ〉〈Ψ|n′〉 are the matrix elements of the density operator describ-

ing the field state in the number basis.

In a recent paper,17 a proposal to measure the phase distribution P (θ) of an

arbitrary field state was presented. The situation there was concerned with a field

in a running wave and required an auxiliary field named the Reciprocal Binomial

State which had a special characteristic. A proposal to generate such an auxiliary

state was presented later,18 a result which is also crucial for quantum lithography.19

In this report, we will present an alternative procedure to measure the phase dis-

tribution P (θ) of certain families of field states. The method employs single-photon

interference in a Mach–Zehnder interferometer and takes advantage of previous the-

oretical results.20,21 In Sec. 2, we present the experimental arrangement and briefly

discuss the phase shift measurement using such a device. Section 3 is concerned

with the calibration of the apparatus to determine the phase distribution P (θ). In

Sec. 4, an application of this scheme to determine the relative phase of superposed

states is presented; while Sec. 4 contains our final remarks.

2. Phase Measurement via Single-Photon Interference

The schematic arrangement for our proposed experiment to measure the phase

distribution P (θ) of a field state |Ψ〉, consisting of a single-photon Mach–Zehnder

interferometer with one arm connected to a (nonlinear) Kerr medium, is shown in

Fig. 1. The visibility v of the interference pattern will depend on the accuracy of

M
od

. P
hy

s.
 L

et
t. 

B
 2

00
2.

16
:7

01
-7

09
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
D

A
D

E
 F

E
D

E
R

A
L

 D
A

 B
A

H
IA

 o
n 

01
/2

0/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



October 14, 2002 11:47 WSPC/147-MPLB 00417

On the Measurement of the Phase Distribution of Field States 703

Phase
 Shift

F
�
i

�
el

�
d

Ob
�
ser� v� ati

�
on�

of
i

�
n� t

�
erf� er� en� ce

P
�
h

	
ase

Measu
 rement
�

a

b
�

 Kerr
 Medi

�
u
 m�

δ
Ψ 'Ψ

  |1〉
�

Fig. 1. Single-photon interferometer including a Kerr medium for QND measurement of the
photon number in arm a. Accurate determination of the phase shift in the field |Ψ〉 destroys the
interference pattern.

the measurement of the phase shift δ produced upon the probe field |Ψ〉 entering

the additional arm c and traversing the nonlinear medium.20 It reads

v = |〈Ψ|ein̂δ|Ψ〉| (5)

where ein̂δ|Ψ〉 = |Ψ′〉 is the state describing the output emerging from the nonlinear

medium inserted on the arm c. In the number basis, |Ψ〉 =
∑
n cn|n〉, one has

v =

∣∣∣∣∣∑
n

Pne
inδ

∣∣∣∣∣ . (6)

Since the interaction modifying the state depends only on the operator exp(in̂δ), it

does not change the number of photons (0 or 1) traversing the arm b, so the scheme

constitutes a quantum nondemolition measurement (QND). Measuring the phase

shift δ in the field |Ψ〉 with high accuracy destroys the interference pattern,20 in

agreement with a Bohr statement.22

However, when the phase of the field state |Ψ〉 does not have a good definition,

its phase shift δ cannot be obtained with high accuracy.21 In such a case, the inter-

ference pattern is just partially destroyed. So, there is a correspondence between

the visibility v of the interference pattern and the phase definition of a field state.

In Ref. 21, we discussed the Heisenberg limit concerning the accuracy of a phase

measurement, by taking advantage of the procedure of Refs. 20 and 23. Here, we

will apply this scheme to the determination of the phase distribution, for certain

families of field states, as discussed in the next section.
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3. “Calibration” of the Apparatus

The point to be solved is: how to establish a correspondence between the phase

distribution P (θ) and the visibility v of the interference pattern? Clearly, there is

no universal relation between v and P (θ) for an arbitrary state |Ψ〉: the visibility is

specified by the photon-number distribution and the dispersive interaction in the

Kerr medium; while P (θ) requires all the elements of the density matrix in the

number basis to be known. Nevertheless, for certain families of states characterized

by one parameter, a correspondence between v and P (θ) may be established.

To this end, let us consider a probe field which interpolates between a num-

ber state |N〉 and a truncated phase state |θ(S)
m 〉, both pertaining to the (S + 1)-

dimensional Hilbert space, as follows:

|Ψ(ξ)〉 = η
[√

ξ|N〉+
√

1− ξ|θ(S)
m 〉

]
, (7)

where the normalization factor is given by

η =

[
1 + 2

√
ξ(1− ξ)
S + 1

cos(Nθ(S)
m )

]− 1
2

. (8)

Note that for ξ = 1 and ξ = 0, the state |Ψ(ξ)〉 coincides with the number state

|N〉 and the PB phase state |θ(S)
m 〉, respectively. When ξ ∈ (0, 1) the state |Ψ(ξ)〉 is

intermediate between |N〉 and |θ(S)
m 〉. In the limit of very large S, in the extreme of

ξ = 0 (ξ = 1), the state |Ψ(ξ)〉 has a well-defined (random) phase; probe fields in

the first (second) extreme will correspond to v = 0 (v = 1).

Now, by substituting Eqs. (7) and (8) into Eq. (5), the visibility v in the inter-

ferometer, when the probe field is one of the states in Eq. (7), is given by

v =

{
A2 +B2 + 2AB cos

[(
S

2
−N

)
δ

]} 1
2

(9)

where

A = η2

[
ξ + 2

√
ξ(1− ξ)
S + 1

cos(Nθ(S)
m )

]
, (10)

B = η2

[
1− ξ
S + 1

sin[(S + 1) δ2 ]

sin( δ2 )

]
. (11)

In Fig. 2, we plot the visibility as a function of the parameter ξ for a given

family of states (specified by S,N, θ0 and m), for some values of δ. We notice that

the behavior of v versus ξ depends crucially on the value of δ. For families of states

of the kind we are considering, however, the distinction among curves for different

values of δ tends to disappear for large values of S.
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Fig. 2. Visibility v as a function of ξ, for the family of states |Ψ(ξ)〉 with S = 7, N = 4, θ0 = 0
and m = 0, for different values of the phase shift δ: π/2 (full line), π/3 (dashed line) and π/6
(dotted line).
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Fig. 3. Phase distribution as a function of θ and ξ, for the same family of states as in Fig. 2.

On the other hand, calculating the phase distribution P (θ) for the same family

|Ψ(ξ)〉, we obtain

P (θ, ξ) =
η2

2π

[
ξ + 2

√
ξ(1− ξ)
S + 1

F (S, β) cos

(
Sβ

2
+Nθ

)
+

1− ξ
S + 1

[F (S, β)]2

]
, (12)

where

F (S, β) =
sin[(S + 1)β2 ]

sin(β2 )
(13)

and β = θ
(S)
m − θ. Figure 3 shows P (θ; ξ) for the same states |Ψ(ξ)〉 as in Fig. 2.

These results allow us to establish a correspondence between P (θ) and v. In

fact, since the visibility can be taken as a monotonically increasing function of ξ by
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an appropriate choice of δ, an estimation of v leads to the phase distribution P (θ)

for the state defined by the corresponding value of ξ. The correspondence between

v and P (θ) is then obtained from Eqs. (9) and (12) through the elimination of

the parameter ξ. Accordingly, for the family of states |Ψ(ξ)〉 given in Eq. (7), by

properly adjusting the phase shift δ, the visibility v of the interference pattern

determines the phase distribution P (θ). Notice that (contrary to Refs. 20 and 23

where δ is a wanted parameter), δ is a choice parameter here, relevant to the setting

of the experimental apparatus.

The same procedure can be applied to other families of field states. For example:

(i) A family of coherent states, |Ψ(ξ)〉 = |α〉 with α = ξ exp(iφ). In this case,

taking δ � 1, we obtain v ∼= exp(−ξ2δ2/2), and, for ξ = |α| � 1, P (θ, α) ∼=
(2ξ2/π)1/2 exp[−2ξ2(φ−θ)2]. Hence, a new connection between v and P (θ) can

be obtained for this family of field states.

(ii) A family of squeezed states, |Ψ(ξ)〉 = |z, α〉, with fixed α and ξ = |z|, etc.

We call these procedures (in which we use known one-parameter families of

field states) to establish the connection between P (θ) and v by adjusting the phase

shift δ, “calibrations” of the Mach–Zehnder interferometer. Naturally, the method

does not work for arbitrary field states, since it requires some knowledge about

the class of probe states entering the apparatus. Once this previous knowledge

is given, the present scheme turns out to be a good tool to determine P (θ). As

mentioned before, a proposal for the determination of P (θ) for traveling waves in

arbitrary states has been studied in the literature.17 However, this method requires

the use of the reciprocal-binomial state whose generation has only been discussed

for trapped states.18

4. Relative Phase Measurement

The measurement of the visibility in the Mach–Zehnder apparatus can also be used

to determine the relative classical phase between components of a superposition of

coherent states of equal intensity. Consider the state

|Ψ〉 = η(|α〉 + |eiφα〉) , (14)

where α is real (for simplicity) and η = [2 + 2e−α
2(1−cosφ) cos(α2 sinφ)]−1/2 is the

normalization factor. If the state (14) is taken as the probe field injected into the c

arm of the apparatus, then the measured visibility is given by

v(δ;φ;α) = [2e−α
2

+ 2eα
2 cosφ cos(α2 sinφ)]−1

× {4e2α2 cos δ + e2α2 cos(δ+φ) + e2α2 cos(δ−φ)

+ 4eα
2[cos δ+cos(δ+φ)] cos[α2(sin(δ + φ)− sin δ)]

+ 4eα
2[cos δ+cos(δ−φ)] cos[α2(sin(δ − φ) − sin δ)]

+ 2e2α2 cos δ cosφ cos(2α2 cos δ sinφ)}1/2 . (15)
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Fig. 4. Visibility v as a function of the phase shift δ for states in Eq. (14), taking α = 20, with
φ = π/6 (full line), φ = π/3 (dashed line) and φ = 3π/4 (dotted line). The peak at δ = 0 coincides
for the three cases, as it should.

One notices immediately that the visibility is periodic in δ with a period of 2π.

Variations of the phase shift δ can be obtained by changing the extension of the non-

linear Kerr medium where the auxiliary field travels. On the other hand, v(δ;φ;α)

is invariant under the transformation φ → 2π − φ, which means that the profile

of v versus δ (with fixed φ) for δ ∈ [π, 2π] is the specular reflection on the line

δ = π of that corresponding to the segment [0, π], and vice-versa. In other words,

the visibility does not distinguish φ from 2π − φ.

For very large intensities of the component states, α � 1, the plot of v versus

δ shows, besides the intrinsic peak for δ = 0 (since as δ → 0, v → 1 for any

state), a well-defined peak of height 1/2 when δ = 0 (but with φ not too close to

π) has illustrated in Fig. 4. We see then that, with the limitation imposed by the

symmetry mentioned above, the analysis of the profile v(δ) allows one to determine

the relative classical phase φ between the two coherent states. When φ approaches

π, the two peaks tend to merge into one another, forming a single peak with height

reaching 1 exactly for φ = 0. Phase shifts of the order of π were achieved in recent

experiments.24

5. Conclusions

We have discussed a new proposal to measure the phase distribution P (θ) of one-

parameter families of field states. The scheme employs a single-photon Mach–

Zehnder interferometer, which has in one arm, a nonlinear medium that couples

a probe field |Ψ(ξ)〉 (in an auxiliary arm c) with a single photon (in arm a). The

dispersive interaction in the nonlinear medium causes a phase shift δ in the field

|Ψ(ξ)〉. This phase shift can be measured with high accuracy when the field |Ψ(ξ)〉
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has good phase definition: the ideal extreme case being the field in a phase state.21

In this case, the interference pattern measured in the Mach–Zehnder device is de-

stroyed. On the contrary, complete destruction of the interference pattern is no

longer observed when the field |Ψ(ξ)〉 does not have good phase definition: the ex-

treme example being given by a field prepared in a number state which has a random

phase. The method here consists of establishing a one-to-one correspondence be-

tween the phase distribution P (θ) and the visibility v of the interference pattern.

Such a calibration allows one to obtain the phase distribution from the visibility. It

is worth mentioning that, as also occurs for photon number distribution Pn,6–8 the

determination of P (θ) does not characterize completely the state |Ψ(ξ)〉. In fact,

in setting ρ̂ = |Ψ(ξ)〉〈Ψ(ξ)|, we note that P (θ) only defines the diagonal part of

the matrix 〈θ|ρ̂|θ′〉. In another interesting application of the present scheme, we

have shown how to determine the relative classical phase between two superposed

coherent states, obtained from the maximum of the measured visibility v plotted

as a function of the phase shift δ (cf. Fig. 4). The accuracy in this determination

increases when |α| becomes large, yielding the Kerr medium to play an efficient

role in the process. Needless to say, the method proposed only works for traveling

fields.

Finally, it is worth observing that there are various proposals in the literature to

obtain the Wigner function characterizing the system completely (these procedures

being usually named quantum state tomography).25–29 Alternatively, there are also

various proposals presented in the literature allowing one to reconstruct the wave-

function describing a system. Such procedures are usually named quantum state

endoscopy.30–33 These methods provide all information about the system without

any a priori information. However, concerning with feasibility, and contrary to our

case, these methods are very sophisticated requiring the use of high technologies

(high-Q cavities, use of very low temperatures to avoid environmental noises and

decoherence effects, high efficiency detectors, errors arising from fluctuating param-

eters, etc). So, although the complete knowledge of a field state can be obtained in

suitable situations, the study of particular properties of a field state is not useless.

That is the reason why various techniques have been developed to determine partic-

ular properties of field states: e.g. measuring the variance of quadrature operators

to check the occurrence of squeezing, measuring second-order correlation functions

to check the occurrence of anti-bunching; and many other properties, the phase

distribution P (θ) being an example of them.
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