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Variational analysis of the Rashba splitting in III–V semiconductor inversion layers
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A spin-dependent variational theory is used to analyze the Rashba spin-orbit splitting in two-dimensional
electron gases formed in III–V semiconductor inversion layers. The spin split conduction subbands in CdTe/InSb,
insulator/InAs, InP/InGaAs, InAlAs/InGaAs, and AlGaAs/GaAs heterojunctions are calculated. The theory,
presented here in detail, is based on the 8 × 8 k · p Kane model and on the introduction of simple and convenient
spin-dependent Fang-Howard trial functions, and leads to analytical expressions for the split subbands, as well as
allows for a detailed knowledge of the Rashba spin-orbit coupling, including its explicit dependence on structure
parameters and its decomposition into separate contributions. The Rashba coupling parameter and the population
difference in the spin-split subbands, as experimentally determined from the beating pattern of the Shubnikov-de
Haas (SdH) oscillations, are obtained as a function of the electron density (ns). The separate contributions to the
particularly large Rashba splitting in CdTe/InSb heterojunctions are also computed and discussed. It is shown, for
example, that due to the spin-dependent boundary conditions, the direct Rashba spin-orbit coupling term in the
effective Hamiltonian dominates the splitting only for ns > 1010 cm−2 while it is the barrier penetration kinetic
energy term that gives the largest contribution to the Rashba effect at lower densities.
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I. INTRODUCTION

A main trend in semiconductor spintronics concerns the
manipulation of the electron spin with the use of electric
fields only, i.e., without external magnetic fields or ferro-
magnetic materials.1 This is possible with the use of the
spin-orbit coupling. In particular, the Rashba effect in III–V
semiconductor inversion layers has been studied much, since
it allows for a direct and convenient gate-voltage control of the
electron spin precession in the two-dimensional electron gases
(2DEGs) conducting channels. The effect can be described
by means of an effective magnetic field seen by the moving
electron due to the Lorentz transformed electric field. However,
the calculation or measurement of such magnetic field at
semiconductor heterointerfaces is a complex and unsolved
problem. In particular, the effects of band offset and barrier
penetration, connected to the boundary conditions at the
interface, have been somewhat controversial.2,3 In order to
better understand and apply the effect, further analysis is
necessary. In particular, the decomposition of the resulting spin
splitting into separate contributions would be very helpful.
However, this is not a simple task with most of the model
calculations available to study the Rashba effect.4

A spin-dependent variational solution within standard
envelope function approximation was recently developed,
which is in good agreement with both the experimental
results and the exact numerical calculations, and able to
analytically distinguish the different contributions to the
Rashba coupling in III–V semiconductor inversion layers.5

Here we apply this theory to analyze the Rashba effect
in III–V semiconductor inversion layers. We calculate the

Rashba coupling parameter, study its composition, and present
specific results for CdTe/InSb, insulator/InAs, InP/InGaAs,
InAlAs/InGaAs, and AlGaAs/GaAs systems, as a function
of the 2DEG electron density. The corresponding population
difference in the split subbands, as experimentally determined
from the beating pattern of the SdH oscillations, is also
obtained. The theory is shown to well reproduce the main
known properties of the Rashba effect and thus to improve
our knowledge about it. As an example, the particularly large
Rashba splitting in CdTe/InSb heterojunctions is shown to
be dominated by the usual (direct) Rashba spin-orbit term in
the effective Hamiltonian only for electron densities higher
than 1010 e/cm2. For lower densities, the barrier penetration
kinetic energy term becomes the dominant one. The theory
is presented here with important details which were missing
in Ref. 5, like intermediate analytical results for the energy
integrals and directions for the correct use of its parameters.

In 2DEGs formed at such junctions, the conducting
electrons are confined near the interface by an electric field
E plus the barrier due to the conduction band offset v0,
which form an approximate triangular potential. The confining
electric field, and therefore the resulting Rashba coupling
parameter, can be modulated by the gate voltage or carrier
density (ns) of the 2DEG. The physics of such system has
been much studied, mostly with the effective 2D Hamiltonian
Hc = h̄2k2

‖/2m∗ + α∗ σ · k × ez, with k‖ = kxex + kyey . The
resulting Rashba splitting at the Fermi energy is then simply
given by δε = 2α∗kF . In the infinite barrier approximation,
simple expressions for the Rashba coupling parameter (α∗)
can be derived from 8 × 8 k · p Kane model,6 dependent only
on the band parameters of the well material. The present work
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extends this scheme in order to add the contributions due to
the barrier penetration and to the spin-dependent boundary
conditions. We first review the variational theory in Ref. 5,
starting with the 8 × 8 Kane model applied to heterojunctions,
and then discussing the perturbation expansions used to derive
renormalized band parameters of the effective Hamiltonian,
and its variational solution with the introduction of spin-
resolved Fang-Howard trial functions. Finally, we present and
discuss the results for the Rashba coupling parameter and
population difference in the split subbands of different III–V
semiconductor heterojunctions, as a function of the total 2DEG
carrier density.

II. KANE MODEL FOR HETEROJUNCTIONS

It is well known that, with an appropriate choice of spin
quantization direction (i.e., k‖ × ez), the 8 × 8 effective Hamil-
tonian based on Kanes’s model can be block diagonalized
into two 4 × 4 blocks, one for each of the two Rashba split
electron subbands.6–8 The equations corresponding to each
block can be resolved (downfolded) for the conduction band
envelope function �, which is then seen to be the eigenfunction
of the following effective Hamiltonian, in which the Rashba
coupling (the spin-dependent term below, also called direct
Rashba coupling term) is in a simple form:

Heff± = −h̄2

2

d

dz

1

m(z,ε±)

d

dz
+ h̄2k2

‖
2m(z,ε±)

+ Ec(z)

+ U (z) ∓
[

d

dz
β(z,ε±)

]
k‖ (1)

with

1

m(z,ε±)
= P 2

h̄2

[
2

ε± − U (z) − Ev(z)

+ 1

ε± − U (z) − Ev(z) + �(z)

]
(2)

and

β(z,ε±) = P 2

2

[
1

ε± − U (z) − Ev(z)

− 1

ε± − U (z) − Ev(z) + �(z)

]
, (3)

where z is the growth direction, Ec, Ev , and �, respectively,
stand for the conduction band edge, the valence band edge,
and the valence band spin-orbit splitting, and U (z) is the
electrostatic potential energy. The ± signs correspond to
spin up and down along the spin quantization direction;
ε± = ε±(k‖) give the spin-split subband dispersion relations
we are looking for; and P is the usual interband momentum
matrix element, which is assumed to be constant and is
calculated with the measured conduction band effective mass
in the well material. The corresponding boundary conditions
at the interface are that the envelope functions �± must be
continuous, as well as

− h̄2

2m

d

dz
�± ∓ βk‖�±. (4)

These are the so-called spin-dependent boundary conditions
for the spin-dependent envelope functions.

Note that in this model, the k · p interactions between the
conduction band �6 and the valence bands �8 and �7 are fully,
or exactly considered, i.e., not as a perturbation,9 and are free
from any ambiguity connected to choices of operator ordering
or spurious solutions.

A. Perturbation expansion

Consider now a heterojunction between semiconductors 1
(z � 0) and 2 (z � 0). Near the interface at z = 0, the electro-
static potential energy is approximately given by U (z) = eEz,
with the uniform electric field given by E = ens/εsc, where ns

is electronic density of the 2DEG and εsc is the dielectric
constant. This is obtained by assuming that the system is
infinite along the plane of the interface and by neglecting
differences in εsc. The corresponding confining potential in
the case of a CdTe/InSb heterojunction (in which the Rashba
effect is particularly strong), with ns = 2.0 × 1011 cm−2 is
shown in Fig. 1.

Despite its one-band appearance, Eq. (1) corresponds to
the multiband effective mass equation, and must in general
be solved by numerical integration, due to the energy and
z dependences on m and β. However, for the lower lying
electronic energy states in such heterojunctions, an amenable

FIG. 1. (Color online) Confining potential, spin-dependent en-
velope functions, and spin-split energies at kF for a 2DEG in a
CdTe/InSb heterojunction, with ns = 2.0 × 1011 cm−2. The upper
inset expands the interface region to better show the spin dependency
of the envelope function. The lower inset shows the value of the
Rashba splitting at the Fermi Level. The dotted lines correspond to
the perfect insulating barrier approximation, i.e., insulator/InSb.
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form of the effective Hamiltonian can be obtained by choosing
an appropriate small parameter δ to expand these quantities in
a power series, i.e.,

1

m
=

∞∑
n=0

Anδ
n and β =

∞∑
n=0

Bnδ
n. (5)

In material 2, i.e., in the region z � 0, one can follow
Ref. 6 and use δ = [ε± − U (z)]/(Eg + �). In the present
CdTe/InSb heterojunction, the expectation value of δ in the
first subband is estimated to be ∼0.025 and terms of the
order of δ2 will be neglected. By taking only the leading order
terms, we obtain m∗ = (h̄2/P 2) Eg(Eg + �)/(3Eg + 2�) and
β∗ = (h̄2/2m∗) �/(3Eg + 2�), in zeroth order, whereas the
Rashba coupling parameter (α∗) appears only in first order,
and is given by

α∗ = h̄2

2m∗
�

Eg

2Eg + �

(Eg + �)(3Eg + 2�)
eE, (6)

as first obtained in Ref. 6.
In the barrier region instead, i.e., for z � 0, and since the

energies of interest lay inside the gap, it is convenient to

follow Ref. 10 and introduce renormalized barrier parameters
m̄, β̄, and ᾱ, which include nonparabolicity corrections
to the corresponding band-edge parameters, being though
independent of the energy. The same procedure used in Ref. 10
with a 4 × 4 k · p model (without spin-orbit interaction)
is followed here, now with the 8 × 8 Kane model and
we obtain:

m̄ = m∗ (1 − v0/Eg)[1 − v0/(Eg + �)]

1 − v0/(Eg + 2�/3)
, (7)

β̄ = β∗ 1

(1 − v0/Eg)[1 − v0/(Eg + �)]
, (8)

and

ᾱ = α∗ 1 − v0/(Eg + �/2)

(1 − v0/Eg)2[1 − v0/(Eg + �)]2
. (9)

Note that, as expected, they reduce exactly to their correspond-
ing band-edge values, m∗, β∗, and α∗, as the barrier height v0

goes to zero.
Therefore, to leading order in the expansions, the effective

Hamiltonian (1) is

Heff± =

⎧⎪⎨
⎪⎩

h̄2

2m̄

(
− d2

dz2 + k2
‖
)

+ v0 + eEz ∓ ᾱk‖, z � 0

h̄2

2m∗

(
− d2

dz2 + k2
‖
)

− a

[
h̄2

2m∗
(
− d2

dz2 +k2
‖
)]2

Eg+�
+ eEz ∓ α∗k‖, z � 0,

⎫⎪⎬
⎪⎭ , (10)

where the nonparabolicity constant

a = 2(Eg + �)2 + E2
g

Eg(3Eg + 2�)
. (11)

In this form, for the calculation of the first subbands, Heff± is
seen to keep all the physics and most of the accuracy of the
Kane model, but in a simple single-band form (not dependent
on ε±) and therefore amenable to a variational solution. The
boundary condition (4) is now given by

− h̄2

2m̄

d

dz
�1± ∓ β̄k‖�1± = − h̄2

2m∗
d

dz
�2± ∓ β∗k‖�2±. (12)

Note that slightly different perturbation expansions are used
in each side of the interface, and that our results are correct
only to the leading order in each side. Accordingly, the
boundary conditions in Eq. (4) are, here also, satisfied only
to this approximation. The model band parameters are listed
in Table I. For z � 0, they are those of the well material:
m∗ = m∗(2), Eg = E(2)

g , and � = �(2). For z � 0, correspond-
ing to the barrier, Eg = E(1)

g and � = �(1), while m∗ =
m∗(1) = (h̄2/P 2)E(1)

g (E(1)
g + �(1))/(3E(1)

g + 2�(1)), used in the
calculation of m̄, ᾱ, and β̄, is obtained with the same value
of P determined by m∗(2). Finally, the band offset or barrier
height is v0 = E(1)

c − E(2)
c and E(2)

c = 0 we set as the energy
origin, in the figures.

III. SPIN-DEPENDENT VARIATIONAL APPROACH

Due to the above boundary conditions, as opposed to
the infinite barrier approximation,6 the trial functions of a
variational solution must be spin dependent when there is
barrier penetration, and the eigenenergies will be given by

ε±(k‖) = 〈�±|Heff±|�±〉 = 〈Heff±〉±. (13)

The effective Hamiltonian (10) can be written as a sum of
four different terms, Heff± =∑4

i=1 H
(i)
eff±, so to have

ε±(k‖) = T± + Tnp± + V± + Vso± (14)

where

T± =
〈
h̄2

2

(
1

m̄(1)
θ (−z) + 1

m∗(2)
θ (z)

)(
− d2

dz2 + k2
‖

)〉
±
,

(15)

Tnp± =
〈
−a

[
h̄2

2m∗(2)

(− d2

dz2 + k2
‖
)]2

E
(2)
g + �(2)

θ (z)

〉
±

, (16)

V± = 〈eEz + v0θ (−z)〉±, (17)

and

Vso± = 〈∓(ᾱθ (−z) + α∗θ (z))k‖〉±. (18)

These contributions can be further separated into barrier and
well components, i.e., T± = T̄± + T ∗

±, and similarly for V

and Vso.
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TABLE I. Heterojunction bulk band parameters (Refs. 13–15) used in the present calculations.

E(1)
g (eV) �(1) (eV) v0 (meV) E(2)

g (eV) �(2) (eV) m∗(2)(me) εsc

CdTe/InSb 1.590 0.800 550 0.240 0.810 0.015 16.8
Insulator/InAs ... ... ∞ 0.418 0.380 0.023 12.2
InP/In0.53Ga0.47As 1.423 0.107 250 0.813 0.326 0.041 13.1
In0.52Al0.48As/In0.53Ga0.47As 1.513 0.309 500 0.813 0.326 0.041 13.1
Al0.3Ga0.7As/GaAs 1.893 0.334 269 1.519 0.340 0.067 12.9

For a given electron density ns , the trial function �± or its
variational parameter is determined by minimizing the total
energy (sum over all the electrons). Assuming all the electrons
in the first subband, such minimization of the total energy
in the Hartree approximation for the electron-electron (e-e)
interaction corresponds to minimizing ε̃±, equal to the above
single particle energy ε± except for the substitution in V± of
the electric field E by E/2 due to the double count in the e-e
interaction.11

From the obtained energy splitting (δε = 〈Heff+〉+ −
〈Heff−〉−) of the states at the Fermi level, we define an effective
Rashba coupling parameter by setting

| δε |= 2αeffkF . (19)

In the present scheme, the Rashba splitting is then given as a
sum of different contributions, i.e., δε =∑i δεi , with

δεi = 〈H (i)
eff+
〉
+ − 〈H (i)

eff−
〉
−, (20)

where i labels the four contributions of Eqs. (15)–(18).

A. Spin-dependent trial functions

Calculations based on the celebrated Fang-Howard varia-
tional function have been intensively applied to the study of
semiconductor heterojunctions.11–13 We here introduce mod-
ified spin-dependent Fang-Howard trial functions to describe
Rashba split 2DEGs in III–V semiconductor heterojunctions.
They satisfy the above boundary conditions, allow for a simple
lowest subband solution, including the Rashba spin-orbit
coupling, band nonparabolicity and barrier penetration effects,
and read:

�±(z) =
{
�1± = A±ekbz/2, z � 0
�2± = B±(z + c±)e−bz/2, z � 0

(21)

where kb = 2
√

2m̄(1)v0/h̄
2 and b is the variational parameter

determined by minimizing the total energy.
As can be straightforwardly verified, the boundary condi-

tion (12) implies that

A± = B±c± (22)

and

c± = 2

b + m∗(2)

m̄(1) kb ± 4m∗(2)

h̄2 (β̄(1) − β∗(2))k‖
, (23)

which explicitly show the analytical coupling between the
spin and the dynamic variable k‖ of the 2D electrons. From the
normalization condition, we obtain

B± =
√

b3/2

1 + bc± + b2c2±(1 + b/kb)/2
. (24)

The spin-dependent density of probability in the re-
gions 1 and 2 are, respectively, 〈�1±|�1±〉 = A2

±/kb and
〈�2±|�2±〉 = B2

±(2/b3 + 2c±/b2 + c2
±/b). The Eqs. (22),

(23), and (24) completely determine A±, B±, and c± in terms
of b and kb.

For the expectation value of the kinetic energy in the two
sides of the interface, we obtain:

T̄± = h̄2

2m̄(1)

(
− A2

±kb

4
+ 〈�1±|�1±〉k2

‖

)
(25)

and

T ∗
± = h̄2

2m∗(2)

[
B2

±

(
1

2b
+ c±

2
− 1

4
bc2

±

)
+ 〈�2±|�2±〉k2

‖

]
.

(26)

The nonparabolicity correction in the well region becomes

T ∗
np± = − a

E
(2)
g + �(2)

h̄4

4(m∗(2))2

[
B2

±b

8

(
1

2
c2
±b2 − 3c±b − 3

)

+ B2
±

(
1

b
+ c± − bc2

±
2

)
k2
‖ + 〈�2±|�2±〉k4

‖

]
. (27)

For the expectation values of the potential energy we obtain:

V̄± = A2
±

kb

(
v0 − eE

kb

)
(28)

and

V ∗
± = eEB2

±

(
6

b4
+ 4

c±
b3

+ c2
±

b2

)
. (29)

Finally, the components of the direct spin-orbit coupling
energy read are

V̄so± = ∓ᾱ〈�1±|�1±〉k‖, (30)

V ∗
so± = ∓α∗〈�2±|�2±〉k‖. (31)

IV. RESULTS FOR DIFFERENT III–V
HETEROJUNCTIONS

The upper inset in Fig. 1 shows the small envelope
function amplitude and derivative discontinuity at the inter-
face, obtained for electrons with opposite spins. However,

235315-4



VARIATIONAL ANALYSIS OF THE RASHBA SPLITTING . . . PHYSICAL REVIEW B 83, 235315 (2011)

FIG. 2. (Color online) Rashba splitting as a function of the
parallel wave vector. Inset shows the spin-split conduction subband
dispersion relations and parabolic approximation (dashed line) for a
CdTe/InSb heterojunction. The dotted lines show the limiting case of
insulator/InSb.

as shown in the lower inset, these small differences have a
considerable effect in the corresponding energy levels and
in the Rashba splitting (the dotted lines show the results
for an infinite barrier). For the heterojunction in Fig. 1, we
obtain b = 0.14 nm−1 independent of k‖ and spin. Figure 2
shows the corresponding Rashba splitting as a function of
the parallel wavevector, and the inset shows the subband
dispersion relations, where the dashed line represents the
parabolic spin-independent limit. We see that for the present
CdTe/InSb heterojunction, barrier penetration is predicted to
be responsible for an increase close to 85% in the Rashba
splitting relative to the infinite barrier approximation.

Such strong barrier penetration effect can be analyzed by
decomposing the Rashba splitting into its different contribu-
tions, as plotted in Fig. 3 for the heterojunction of Fig. 1. It is
interesting to note that all the different terms of the effective
Hamiltonian do contribute to the total spin splitting. In
particular, we also see that the contributions from T̄ and T ∗ are
the main ones responsible for the above-mentioned increase in
the Rashba splitting, as the contributions of V̄ and V ∗ nearly
cancel each other and those of V̄so and T ∗

np are negligible.
For CdTe/InSb heterojunctions with ns = 2.0 × 1011 cm−2,
for example, we obtain a Rashba splitting at the Fermi level
δε = 4.1 meV, which, in meV, is the sum of δT ∗ = 0.7,
δT̄ = 1.0, δT ∗

np = −0.1, δV ∗ = 1.3, δV̄ = −1.0, δV ∗
so = 2.2,

and δV̄so ∼ 0. For an infinite barrier, only δV ∗
so remains; all

the other contributions go to zero. In this limit, the envelope
function becomes independent of spin, and no Rashba splitting
contribution is obtained from the kinetic or potential energy
terms, so that we get αeff = α∗. Therefore, for v0 → ∞, we
have: kb → ∞, c± → 0, 〈v0θ (−z)〉± → 0, B2

± → b3/2, and
〈z〉± → 3/b, which substituted in the above expressions for
ε(k‖) lead to the known infinite barrier results of Ref. 6. It is
also interesting to note in Fig. 3 how the different contributions
vary with the electron density. We can see, for instance, that
the usual or direct Rashba spin-orbit term in the effective

FIG. 3. (Color online) Partial contributions to the Rashba splitting
as a function of the 2DEG carrier concentration in a CdTe/InSb
heterojunction.

Hamiltonian (i.e., V ∗
so) dominates the Rashba effect only in

CdTe/InSb inversion layers with more than 1010 e/cm2. At
lower densities, it is the barrier penetration kinetic energy term
that dominates the Rashba effect in this system. This is a direct
result of the spin-dependent boundary conditions [Eq. (12)].

A. Spin-split subband population

The Rashba coupling parameter at the Fermi level (εF )
can be estimated as αeff = |ε+(kF ) − ε−(kF )|/2kF , with kF =
(k+ + k−)/2 and k± determined from εF = ε+(k+) = ε−(k−).
However, it is easier and usual to experimentally study the
Rashba effect by measuring the difference in the split subband
populations, directly from the beating pattern of the SdH
oscillations. The populations n− and n+ in each Rashba split
subband, with n+ + n− = ns , are simply given by

n± = 1

(2π )2

∫
dk θ [εF − ε±(k)] = k2

±
4π

. (32)

The results for the population difference in the two split
subbands (some times referred as the density spin polarization)
for the different III–V heterojunctions are shown in Fig. 4(a)
as a function of ns . The parameters used are listed in Table I.
Figure 4(b) shows the corresponding effective Rashba cou-
pling parameter αeff . By comparing the InGaAs results
which correspond to different barriers, we see that the larger
penetration in the smaller InP barrier for the electrons leads to
a considerable increase in the Rashba splitting, as compared to
the InAlAs barrier. Figure 4 also clearly shows the well-known
trend to larger splittings in heterojunctions formed by materials
with smaller energy gaps. These results agree well with
those obtained by numerical integration of the multiband
effective Schroedinger equation and with available experi-
mental data.5,16–19 As expected, such agreement gets worse
as ns increases and the present scheme starts to overestimate
the splitting. Anyway, before a detailed comparison with
experiment is carried out, a Dresselhaus or bulk spin-orbit term
must be added, specially for heterojunctions of large band gap
materials, and for noncommon atom interfaces, the interface
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(a)

(b)

FIG. 4. (Color online) Spin-split subband population difference
(a) and the resulting effective Rashba coupling parameter (b),
as a function of the carrier density ns and for different III–V
heterojunctions.

inversion asymmetry contribution20 must also be taken into
account.

V. CONCLUSIONS

We have performed a variational analysis of the Rashba
spin-orbit splitting in III–V semiconductor inversion lay-
ers. The Rashba coupling parameter and the corresponding
subband population difference, as experimentally determined
from the beating pattern of the SdH oscillations, are calculated
for inversion layers at CdTe/InSb, insulator/InAs, InP/InGaAs,
InAlAs/InGaAs, and AlGaAs/GaAs heterojunctions. The main
properties of the Rashba effect are shown to be well reproduced
by the theory. It is also shown that the separate contributions
to the Rashba effect in III–V heterojunctions can be studied
with accurate analytical expressions. In particular, the explicit
dependence on the different heterostructure and bulk band
parameters can be very useful in device development and
optimization. The present results also help to clarify the
controversial role of the interface and barrier penetration. It
is clearly seen, for example, the increasing importance of
the spin-dependent boundary conditions as the 2DEG electron
density is reduced. In CdTe/InSb inversion layers, for example,
the usual (or direct) Rashba spin-orbit term in the effective
Hamiltonian is seen to dominate the Rashba effect only for
ns > 1010 cm−2. Finally, it is worth mentioning that the
theory details presented here, as well as the intermediate
analytical results for the energy integrals [Eqs. (25)–(31)] and
the instructions for correct use of the parameters, allow the
present theory to be easily applied in the study of the Rashba
effect in any other III–V semiconductor heterojunction.
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