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Anisotropic cosmologies containing isotropic background radiation
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We present an anisotropic cosmological model based on a new exact solution of Einstein equations. The
matter content consists of an anisotropic scalar field minimally coupled to gravity and of two isotropic perfect
fluids that represent dust matter and radiation. The spacetime is described by a spatially homogeneous, Bianchi
type III metric with a conformal expansion. The model respects the evolution of the scale factor predicted by
standard cosmology, as well as the isotropy of the cosmic microwave background. Remarkably, the introduc-
tion of the scalar field, apart from explaining the spacetime anisotropy, gives rise to an energy density that is
close to the critical density. As a consequence, the model is quasiflat during the entire history of the universe.
Using these results, we are also able to construct approximate solutions for shear-free cosmological models
with rotation. We finally carry out a quantitative discussion of the validity of such solutions, showing that our
approximations are acceptably good if the angular velocity of the universe is within the observational bounds
derived from rotation of galaxies.
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I. INTRODUCTION

One of the best established facts in observational cosm
ogy is the isotropy of the cosmic microwave backgrou
~CMB! @1#. This high degree of isotropy explains the succe
of cosmological perturbation theory@2# in reproducing the
spectrum of anisotropies detected in the CMB@3#. The mea-
surement of these anisotropies, originated from primord
fluctuations, has played a fundamental role in the adven
precision cosmology, allowing for the first time the determ
nation of several cosmological parameters and the rejec
of a large number of cosmological models@4#.

The isotropy of the CMB, together with the apparent h
mogeneity and isotropy of clustering matter, smeared
over scales of the order of 100 Mpc@5#, provide the main
experimental support for the cosmological principle@6#. The
spatial homogeneity and isotropy of the universe is incor
rated in the standard cosmological model by using
Friedmann-Robertson-Walker~FRW! family of metrics to
describe the spacetime. It should be clear, nevertheless,
the cosmological principle is actually a reasonable and fr
ful hypothesis, rather than a proven fact. In order to clar
this issue, at least from a conceptual point of view, we w
to show that it is possible to construct spatially homogene
cosmologies which are anisotropic but still compatible w
the observed isotropy of the background radiation and
matter with strong clustering properties.

Our starting point will be a spatially homogeneous spa
time metric of the Bianchi type III@7# subject to conformal
expansion. As shown in Ref.@8#, the condition that the ex
pansion be conformal is crucial for the isotropy of the CM
Part of the matter content will be given by a two-compon
perfect fluid describing the~idealized! radiation and dust
matter that are present in our universe. By its own, this p
fect fluid cannot account for the anisotropy of the spacet
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@9#. However, we will show that this problem can be solv
just by including an additional matter source consisting in
anisotropic scalar field. In this way, we will be able to co
struct an exact solution of Einstein equations with the
quired properties.

In addition to their important role in inflationary mode
@10# and Brans-Dicke cosmologies@6,11#, the use of scalar
fields in cosmology has received renewed attention dur
recent years. The observed relation between luminosity
tance and redshift for type Ia supernovae~SNe Ia! has sup-
plied strong evidence in favor of an accelerated expansio
the universe@12#. In order to explain this acceleration and
the SNe Ia data, cosmological models with a new ma
component have been proposed. This component, ca
quintessence, can be modeled by a light scalar field wit
self-interaction potential and with minimal coupling to gra
ity @13#. Comparison of the theoretical predictions with SN
Ia and CMB observations leads to an estimate for the d
energy density of this quintessence field that~roughly speak-
ing! is of the order of magnitude of the critical densi
@12,14#.

From this perspective, our approach to construct an
tropic solutions can be considered as a new application
scalar fields in cosmology. The anisotropic field that we w
introduce does not really model a quintessence compon
because its presence does not accelerate the expansion
universe. Actually, as we will see, our scalar field produc
neither acceleration nor deceleration, so that it can rathe
regarded~apart from the anisotropy! as the limit of a quin-
tessence contribution when the acceleration vanishes. M
more importantly, it turns out that the dark energy dens
associated with this field is similar to the critical density
the model at late times. In this sense, our model suggests
the inclusion of an anisotropic scalar field may provide
mechanism to generate quasiflat@15# universes.
©2001 The American Physical Society02-1
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In the case of our anisotropic cosmological solution,
quasiflatness can be rooted in the fact that the energy de
of the anisotropic field is proportional to the inverse squ
of the scale factor, which is precisely the type of depende
that one would expect for the critical density at the fin
stages of the expansion. The reason is that, in a Bianchi
III universe, there exists a negative contribution of curvat
to the energy density, just like in an open FRW model,
that at large cosmological times one would expect the s
factor to be inversely proportional to the Hubble const
and, therefore, to the square root of the critical density.

As we have said, the evolution of the anisotropic solutio
that we will present is not accelerated, so that our cosmol
cal model cannot be considered realistic in this respect.
could remedy this situation by including an additional mat
source, given by a quintessence field or a cosmological c
stant. Instead of proceeding in that way, we have preferre
keep the model as simple as possible, both to isolate
cosmological consequences of the anisotropic scalar
and to obtain a solution of Einstein equations in which o
can complete all calculations of cosmological parameters
ing exact expressions.

Apart from clarifying the role that anisotropic scalar fiel
may play in cosmology, we will also discuss in detail anoth
possible application of our exact anisotropic solution. T
application follows from the fact that the spacetime metric
our model is just the vanishing-rotation member of a fam
of spatially homogeneous, rotating and shear-free met
that were studied by Korotkiıˇ and Obukhov~KO! @8,16#.
This family is an expanding version of a class of Go¨del-like
stationary metrics analyzed by Rebouc¸as and Tiomno~RT!
@17#. From now on, we will refer to them as the RTK
metrics. In the limit of small rotation, it is not difficult to
employ our exact anisotropic solution to construct appro
mate solutions for the rotating RTKO cosmologies and s
ply them with a physically acceptable matter content.

We will also carry out a quantitative analysis of the vali
ity of our approximations when a small rotation is present
particular, we will find a bound on the angular velocity of th
universe guaranteeing that our approximate solutions ca
be distinguished from the unknown exact ones, at least a
as the energy-momentum tensor is concerned.

The RTKO metrics share in fact most of the good pro
erties presented by our exact anisotropic solution with v
ishing rotation. For instance, they are all of the Bianchi ty
III and possess a conformal Killing vector field~CKVF!. The
existence of a vector of this kind parallel to the four-veloc
of dust matter and radiation is known to be the necessary
sufficient condition for the absence of parallax effects@18#
and turns out to guarantee the isotropy of the CMB@8#. In
addition, the spacetime does not contain closed time
curves~CTC’s! unless the rotation is considerably large@8#.
On the other hand, it has been shown that the RTKO met
reproduce the open FRW metric in the limit of small rotati
and nearby distances@19#. All these properties clearly mak
of the RTKO metrics natural candidates to describe an
tropic cosmological scenarios with rotation.

The rest of the paper is organized as follows. Since
spacetime of the exact cosmological solution that we w
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construct belongs to the RTKO family, we will first analyz
the most relevant properties of these geometries and ob
their Einstein equations in Sec. II. In Sec. III we present o
exact anisotropic solution with vanishing rotation, and d
cuss the corresponding cosmology in Sec. IV. Based on
case of zero angular velocity, we find in Sec. V approxim
RTKO solutions with rotation. We also study their cosm
logical parameters and show that the quasiflatness of the
mological model persists in the presence of rotation.
comparing the Einstein tensor of our approximate solutio
with the energy-momentum tensor of its assumed matter c
tent, we derive in Sec. VI a bound on the angular velocity
the universe ensuring that the relative errors committed
the Einstein equations are small. The conclusions of
work are included in Sec. VII. Finally, an Appendix contai
ing some calculations is added.

II. THE RTKO METRICS

The RTKO metrics are described by the line element

ds25a2~h!@2~dh1 lexdy!21dx21e2xdy21dz2#,
~2.1!

where h is the conformal time andx,y,z are the spatial
coordinates, all of them assumed to run over the real a
The parameterl, on the other hand, is a constant that can
restricted to be non-negative without loss of generality. Fr
now on, we call it the rotation parameter. The above spa
time does not contain CTC’s if and only ifl belongs to the
interval @0,1), since it is only then that the metric induced
the sections of constant time is positive definite@8,17#. In the
following, we will restrict our considerations to this caus
sector, 0< l ,1.

We will employ the following notation. Greek letters wi
denote spacetime indices, and the indices$0,1,2,3% will des-
ignate, respectively, the coordinates$h,x,y,z%. In addition,
we adopt units such that 8pG5c51, G being Newton con-
stant.

Metric ~2.1! is a spatially homogeneous, Bianchi type I
metric, with three Killing vector fields given by

j (1)5]x2y]y , j (2)5]y , j (3)5]z . ~2.2!

The metric possesses also a CKVF, namely,jC
m5d0

m . Ko-
rotkiı̌ and Obukhov have proved that, assuming comov
radiation and a comoving observer, the existence of a CK
guarantees the isotropy of the detected CMB, with the rad
tion temperature falling with the inverse of the scale fact
and ensures that the redshift of the light coming from as
physical objects does not depend~explicitly! on the spatial
positions of the source and the receiver, but only on
emission and observation times@8,16#. Besides, the CKVF
prevents the appearance of parallax effects@18#. Further-
more, in these spacetimes the shear tensor vanishes fo
moving observers~with four-velocity equal toum5d0

m/a),
whereas their rotation tensorvmn is different from zero@7,8#.
In particular, their angular velocity isv5Avmnvmn/2
5 l /(2a).
2-2



ta
-

te
o
a

n
rg

th
he

s
lly
le
th
os
e

of
tum

in

c

rgy-
ents

ent

ure

of
, we
not

y.
an
av-
ity
or-
ore,
to
of

alar
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With the help of the coordinate transformation

ex5coshr 1cosf sinhr , ~2.3!

yex5sinf sinhr , ~2.4!

h5h̃2 lf12l arctanS e2r tan
f

2 D , ~2.5!

one can write metric~2.1! in the cylindrical form@17#

ds252a2~h!Fdh̃12l sinh2S r

2DdfG2

1a2~h!@dr21sinh2 r df21dz2#. ~2.6!

Here,h̃ is the new real time,r is non-negative, andf is an
angular coordinate. Note that the scale factor is not cons
on the sections of constant timeh̃ unless the rotation param
eter vanishes@or a(h) is a constant number#, becausea de-
pends on the radial and angular coordinatesr and f when
lÞ0. On the other hand, using the change of coordina
~2.3! and ~2.4!, one can easily check that the sections
constant timeh are the direct product of a real line and
two-dimensional pseudosphere.

Let us finally consider the associated Einstein equatio
For the diagonal components of the Einstein and ene
momentum tensors, one obtains

T0
0a45S 12

3l 2

4 Da223~12 l 2!ȧ2, ~2.7!

T1
1a45T2

2a45
l 2

4
a21~12 l 2!ȧ222~12 l 2!aä, ~2.8!

T3
3a25T1

1a2112
l 2

2
, ~2.9!

where the overdot denotes the derivative with respect to
conformal timeh. For the non-diagonal components, on t
other hand, the result is

T0
1a45 l 2aȧ,

T0
2a452le2x~aä22ȧ2!,

T1
2a452 le2xaȧ, ~2.10!

T2
0a45~12 l 2!lexa2,

T2
1a452~12 l 2!lexaȧ.

The remaining components of the energy-momentum ten
must be identically zero. As far as we know, no physica
admissible matter source has been proposed up to date
ing to a solution of the above Einstein equations when
scale factor is not constant. Hence, no explicit RTKO c
mological model has been constructed so far. In the n
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section, we will present an exact solution for the case
vanishing rotation that has an acceptable energy-momen
tensor. This solution represents an anisotropic universe
continuous expansion.

III. THE ANISOTROPIC SOLUTION

We will now restrict our attention to the RTKO metri
obtained when the rotation parameterl vanishes. In the ab-
sence of rotation, the Einstein equations require the ene
momentum tensor to be diagonal. The diagonal compon
must satisfy

ea453ȧ22a2, ~3.1!

p1a45p2a45ȧ222aä, ~3.2!

p3a25p1a211. ~3.3!

Here, we have adopted the notatione[2T0
0 for the energy

density andpi[Ti
i ( i 51, 2, or 3! for the principal pressures

of the system.
Let us start by assuming thatea2 vanishes in the limit of

infinite scale factor, as would happen if the matter cont
consisted exclusively of dust and radiation@6,20#. From Eq.
~3.1! one then easily sees thatȧ2/a2 must tend to 1/3 when
a→`. Note also that this equation ensures thata increases
unboundedly with the conformal time, provided thatȧ is
initially positive. In addition, supposing thatea2 is a smooth
function of the scale factor, the conditionea2→0 implies
that (de/da)a3 vanishes whena becomes infinitely large.
Using these facts and taking the time derivative of Eq.~3.1!,
it follows that the quotientä/a must also tend to 1/3 whena
approaches infinity. Employing now Eq.~3.2!, one concludes
that p1a2 has a finite limit whena→`. As a result, the
dominant energy condition@21# is violated during the evolu-
tion, because for sufficiently large scale factors the press
p1 becomes larger than the energy density.

Therefore, if we want to reach an acceptable solution
the Einstein equations that respects the energy conditions
must include matter sources whose energy density does
fall faster than 1/a2 when the scale factor expands to infinit
Probably, the simplest way to do this is by introducing
anisotropic massless scalar field minimally coupled to gr
ity. As we will see below, the corresponding energy dens
satisfies precisely the minimal requirement of being prop
tional to the inverse square of the scale factor. Furtherm
the inclusion of such a scalar field will actually suffice
explain all the anisotropies of the model, allowing the rest
the matter content to be isotropic.

In curved spacetime, a massless minimally coupled sc
field satisfies the equation

F ;mngmn5
1

A2g
~A2gF ,mgmn! ,n50, ~3.4!

whereas its energy-momentum tensor has the form
2-3
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Tm
n 5F ,mF ,sgsn2

1

2
F ,sF ,rgsrdm

n . ~3.5!

Here,g and gmn are the determinant and the inverse of t
four-metric, the semicolon denotes covariant derivative,
dm

n is the Kronecker delta.
Let us then consider an anisotropic scalar field given

F5Cz, with C being a constant. This kind of source for th
RTKO metrics was already suggested by Rebouc¸as and Ti-
omno in a stationary context with rotation@17#. It is easily
checked that Eq.~3.4! is in fact satisfied by our field in any
of the spacetimes~2.1!. Besides, from Eq.~3.5!, the solution
F5Cz has a diagonal energy-momentum tensor, with
following energy density and principal pressures:

e (s)5p3
(s)52p2

(s)52p1
(s)5

C2

2a2
. ~3.6!

Here, the superindex~s! refers to the contribution of the sca
lar field.

Note that the corresponding energy density falls witha2,
as we had anticipated. In this respect, it is interesting to n
that such a kind of decay for the energy density is also
pected on the basis of quantum cosmology arguments
might even provide a way to solve the cosmological cons
problem@22#.

In addition, the principal pressures are now anisotrop
Using this property, it is actually very simple to remove a
trace of anisotropy from the Einstein equations of our spa
time. Defininge[ē1e (s) andpi[ p̄i1pi

(s) , we see from Eq.
~3.3! that the anisotropic contributions of the model can
absorbed in the scalar field just by imposing thatC251.
Since the orientation ofz can be inverted at will~producing
an apparent flip of sign in the constantC), we will fix from
now onF5z.

Equations~3.1!–~3.3! become then

ēa453ȧ22
3

2
a2, ~3.7!

p̄a45ȧ222aä1
a2

2
, ~3.8!

where p̄5 p̄i for any i 51, 2 or 3. Remarkably, these ar
exactly the Einstein equations of an open FRW model w
curvature parameterk equal to21/2 @6#. Equivalently, they
can be written as the equations of the standard FRW m
with k521 under the scaling:

h[A2hF

A2a~h5A2hF![aF~hF!. ~3.9!

Here, the subindexF denotes the conformal time and sca
factor of the open FRW cosmology. Notice that these re
tions imply that the cosmological time of our model coi
cides with that of the standard FRW spacetime, beca
adh5aFdhF .
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From the above comments, it should be clear that
evolution of the scale factor in our model reproduces
expansion found in an open FRW cosmology, except
some qualitatively irrelevant scalings by factors of the ord
of the unity. Owing to this fact, and leaving aside the anis
ropy of the sections of constant time, the cosmological so
tion that we will construct leads essentially to the same h
tory of the universe as a standard open FRW scenario
least during the epoch in which the scalar field has a ne
gible contribution to the energy and pressure of the syst
Furthermore, regarding the anisotropy of the spatial sectio
we recall that our spacetime metric can be written in
form ~2.6! with l 50. In fact, since such metric reduces to
open FRW metric in the limit of nearby distancesr !1 @19#,
no differences should be expected in physical processe
observations which do not involve distant regions.

We are now in an adequate position to obtain the solut
of the Einstein equations that we were seeking. In addition
the anisotropic scalar field, we suppose that the matter c
tent is given by radiation and dust, as it is usually done
standard FRW cosmology. We will describe these ma
sources by a two-component perfect fluid, with comovi
four-velocity um5d0

m/a. The assumption that the radiatio
present in the system adopts the form of a comoving per
fluid, together with the properties of the RTKO metrics@8#,
guarantees that the CMB of the model is isotropic. Simila
the fact that the dust matter can be treated as a como
perfect fluid ensures the applicability of Hubble law~in the
leading-order approximation! to any kind of radiation that
could be emitted by dust particles, since the radiation f
quency varies then just like the inverse of the scale factor@8#.
For such a matter content, the expression of the energy
pressure that appear in Eqs.~3.7! and ~3.8! are

ē5
A2

a4
1

D

a3
, p̄5

A2

3a4
, ~3.10!

whereA andD are two non-negative constants. The first te
on the right-hand side of these equations corresponds to
radiation component, whereas the dust matter contribu
only to the energy density@6,20#.

With the above energy and pressure, Eq.~3.7! turns out to
be a first integral of Eq.~3.8!, and admits a unique increasin
solution that vanishes ath50. The exact solution is given
explicitly by

a5
D

3 FcoshS h

A2
D 21G1A2

3
A sinhS h

A2
D . ~3.11!

This expression can be inverted inh>0, obtaining

h5A2 lnF3a1D1A9a216Da16A2

D1A6A
G . ~3.12!

On the other hand, integratingdt5adh, we arrive at the
following expression for the cosmological time:
2-4
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t5
D

3 F2h1A2 sinhS h

A2
D G1

2A

A3
FcoshS h

A2
D 21G .

~3.13!

From the last two formulas, one can also calculatet as a
function of the scale factor.

IV. THE ANISOTROPIC COSMOLOGICAL MODEL

In the preceding section, we have constructed an e
solution of Einstein equations that describes an expand
universe containing an anisotropic massless scalar field a
comoving perfect fluid composed of radiation and dust m
ter. The spacetime metric is given by the element of
family ~2.1! with vanishing rotation. As a consequence of t
properties of the RTKO metrics, the CMB of the model
isotropic and the redshift of the radiation emitted by the
moving dust depends only on the emission and observa
times @8#. We have also seen that our anisotropic metric
incides with the metric of an open FRW universe in the lim
of nearby distances. Moreover, the conformal expansion
our solution reproduces~apart from some trivial scalings! the
evolution encountered in a standard open FRW cosmol
with matter content formed exclusively by isotropic dust a
radiation. Hence, the history of the universe in our ani
tropic model parallels that of an open FRW solution, at le
as far as the scalar field does not supply the dominant c
tribution to the energy-momentum tensor.

Like in the analogue FRW cosmology with energy dens
and pressure given byē and p̄, the radiation dominated er
of our anisotropic model corresponds to the epoch w
0<a<A2/D. At small times, the universe expands from
initial singularity following exactly the same evolution la
as in standard FRW cosmology@6,20#, namely,

a5
Ah

A3
5A2At

A3
. ~4.1!

This behavior can be easily obtained from Eq.~3.11! in the
region h!1. As a particular consequence, the Hubble
rameter and the energy density adopt, at the initial stage
the expansion, the expressionsH[ȧ/a251/(2t) and
ē53/(4t2), which coincide with the result of the standa
model in the radiation era. In particular, it follows that th
initial relative energy density isV5 ē/(3H2)51.

When a increases beyondA2/D, the dust componen
starts to supply the major contribution to the energy den
and the universe enters a dust dominated era with an ev
tion of the scale factor similar to that presented in an op
FRW cosmology. Such era ends when the energy of the
isotropic scalar field becomes the most important ma
component. This occurs whene (s) equals the dust energ
density, i.e., whena52D. We assume thatA!A2D, so that
there exists a sufficiently large epochA2/D<a<2D domi-
nated by matter with strong clustering properties. As far
a,2D, the contribution of the anisotropic scalar field is su
08350
ct
g

d a
t-
e

-
n
-

t
of

y

-
t
n-

h

-
of

y
lu-
n
n-
r

s
-

dominant, and the model leads essentially to the same
mological predictions as an open FRW model.

For scale factors larger than 2D, the anisotropic scala
field dominates the evolution. The expansion is then of
approximate form

a5S A

A6
1

D

6 D expS h

A2
D 5

t

A2
, ~4.2!

as one can check from Eq.~3.11! by analyzing the sector o
large times. Note that this evolution is linear in the cosm
logical time, like at the final stages of an open FRW mod
This was in fact expected, because the time dependenc
the scale factor must always be similar to that of an op
FRW universe without scalar field, as we showed in the p
ceding section. In the limith→`, the Hubble paramete
displays then the behaviorH51/t, and the energy density i
e (s)5H2. Hence, at large times, the relative energy dens
becomesV51/3.

Actually, from Eq.~3.11! we can derive the exact expre
sions of the Hubble parameter, the deceleration parametq,
and the relative energy density@6# at all times of the evolu-
tion. We get

H[
ȧ

a2
5A3a212Da12A2

6a4
, ~4.3!

V[
e

3H2
5

a212Da12A2

3a212Da12A2
, ~4.4!

q[12
aä

ȧ2
5

Da12A2

3a212Da12A2
.0, ~4.5!

where we have used thate5e (s)1 ē and employed Eqs.~3.6!
and ~3.10!. We recall that the parameterq is positive when
the expansion decelerates.

In the limits a→0 anda→` ~i.e., whenh tends to zero
and infinity, respectively!, we recover from these equation
the behavior discussed above forH andV. Furthermore, it is
not difficult to prove that Eq.~4.4! defines a strictly decreas
ing function of the scale factor,V(a). Since the universe is
always expanding in our solution, we conclude that the re
tive energy density of our model suffers a continuous
crease from its initial unit value at the big-bang singulari
reaching the asymptotic lower bound of one-third in the lim
of large times. In this way, the contribution of the anisotrop
scalar field guarantees that the energy density of the mod
of the order of the critical one during the whole evolutio
leading to a quasiflat universe.

Obviously, the model is not fully realistic; in particula
the positivity of Eq.~4.5! means that the expansion decele
ates in our solution, contradicting the present observation
SNe Ia@12#. The resultq.0 can be easily understood on th
basis of our matter content: as we have seen, the scalar
leads to a uniform expansion, linear in the cosmologi
time, whereas the presence of radiation and dust decele
the expansion. Note, however, that the deceleration is sim
2-5
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to that found in a standard open FRW cosmology with
cosmological constant and quintessence fields. This follo
from the fact that the deceleration parameterq reflects only
the time dependence of the scale factor, and this depend
coincides in our solution and in an open FRW model.

In order to attain an accelerated expansion in our an
tropic scenario, we could simply add a positive cosmologi
constantL to the matter content. Indeed, it is easy to che
that, for the epoch in whichL dominates the energy densit
Eq. ~3.1! would lead to an exponential expansion. Like
standard FRW cosmology, however, we have preferred
analyze here the case without cosmological constant~or
quintessence! because in this way we can obtain an expli
solution that allows us to perform all calculations to conc
sion. In addition, the inclusion of other matter sources wo
have prevented us from clearly isolating the consequence
the anisotropic scalar field.

In order to estimate the values of the parametersA andD
and the present values ofa, t, q, andV in our model, we can
proceed as follows. From Eq.~4.3! we get

a05A 3

6H0
222ē r22ēd

, ~4.6!

where the subindex 0 means evaluation at the present t
and the subindicesr and d denote the radiation and du
components of the matter content. In addition, ifVd is the
contribution of dust matter to the relative energy density a
Zeq is the redshift corresponding to the equilibrium betwe
dust and radiation, we have thatēd53VdH0

2 and ē r5 ēd(1

1Zeq)
21. Finally, A25 ē ra0

4 andD5 ēda0
3. With these values

and formulas~4.4! and ~4.5!, we can also determine th
quantitiesq0 and V0. Using ~approximately! the values of
the concordance model@23# for the present Hubble param
eter and relative energy density of pressureless ma
H0565 km/(sMp) and Vd50.35, as well asZeq11
55000, we obtain that A51.631024 m, D51.0
31026 m, a051.231026 m, t0512 Gyr, q050.18, and
V050.57.

From these estimates, we see that the assump
A!A2D is actually satisfied in our solution. The dust e
corresponds to the interval 2.531022 m<a<2.031026 m,
which is large enough for structure formation and conta
the present period of the evolution. We also see that
equilibrium between dust matter and the anisotropic sc
field would be reached whena52D52.031026 m, a value
of the scale factor that is only slightly larger than the pres
one. Thus, in our cosmological model, we would be alm
at the end of the dust dominated epoch.

It is worth noting that, although the CMB of the model
isotropic and the redshift of the radiation emitted by d
particles depends only on the value of the scale factor at
moment of emission, and not on the spatial position of
source, the fact that the metric is anisotropic implies that
distance to astrophysical objects with identical redshift va
with the direction of observation. One might then wor
about the compatibility of this anisotropy with the availab
data about extra-galactic sources at high redshift, e.g. w
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the apparent isotropy detected in the Hubble diagram
SNe Ia at redshifts of order unity. In order to discuss t
issue, let us consider the angular diameter distance@6#,
which can be defined by the relationdAe5r a

2 dV0 @24#.
Here, dAe is the ~infinitesimal! intrinsic perpendicular area
of the source, which subtends the solid angledV0 at the
origin where, using the homogeneity of the spacetime,
locate the receiver@24,25#. The luminosity distance is then
r l5r a(11Z)2, with Z being the redshift of the source@25#.
Hence, one only has to care about the anisotropies that
pear inr a . Using the expressions given in Ref.@24# ~or just
applying the formulas of Ref.@26#!, it is possible to show
that

r a
25a2~he!~h02he!

2Y@sinu~h02he!#, ~4.7!

whereY(u)[sinhu/u, uP@0,p# is the angle formed by the
line of sight and thez axis, andhe is the conformal time of
emission. As anticipated,r a depends on the direction of ob
servation and, for fixedZ ~and present timeh0), its maxi-
mum r M and minimumr m are reached when sinu equals the
unity or tends to zero, respectively. The magnitude of
relative variation ofr a on the celestial sphere can be d
scribed with the quantity«a5(r M2r m)/r m . Employing Eqs.
~3.12!, ~4.7!, and 11Z5a0 /a(he), it is straightforward to
see that«a increases withZ. More importantly, substituting
the values of the constantsA, D, and a0 obtained above,
one can check that the relative variation of the angular dia
eter distance is only of the order of 5% forZ51, while for
Z52 «a is close to 10%. These variations do not seem
conflict with the observational data, and do not domin
over the systematic and statistical uncertainties, evolution
fects, and experimental errors that are present in the dete
nation of astronomical distances.

Finally, let us point out that the age of the universe in o
model (t0512 Gyr), although very close, is still beyond th
lower bounds obtained from radioactive dating of stars@27#
or studies of globular clusters@28#. These results show tha
~except for the absence of acceleration and the correspon
quintessence contribution to the relative energy density! our
anisotropic model is at least compatible with the main fe
tures of modern standard cosmology.

V. APPROXIMATE ROTATING SOLUTIONS

In this section, we will present a generalization of t
solution~3.11! for a non-vanishing rotation parameter,lÞ0.
We will assume the same matter content as in the absenc
rotation, namely, a two-component perfect fluid, formed
radiation and dust, and an anisotropic scalar fieldF5z mini-
mally coupled to gravity. For small values of the parametel,
we will see that the RTKO metric that we will obtain can b
regarded as an approximate solution of the Einstein eq
tions. In this way, one can construct an approximate cos
logical model describing the expansion of a rotating ani
tropic universe which contains isotropic backgrou
radiation. Actually, supposing thatl is sufficiently small, the
inclusion of rotation produces only small corre
2-6
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tions in the cosmological model constructed in Sec. IV. A
consequence, our approximate solutions will lead to a sim
cosmology, both qualitatively~apart from the existence of a
angular velocity! and quantitatively.

The energy-momentum tensor will have the form

Tm
n 5~ p̄1 ē !unum1 p̄dm

n 1~T(s)!m
n , ~5.1!

whereum is the four-velocity of the two-component fluid, it
energy density and pressure are given in Eq.~3.10!, andT(s)

denotes the energy-momentum tensor of the anisotropic
lar field. The components of this diagonal tensor appea
Eq. ~3.6! ~with C51). The parametersA and D, which de-
termine the energy density, are assumed to be exactly
same as in the solution with vanishing rotation. Like in th
case, we also consider comoving perfect fluids w
um5d0

m/a.
Using the general RTKO non-diagonal metric~2.1!, we

obtain the covariant four-velocityum52a(dm
0 1 lexdm

2 ).
Then, from our definition~5.1!, we see that the diagona
components of the energy-momentum tensor are~formally!
the same as in our solution with zero angular veloc
whereas all the non-diagonal components vanish exceptT2

0.
This last component takes the expression

T2
052 lexS 4A2

3a4
1

D

a3D . ~5.2!

Let us first consider the diagonal time component~2.7! of
the Einstein equations. When the rotation parameter does
vanish, this equation has the following solution for our val
of the energy density:

a5
D

3Xl
FcoshSA Xl

2Yl
h D 21G1A 2

3Xl
A sinhSA Xl

2Yl
h D ,

~5.3!

where we have introduced the definitions

Xl[12
l 2

2
, Yl[12 l 2. ~5.4!

The above scale factor increases with the conformal tim
h>0 and vanishes ath50. In addition, it reproduces Eq
~3.11! when l vanishes. Note also that, since we have i
posed thatl P@0,1), the ranges ofXl andYl are, respectively,
(1/2,1# and (0,1#.

Substituting the above time dependence of the scale fa
and the expression of the energy-momentum tensor in E
~2.8! and~2.9!, it is easy to check that the Einstein equati
G3

35T3
3 is satisfied exactly; however, the other diagonal s

tial components of the Einstein tensor differ by a te
l 2/(2a2) from their assumed values. In other words,

G1
12T1

15G2
22T2

25
l 2

2a2
. ~5.5!

Concerning the non-diagonal components~2.10! of the Ein-
stein equations, it is not difficult to prove using Eq.~5.2!
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that, whenl is small, the Einstein tensor of the analyze
RTKO metric provides an approximate solution up to ter
of the order ofl 2 for G0

15T0
1 and of orderl for the rest of

equations. Therefore, we conclude that the difference
tween the components of the energy-momentum tenso
our system and those of the Einstein tensor of the me
~2.1! and ~5.3! vanish at least as fast asl when l→0, and
become, in general, negligible when the rotation paramete
small. In Sec. VI we will use this fact to set an upper bou
to the global angular velocity in order to ensure that t
relative error committed in the energy-momentum ten
with our approximation is smaller than a certain quantity.

Let us now analyze the behavior of our approximate c
mological solutions with rotation. Inverting relation~5.3!, we
obtain the conformal time

h5A2Yl

Xl
lnF3Xla1D1A9Xl

2a216XlDa16XlA
2

D1A6XlA
G ,

~5.6!

and, integratingdt5adh, we get the following expression
for the cosmological time:

t5
D

3Xl
F2h1A2Yl

Xl
sinhSA Xl

2Yl
h D G

1
2A

Xl
AYl

3 FcoshSA Xl

2Yl
h D 21G . ~5.7!

From relation~5.3!, one can also derive the Hubble p
rameter, the deceleration parameter, and the relative en
density of our approximate solutions:

H5A3Xla
212Da12A2

6Yla
4

, ~5.8!

V5
Yl~a212Da12A2!

3Xla
212Da12A2

, ~5.9!

q5
Da12A2

3Xla
212Da12A2

.0. ~5.10!

These formulas replace Eqs.~4.3!, ~4.4!, and ~4.5!, respec-
tively, when the rotation differs from zero.

In the limit a→0, we get againH51/(2t) andq→1, as
in the standard cosmological model. In this limit, the relati
energy density takes the valueV5Yl512 l 2, so that
e53(12 l 2)/4t2. The expansion and history of the primo
dial universe is therefore affected only by corrections of
order of l 2 @see also Eq.~5.3!#. On the other hand, in the
sector of large scale factorsa→`, one can easily check tha
H51/t andq→0, just like on the exact solution presented
Sec. III. At this final stage of the expansion, the relati
energy density tends toYl /(3Xl), a limit which is positive
for l P@0,1) and differs from the value of 1/3, correspondi
to the non-rotating case, by terms of the order ofl 2, suppos-
ing that the rotation parameter is small.
2-7
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Finally, it is not difficult to prove that the relative energ
density ~5.9! is a strictly decreasing function of the sca
factor. Like in the model discussed in Sec. IV,V remains
then bounded away from zero during the whole evoluti
the lower bound being its positive limit whena→`. Actu-
ally, if l !1, the energy density is always of the same or
of magnitude as the critical one. Therefore, we see that
introduction of an anisotropic scalar field leads to a quas
universe even in the presence of rotation.

VI. VALIDITY OF THE APPROXIMATION

In this section we want to carry out a quantitative analy
of the error committed in Einstein equations by identifyi
the energy-momentum tensor~5.1! with the Einstein tensor
of the RTKO metric whose scale factor is the time functi
~5.3!. More specifically, we want to show that it is possible
set an upper bound to the rotation parameter~and hence to
the present angular velocity! so that the relative error in ou
estimation of the energy-momentum tensor is smaller tha
fixed quantity.

For each component of the Einstein equations, we de
the relative error introduced with our approximation as
quotientuGm

n 2Tm
n u/e, wheree[2T0

0 is the energy density o
the matter content. We want to analyze under which circu
stances these relative errors are smaller than a given nu
D. Since, for any reasonable approximation, all relative
rors should be at least smaller than the unity, we assume
D,1 from now on. As we have seen, the only non-triv
components of the Einstein equations that are exactly so
by the evolution law~5.3! are those corresponding toG0

0 and
G3

3. For the remaining components, the error is at most of
order of l when the rotation parameter is small.

Concerning our definition of relative errors, it is clear th
e is the largest diagonal component of the energy-momen
tensor. In addition, we will see below that, in the spaceti
region and range of parameters of physical interest, the o
non-vanishing component of this tensor~namely,T2

0) is also
smaller than the energy density. Therefore, with our defi
tion, we are just comparing the errors made in the estima
of the energy-momentum tensor with its dominant com
nent.

To analyze these errors, we need to deal with factors
the forme6x that appear in most of the non-diagonal co
ponents of the Einstein tensor, as can be seen in Eqs.~2.10!.
In doing this, we will proceed as follows. Since the mode
spatially homogeneous, we can always locate the observ
the origin. From a physical point of view, the only phenom
ena that can affect the observer at a generic, present timh0
are those that occurred in the spacetime region that is c
ally connected with him. Thus, from now on we will restri
our discussion to that region. Let us also suppose that we
only interested in events that happened in a certain inte
of time hP@h1 ,h0#, with 0<h1,h0. Although we will
makeh150 at the end of our calculations, we prefer to lea
this number free for the moment in order to allow for oth
possibilities.

In a RTKO spacetime, one can check that the maxim
absolute value that the coordinatex can take at timeh,h0
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in the region that is causally connected with the origin
present is (h02h)/A12 l 2. A point at timeh with this value
of x is connected with the origin ath0 by the null geodesic
with vanishingz and dy/dh5 le2x/(12 l 2). Hence, the re-
gion of the spacetime that we want to analyze is containe

H xPI h[F2h01h

A12 l 2
,

h02h

A12 l 2G , hP@h1 ,h0#J . ~6.1!

In particular, for each fixed value ofh, the extrema of the
interval I h correspond to points that are causally connec
with the observer.

Moreover, the above region is invariant under the rever
x→2x. Using this fact and recalling thatl P@0,1) and
D>0, it is possible to show that, among all the conditio
coming from the requirement that the relative errors
smaller than the quantityD, the most restrictive condition is
that corresponding to the non-diagonal componentT0

2 of the
energy-momentum tensor. This component leads to the
equality

le2x

Yl

6Xla
216Da18A2

3a216Da16A2
<D, ~6.2!

wherea5a(h) is given by Eq.~5.3!, the pair of coordinates
(h,x) must belong to the region~6.1!, and we have adopted
again the notation~5.4!.

On the other hand, from expression~5.2!, we get

uT2
0u

e
5 lex

6Da18A2

3a216Da16A2
. ~6.3!

Recalling that the region under analysis is invariant unde
flip of sign in the coordinatex ~and thatXl.0, Yl<1 and
D,1), we then see that condition~6.2! ensures that, in the
region of physical interest, the energy density domina
over the non-diagonal componentT2

0 of the energy-
momentum tensor, as we had commented above.

In addition, note that, sincee2x is a strictly decreasing
function of x, its maximum value forxPI h is obtained at
(2h01h)/A12 l 2. So, the most stringent condition con
tained in Eq.~6.2! is

l

Yl
<expFh~a!2h~a0!

AYl
G 3a216Da16A2

6Xla
216Da18A2

D. ~6.4!

We have employed here relation~5.6! to write the conformal
time in terms ofaP@a1 ,a0#, with a0.a1. These two values
of the scale factor are reached, respectively, at the pre
time h0 and at the initial time of our considerationsh1.

Using the explicit form of the functionh(a), it is actually
possible to show that, for fixed parametersl andD, the right-
hand side of the above inequality is an increasing function
a. As a consequence, its minimum value in the inter
@a1 ,a0# is attained whena5a1. In this way, we conclude
that the necessary and sufficient condition for the relat
errors to be smaller thanD in the region of physical rel-
evance is obtained from Eq.~6.4! by makinga5a1. In par-
2-8



ll
.e

tio

ts
n
o

at
ve
p

to
no
re

th
ls

i-
io
rs
b-
su

r
ha
.

ly
r

a
.
ro
th
s

tio

ro

rv

pu

ed

ve
f

ion
ing
eir
the

onal

s of
tible
se
if

the

ter
t

he
do

the
d a
e of

n-
the
ave
e-

sca-
ts:
us,

ogy
so,

ed-
ar-
l.

me
led

ces

ow-
er-
dis-
nt
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ticular, if we consider the whole region that can be causa
connected with the origin since the initial big bang, i
a150, we get

l

Yl
<expF2h~a0!

AYl
G3

4
D, ~6.5!

where we have employed thath vanishes whena50.
This inequality sets an upper bound tol, beyond which

our solution cannot be considered a good approxima
modulo relative errors smaller thanD. It is worth noticing
that the conformal timeh(a0) that appears in Eq.~6.5! de-
pends on the rotation parameterl, as well as on the constan
A andD, via relation~5.6!. Owing to this dependence, it is i
general difficult to find the exact value of the upper bound
l once the scale factora0 and the numbersD, A, andD are
known. In the Appendix, we present a method to estim
such an upper bound with great accuracy. In practice, ne
theless, it is possible to get a really good estimate by sim
replacingYl512 l 2 with the unity and substitutingh(a0) by
the valueh0 of the present conformal time corresponding
the exact solution with vanishing rotation parameter. It is
difficult to check that these approximations amount to dis
garding corrections of the order ofl 2 in the upper bound on
l. Employing the values ofa0 , A, andD given in Sec. IV,
one arrives in this way at

l<0.0337D. ~6.6!

As we have said, a more careful procedure to estimate
upper bound is presented in the Appendix, where we a
consider the possibilitya15a0/1500, corresponding approx
mately to the time of decoupling between dust and radiat
and a model with slightly different cosmological paramete
Vd50.3 andH570 km/(sMpc). In all these cases, we o
tain a value of the upper bound which is close to the re
given above.

From inequality ~6.6!, we can easily derive an uppe
bound on the global angular velocity at present. Using t
v5 l /(2a) anda051.231026 m ~the value obtained in Sec
IV !, we getv<4.1310220D s21. Thus, in order to have a
relative errorD<2.5% one needs to impose, approximate
that v<10221 s21, while a more permissive erro
D<25% would lead tov<10220 s21.

Up to date, there exists no well-established and gener
accepted estimate of the angular velocity of the universe
models with shear, some upper bounds can be inferred f
the CMB anisotropy, but these bounds do not apply to
shear-free RTKO spacetimes. There are some estimation
v based on the observed rotation of the plane of polariza
of cosmic electromagnetic radiation@8,16,29#, leading to
v;10218 s21. However, such observations are very cont
versial, and the derived value ofv could well be two or three
orders of magnitude smaller@24#.

An independent estimatev;10221 s21 can be obtained
from the analysis of the rotation of galaxies@30#. This result
agrees with another estimation that is not based on obse
tion, but on a heuristic argument, namely, the extension
the problem of rotation of the large number hypothesis
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forward by Dirac. The angular momentum of the observ
universe isL;rva5, wherer is the density of matter. From
the large number hypothesis, we getL;\LD

3 @31#, where\
is Planck constant andLD;1039 is Dirac scaling
parameter @32#. So, we have v;\LD

3 /(ra5). With
r53310227 kg/m3 anda5a051.231026 m, this leads to
v;10221 s21.

Let us finally remark that the upper bound that we ha
obtained forl is only aimed at determining the interval o
rotation parameters in which the approximate RTKO solut
presented in Sec. V is acceptably good. In principle, rotat
solutions with larger angular velocities are possible, but th
energy-momentum tensor cannot be approximated by
matter content considered here. On the other hand, additi
restrictions on the rotation parameterl could come from the
requirement that the anisotropies that arise in the formula
the luminosity and angular diameter distances are compa
with the observational data. The consideration of the
anisotropies, however, cannot be carried out analytically
lÞ0, because, by contrast with the situation found in
case with vanishing rotation~see Sec. IV!, the exact depen-
dence of these distances with the redshiftZ is not manage-
able anymore. What is available now is~the first terms of!
their Kristian-Sachs expansion in powers ofZ @25#. Using
the expressions given by Obukhov for this expansion@24#
and defining the relative variation of the angular diame
distance«a like in Sec. IV, it is possible to show tha
«a.2l up to second order corrections inZ and in the rotation
parameter. Therefore, recalling the bound onl obtained
above, we can affirm that the influence of rotation in t
formulas for distances is negligible, at least as far as we
not consider sources of high redshift. For high redshifts
Kristian-Sachs expansion is expected not to be valid, an
more careful analysis is needed to determine the relevanc
the anisotropies.

VII. CONCLUSIONS

In this paper, we have shown that it is possible to co
struct anisotropic models that are at least compatible with
main features of standard cosmology. In particular, we h
found an exact solution of Einstein equations which d
scribes an expanding universe containing an anisotropic
lar field and a comoving perfect fluid with two componen
radiation and dust. The solution is spatially homogeneo
but the sections of constant time are anisotropic, its topol
being the product of a pseudosphere and a real line. Even
the background radiation is perfectly isotropic and the r
shift experimented by any possible emission of the dust p
ticles varies with the scale factor like in a FRW mode
Moreover, the expansion is conformal and follows the sa
evolution law as in a standard open FRW spacetime fil
with dust and radiation.

The relation between the redshift of astronomical sour
and their angular diameter~or luminosity! distance turns out
to be anisotropic, because so is the spacetime metric. H
ever, this anisotropy does not conflict with the current obs
vational data, because the corresponding variation of
tances with the line of sight in our model is not domina
2-9
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compared with the systematic and experimental errors of
measurements.

The introduction of the massless, anisotropic scalar fi
leaves, nevertheless, one important imprint: the energy d
sity of the model is of the order of the critical density at
times. Therefore, the universe is always quasiflat. In m
detail, the relative energy density equals the unity at the
tial big-bang singularity, like in FRW cosmology, and d
creases monotonically during the whole evolution to a low
bound of one third, which is the asymptotic limit reached
infinitely large times.

The cosmological model that we have constructed is
completely realistic because, for instance, it does not pre
the observed accelerated expansion of the universe. In p
ciple, this defect could be cured by including additional da
energy in the system, supplied either by a cosmological c
stant or by a quintessence field. This modification of o
model will be discussed elsewhere. Here, we have con
trated our attention in our simple model because it permi
clear discussion of the effects of the anisotropic scalar fi
and allows to obtain explicitly the time dependence of
scale factor and the cosmological parameters.

We have also presented a quite straightforward appl
tion of our exact solution, namely, the obtention of appro
mate cosmological models describing spatially homo
neous, anisotropic spacetimes with rotation. This has b
possible because the anisotropic metric of our exact solu
is in fact the element with vanishing rotation of a family
shear-free rotating metrics with remarkable properties,
cluding the isotropy of the comoving CMB and the pres
vation of the standard relation between the redshift of li
and the value of the scale factor when this light was emitt

Assuming that the matter content is the same as in
exact non-rotating solution, we have proved that it is p
sible to generalize the time dependence of the scale facto
as to attain an approximate solution of Einstein equation
the presence of rotation. More specifically, if one restricts
considerations to the causal past of the observer, we h
shown that the error committed with our approximations
Einstein equations, relative to the energy density of the s
tem ~which is the dominant component of the energ
momentum tensor!, remains smaller than any required qua
tity D if one sets an upper bound linear inD to the angular
velocity of the present universe. In particular, we have c
culated this bound using the values of the Hubble param
and the relative energy density of pressureless matter
vided by the concordance model@23#. For relative errors of a
few percent, the upper bound that we have found turns ou
be of the same order of magnitude as those obtained f
observation of the rotation of galaxies@30# and heuristic con-
siderations involving the large number hypothesis@31#.

Finally, an interesting possibility would be to analyze t
angular power spectrum of primordial fluctuations in t
CMB of these anisotropic cosmologies. This analysis wo
require an extension of the standard scheme of cosmolog
perturbation theory@2# that dealt with the fact that the spati
sections of the spacetime are not maximally symmetric, t
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into account the anisotropic dependence of distances on
redshift, and treated the rotation parameter also in a pe
bative manner. These issues will be the subject of fut
research.
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APPENDIX

In this appendix, we will estimate the upper bound th
inequality ~6.4!, evaluated ata5a1, sets to the rotation pa
rameterl. Remembering expression~5.6!, we can write the
considered inequality as

l

~12 l 2!
<J~Xl ,Xl !D, ~A1!

where

J~U,V![
3a1

216Da116A2

6Ua116Da118A2

3S 3Ua11D1A9U2a1
216UDa116UA2

3Ua01D1A9U2a0
216UDa016UA2D A2/V

.

~A2!

Note thatJ depends on the non-negative constantsA andD
and on the values of the scale factor at present,a0, and at the
initial time, a1.

It is straightforward to see that, fora0.a1 , J(U,V) in-
creases withV, assuming thatU and V are positive. Since,
according to Eq.~5.4!, Xl ranges in (1/2,1#, it then follows
that a necessary condition for Eq.~A1! to be satisfied is tha
l /(12 l 2)<J(Xl ,1)D. In addition, one can check tha
l /(12 l 2) is greater thanJ(Xl ,1) when l approaches the
unity, whereas the opposite happens atl 50, provided that
A.0. Therefore, the functionsl /(12 l 2) and J(Xl ,1) inter-
sect each other at least once inl P@0,1). Moreover, in this
interval of l, both functions turn out to be strictly increasin
It is then possible to prove that the largest of the intersec
points,

L[maxH l P@0,1!:
l

12 l 2
5J~Xl ,1!J , ~A3!

can be obtained by numerical iteration. Namely, defin
l 151 and l n115 f ( l n), one can getL as the limit of the
sequence$ l n%, where f ( l )[F@J(Xl ,1)# and

F@J#[
A114J221

2J
. ~A4!
2-10
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Recalling then thatD,1 and 12 l 2<1, one easily conclude
that a necessary condition for inequality~A1! to hold is

l<J~XL,1!D. ~A5!

Let us now find a sufficient condition ensuring inequal
~A1!. From our previous discussion, we already know t
l<L and thatJ(U,V) increases withV if U andV are posi-
tive. Employing the definition ofXl , we then see tha
J(Xl ,Xl)>J(Xl ,XL). In addition,J(Xl ,XL) is an increasing
function of l in the interval@0,1), regardless of the consta
value ofXLP(1/2,1#. So,J(Xl ,XL)>J(1,XL), sinceXl be-
comes the unity atl 50. Hence, it follows that a sufficien
condition for Eq.~A1! to hold is l /(12 l 2)<J(1,XL)D or,
equivalently l<F@J(1,XL)D#. Finally, taking into account
that 0,J(1,XL)D,1 for all the allowed values ofD and
XL , and thatF@J#>J(12J2) if 0<J<1, it is easy to derive
the simpler sufficient condition

l<J~1,XL!@12J2~1,XL!#D. ~A6!

Using the values ofa0 , A and D obtained in Sec. IV,
makinga150 ~i.e., considering the entire causal past of t
origin!, and following the procedure explained above to d
er
-

s

08350
t

-

termine the value ofL, one can check that the necessary a
sufficient conditions given in Eqs.~A5! and~A6! lead in fact
to coincident upper bounds onl, up to the third significant
figure. With this degree of accuracy, one gets the bou
l<0.0337D, which reproduces in fact the estimate reached
Sec. VI. If one made insteada15a0/1500, paying thus atten
tion only to those events in the causal region which occur
~approximately! after the time of decoupling, one would ob
tain, with the same level of precision,l<0.0442D.

In order to check the sensibility of our estimates to t
particular values adopted for the relative energy density
dust matter and the Hubble parameter, we have repeate
evaluation of the constantsA andD, the present scale facto
a0, and the upper bound onl taking Vd50.3 and
H0570 km/(sMpc). In this case, following the argumen
explained in Sec. IV, one getsA51.331024 m, D57.2
31025 m, anda051.131026 m, which are close to the val
ues found withH0565 km/(sMpc) andV5-0.35. In ad-
dition, with a150, Eqs. ~A5! and ~A6! lead now to the
bound l<0.0260D ~again up to the third significant figure!,
whereasl<0.0344D if a15a0/1500. So, the upper boun
reached forl is of the same order of magnitude in all th
considered cases.
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