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Abstract – We investigate the transition phenomenon of the universe between a phantom and a
non-phantom phase. Particular attention is devoted to the case in which the cosmological constant
depends on time and is proportional to the square of the Hubble parameter. Inhomogeneous
equations of state are used and the equation of motion is solved. We find that, depending on the
choice of the input parameters, the universe can transit from the non-phantom to the phantom
phase leading to the appearance of singularities. In particular, we find that the phantom universe
ends in a singularity of type III, unlike the case without variable cosmological constant in which the
phantom phase ends exclusively in the big rip (singularity of type I). The Cardy-Verlinde formula
is also introduced for the inhomogeneous equation of state and we find that its equivalence with
the total entropy of the universe, coming from the Friedmann equations, occurs only for a special
choice of the input parameter m at the present time.

Copyright c© EPLA, 2011

Introduction. – The accelerated expansion seems
to play an important role in the dynamical history of
the universe. There is a firm belief, at the present time,
that the universe passed through the inflationary phase
at early times and there are growing evidences that
it is accelerating at present. The study of large-scale
structures indicates that the universe is almost spatially
flat and that dark energy accounts for about 70 percent
of the total energy content [1–4]. Moreover, dark energy
is believed to be responsible for the acceleration of our
expanding universe. This sort of fluid violates the strong
version of the energy conditions. Besides, when the null
version is also violated, the fluid is called phantom and
then the universe may present future singularities at finite
time [5–7]. In the phantom phase, the energy density grows
whereas it decreases in a non-phantom one. However, we
know little about the nature of dark energy in general and
of phantom fluid in particular, except for their negative
pressure. Therefore, a large effort has been put in recent
years to explain this mystery [8–13]. Specially, this transi-
tion phenomenon known as quintom scenario is proposed
by Feng and collaborators in [14], and they found that it
gives rise to an equation of state larger than −1 in the past
(a)E-mail: sthoundjo@yahoo.fr

and less than −1 today, satisfying current observations.
For understanding the possible connections among the
dark-energy models, it is useful to study the cosmic dual-
ity. Then, the duality in two-field quintom models of dark
energy was studied and it has been found that an expand-
ing universe dominated by a quintom-A field is dual to a
contracting universe with a quintom-B field [15]. Recently,
Cai and collaborators wrote a paper which introduced
the experimental developments on finding the transition
between quintessence and phantom phases and various
theoretical realizations of such a scenario, see [16]. On
the other hand, the knowledge of some properties of the
universe in the phantom phase, such as the singularities,
motivated various investigations with the aim of dealing
with them. Batista and collaborators [17] investigated the
effects of particle production when a massless minimally
coupled scalar field is present in spacetimes where ω is a
constant. To do so, they used a state for which Bunch and
Davies [18] had previously computed the stress-energy
tensor. They found that the energy density of the created
particles never dominates over the phantom energy
density. In the same way, quantum effects near the big rip
are studied in [19] where they used the n-wave regulariza-
tion for calculating the energy density of particle creation
and found that, in this case, it tends to infinity when
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the big rip is approached and becomes the dominant
component of the universe. This means that the big rip
can be avoided by a scalar massless field. Pavlov [20]
computed both the number density of created particles
and the stress-energy tensor for a conformally coupled
massive scalar field for the case in which ω=−5/3. It
was found that quantum effects are not important if the
field mass is much smaller than the Planck mass and
the time left to the Big Rip is greater than the Planck
time. Bates and Anderson [21] used a background field
approach in which the energy densities of the quantized
fields are computed in the background spacetime which
contains the Big Rip singularity. They found that for
fields in realistic states for which the energy density of the
quantized fields is small compared to that of the phantom
energy density at early times, and for spacetimes with
realistic values of ω, there is no evidence that quantum
effects become large enough to significantly affect the
expansion of the spacetime until the spacetime curvature
is of the order of the Planck scale or larger, at which
point the semi classical approximation breaks down. Also
in order to deal with the singularity problem, Cai and
collaborators [22] considered the cosmology of the Higgs
sector of the Lee-Wick Standard Model, an alternative
to supersymmetry to solving the hierarchy problem.
They found that homogeneous and isotropic solutions are
non-singular and then, the Lee-Wick model can provide a
possible solution of the cosmological singularity problem.
One of the phenomenological ways to explain the

dark-energy problem is assuming a variable cosmological
constant. The cosmological constant Λ is pretty compati-
ble with observation and effort is currently devoted to the
investigation of the theoretical foundations of a variable
cosmological constant and its model properties [23–26].
In this respect, various ansatz have been used. For
example in [27], Carneiro and collaborators considered
a cosmological constant Λ∝H, and studied a possible
way to distinguish the validity of this scenario from the
standard one. Note that a model Λ∝ a−2 has earlier
been proposed in [28], requiring that the cosmic density ρ
equal to the Einstein-de Sitter critical density ρc, leading
to a close universe without singularity, horizon, entropy
and monopole problems. Furthermore, a large number
of phenomenological Λ models have been constructed in
order to describe the dynamics of the universe [29]. The
case which attracts our attention in this paper is Λ∝H2
and has been studied in several other works for other
purposes, but always with the aim of clarifying some grey
areas in cosmology [30–33]. In this paper we propose to use
Λ∝H2, for analysing the evolution of the universe, being
in the phantom or non-phantom phase. The phase transi-
tion of the universe will be studied considering a model in
which dark energy is described by some rather complicated
ideal fluid with an unusual equation of state (EoS) which
will be chosen to be an inhomogeneous one. It is important
to emphasize that this inhomogeneous EoS corresponds
to some pure dark-energy models. This kind of models
may reproduce late-time acceleration, but it is not easy to

construct a model that keeps the radiation- and matter-
dominated epochs untouched. However, it is easy to intro-
duce into our considerations ordinary matter and radiation
but in that case they only appear suddenly at some point.
Note that this kind of study has been also considered

in [34] where the cosmological constant is a linear function
of time. Here, we use the ansatz Λ∝H2 with the inhomo-
geneous EoS. We find that, depending on the choice of the
input parameters of the EoS considered, the universe may
transit from a non-phantom to a phantom phase leading
to finite-time singularities. Another interesting point of
our result is that, in contrast to the model without vari-
able cosmological constant in which the phantom universe
ends with the singularity of type I (big rip), the phantom
universe in this case ends with the singularity of type III.
Another point we address here is the Cardy-

Verlinde (CV) formula coming from inhomogeneous
EoS. Verlinde [35] made an interesting proposal that
Cardy formula [36] in two-dimensional conformal field
theory can be generalized to arbitrary spacetime dimen-
sions. Verlinde further proposed that a closed universe
has subextensive (Casimir) contribution to its energy
and entropy with the Casimir energy conjectured to be
bounded from above by the Bekenstein-Hawking energy
and as consequence, one obtains a very deep relation
between gravity and thermodynamics [37]. Within the
context of the radiation-dominated universe, such bound
on the Casimir energy is shown to lead to the Hubble
and the Bekenstein entropy bounds, respectively, for the
strongly and the weakly self-gravitating universes. The
generalized entropy formula, called the CV formula, is
further shown to coincide with the total entropy of the
universe coming from the Friedmann equations. These
results were later generalized [38–45]. Our goal here is to
analyse the equivalence between the CV formula and the
total entropy coming from Friedmann equations assuming
that the universe is conformally invariant. With this, we
find that for the inhomogeneous EoS, the generalized
entropy of the universe reduces to the CV formula with
a special choice of the input parameter m and this does
not correspond to a radiative universe as in the case of
homogeneous EoS. Note also that this equivalence occurs
exclusively at the present time.
The paper presents two sections, the first showing

the inhomogeneous EoS with which the solution for
the Hubble parameter is found and some discussions
on the input constants are put forward, allowing the
whole analysis of the transition phenomenon. The second
section shows a brief concept on the CV formula with
homogeneous EoS and later, a complete analysis of the
equivalence between the CV formula and the Friedmann
equations with inhomogeneous EoS. Finally, we present
our conclusions and perspectives.

Solving the inhomogeneous equation of state. –
Let us consider the universe driven by an ideal fluid (dark
energy) with the inhomogeneous equation of state [46]

p= ω(t)ρ+Λ(t), (1)
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where ω(t) and Λ(t) depend on the time and ρ and p are
respectively the energy density and the pressure of the
fluid. This equation, for the case Λ(t) = 0 and ω(t) as affine
function of time, has been studied in [46,47]. Moreover,
the case Λ(t) �= 0 as an affine function of time has been
examined in [34].
The equation of energy conservation and the Friedmann

equations are, respectively,

ρ̇+3H (ρ+ p) = 0, (2)

3

κ2
H2 = ρ, (3)

1

κ2
(2Ḣ +3H2) =−p, (4)

where κ2 = 8πG, with G the gravitational constant and
H = ȧ

a
, the Hubble parameter where a(t) is the scale

factor.
Using (1) and (3), equation (2) is rewritten as

ρ̇+
√
3κ [1+ω(t)] ρ3/2+

√
3κρ1/2Λ(t) = 0. (5)

From now on, we suppose that ω(t) depends linearly on
time and the cosmological constant Λ(t) is proportional to
the square of the Hubble parameter, that is

ω(t) = αt+β, (6)

Λ(t) = γH2(t)

=
γκ2

3
ρ(t). (7)

Taking into account (6) and (7), eq. (5) becomes

ρ̇+(At+B) ρ3/2 = 0, A= ακ
√
3,

B = κ
√
3

(
1+β+

γκ2

3

)
.

(8)

The solution of this equation is

ρ(t) =
16

(At2+2Bt− 2C)2 , (9)

and the Hubble parameter and its rate behave as

H(t) =− 4κ√
3 (At2+2Bt− 2C) , (10)

Ḣ(t) =
8κ (At+B)√

3 (At2+2Bt− 2C)2 , (11)

where C is an integration constant.
As we are dealing with an expanding universe, we need

an increasing scale factor, that is ȧ > 0. We know that ȧ=
Ha, then for an expanding universe the Hubble parameter

has also to be positive. Solving ȧ=Ha, one obtains

a(t) = exp

(∫
H(t)dt

)

= exp

(
4κ√
3

g(t)√
B2+2AC

)
, (12)

g(t) = arctan

(
At+B√
B2+2AC

)
.

The positivity of ȧ depends on the sign of H(t). Note
that the expression At2+2Bt− 2C vanishes for t1,2 =
− (B±√B2+2AC) /A. The universe expands when the
Hubble parameter is positive and one has a phantom fluid
when the weak version of the energy conditions is violated,
that is when ρ+ p < 0. Combining eqs. (3) and (4), one
obtains

ρ+ p=− 2
κ2
Ḣ, (13)

and it turns out that the phantom phase (respectively, the
non-phantom one) is obtained when Ḣ > 0 (Ḣ < 0). Two
situations are important for a whole analysis: when the
constant A is positive or negative.

Analysis for the case A> 0 (α> 0). In this case, a
simple study of the Hubble parameter sign shows that one
has an expanding universe for t1 < t< t2 and a contracting
one when t < t1 and t > t2. On the other hand, it is
easy to see that Ḣ vanishes for t3 =−B/A. Then, the
universe is in the phantom phase (Ḣ > 0) when t > t3
and the energy density grows; for the non-phantom phase
(Ḣ < 0) t < t3, the energy density decreases. Consequently,
the accelerated expanding universe begins with a non-
phantom phase and enters in the phantom one at the
transition time ttr = t3, the time at which the Hubble
parameter and the energy are

Htr =
4κA√

3 (B2+2AC)
, ρtr =

16A2

(B2+2AC)
2 . (14)

In the non-phantom case, the energy density decreases and
tends to ρtr as the time goes to ttr. The simultaneous
divergence of ρ(t) and H(t) appears at t1 and t2. However,
a(t2) = exp (κπ/

√
3(B2+2AC)), which is finite. In fact,

the phantom universe ends with a future singularity, in
this case, the singularity is of type III (for a classification
of future singularities see [5]) since the energy density and
the pressure at this time are divergent. The graph of H(t)
is shown in the left panel of fig. 1.

Analysis for the case A< 0 (α< 0). For t < t1 and
t > t2, the universe expands whereas it contracts for
t1 < t< t2. The first derivative of the Hubble parameter
is positive (respectively, negative) for t < t3 (t > t3). The
expanding universe begins with a phantom phase which
ends at t1 and enters in a non-phantom phase at t2. Here
the transition is not instantaneous, it is the contracting
phase of the universe. At t1, the energy density ρ(t1) and
the pressure p(t1) diverge. However, at t1, the scale factor
is finite, a(t1) = exp(−κπ/

√
3(B2+2AC)). Then, the
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Fig. 1: The Hubble parameter as function of the cosmic time with B = 1, from left to right, A=C = 1 and A=C =−1,
respectively.

phantom phase ends with the singularity of type III. In the
non-phantom phase, the energy density decreases and goes
to zero as t−→∞. The graph of the Hubble parameter,
H(t), vs. time t is shown in the right panel of fig. 1.

CV formula from inhomogeneous EoS fluid. –
This section is devoted to the application of the CV
formula to ideal fluids. In a first step, let us briefly
introduce the CV formula for homogeneous EoS. We
consider a (n+1)-dimensional spacetime described by the
FRW metric, written in comoving coordinates as

ds2 =dt2− a
2(t) dr2

1− kr2 − r
2 dΩ2n−1, (15)

where k=−1, 0,+1 for an open, flat, or closed spatial
Universe respectively, and dΩ2n−1 is the metric of an n− 1
sphere. Then, by inserting the metric (15) in the Einstein
equations the Friedmann equations are derived,

H2 =
16πG

n(n− 1)ρ−
k

a2
, Ḣ =− (ρ+ p)+ k

a2
. (16)

The total energy E of the universe is E = ρV , with V its
total volume. Since the Casimir energy may be include
in the total energy, we consider a closed universe, k= 1.
For the homogeneous EoS, p= ωρ, with ω a constant.
Then the conservation law for energy has the form

ρ̇+nH (1+ω) ρ= 0, (17)

which reduces to (2) for n= 3 and whose solution depends
on the scale factor as

ρ∝ a−n(1+ω). (18)

The total energy of the universe can be written as the
sum of an extensive part EE and a subextensive part EC ,
called the Casimir energy, and it takes the form

E(S, V ) =EE(S, V )+
1

2
EC(S, V ). (19)

Under the transformations S→ ξS and V → ξV , ξ being a
constant, the extensive and the subextensive parts of the
total energy, respectively, scale as [48,49]

EE(ξS, ξV ) = ξEE(S, V ), EC(ξS, ξV ) = ξ
1− 2nEC(S, V ),

(20)

and therefore, we have for the total energy

E(ξS, ξV ) = ξEE(S, V )+
1

2
ξ1−

2
nEC(S, V ). (21)

Taking the derivative of (21) with respect to ξ and letting
ξ = 1, one obtains

S

(
∂E

∂S

)
V

+V

(
∂E

∂V

)
S

=EE +

(
1

2
− 1
n

)
EC . (22)

Assuming that the universe satisfies the first law of
thermodynamics dE = T dS− pdV , we have the thermo-
dynamics relations

(
∂E
∂V

)
S
=−p and (∂E

∂S

)
V
= T . Using

these thermodynamics relations and eq. (19), one can put
eq. (22) in the following form for the Casimir energy, as
the violation of the Euler identity:

EC = n (E+ pV −TS) . (23)

Since the total energy behaves as E ∼ a−nω and by
eq. (19), the Casimir energy also goes as EC ∼ a−nω.
The FRW Universe expands adiabatically (dS = 0) so the
products ECa

nω and EEa
nω should be independent of

the volume V, and be just a function of the entropy.
Then, by the rescaling properties (20), the extensive and
subextensive parts of the total energy can be written as
functions of the entropy only [37],

EE =
µ

4πanω
Sω+1, EC =

ν

2πanω
Sω+1−2/n, (24)

where µ and ν are undetermined constants and 4π and
2π are used for convenience. From these expressions for
EE and EC , one obtains the following expression for the
entropy of the universe:

S =

(
2πanω√
µν

√
EC(2E−EC)

) n
n(ω+1)−1

. (25)

This result, obtained in [37], reduces to the CV formula
when the universe is radiation dominated, ω= 1/n,
that is

S =
2πa√
µν

√
EC(2E−EC). (26)

Let us now look at the case of inhomogeneous EoS that we
used in the precedent section and analyse the relationship
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between the CV formula and the entropy of the universe.
As has been done in [50], we assume an EoS expressed as
a function of the scale factor and described by

p= ω(a)ρ+ j(a). (27)

Introducing (27) in the energy conservation equation (17),
one obtains

ρ′(a)+
n(1+ω(a))

a
ρ(a) =−nj(a)

a
, (28)

where the prime denotes the derivative with respect to the
scale factor and we took t= t(a). The general solution of
(28) is

ρ(a) = e−F (a)
(
Q−n

∫
eF (a)

j(a)

a
da

)
, with

F (a) = n

∫ a 1+ω(a′)
a′

da′,
(29)

where Q is an integration constant. In this analysis,
making use of (7) and taking into account the derivative
with respect to the scale factor, (1) can be written as

ρ′(a)+
n(1+ ω̄(a))

a
ρ(a) = 0, ω̄(a) =

γκ2

3
+ω(a).

(30)

Identifying (30) with (28), one gets

j(a) = 0, F (a) = n

∫ a 1+ ω̄(a′)
a′

da′, (31)

from which one obtains the energy density as

ρ(a) =Qe−F (a). (32)

On the other hand, using (12), one can write

ω̄(a) =

√
B2+2AC

κ
√
3

tan [ln (a
√
3(B2+2AC)/(4κ))]. (33)

Making use of (30), (31), (33) and (32), the energy density
is written as

ρ(a) =Q

[
cos

(√
3(B2+2AC)

4κ
ln (a)

)] 4n
3

. (34)

Note here that only for some special conditions of the
functions ω(a) and j(a) CV formula (26) can be recovered.
Let us assume that the present time is t0 = 0 and then
analyse the equivalence between the CV formula and
the total entropy of the universe at this moment. Note

that as t→ t0, ω̄(a)→m− 1, with m= 1+β+ γκ
2

3 . Then,
F (a)→ nm ln(a) and ρ∝ a−nm. Hence, the total energy in
the volume V = an behaves as E = ρV ∝ an(1−m), which
is the same behaviour for the extensive and subextensive
energy through (23) and (19). If we assume the conformal
invariance, the products EEa

n(m−1) and ECan(m−1) do
not depend on the volume and are only functions of

entropy. Then, we have for the extensive and subextensive
energy,

EE =
µ

4πan(m−1)
Sm, EC =

ν

2πan(m−1)
Sm−

2
n , (35)

from which we determine the entropy as

S =

[
2πnan(m−1)√

µν

√
EC(2E−EC)

] n
nm−1

. (36)

Then, form= n+1
n
, the CV formula is recovered. However,

for any m �= n+1
n
the CV formula cannot be reproduced.

Note in this case that the universe does not correspond to
a radiative one.

Conclusion. – We studied the transition of the
universe between a phantom and a non-phantom phases.
Note that in the non-phantom phase, the energy density
decreases while in the phantom one, it grows leading to
singularities. We focused our attention on the variable
cosmological constant which has been introduced in the
EoS, which becomes inhomogeneous. Then, we solved the
equation of motion which led to the explicit expression of
the energy density and consequently to that of the Hubble
parameter. The first derivative of the Hubble parameter
played a crucial role in this analysis since it allowed us
to know which time interval corresponds to the phantom
or non-phantom universe. The input parameter A also
appeared to be an important one.
In the first part, with the EoS considered and the

ansatz Λ∝H2(t), two important cases have been found.
For A> 0, we saw that the universe evolves from a non-
phantom phase, t1 < t< ttr, to a phantom one ttr < t< t2.
In the non-phantom phase, the energy density decreases
and goes to the energy density at the transition time while
in the phantom phase, the energy density and the pressure
grow and go to infinity at the finite time t2. At the same
time the scale factor remains finite and we conclude
that the universe ends with a singularity of type III. For
A< 0, we saw that the universe begins with a phantom
phase which ends with a singularity of type III at t1,
enters in the non-phantom at t2 where the energy density
descreses and goes to zero as t→∞. Here, the transition
from the phantom phase to the non-phantom one is not
instantaneous; it is a time interval corresponding to the
contracting phase of the universe.
However, in the case in which the phantom phase

precedes the contracting phase of the universe, it would
be interesting to study the possible avoidance of this
type of singularity introducing either the viscosity term in
the cosmic fluid or taking into account quantum effects.
On the other hand, the same analysis can be done with
the ansatz that the variable cosmological constant is
proportional to the Hubble parameter, Λ(t)∝H(t). We
will address these considerations in a future work.
We also analyse the equivalence between the CV formula

and the Friedmann equations with inhomogeneous EoS.
Note that this has been done in several works with the
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homogeneous EoS and the Friedmann equations coincide
with the CV formula only in the radiative universe. In
this work, we use the inhomogeneous EoS including the
variable cosmological constant proportional to the square
of the Hubble parameter. We find that the equivalence
between the Friedmann equations occurs only at the
present time in a special case which is not the radiative
universe as for the homogeneous EoS.
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