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Anisotropic cosmologies containing isotropic background radiation
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We present an anisotropic cosmological model based on a new exact solution of Einstein equations. The
matter content consists of an anisotropic scalar field minimally coupled to gravity and of two isotropic perfect
fluids that represent dust matter and radiation. The spacetime is described by a spatially homogeneous, Bianchi
type Il metric with a conformal expansion. The model respects the evolution of the scale factor predicted by
standard cosmology, as well as the isotropy of the cosmic microwave background. Remarkably, the introduc-
tion of the scalar field, apart from explaining the spacetime anisotropy, gives rise to an energy density that is
close to the critical density. As a consequence, the model is quasiflat during the entire history of the universe.
Using these results, we are also able to construct approximate solutions for shear-free cosmological models
with rotation. We finally carry out a quantitative discussion of the validity of such solutions, showing that our
approximations are acceptably good if the angular velocity of the universe is within the observational bounds
derived from rotation of galaxies.
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I. INTRODUCTION [9]. However, we will show that this problem can be solved
just by including an additional matter source consisting in an
One of the best established facts in observational cosmoknisotropic scalar field. In this way, we will be able to con-
ogy is the isotropy of the cosmic microwave backgroundstruct an exact solution of Einstein equations with the re-
(CMB) [1]. This high degree of isotropy explains the succesgjuired properties.
of cosmological perturbation theof2] in reproducing the In addition to their important role in inflationary models
spectrum of anisotropies detected in the CM& The mea- [10] and Brans-Dicke cosmologig¢$,11], the use of scalar
surement of these anisotropies, originated from primordiafields in cosmology has received renewed attention during
fluctuations, has played a fundamental role in the advent ofecent years. The observed relation between luminosity dis-
precision cosmology, allowing for the first time the determi-tance and redshift for type la superno&@N\e Ia has sup-
nation of several cosmological parameters and the rejectioplied strong evidence in favor of an accelerated expansion of
of a large number of cosmological modéty. the universd12]. In order to explain this acceleration and fit
The isotropy of the CMB, together with the apparent ho-the SNe la data, cosmological models with a new matter
mogeneity and isotropy of clustering matter, smeared outomponent have been proposed. This component, called
over scales of the order of 100 MpB], provide the main quintessence, can be modeled by a light scalar field with a
experimental support for the cosmological princiggé The  self-interaction potential and with minimal coupling to grav-
spatial homogeneity and isotropy of the universe is incorpoity [13]. Comparison of the theoretical predictions with SNe
rated in the standard cosmological model by using thda and CMB observations leads to an estimate for the dark
Friedmann-Robertson-WalkgiFRW) family of metrics to  energy density of this quintessence field tfratighly speak-
describe the spacetime. It should be clear, nevertheless, thiat) is of the order of magnitude of the critical density
the cosmological principle is actually a reasonable and fruit{12,14.
ful hypothesis, rather than a proven fact. In order to clarify From this perspective, our approach to construct aniso-
this issue, at least from a conceptual point of view, we wantropic solutions can be considered as a new application of
to show that it is possible to construct spatially homogeneouscalar fields in cosmology. The anisotropic field that we will
cosmologies which are anisotropic but still compatible withintroduce does not really model a quintessence component,
the observed isotropy of the background radiation and théecause its presence does not accelerate the expansion of the
matter with strong clustering properties. universe. Actually, as we will see, our scalar field produces
Our starting point will be a spatially homogeneous spaceneither acceleration nor deceleration, so that it can rather be
time metric of the Bianchi type 1l[7] subject to conformal regarded(apart from the anisotropyas the limit of a quin-
expansion. As shown in Ref8], the condition that the ex- tessence contribution when the acceleration vanishes. Much
pansion be conformal is crucial for the isotropy of the CMB. more importantly, it turns out that the dark energy density
Part of the matter content will be given by a two-componentassociated with this field is similar to the critical density of
perfect fluid describing thdidealized radiation and dust the model at late times. In this sense, our model suggests that
matter that are present in our universe. By its own, this perthe inclusion of an anisotropic scalar field may provide a
fect fluid cannot account for the anisotropy of the spacetimenechanism to generate quasiflab] universes.
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In the case of our anisotropic cosmological solution, theconstruct belongs to the RTKO family, we will first analyze
guasiflatness can be rooted in the fact that the energy densitge most relevant properties of these geometries and obtain
of the anisotropic field is proportional to the inverse squargheir Einstein equations in Sec. Il. In Sec. Il we present our
of the scale factor, which is precisely the type of dependencéxact anisotropic solution with vanishing rotation, and dis-
that one would expect for the critical density at the finalcuss the corresponding cosmology in Sec. IV. Based on the
stages of the expansion. The reason is that, in a Bianchi typgase of zero angular velocity, we find in Sec. V approximate
Il universe, there exists a negative contribution of curvatureXTKO solutions with rotation. We also study their cosmo-
to the energy density, just like in an open FRW model, sdodical parameters and show that the quasiflatness of the cos-
that at large cosmological times one would expect the scalf'0logical model persists in the presence of rotation. By
factor to be inversely proportional to the Hubble constanf@MParing the Einstein tensor of our approximate solutions
and, therefore, to the square root of the critical density. ~ With the energy-momentum tensor of its assumed matter con-

As we have said, the evolution of the anisotropic solutiond€Nt: We derive in Sec. VI a bound on the angular velocity of

that we will present is not accelerated, so that our cosmologith® Universe ensuring that the relative errors committed in
e Einstein equations are small. The conclusions of our

cal model cannot be considered realistic in this respect. On , : . ) ,
could remedy this situation by including an additional matterVork are included in Sec. Vil. Finally, an Appendix contain-
source, given by a quintessence field or a cosmological cod’d S0me calculations is added.
stant. Instead of proceeding in that way, we have preferred to
keep the model as simple as possible, both to isolate the Il. THE RTKO METRICS
cosmological consequences of the anisotropic scalar field
and to obtain a solution of Einstein equations in which one
can complete all calculations of cosmological parameters us-
ing exact expressions.

Apart from clarifying the role that anisotropic scalar fields
may _play n cc_;sm_ology, we will also d_lscuss n detal! anOth?rwhere n is the conformal time and,y,z are the spatial
possible application of our exact anisotropic solution. This

S . . —coordinates, all of them assumed to run over the real axis.
application follows from the fact that the spacetime metric OfThe paramete, on the other hand, is a constant that can be
our model is just the vanishing-rotation member of a family ' !

) . J restri non-n ive without | f generality. From
of spatially homogeneous, rotating and shear-free metric estricted to be non-negative without loss of generality. Fro

. : Row on, we call it the rotation parameter. The above space-
th"’?t were S.tUd'ed by Kc_;rotklanql ObUkhOV(KO.) [8'1.6]' time does not contain CTC'’s if and only lifbelongs to the
This family is an expanding version of a class ofdeblike

stationary metrics analyzed by Rebascand Tiomng(RT) interval[0,1), since it is only then that the metric induced on
[17]. From now on, we will refer to them as the RTKO the sections of constant time is positive defif8el7]. In the

metrics. In the limit of small rotation, it is not difficult to following, we wil restrict our considerations to this causal

employ our exact anisotropic solution to construct approxi-seCtor’ G.EI =1 . . .
We will employ the following notation. Greek letters will

mate solutions for the rotating RTKO cosmologies and SUPYenote spacetime indices, and the indif@d,2,3 will des-

ply them with a physically acceptable matter content. . . . o
. L . .,_ignate, respectively, the coordinatgs,x,y,z}. In addition,
We will also carry out a quantitative analysis of the valid we adopt units such that3=c=1, G being Newton con-

ity of our approximations when a small rotation is present. In
. A . stant.

particular, we will find a bound on the angular velocity of the Metric (2.1) is a spatially homogeneous, Bianchi type Ill
universe guaranteeing that our approximate solutions cannotetric With'three Kiﬁin vﬁctor fieglds iver,1 b yp
be distinguished from the unknown exact ones, at least as fay ' 9 9 y
as the energy-momentum tensor is concerned. . _ _

The RTKO metrics share in fact most of the good prop- ST Ky, E@=dy,  §3=0z 2.2
erties presented by our exact anisotropic solution with van-

ishing rotation. For instance, they are all of the Bianchi type! '€ _Metric possesses also a CKVF, naméfy- &, . Ko-

Il and possess a conformal Killing vector figl@KVF). The  'Otkil and Obukhov have proved that, assuming comoving
existence of a vector of this kind parallel to the four-velocity fadiation and a comoving observer, the existence of a CKVF
of dust matter and radiation is known to be the necessary ari@larantees the isotropy of the detected CMB, with the radia-

sufficient condition for the absence of parallax effeics] tion temperature falling with the inverse of the scale factor,
and turns out to guarantee the isotropy of the CR8& In and ensures that the redshift of the light coming from astro-

addition, the spacetime does not contain closed timelik@hysical objects does not depefekplicitly) on the spatial
curves(CTC's) unless the rotation is considerably lafgg. ~ Positions of the source and the receiver, but only on the
On the other hand, it has been shown that the RTKO metricEMission and observation timg8,16]. Besides, the CKVF
reproduce the open FRW metric in the limit of small rotationPrévents the appearance of parallax effed]. Further-
and nearby distancé9]. All these properties clearly make MOre in these spacetimes the shear tensor vanishes for co-
of the RTKO metrics natural candidates to describe anisoM0Ving observerswith four-velocity equal tou”=&y/a),
tropic cosmological scenarios with rotation. whereas their rotation tensar,, is different from zerd7,8].

The rest of the paper is organized as follows. Since thén particular, their angular velocity isw=Vw,,0*"/2
spacetime of the exact cosmological solution that we will=1/(2a).

The RTKO metrics are described by the line element

ds?=a?(n)[ — (dy+leXdy)?+dx?+e?*dy’+d 7],
(2.2
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With the help of the coordinate transformation section, we will present an exact solution for the case of
_ vanishing rotation that has an acceptable energy-momentum
e"=coshr +cos¢ sinhr, (2.3 tensor. This solution represents an anisotropic universe in
continuous expansion.
ye*=sin¢ sinhr, (2.9
p Ill. THE ANISOTROPIC SOLUTION
n=n-l¢+2l arctaré e "tan; |, (2.9 We will now restrict our attention to the RTKO metric
obtained when the rotation parameteranishes. In the ab-
one can write metri¢2.1) in the cylindrical form[17] sence of rotation, the Einstein equations require the energy-
) momentum tensor to be diagonal. The diagonal components
~ . r must satis
ds’=—a?(n)|dp+2l S|nh2(§)d¢ fy
4_nn2 2
. ea"=3a“—a’, 3.1
+a?(p)[dri+sinttrdgp?+dz?]. (2.6) @1
pia‘=p,a*=a’?-2aa, (3.2

Here, 7 is the new real timer is non-negative, ang is an
angular coordinate. Note that the scale factor is not constant
on the sections of constant timgunless the rotation param-

eter vanishegor a( ) is a constant numbgrbecause de- ] o
pends on the radial and angular coordinatemd ¢ when  Here, we have adopted the notatiew — T, for the energy

|+0. On the other hand, using the change of coordinategensity andp;=T; (i=1, 2, or 3 for the principal pressures

(2.3) and (2.4), one can easily check that the sections ofof the system.

constant timez are the direct product of a real line and a  Let us start by assuming tha&® vanishes in the limit of

two-dimensional pseudosphere. infinite scale factor, as would happen if the matter content
Let us finally consider the associated Einstein equationgzonsisted exclusively of dust and radiatid?20]. From Eq.

For the diagonal components of the Einstein and energy(3.1) one then easily sees that/a® must tend to 1/3 when

psa’=p;a’+1. (3.3

momentum tensors, one obtains a—o. Note also that this equation ensures thancreases
9 unboundedly with the conformal time, provided thetis
3l ) P 2 - ) 5
T8a4= 1- ——|a?—3(1-1?)a2 2.7) initially positive. In addition, supposing that“ is a smooth
4 function of the scale factor, the conditicza®—0 implies

that (de/da)a® vanishes whera becomes infinitely large.

2 Using these facts and taking the time derivative of &ql),

Tia4=T§a4:|—a2+(1—|2)a2—2(1—|2)aé, 2.8 . o
4 it follows that the quotienéi/a must also tend to 1/3 whem
approaches infinity. Employing now E(B.2), one concludes
3.9 1.2 |2 that p,a® has a finite limit whena—c«. As a result, the
Tsa'=Ta+1- 2 2.9 Gominant energy conditiof21] is violated during the evolu-

tion, because for sufficiently large scale factors the pressure
where the overdot denotes the derivative with respect to thp, becomes larger than the energy density.
conformal timez. For the non-diagonal components, on the Therefore, if we want to reach an acceptable solution of

other hand, the result is the Einstein equations that respects the energy conditions, we
_ must include matter sources whose energy density does not
Téa4= I2aa, fall faster than 14> when the scale factor expands to infinity.
Probably, the simplest way to do this is by introducing an
T2a*=2le *(aa—2a?), anisotropic massless scalar field minimally coupled to grav-

ity. As we will see below, the corresponding energy density
satisfies precisely the minimal requirement of being propor-
tional to the inverse square of the scale factor. Furthermore,
the inclusion of such a scalar field will actually suffice to
explain all the anisotropies of the model, allowing the rest of
14 o the matter content to be isotropic. .
Tz;a’=—(1-19)le*aa. In curved spacetime, a massless minimally coupled scalar

o field satisfies the equation
The remaining components of the energy-momentum tensor

must be identically zero. As far as we know, no physically 1

admlssmle matter source has begn pr'oposed up to date lead- quguvz_(‘/_g(p‘ﬂgwq’v:o, (3.4
ing to a solution of the above Einstein equations when the v—0

scale factor is not constant. Hence, no explicit RTKO cos-

mological model has been constructed so far. In the nextvhereas its energy-momentum tensor has the form

T?a%*=—le *aa, (2.10

Toa%=(1-1?)le*a?,
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1 From the above comments, it should be clear that the
TZ:CI’,MCI),UQUV—Eq),aq),pg“pé;i- (3.5  evolution of the scale factor in our model reproduces the
expansion found in an open FRW cosmology, except for

Here,g and g~” are the determinant and the inverse of theSome qualitatively irrelevant scalings by factors of the order
four-metric, the semicolon denotes covariant derivative, an®f the unity. Owing to this fact, and leaving aside the anisot-
5" is the Kronecker delta. ropy of the sections of constant time, the cosmological solu-

Let us then consider an anisotropic scalar field given b)}ion that we will construct leads essentially to the same his-
@ =Cz with C being a constant. This kind of source for the (0¥ Of the universe as a standard open FRW scenario, at

RTKO metrics was already suggested by Relasuand Ti- least during the epoch in which the scalar field has a negli-
omno in a stationary context with rotati¢a7]. It is easily ~ 9ible contribution to the energy and pressure of the system.
checked that Eq3.4) is in fact satisfied by our field in any Furthermore, regarding the anisotropy of the spatial sections,
of the spacetimef.1). Besides, from Eq(3.5), the solution we recall that our spacetime metric can be written in the

®=Cz has a diagonal energy-momentum tensor, with thdorm (2.6 with 1=0. In fact, since such metric reduces to an
following energy density and principal pressures: open FRW metric in the limit of nearby distanaes 1 [19],
no differences should be expected in physical processes or

2 observations which do not involve distant regions.
e®=pP=—pP=—pP=—. (3.6 We are now in an adequate position to obtain the solution
2a of the Einstein equations that we were seeking. In addition to

the anisotropic scalar field, we suppose that the matter con-
tent is given by radiation and dust, as it is usually done in
standard FRW cosmology. We will describe these matter
sources by a two-component perfect fluid, with comoving
f'our—velocity ut=8pla. The assumption that the radiation
present in the system adopts the form of a comoving perfect
id, together with the properties of the RTKO metr[&,
uarantees that the CMB of the model is isotropic. Similarly,
the fact that the dust matter can be treated as a comoving

!n addition, the p_rir_lcipal pressures are now aniSOtmpiCperfect fluid ensures the applicability of Hubble ldin the
Using this property, it is actually very simple to remove anyleading-order approximatigrto any kind of radiation that

trace of anisotropy from the Einstein equations of our spacez, 14 he emitted by dust particles, since the radiation fre-

time. Defininge= e+ ¢ andp;=p; + p{, we see from Eq.  guency varies then just like the inverse of the scale fd@br
(3.3 that the anisotropic contributions of the model can beFor such a matter content, the expression of the energy and

absorbed in the scalar field just by imposing ti@f=1. pressure that appear in Eq8.7) and (3.8 are
Since the orientation of can be inverted at wil{producing

an apparent flip of sign in the constad}, we will fix from

Here, the superindefs) refers to the contribution of the sca-
lar field.
Note that the corresponding energy density falls vaifh

as we had anticipated. In this respect, it is interesting to not
that such a kind of decay for the energy density is also ex
pected on the basis of quantum cosmology arguments a
might even provide a way to solve the cosmological constan
problem[22].

2 2
now on®=z. ?:A;Jr E _:A_, (3.10
Equations(3.1)—(3.3) become then a* ad 3a*
cat=3a2— § a2 (3.7) whereA andD are two non-negative constants. The first term

2 on the right-hand side of these equations corresponds to the
radiation component, whereas the dust matter contributes
only to the energy density6,20].

With the above energy and pressure, 837) turns out to

be a first integral of Eq.3.8), and admits a unique increasing
where p=p; for anyi=1, 2 or 3. Remarkably, these are soluf[i(_)n that vanishes ap=0. The exact solution is given
exactly the Einstein equations of an open FRW model witreXplicitly by
curvature parametet equal to—1/2 [6]. Equivalently, they

2

pat=a?-2aa+ R (3.9

can be written as the equations of the standard FRW model D ” \F _ 7
with «=—1 under the scaling: a= 3| cos E 1|+ §Asm E . (311
n= \/EﬂF . . . . .
This expression can be inverted #&0, obtaining
V2a(n=\27¢)=a¢(7¢). (3.9
_ _ 3a+D++9a’+6Da+ 6A°
Here, the subinde¥ denotes the conformal time and scale n= NAN . (312
factor of the open FRW cosmology. Notice that these rela- D+6A

tions imply that the cosmological time of our model coin-
cides with that of the standard FRW spacetime, becaus®n the other hand, integratingt=ad», we arrive at the
adyp=ardyge. following expression for the cosmological time:

083502-4



ANISOTROPIC COSMOLOGIES CONTAINING . .. PHYSICAL REVIEW B4 083502

D 7 2A 7 dominant, and the model leads essentially to the same cos-
t= 3|~ n+ V2 sinh —=| |+ —= cos}‘(— -1 mological predictions as an open FRW model.
V2 V3 V2 For scale factors larger thanD2 the anisotropic scalar

(3.13  field dominates the evolution. The expansion is then of the
approximate form
From the last two formulas, one can also calculats a

function of the scale factor. A D

n t
\/6+ 6 exp( \/5) 7 4.2
as one can check from E.11) by analyzing the sector of

In the preceding section, we have constructed an exagérge times. Note that this evolution is linear in the cosmo-
solution of Einstein equations that describes an expandinggical time, like at the final stages of an open FRW model.
universe containing an anisotropic massless scalar field andfhis was in fact expected, because the time dependence of
comoving perfect fluid composed of radiation and dust matthe scale factor must always be similar to that of an open
ter. The spacetime metric is given by the element of theRW universe without scalar field, as we showed in the pre-
family (2.1) with vanishing rotation. As a consequence of theceding section. In the limity—, the Hubble parameter
properties of the RTKO metrics, the CMB of the model is displays then the behaviét= 1/, and the energy density is
iSOtrOpiC and the redshift of the radiation emitted by the CO-G(S): H2_ Hence, at |arge times, the relative energy density
moving dust depends only on the emission and observatiogecomes) = 1/3.
times[8]. We have also seen that our anisotropic metric co- Actually, from Eq.(3.11) we can derive the exact expres-

incides with the metric of an open FRW universe in the limit sions of the Hubble parameter, the deceleration pararqeter

of nearby distances. Moreover, the conformal expansion o&nd the relative energy densii§] at all times of the evolu-
our solution reproduce@part from some trivial scalingshe  tion. We get

evolution encountered in a standard open FRW cosmology

a=

IV. THE ANISOTROPIC COSMOLOGICAL MODEL

with matter content formed exclusively b_y isotrc_)pic dust gnd a 332+ 2Da+ 2A2

radiation. Hence, the history of the universe in our aniso- H=—=\—"—73" (4.3
tropic model parallels that of an open FRW solution, at least a 6a

as far as the scalar field does not supply the dominant con-

tribution to the energy-momentum tensor. Q= € a’+2Da+2A? @4

Like in the analogue FRW cosmology with energy density

1alogue FRW 9y : 3H2 3a%+2Da+2A2’
and pressure given by andp, the radiation dominated era

of our anisotropic model corresponds to the epoch with ah Da+ 2A2
O0<a<A?/D. At small times, the universe expands from an 9=1- 5= -——-5>0, (4.5
initial singularity following exactly the same evolution law a® 3a‘+2Da+2A

as in standard FRW cosmologi§,20], namely, _
where we have used that € + € and employed Eq43.6)

and (3.10. We recall that the parameteris positive when
Az 2At ;
A Sl (4.1) the expansion decelerates.
J3 V3 In the limitsa—0 anda— (i.e., wheny tends to zero

and infinity, respectively we recover from these equations
This behavior can be easily obtained from E8.11) in the the behavior discussed above fdand(). Furthermore, it is

region 7<<1. As a particular consequence, the Hubble pa__not difficglt to prove that Eq4.4) defings a strictly .decrea.s—
rameter and the energy density adopt, at the initial stages #f9 function of the scale factof)(a). Since the universe is
. . a2 always expanding in our solution, we conclude that the rela-

the expansion, the expressiond=a/a“=1/(2t) and . ; .
— 5 . - ) tive energy density of our model suffers a continuous de-
€=3/(4t°), which coincide with the result of the standard ¢rease from its initial unit value at the big-bang singularity,
model in the radiation era. In particular, it follows that the reaching the asymptotic lower bound of one-third in the limit
initial relative energy density i€ = e/(3H?)=1. of large times. In this way, the contribution of the anisotropic

When a increases beyond\?/D, the dust component scalar field guarantees that the energy density of the model is
starts to supply the major contribution to the energy densityf the order of the critical one during the whole evolution,
and the universe enters a dust dominated era with an evolleading to a quasiflat universe.
tion of the scale factor similar to that presented in an open Obviously, the model is not fully realistic; in particular,
FRW cosmology. Such era ends when the energy of the anhe positivity of Eq.(4.5 means that the expansion deceler-
isotropic scalar field becomes the most important matteates in our solution, contradicting the present observations of
component. This occurs wheef® equals the dust energy SNe la[12]. The resulig>0 can be easily understood on the
density, i.e., whem=2D. We assume thak< 2D, so that  basis of our matter content: as we have seen, the scalar field
there exists a sufficiently large epo&f/D<a<2D domi- leads to a uniform expansion, linear in the cosmological
nated by matter with strong clustering properties. As far asime, whereas the presence of radiation and dust decelerates
a<2D, the contribution of the anisotropic scalar field is sub-the expansion. Note, however, that the deceleration is similar
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to that found in a standard open FRW cosmology withoutthe apparent isotropy detected in the Hubble diagram for
cosmological constant and quintessence fields. This followSNe la at redshifts of order unity. In order to discuss this
from the fact that the deceleration parameagaeflects only issue, let us consider the angular diameter distaiide
the time dependence of the scale factor, and this dependenagich can be defined by the relatiahA,=r2dQ, [24].
coincides in our solution and in an open FRW model. Here, dA, is the (infinitesima) intrinsic perpendicular area
In order to attain an accelerated expansion in our anisoef the source, which subtends the solid andi®, at the
tropic scenario, we could simply add a positive cosmologicabrigin where, using the homogeneity of the spacetime, we
constantA to the matter content. Indeed, it is easy to checKocate the receivef24,25. The luminosity distance is then
that, for the epoch in whichh dominates the energy density, r,=r,(1+Z)?, with Z being the redshift of the sour¢es].
Eq. (3.1) would lead to an exponential expansion. Like in Hence, one only has to care about the anisotropies that ap-
standard FRW cosmology, however, we have preferred tgear inr,. Using the expressions given in RE24] (or just

analyze here the case without cosmological constant applying the formulas of Ref.26)), it is possible to show
quintessengebecause in this way we can obtain an explicit that

solution that allows us to perform all calculations to conclu-
sion. In addition, the inclusion of other matter sources would
have prevented us from clearly isolating the consequences of
the anisotropic scalar field.

In order to estimate the values of the paramefesmdD  whereY(u)=sinhu/u, §<[0,7] is the angle formed by the
and the present values aft, g, andQ in our model, we can line of sight and the axis, andz, is the conformal time of

ra=a’(7ne) (o= me)?YISiNO(mo— )], (4.7)

proceed as follows. From E.3) we get emission. As anticipated, depends on the direction of ob-
servation and, for fixed& (and present timey), its maxi-
3 mumr, and minimumr ,, are reached when sthequals the
A=\ T — — (4.6) unity or tends to zero, respectively. The magnitude of the
6Ho—2€—2¢q relative variation ofr, on the celestial sphere can be de-

scribed with the quantity ,= (ry—rm)/rm. Employing Egs.

where the subindex 0 means evaluation at the present timgz 15 (4.7 andq1+2=¥;0/z(;\(h7/|7 ) Tt) ismstraigﬁtfgrw%rdqto
. . L. . y M), el

and the subindices and d denote the radiation and dust geq thag increases wittz. More importantly, substituting

components of the matter content. In addition{dif is the he values of the constants, D, and a, obtained above,

contribution of dust matter to the relative energy density an),o can check that the relative variation of the angular diam-

Zqis the redshift corresponding to the equilibrium Eetweeneter distance is only of the order of 5% far=1, while for

dust and radiation, we have the§=3Q4Hj ande,=eq(1  z=2 &, is close to 10%. These variations do not seem to
+Zoy) L. Finally, A= €,a3 andD = e4a3. With these values ~ conflict with the observational data, and do not dominate
and formulas(4.4) and (4.5), we can also determine the over the systematic and statistical uncertainties, evolution ef-
quantitiesg, and Q,. Using (approximately the values of fects, and experimental errors that are present in the determi-
the concordance modg23] for the present Hubble param- hation of astronomical distances.
eter and relative energy density of pressureless matter, Finally, let us point out that the age of the universe in our
Ho=65 km/(sMp) and 04=0.35, as well asZ.+1 model {,=12 Gyr), although very close, is still beyond the
=5000, we obtain that A=1.6x10%* m, D=1.0 lower bounds obtained from radioactive dating of s{&g
X10%% m, a,=1.2x10°® m, t,=12 Gyr, q,=0.18, and or studies of globular clustef28]. These results show that
Q,=0.57. (except for the absence of acceleration and the corresponding
From these estimates, we see that the assumptioftintessence contribution to the relative energy density
A<\2D is actually satisfied in our solution. The dust era anisotropic model is at least compatible with the main fea-
corresponds to the interval 28.0%22 m<a<2.0x10?® m, tures of modern standard cosmology.
which is large enough for structure formation and contains
the present period of the evolution. We also see that the
equilibrium between dust matter and the anisotropic scalar
field would be reached whea=2D =2.0x 10?® m, a value In this section, we will present a generalization of the
of the scale factor that is only slightly larger than the presensolution (3.11) for a non-vanishing rotation paramete# 0.
one. Thus, in our cosmological model, we would be almosiVe will assume the same matter content as in the absence of
at the end of the dust dominated epoch. rotation, namely, a two-component perfect fluid, formed by
It is worth noting that, although the CMB of the model is radiation and dust, and an anisotropic scalar fiekd z mini-
isotropic and the redshift of the radiation emitted by dustmally coupled to gravity. For small values of the paraméter
particles depends only on the value of the scale factor at theve will see that the RTKO metric that we will obtain can be
moment of emission, and not on the spatial position of theegarded as an approximate solution of the Einstein equa-
source, the fact that the metric is anisotropic implies that thdions. In this way, one can construct an approximate cosmo-
distance to astrophysical objects with identical redshift variesogical model describing the expansion of a rotating aniso-
with the direction of observation. One might then worry tropic universe which contains isotropic background
about the compatibility of this anisotropy with the available radiation. Actually, supposing thats sufficiently small, the
data about extra-galactic sources at high redshift, e.g. witinclusion of rotation produces only small correc-

V. APPROXIMATE ROTATING SOLUTIONS
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tions in the cosmological model constructed in Sec. IV. As ahat, whenl is small, the Einstein tensor of the analyzed
consequence, our approximate solutions will lead to a similaRTKO metric provides an approximate solution up to terms
cosmology, both qualitativelgapart from the existence of an of the order ofl2 for Gé:Té and of orderl for the rest of

angular velocity and quantitatively. equations. Therefore, we conclude that the difference be-
The energy-momentum tensor will have the form tween the components of the energy-momentum tensor of
_ _ our system and those of the Einstein tensor of the metric

T, =(p+e)uu,+ps,+(TO)”, (5.) (2.1 and (5.3 vanish at least as fast asvhen|—0, and

L , ... become, in general, negligible when the rotation parameter is
whereu* is the four-velocity of the two-component fluid, its gai. |n Sec. VI we will use this fact to set an upper bound

energy density and pressure are given in BdL0, _andT(s? to the global angular velocity in order to ensure that the
denotes the energy-momentum tensor of the anisotropic SCs|ative error committed in the energy-momentum tensor
lar field. The components of this diagonal tensor appear iyith our approximation is smaller than a certain quantity.

Eqg. (3.6) (with C=1). The parameters and D, which de- Let us now analyze the behavior of our approximate cos-

termine the energy density, are assumed to be exactly theo|ogical solutions with rotation. Inverting relatiés.3), we
same as in the solution with vanishing rotation. Like in thatyptain the conformal time

case, we also consider comoving perfect fluids with

3X,a+ D+ \9X?a’+6X,Da+6X,A?

D+ /6X/A

’

(5.6

u#=8pla. 2V,
Using the general RTKO non-diagonal metfi.1), we 7=1/—<1In
. . ~ . _ 50 X o2 X|
obtain the covariant four-velocityu,, a(s,t1e*s,).
Then, from our definition(5.1), we see that the diagonal
components of the energy-momentum tensor (oemally)
the same as in our solution with zero angular velocity,
whereas all the non-diagonal components vanish ex‘E%pt

and, integratingdt=ad», we get the following expression
for the cosmological time:

This last component takes the expression D 2Y, r( X ”
t= | — 7+ \/<-=sihh \/557
o 4A2+ D . 3X, X, 2Y,
2 P ' L2A Y L :
7| § COS 2—YI77 . ( 7)

Let us first consider the diagonal time componght) of
the Einstein equations. When the rotation parameter does not From relation(5.3), one can also derive the Hubble pa-

vanish, this equation has the fOIlOWing solution for our Valuerameter, the deceleration parameter, and the relative energy

of the energy density: density of our approximate solutions:
D X| 2 X| 2 2
-— LIS ——_Asj _— 3Xa*+2Da+2A
273X °°S*( V 2Y|’7) 1} FN A Ny ) H= \/ e 5.9
(5.3 a
where we have introduced the definitions Y,(a?+2Da+2A?) (5.9
12  3X,a2+2Da+2A%’ '
X=1-7, Y,=1-12, (5.4)
Da+2A?
The above scale factor increases with the conformal time in a= 3x,a2+2Da+ 2A2>0' (5.10

7n=0 and vanishes ay=0. In addition, it reproduces Eq.

(3.1) when| vanishes. Note also that, since we have im-These formulas replace Eqgl.3), (4.4), and (4.5), respec-

posed that €[0,1), the ranges ok, andY, are, respectively, tjyely, when the rotation differs from zero.

(1/2,1] and (0,1. In the limit a—0, we get agaiH =1/(2t) andq—1, as
Substituting the above time dependence of the scale factqh the standard cosmological model. In this limit, the relative

and the expression of the energy-momentum tensor in Edgnergy density takes the valu@=Y,=1-12, so that

(2.8) and(2.9), it is easy to check that the Einstein equation ¢=3(1—12)/4t2. The expansion and history of the primor-

G3=T3 is satisfied exactly; however, the other diagonal spagial universe is therefore affected only by corrections of the

tial components of the Einstein tensor differ by a termorder of 12 [see also Eq(5.3)]. On the other hand, in the

12/(2a%) from their assumed values. In other words, sector of large scale factoss— o, one can easily check that
5 H=1/t andg—0, just like on the exact solution presented in
GloTlog2_T2=—_ (5.5 Sec. lll. At this final stage of the expansion, the relative
1ol me T2 s 02 ' energy density tends t¥,/(3X,), a limit which is positive

for 1 €[0,1) and differs from the value of 1/3, corresponding
Concerning the non-diagonal compone(@sl0 of the Ein-  to the non-rotating case, by terms of the ordel%fsuppos-
stein equations, it is not difficult to prove using E®.2) ing that the rotation parameter is small.
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Finally, it is not difficult to prove that the relative energy in the region that is causally connected with the origin at
density (5.9 is a strictly decreasing function of the scale present is ¢o— 7)/y/1—12. A point at timez with this value
factor. Like in the model discussed in Sec. K, remains  of x is connected with the origin a$, by the null geodesic
then bounded away from zero during the whole evolutionwith vanishingz anddy/d»=Ile */(1—12). Hence, the re-
the lower bound being its positive limit whem—o. Actu-  gion of the spacetime that we want to analyze is contained in
ally, if I<<1, the energy density is always of the same order

of magnitude as the critical one. Therefore, we see that the — Mot Mo— 1M
introduction of an anisotropic scalar field leads to a quasiflat xel,= Nk nelny,molp. (6.

universe even in the presence of rotation.

In particular, for each fixed value af, the extrema of the
VI. VALIDITY OF THE APPROXIMATION interval I, correspond to points that are causally connected

In this section we want to carry out ntitative analysi with the observer.
antto carry out a quantitative analysis ;e gver, the above region is invariant under the reversal

orr the error committed in Einstein equations by_|dent|fy|ngx_>_x' Using this fact and recalling thate[0,1) and
gfih?%?%?%@?r?é%ézgsgéllévar;lxt(t]tc;{??s If;}gsiier:qnetﬁjr:i%ronDzo, it is possible to show that, among all the conditions
coming from the requirement that the relative errors be

(5.3. More specifically, we want to show that it is possible to smaller than the quantitx, the most restrictive condition is

set an upper bound to the rotation paramégr hence to that corresponding to the non-diagonal comporﬁmf the

the present angular velocjtgo that the relative error in our wum t Thi t leads to the i
estimation of the energy-momentum tensor is smaller than ggﬁ;glji)g/momen um tensor. This component feads to the n-

fixed quantity.
For each component of the Einstein equations, we define .
the relative errorpintroduced with our apgroximation as the le * 6X,a° + 6Da+ 8A2<
quotient|G,—T,|/€, wheree= — T} is the energy density of Yi  3a?+6Da+6A?
the matter content. We want to analyze under which circum- o i i
stances these relative errors are smaller than a given numb&@herea=a(n) is given by Eq.(5.3), the pair of coordinates
A. Since, for any reasonable approximation, all relative er{?:%) must belong to the regiof6.1), and we have adopted
rors should be at least smaller than the unity, we assume thggin the notatiorts.4). _
A<1 from now on. As we have seen, the only non-trivial ©ON the other hand, from expressith2), we get
components of the Einstein equations that are exactly solved
by the evolution law(5.3) are those corresponding @)8 and - -
G3. For the remaining components, the error is at most of the € 3a?+6Da+ 6A?
order ofl when the rotation parameter is small. _ _ . )
Concerning our definition of relative errors, it is clear that Recalling that the region under analysis is invariant under a
e is the largest diagonal component of the energy-momenturf|P Of sign in the coordinate (and thatx,>0, Y,<1 and
tensor. In addition, we will see below that, in the spacetime® <1), We then see that conditid6.2) ensures that, in the
region and range of parameters of physical interest, the othéf9ion of physical interest, the energy density dominates
non-vanishing component of this tendoamely, T9) is also ~ Over the non-diagonal component; of the energy-
smaller than the energy density. Therefore, with our definiomentum tensor, as we had commented above.
tion, we are just comparing the errors made in the estimation !N addition, note that, since *is a strictly decreasing
of the energy-momentum tensor with its dominant compofunction of x, its maximum value foxe |, is obtained at

A, (6.2

|9 6Da+ 8A2
—= =|e¥ (6.3

nent. (—mo+ n)/\/l—lz. So, the most stringent condition con-
To analyze these errors, we need to deal with factors of@ined in Eq.(6.2) is

the forme™* that appear in most of the non-diagonal com-

ponents of the Einstein tensor, as can be seen in (2d). |_\ F{”(a)_ 7(ap) | 3a’+6Da+6A’ 6.4

In doing this, we will proceed as follows. Since the model is Y JY, 6X,a2+6Da+ 8A2 '

spatially homogeneous, we can always locate the observer at

the origin. From a physical point of view, the only phenom-We have employed here relati¢h.6) to write the conformal

ena that can affect the observer at a generic, presentfjme time in terms ofae[a,,ap], with ag>a;. These two values

are those that occurred in the spacetime region that is casof the scale factor are reached, respectively, at the present

ally connected with him. Thus, from now on we will restrict time 7 and at the initial time of our considerations.

our discussion to that region. Let us also suppose that we are Using the explicit form of the functiom(a), it is actually

only interested in events that happened in a certain intervglossible to show that, for fixed parametesndA, the right-

of time ne[n1,7n0], with 0<x,<n,. Although we will hand side of the above inequality is an increasing function of

make»,=0 at the end of our calculations, we prefer to leavea. As a consequence, its minimum value in the interval

this number free for the moment in order to allow for other[a;,ap] is attained whera=a,. In this way, we conclude

possibilities. that the necessary and sufficient condition for the relative
In a RTKO spacetime, one can check that the maximunerrors to be smaller thaA in the region of physical rel-

absolute value that the coordinatean take at timey<< 7 evance is obtained from E¢6.4) by makinga=a;. In par-
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ticular, if we consider the whole region that can be causallyforward by Dirac. The angular momentum of the observed
connected with the origin since the initial big bang, i.e.universe is.~ pwa®, wherep is the density of matter. From
a;=0, we get the large number hypothesis, we get # A3 [31], where#
is Planck constant andAp~10* is Dirac scaling
I—<ex — n(a) EA 65 parameter [32]. So, we have o~%A2/(pa®). With
Y, Y, |47 ' p=3x10"2" kg/m® anda=ay=1.2<x10°® m, this leads to
w~10"2t st
where we have employed thatvanishes whem=0. Let us finally remark that the upper bound that we have
This inequality sets an upper bound ltobeyond which obtained forl is only aimed at determining the interval of

our solution cannot be considered a good approximatiofiotation parameters in which the approximate RTKO solution
modulo relative errors smaller thah. It is worth noticing ~ Presented in Sec. V is acceptably good. In principle, rotating
that the conformal timey(a,) that appears in Eq6.5 de-  solutions with larger angular velocities are possible, but their
pends on the rotation parameteas well as on the constants €nergy-momentum tensor cannot be approximated by the
A andD, via relation(5.6). Owing to this dependence, itis in Mmatter content considered here. On the other hand, additional
general difficult to find the exact value of the upper bound orfestrictions on the rotation parametecould come from the
| once the scale factar, and the numberd, A, andD are requirement that the anisotropies that arise in the formulas of
known. In the AppendiX, we present a method to estimatéhe |Umin05ity and angular diameter distances are Compatible
such an upper bound with great accuracy. In practice, neveWith the observational data. The consideration of these
theless, it is possible to get a really good estimate by simplgnisotropies, however, cannot be carried out analytically if
replacingY, = 1— |2 with the unity and substituting(ay) by ~ |#0, because, by contrast with the situation found in the
the valuer, of the present conformal time corresponding tocase with vanishing rotatiofsee Sec. IV, the exact depen-
the exact solution with vanishing rotation parameter. It is nodence of these distances with the redsHifs not manage-
difficult to check that these approximations amount to disre2ble anymore. What is available now (e first terms of
garding corrections of the order tf in the upper bound on their Kristian-Sachs expansion in powers £f25]. Using
|. Employing the values of,, A, andD given in Sec. IV, the expressions given by Obukhov for this expandip4l

one arrives in this way at a_nd defining_the_ relative vari.ati_on of the angular diameter
distancee, like in Sec. IV, it is possible to show that
[<0.0337A. (6.6) e,=2l up to second order correctionsrand in the rotation

parameter. Therefore, recalling the bound brobtained

As we have said, a more careful procedure to estimate thigbove, we can affirm that the influence of rotation in the
upper bound is presented in the Appendix, where we alsormulas for distances is negligible, at least as far as we do
consider the possibilitg; = a,/1500, corresponding approxi- not consider sources of high redshift. For high redshifts the
mately to the time of decoupling between dust and radiationKristian-Sachs expansion is expected not to be valid, and a
and a model with slightly different cosmological parametersmore careful analysis is needed to determine the relevance of
Q4=0.3 andH=70 km/(sMpc). In all these cases, we ob- the anisotropies.
tain a value of the upper bound which is close to the result
given above.

From inequality (6.6), we can easily derive an upper
bound on the global angular velocity at present. Using that In this paper, we have shown that it is possible to con-
w=1/(2a) anday=1.2x10?® m (the value obtained in Sec. struct anisotropic models that are at least compatible with the
IV), we geto<4.1x10 °A s™%. Thus, in order to have a main features of standard cosmology. In particular, we have
relative errorA<2.5% one needs to impose, approximately,found an exact solution of Einstein equations which de-
that <10 2* s!, while a more permissive error scribes an expanding universe containing an anisotropic sca-
A<25% would lead taw<10"2° 571, lar field and a comoving perfect fluid with two components:

Up to date, there exists no well-established and generallyadiation and dust. The solution is spatially homogeneous,
accepted estimate of the angular velocity of the universe. Ibut the sections of constant time are anisotropic, its topology
models with shear, some upper bounds can be inferred frofeing the product of a pseudosphere and a real line. Even so,
the CMB anisotropy, but these bounds do not apply to thehe background radiation is perfectly isotropic and the red-
shear-free RTKO spacetimes. There are some estimations shift experimented by any possible emission of the dust par-
w based on the observed rotation of the plane of polarizatioticles varies with the scale factor like in a FRW model.
of cosmic electromagnetic radiaticf8,16,29, leading to  Moreover, the expansion is conformal and follows the same
w~10'® s However, such observations are very contro-evolution law as in a standard open FRW spacetime filled
versial, and the derived value efcould well be two or three  with dust and radiation.
orders of magnitude small¢24]. The relation between the redshift of astronomical sources

An independent estimate~10 2! s™! can be obtained and their angular diametéor luminosity distance turns out
from the analysis of the rotation of galaxig30]. This result to be anisotropic, because so is the spacetime metric. How-
agrees with another estimation that is not based on observaver, this anisotropy does not conflict with the current obser-
tion, but on a heuristic argument, namely, the extension twvational data, because the corresponding variation of dis-
the problem of rotation of the large number hypothesis putances with the line of sight in our model is not dominant

VII. CONCLUSIONS
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compared with the systematic and experimental errors of thato account the anisotropic dependence of distances on the

measurements. redshift, and treated the rotation parameter also in a pertur-
The introduction of the massless, anisotropic scalar fieldative manner. These issues will be the subject of future

leaves, nevertheless, one important imprint: the energy derésearch.
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The cosmological model that we have constructed is not APPENDIX
completely realistic because, for instance, it does not predict . . . .
the observed accelerated expansion of the universe. In prin- In th!s appendix, we will estimate the upper bo_und that

. ) . . " inequality (6.4), evaluated at=a,, sets to the rotation pa-
ciple, this defect could be cured by including additional darkrameterl. Remembering expressid.6), we can write the
energy in the system, supplied either by a cosmological consgsidered inequality as '
stant or by a quintessence field. This modification of our
model will be discussed elsewhere. Here, we have concen-
trated our attention in our simple model because it permits a
clear discussion of the effects of the anisotropic scalar field (1-12) <J(Xi,X)A, (A1)
and allows to obtain explicitly the time dependence of the
scale factor and the cosmological parameters. where

We have also presented a quite straightforward applica-
tion of our exact solution, namely, the obtention of approxi-
mate cosmological models describing spatially homoge- 3a’+6Da;+6A?
neous, anisotropic spacetimes with rotation. This has beed(U,V)= 6Ua. +6Da, + 8A2
possible because the anisotropic metric of our exact solution ! !
is in fact the element with vanishing rotation of a family of 3Ua;+D+9U%?+6UDa;+6U
shear-free rotating metrics with remarkable properties, in- = >
cluding the isotropy of the comoving CMB and the preser- 3Uao+D+9U%ag5+6UDao+B6UA
vation of the standard relation between the redshift of light (A2)

and the value of the scale factor when this light was emitted .
g Note thatJ depends on the non-negative constakisnd D

Assuming that the matter content is the same as in our
. . o and on the values of the scale factor at presgptand at the
exact non-rotating solution, we have proved that it is pos-

; . . Initial time, a;.
sible to generalize the time dependence of the scale factor so ; ;g straightforward to see that, fa,>a,, J(U,V) in-

as to attain an appro_ximate solution_ pf Ein_stein equat_ions iRreases withv, assuming that) and V are positive. Since,
the presence of rotation. More specifically, if one restricts a”according to Eq(5.4), X, ranges in (1/2,], it then follows
considerations to the causal past of the observer, we hav@at a necessary condition for E@\1) to be satisfied is that
shown that the error committed with our approximations inl/(1—12)<J(X;,1)A. In addition, one can check that
Einstein equations, relative to the energy density of the sys/(1—12) is greater thanJ(X;,1) when| approaches the
tem (which is the dominant component of the energy-unity, whereas the opposite happend a0, provided that
momentum tensoy remains smaller than any required quan-A>0. Therefore, the function(1—1%) and J(X;,1) inter-
tity A if one sets an upper bound linear into the angular ~ Sect each other at least oncelia[0,1). Moreover, in this
velocity of the present universe. In particular, we have calinterval ofl, both functions turn out to be strictly increasing.

culated this bound using the values of the Hubble parametdF i;, then possible to prove that the largest of the intersection

and the relative energy density of pressureless matter prc?—omts’

vided by the concordance modeéR3]. For relative errors of a
few percent, the upper bound that we have found turns out to

A2 V2V

be of the same order of magnitude as those obtained from L=max 1 €[0,1): Y =J(X, D¢, (A3)
observation of the rotation of galaxiE30] and heuristic con- N
siderations involving the large number hypothd§is]. can be obtained by numerical iteration. Namely, defining

Finally, an interesting possibility would be to analyze thel,=1 andl,.,=f(l,), one can getl as the limit of the
angular power spectrum of primordial fluctuations in thesequencél .}, wheref(l)=F[J(X,,1)] and
CMB of these anisotropic cosmologies. This analysis would

require an extension of the standard scheme of cosmological 15747
perturbation theory2] that dealt with the fact that the spatial F[J]= 1+4J°-1 (Ad)
sections of the spacetime are not maximally symmetric, took 2J '
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Recalling then thaA <1 and 1-1?<1, one easily concludes termine the value ok, one can check that the necessary and

that a necessary condition for inequali#1) to hold is sufficient conditions given in Eq$A5) and(A6) lead in fact
to coincident upper bounds dpnup to the third significant
I<J(X_,DA. (AS) " figure. With this degree of accuracy, one gets the bound

' - - L . 1=<0.0337, which reproduces in fact the estimate reached in
Let us now find a sufficient condition ensuring inequality Sec. VI If one made instea = a-/1500 paving thus atten-
(Al). From our previous discussion, we already know that,[. T .aﬂl_ 0 » Paying tn

ion only to those events in the causal region which occurred

|<L and that)(U, V) increases with/ if U andV are posi- (approximately after the time of decoupling, one would ob-
tive. Employing the definition ofX,, we then see that tain, with the same level of precisioh=0.0442\

JOX), X)) =J(X; X, ). In addition,J(X;,X,) is an increasing In order to check the sensibility of our estimates to the

function ofl in the interval[ 0,1), regardless of the constant particular values adopted for the relative energy density of
value ofX, e (1/2,1]. S0,J(X;,X)=(1X,), sinceX, be- — y . yaer and the Hubble parameter, we have repeated the

ggnmd?tsiot:?‘olﬁnllzty ?B\T)OfoHrfc:]lgei’sllt /Eil?ﬂiiz?tle;(s)uflgfm evaluation of the constans andD, the present scale factor
g- AL ' ag, and the upper bound on taking Q4=0.3 and

equivalently|<F[J(1,X,)A]. Finally, taking into account _ . ;

that 0<J(1,X.)A<1 for all the allowed values oA and Ho 7.0 km/(sMpc). In this case,_followmg4 the arg_uments
™ ) . explained in Sec. IV, one getd=1.3x10°* m, D=7.2

X, and thaF[J]=J(1-J%) if0<J<1, itis easy to derive  jps m, anday=1.1x 10°® m, which are close to the val-

the simpler sufficient condition ues found withHy=65 km/(sMpc) and)=-0.35. In ad-
I<J(LX)[1-J31X)]A. (ag)  dition, with a;=0, Egs.(A5) and (A6) lead now to the
boundl=<0.026Q\ (again up to the third significant figure
Using the values of,, A andD obtained in Sec. IV, whereasl=<0.0344\ if a;=ay/1500. So, the upper bound
makinga,; =0 (i.e., considering the entire causal past of thereached forl is of the same order of magnitude in all the
origin), and following the procedure explained above to de-considered cases.
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