Nasal patency after open rhinoplasty with spreader grafts

Victor D. de Pochata,b,*, Nivaldo Alonsob, Rogério R.S. Mendesa, Marcelo S. Cunhaa, José V.L. Menezesa

aDivision of Plastic Surgery, Department of Surgery, Federal University of Bahia (UFBA), Salvador/BA, Brazil
bDivision of Plastic Surgery, Department of Surgery, University of São Paulo (FM-USP), São Paulo, Brazil

Received 19 August 2011; accepted 26 November 2011

\textbf{KEYWORDS}
Nose; Airflow; Acoustic rhinometry; Glatzel mirror test

\textbf{Summary}
Background: Spreaders have been used in cosmetic rhinoplasty, but little information is available about the objective results of treatment. This study sought to determine subjective and objective functional results of open cosmetic rhinoplasty with spreader grafts.

Methods: Twenty patients (14 women, six men; mean age, 31 ± 6 years) had open cosmetic rhinoplasty. Surgery included dissection of the upper lateral cartilages, from the septum, and placement of spreader grafts, symmetrically, along the dorsal edge of the septal cartilage. Preoperative and postoperative evaluation included breathing quality score, acoustic rhinometry and a modified Glatzel mirror test.

Results: Evaluation after surgery (range, 5–18 months) showed significant improvement of breathing quality (before surgery, 8; after surgery, 9.4; \(P < 0.001 \)) and a mean minimal cross-sectional area of the left side (before surgery, 0.6 cm\(^2\); after surgery, 0.9 cm\(^2\); \(P < 0.01 \)). There was no significant change of the mean minimal cross-sectional area of the right side (acoustic rhinometry) or nasal patency (modified Glatzel mirror test) between preoperative and postoperative evaluation. Complications included postoperative synechiae in two patients and septal granuloma in one patient.

Conclusions: Open structure rhinoplasty using spreader grafts is effective in reconstructing the internal nasal valve and preserving or improving nasal patency.

Level of evidence: \(\text{IV} \) (case series with preoperative and postoperative testing).

© 2011 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Open rhinoplasty with spreader grafts

The removal of a dorsal hump is commonly done during a rhinoplasty.1,2 However, functional and aesthetic compromises may occur because of excessive removal of cartilage and bone or disruption of the region between the upper lateral cartilages and the septum. Complications noted in long-term follow-up include saddle nose, inverted V dorsal contour deformity and internal or external nasal valve collapse.3–5 With open structure rhinoplasty, an open approach allows improved exposure, better control of technique and preservation of anatomic integrity, and this may improve predictability of long-term functional and aesthetic results.3,6

The internal nasal valves, formed by the articulation of the caudal and dorsal edges of the upper lateral cartilages with the caudal septum (septal angle), may contribute to 50% of total airway resistance, and may be an important cause of nasal obstruction.7,8 During a rhinoplasty, techniques for managing the nasal valves include the spreader graft (in which autogenous strips of cartilage are placed between the septum and the upper lateral cartilages to provide a spreader effect).9 These spreader grafts may preserve or reconstruct the dorsal aesthetic lines and maintain or improve functional outcome by improving nasal patency and airflow.6,10 Modifications of the original method have been reported including miniature spreader grafts from the lateral crura of the lower lateral cartilages11; double-layered spreader grafts12; spreader grafts made from nasal bones removed from the hump13; and use of absorbable and non-absorbable materials as nasal valve spacers.14

Acoustic rhinometry has been used to measure the cross-sectional area at the level of the internal nasal valve after reductive rhinoplasty.15,16 Different surgical methods provide subjective improvement after open structure rhinoplasty for reconstruction of the middle third of the nose.17–19 However, there is controversy about the best method for reconstructing the dorsum and the internal nasal valves.20 Furthermore, there is no objective information available from acoustic rhinometry to compare nasal patency at the internal nasal valve before and after surgery with spreader grafts for reconstructing the middle third of the nose.

We hypothesised that open rhinoplasty with spreader grafts to reconstruct the middle third of the nose may give satisfactory clinical outcomes with minimal morbidity. This study sought to compare the functional outcomes before and after open structure cosmetic rhinoplasty using spreader grafts. Therefore, we analysed the outcome of surgery with a subjective questionnaire and objective measurements of nasal patency with acoustic rhinometry and the modified Glatzel mirror test.

Patients and methods

Subjects

This clinical prospective study was reviewed and approved by the Research Ethics Committee of the University of São Paulo and carried out from September 2009 to December 2010. The sample consisted of 20 consecutive patients (14 women, six men; aged 20–40 years; mean age, 31 ± 6 years), who were scheduled for cosmetic rhinoplasty and who were healthy and had a nasal aesthetic complaint (with or without functional complaint and with or without a dorsal hump). Asians and blacks were excluded from the study and other patients were excluded for history of nasal trauma, prior nasal surgery, major septal deviations or medical disorders.

Evaluation

All patients had preoperative and postoperative evaluation (90–120 days after surgery). Subjective evaluation was done with a questionnaire in which each patient rated breathing quality from 1 (poor) to 10 (excellent)

Measurements of the nasal cross-sectional area were performed by the same investigator using an acoustic rhinometer (Rhino Scan, SRE 2000, Rhinometrics, Lyng, Denmark). With the patient seated, measurements were made before and after application of a nasal decongestant spray (oxytetracycline, 0.05%); however, to avoid potential errors associated with different degrees of congestion before and after surgery, only measurements after using the decongestant were analysed. An external nasal adapter was used, and care was taken to avoid distortion of the nostrils. The first two measurements of minimal cross-sectional area on the acoustic rhinometry graphs were recorded by obtaining three curves (averaged) during cessation of breathing (patient holding their breath).

Nasal patency was evaluated with the modified Glatzel mirror test, performed by a single investigator (VPD) with a metal plate (scored in millimetres) placed under and along the patient’s nostrils. Measurements were made with the patient seated and the head vertical. The area of condensation obtained on the metal plate after normal expiration (with mouth closed) was marked with a ballpoint pen and then transferred to a millimetre reference sheet. The markings were a measure of the area of nasal aeration; these markings were quantified in sq. cm (UTHSCSA Image Tool for Windows, version 3.0, San Antonio, TX, USA).21 and the left and right sides were recorded separately.

Surgical technique

All patients had surgery by one surgeon (VPD) with general anaesthesia and infiltration with lidocaine (0.5%) and epinephrine (1:80 000). An open approach rhinoplasty, with stepwise dissection and proper identification of the cartilages, was performed. The upper lateral cartilages were carefully dissected from the septum of the submucoperichondrial layer, and the connections were detached (Figure 1(a)). Septal cartilage was harvested, leaving a 10-mm L-shaped strut for nasal support. Then, each nasal component that contributed to the unpleasant appearance of the patient was addressed. In each patient, two rectangular strips of cartilage were removed from the septum for use as spreader grafts (Figure 1(b)). Spreader grafts were measured (length, thickness and height) with a ruler and placed symmetrically and bilaterally (length of graft along length of nose) along the dorsal edge of the remaining septal cartilage (Figure 1(c) and (d)), spanning the entire distance of the dorsal border of the upper lateral
cartilages (cephalic to the nasal bones). Lateral osteotomies were performed in 16 patients (80%); no nasal turbinate surgery or transverse or medial osteotomies were performed. After vestibular and skin closure, a thermoplastic cast was applied to stabilise the nasal pyramid for 7 days.

Data analysis

Non-parametric tests were used for statistical analysis. The Kolmogorov–Smirnov test was used to evaluate whether the data could be adequately modelled by a normal distribution. After the normal distribution assumption was not verified, the Wilcoxon signed rank test was used. Statistically significant differences were defined by $P < 0.05$.

Results

The size of the spreader grafts was similar for most patients, with a narrow range of variation noted for graft width and thickness (Table 1). Follow-up evaluation (range, 5–18 months) showed complications in three patients (15%); two patients developed synechiae (adhesions) distant from the nasal valves that were treated with sectioning with local anaesthesia and one patient developed a septal granuloma that was treated with local drainage. No patients developed excessive width of the middle third of the nose.

There was a significant improvement of mean subjective breathing quality before and after surgery (Figure 2). Mean minimal cross-sectional area, determined by acoustic rhinometry, was similar between left and right sides before

Figure 1 Operative technique of rhinoplasty with spreader grafts. A. Nasal cartilages after detachment of connections. B. Spreader grafts made from strips of septal cartilage (black arrow). C. Spreader grafts placed along the dorsal edge of the remaining septal cartilage and secured with 2 U-shaped sutures (5-0 monofilament nylon). D. Upper lateral cartilages reattached to the septum with 3U-shaped non-absorbable sutures (5-0 monofilament nylon).

Figure 2 Subjective breathing quality and objective measurements of nasal cross-sectional area and nasal patency in 20 patients who had open rhinoplasty with spreader grafts. Follow-up duration: range, 5–18 months after surgery. Comparison of data before and after surgery. Breathing quality questionnaire: patient rating from 1 (poor) to 10 (excellent); minimal cross sectional area: determined with acoustic rhinometry; nasal patency: determined with modified Glatzel mirror test.
surgery; after surgery, mean minimal cross-sectional area of the left side was significantly greater than the preoperative ipsilateral and postoperative contralateral values (Figures 2 and 3). The minimal cross-sectional area typically was noted at the second valley in the graph, corresponding to the internal nasal valve in most noses (Figure 3). There was no significant difference in mean nasal patency, determined by the modified Glatzel mirror test, between preoperative and postoperative values or between left and right sides (Figure 4).

Figure 3 Acoustic rhinometry graph in a 35-year-old patient (female) who had open rhinoplasty with spreader grafts. The minimal cross-sectional area was noted at the second valley, corresponding to the internal nasal valve. A. Preoperative graph. B. Postoperative graph.
Figure 3 (continued).
The data showed improvement of subjective breathing quality and cross-sectional area (left side) after open rhinoplasty with spreader grafts (Figure 2), with few complications, in support of the hypothesis that this technique may provide a satisfactory clinical outcome. Minor differences in the size of the spreader grafts were noted (Table 1), likely because the grafts were customised to the various size and features of the individual noses. The use of only the septum as a donor site minimised potential difference in tissue memory and mechanical properties between septal cartilage and other cartilage from sources such as the ear or the rib.22 The improvement noted in breathing quality and acoustic rhinometry (Figure 2) suggests that spreader grafts may be effective in reconstructing the internal nasal valve.

Discussion

Although several methods may objectively evaluate the patency of nasal airflow,23,24 enabling precise diagnosis and treatment, there is disagreement about the ideal.7,23,24 The modified Glatzel mirror method is frequently used in clinical practice and has the advantages of requiring minimal co-operation from the patient and being fast, easy and non-invasive. However, a literature review showed no published normative data for this test, and most previous studies using this test were with children, making it difficult to compare the present results with those previously published.25 Others authors have suggested that as a method to evaluate nasal patency, the modified Glatzel method should be restricted to surgical or allergic patients.26 However, the present study showed no significant change in nasal patency with the Glatzel method, in contrast with a significant increase in the cross-sectional area of the left side with acoustic rhinometry, suggesting that the Glatzel method is less sensitive than acoustic rhinometry in documenting small anatomic changes.

Acoustic rhinometry also has the advantages of requiring minimal patient co-operation and being fast. Furthermore, acoustic rhinometry does not require airflow through the nose (static technique), potentially facilitating measurement in any age group. The test uses a reflected sound signal to measure the cross-sectional area and volume of the nasal passage, but regions located after severe obstruction may not be estimated accurately (accuracy decreases with distance from the nostril).24,27 In a previous comparative study of data from magnetic resonance imaging and acoustic rhinometry, it was noted that acoustic rhinometry may have acceptable accuracy only when done with a decongestant.28 Nevertheless, acoustic rhinometry has been validated with computed tomography and may be used in the evaluation of the anterior nose with good reproducibility and accuracy.29 Furthermore, the results obtained with acoustic rhinometry in this study (Figure 2) were similar to previously published values in normal subjects (after decongestant, 0.76 cm²), subjects with obstructive complaints (after decongestant, 0.40 cm²)30 and a sample of 1756 patients (average, 0.60 cm²).27

Spreader grafts were designed to push the upper lateral cartilages in the lateral direction, thus increasing the cross-sectional area of the internal nasal valve.6–8 The increase in cross-sectional area on the left side, documented with acoustic rhinometry, was consistent with the subjective improvement of nasal patency (Figure 2).31 One assumption to explain the difference between the right and left sides could be related to septal deviations (without dorsal deviation), which most commonly occur to the left side, causing collapse and obstruction to the cross-sectional area on the right side, because spreader grafts’ effectiveness is limited by the remaining dorsal deviation after septoplasty. That could explain the difference between only the right and left sides in the postoperative period; however, the cross-sectional area was similar between the right and left sides in the preoperative moment. Therefore, we could not support such a hypothesis. Although lateral osteotomies have been associated with minimal cross-sectional area,16 the cross-sectional area in the present study was increased on the left side even though a lateral osteotomy was performed (symmetrically) in most patients (80%).
The increased average minimum cross-sectional area noted after rhinoplasty in this study (Figure 2) conflicts with the results of prior studies that show a decrease in minimum cross-sectional area after reduction cosmetic rhinoplasty. This is probably due to the fact that a reductive rhinoplasty fails to maintain or improve nasal patency. A previous study of rhinoplasty with spreader grafts and dorsal onlay grafts showed subjective improvement in nasal airflow, but no objective measurements were included.

Limitations of the current study include the short follow-up period and small sample size, which may have limited the potential to demonstrate statistically significant improvement of cross-sectional area on the right side (acoustic rhinometry) or nasal patency (modified Glatzel mirror test). Disadvantages of the spreader graft technique with an open approach include the potential risk of excessive widening of the nasal dorsum and the time required to obtain cartilage grafts. Nevertheless, our findings suggest that open rhinoplasty with spreader grafts may provide benefits that outweigh the risks and disadvantages, and the open approach may enable the surgeon to evaluate directly the width needed for improvement of the nasal cavity.

Financial disclosure and products

There was no external funding for this study. The authors have no financial interest or commercial association with any subject matter or products mentioned in our article.

The authors declare that no competing financial interest exist with regard to the present article.

References

21. Wilcox D, Dove B, McDavid D, Greer D. UTHSCSA image tool for Windows. 3.00 ed. Texas: The University of Texas Health Science Center; 2002.