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Abstract. Malaria is an important cause of morbidity and mortality worldwide.
One striking aspect regarding malaria is the fact that individuals living in
endemic areas do not develop immunity against the parasite, falling ill when-
ever they are exposed to the parasite. The understanding of why immunity is not
developed in the usual way against Plasmodium is crucial to the improvement of
treatment and prevention. In this work, we study some aspects of the dynamics
of the blood cycle of malaria using both modelling and data analysis of observed
case-histories described by parasitemia time series. By comparing our simulations
with experimental results we have shown that the different behaviour observed
among patients may be associated to differences in the efficiency of the immune
system to control the infection.

1 Introduction

Over the past 100 years, economic, public-health and medical advances have controlled the
worldwide extent of malaria. Nonetheless, population growth and the failure of many of the
adopted control and surveillance strategies, have given rise to malaria becoming a signifi-
cant health problem throughout 90 countries, killing on average two individuals per minute
worldwide.
Malaria is caused by four different species of the protozoa Plasmodium, amongst which the

most harmful is Plasmodium falciparum, responsible for the severest cases, including fatal cases.
The human malaria parasite has a complex life cycle that requires both a human host (carrier)
and an insect host. In the Anopheles mosquito, the Plasmodium parasite reproduces sexually
(by combining sex cells). In people, the parasite reproduces asexually (by cell division), first in
liver cells and then, repeatedly, in red blood cells. It is clear that the ability to change forms
during its life cycle is the parasite’s main mechanism that allows it to escape from the usual
control of the immune system (IS).
The bite of the female anopheline mosquitoes inoculates sporozoites into the bloodstream,

which then rapidly invade hepatic cells. One sporozoite within the hepatic cell multiplies into
20,000 merozoites, which are released into the blood stream after one or two weeks. Each mero-
zoite that invades a red blood cell (RBC) goes on to produce between 8 and 24 merozoites, which
are also then released into the bloodstream after one or two days, thus once again, penetrat-
ing other non-infected RBC. This asexual reproduction cycle is hereafter repeated indefinitely.
After a number of blood cycles have been completed, a few merozoites start to differentiate
into the parasite’s sexual form, allowing the human host to contaminate the mosquito, and thus
bringing the Plasmodium cycle to a close [1]. The ability to undergo repeated cycles of asex-
ual reproduction means that, in theory, overwhelming infections can result from exposure to a
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single sporozoite. The overall behaviour of the parasitemia (parasite counts/µl) is characterised
by varying duration periods and a pronounced first maximum followed by a variable number of
local maxima at irregular intervals.

In P. falciparum malaria, the most dangerous form, infected RBC are sequestered in
capillaries of internal organs [2]. By residing in microvascular beds, RBC are protected against
immune clearance mechanisms, however adhesive RBC contribute to metabolic disturbances
and organs disfunction [3]. For some parasite strains, infected RBC may rosette non-infected
RBC [4]. Therefore, the spatial localisation generated by sequestration, plays important role
either by protecting the infected RBC from clearance or by agglutinating non-infected ones,
mechanisms that favour the dissemination of the infection. There is still much to be under-
stood concerning the interplay between the multiple forms of the parasite, the sequestration of
RBC and the development of the defence mechanisms that lead to host’s inability of becoming
immune to the parasite after multiple exposures. This understanding is not only crucial for
improving therapeutic procedures, but also for developing anti-malarial vaccines.

A recent review of Molineaux and Dietz on malaria blood cycle mathematical modelling
(see [5] and references therein) indicates that the number of genuinely different models are
much smaller than the number of models found in the literature. The authors also emphasise
the necessity of a more rigorous data comparison, and strongly recommend the adoption of
discrete-time modelling. In 2001, together with other collaborators [6], they introduced a time-
discrete model with a step size of two days to describe the course of the parasitemia in a human
host. The model dynamics is driven by two forces: the switching between variants (generated
by mutations) of the parasite, and the multiplication of a given variant due to escaping from
the IS. This model was able to produce a set of simulated case-histories exhibiting statistically
similar behaviour to those of a set of observed case-histories when skipping one of each two
observed points. In order to compare simulated and observed cases-histories, they reduced the
parameter space by choosing 9 parameters to characterise the parasitemia time-series: (1) initial
slope; (2) log(parasitemia+1) at the first local maximum; (3) number of local maxima; (4) slope
of the local maxima (including the first maximum); (5) geometric mean (GM) of the intervals
between consecutive local maxima; (6) standard deviation (SD) of the logs of the intervals
between consecutive local maxima; (7) proportion of positive observations in the first half of
the interval between the first and last positive days; (8) proportion of positive observations in
the second half of the interval between the first and last positive days; (9) the last positive day.

More recently, spatially structured models have been recognised as a step forward in
understanding the dynamics of infection processes, in which the influence of the local dis-
persal of the pathological agent is relevant for disease persistence in vivo [7,8]. In this work,
we consider a discrete mathematical model introduced recently [9] to describe the blood cy-
cle of malaria. The model is based on a cellular automata approach. The spatial localisation
considered in the model accounts for the cytoadherence that occurs in the blood vessel during
sequestration of infected RBC. The model takes into account the main biological assumptions
concerning the blood cycle as well as the role of clearance of the immune system. By employing
this approach, we were able to describe the observed daily counts of the parasitemia and not a
two-day time step, thus achieving a more realistic comparison between the model results and
the observed data. Throughout this work, we have employed this model to simulate a number
of case-histories, which are compared to observed case histories, using the same 9 parameters
adopted in reference [6].

The observed case histories discussed here were selected from the clustering analysis
performed for 35 patients. These were chosen among 334 case histories collected by the USPHS
in NIH Laboratories in South Caroline and Georgia in USA, at a time when malaria therapy
was used to treat neurosyphilis patients. For each patient the daily parasitemia was measured
in order to follow the development of the disease. However most of these parasitemia time series
are incomplete, and among the incomplete ones only those with one or two consecutive missing
points can be interpolated, otherwise the interpolation would interfere on the actual pattern
of the parasitemia time series since the parasite incubation time in the blood cycle is of the
order of two days. The 35 patients correspond to those with complete time series, that were not
submitted to any treatment or reinfection. By performing a non-supervised clustering analysis
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we could separate different time series behaviours. Using the model, we simulated the different
case-histories belonging to different clusters obtained from the analysis performed. We finish by
discussing the effectiveness of the immune system in killing infected erythrocytes for different
patterns, establishing in this way a link between the results of clustering process and efficiency
of the immune response.

The paper is organized as follows: in section two, we briefly describe the main aspects of
the ensemble of 35 observed parasitemia time series and the respective performed clustering
analysis [10,11], searching for different classes of behaviour; in section three, we describe the
model and the procedures employed to compare the simulated and observed case-histories; in
section four, we discuss our results and present our final remarks.

2 About the data and the clustering analysis

The overall aim of the analysis performed in this section is to detect similar behaviours on
the parasitemia time series of the 35 patients mentioned above and attempt to group them
according to the characteristics that could bring us information about the action of the immune
system. The observed case-histories considered here were collected from adults suffering from
neurosyphilis and with no previous history of malaria, who were submitted to malaria therapy
with different strains of P. falciparum under closed medical supervision. They were inoculated
either with sporozoite (in general by mosquito bite) or with infected blood that we refer as spo
and blood inoculations, respectively. Microscopic examinations of blood were conducted on an
almost daily basis. The detection threshold was taken as 10 parasitized RBC per µl. Extended
descriptions and analysis of many aspects of the entire 334 case-histories can be found in [12]
and references therein. The 35 patients analysed here were neither subjected to sub-curative
nor to curative treatments. Since the parasitemia time series have different sizes, we reduced the
parameter space, by choosing few parameters that would characterise all the series, adopting
the parameters cited above [6]. Therefore, we could define a distance among patients in this
9-D parameter space.

In order to search for similar behaviour within the 35 case-histories, we have used the non-
supervised Superparamagnetic Clustering Technique (SPC) (see [10,11] and references therein).
The SPC technique consists of mapping the ensemble of data or objects (here patients) that we
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Fig. 1. (a) The cluster size behaviour as a function of temperature (stability parameter) for the four
largest clusters: (· − −·) C0, (− − −) C1, (· · ·) C2 and (− · · − ··) C3. The size decreases as the
number increases. In the inset, the behaviour of magnetic susceptibility versus temperature identifying
the transition region using the SPC code [10]. (b) The dendogram obtained for the classification of
35 case-histories of malaria patients without treatment.
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wish to classify into the study of the first-order transition of a ferromagnetic q-state
Potts model (q ≥ 10) between the ferromagnetic and super-paramagnetic phases. The
interaction between the spins would depend on the distance between the patients (objects)
on the 9-D parameter space and their average number of neighbours. By analysing the be-
haviour of magnetic susceptibility as a function of the temperature (see inset Figure 1(a)), we
arrived at the transition region and obtained the super-paramagnetic clusters from which we
could identify the patients that belonged to the different clusters. The temperature is the sta-
bility parameter that allows for choosing the best cluster partition (see arrows in Figure 1(a)).
After identifying the patients that belonged to the different clusters, we searched for similarities
among the elements of a given cluster with respect to the available patient information.

In Figure 1(b), we present the dendogram obtained for two choices of temperatures that
correspond to the higher stabilities of the clusters among the possible choices: T = 0.15 and
0.20. Starting at T = 0 with 35 patients, at T = 0.15 they are separated into 7 clusters, the
final five remaining the same when the temperature was increased. In our analysis, we have not
considered the clusters of one or two patients, and have focussed only on the larger clusters
C0-C3. At T = 0.20 the first 15 patients of the previous C0 splits into three new clusters (C0,
C1 and C9) with 7, 6 and 1 patients respectively, while the former C1 splits into two new ones
(C2 and C5) with 6 and 3 patients, respectively. At T = 0.20 the previous C2 and C3 are
renamed as C3 and C4. While the proportion of positive observations in the first half of the
interval between the first and last positive days are almost the same for clusters C0 and C1 at
the higher temperature separation, the proportion of the second half and log(parasitemia+1)
at the first maximum represent the difference between them. In the case of clusters C2 and C5
(for T = 0.2) the proportion of positive observations in the second half of the interval between
the first and last positive days are equal for both, but the proportion on the first half is the
differentiating parameter. In figures 2 and 3, we show the parasitemia time series of the patients
grouped into C2 and C1 (T = 0.20) respectively.
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Fig. 2. Log(parasitemia+1) versus time (days) for
each of the 6 patients grouped in C2 (T = 0.2) of
the dendogram shown in Figure 1(b). The original
code associated to those patients are: (a) S457,
(b) S1212, (c) S910, (d) S775, (e) S895, (f) S1249.

The reason for choosing these clusters is owed to the fact that the similarities between the
cluster patients and the behaviour differences between the clusters may be detected by the
naked eye.

From the seven patients belonging to C1, six had been inoculated by blood and one by
spo. Six out of the seven had been infected with strain Mc Lendon and one with strain Costa.
From the six patients belonging to C2, four had been inoculated by blood and 2 by spo via
mosquito bites. All of them had been infected with strain Mc Lendon. While in C1 the patients
revealed a longer time series, with a monotone downward trend of the local maxima and strong
oscillations of the parasitemia at the end of the series, in C2 the time series were shorter (except
in patient S1212), exhibiting less oscillations and fewer observations at the second half of the
interval between the first and last positive days.

In the following section, we employ a mathematical model to simulate the different case-
histories of these two clusters, in order to test if we can extract additional information concerning
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the parameters used in the simulations for the different cases, especially those related to the
role of the immune system, differences in the parasite reproduction rates, etc.

3 The model

In order to simulate the patterns observed on the parasitemia time series of malaria patients
grouped in the clusters shown in Figures 2 and 3, we use a stochastic cellular automata that
we have recently introduced [9] to describe the blood cycle of malaria. The CA model captures
the essential features of the blood stage of human malaria by taking into account the dynamics
of parasite replication, the spread of infection among RBC neighbours at the cytoadherence
sites, and the action of the immune system. We consider a two-dimensional lattice (L × L)
that will describe the sites of sequestration and adherence of the RBC. To each site we have
associated a three-state automaton that represents the non-parasitized, parasitized and dead
RBC. We consider Moore neighbourhood to define the rules of local interactions. One time step
corresponds to the parallel update of the entire lattice and will correspond to one day.
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Fig. 3. Log(parasitaemia+1) as a function of
time (days) for 7 patients grouped in C1 (T =
0.2) of the dendogram shown in Figure 1(b).
The original code associated to those patients
are: (a) S465, (b) S731, (c) S463, (d) S1102,
(e) S1288, (f) S567, (g) S678.

The initial configuration is composed of non-parasitized RBC with a fraction β of para-
sitized that corresponds to the initial burst of parasitemia generated by the release of mero-
zoites from the liver cells into the bloodstream. After primary exposure there are two phases:
the first, varying from t = 0 to t = tprim, where tprim is the period of time necessary for
the immune system to develop specific immune responses. It is only after this period of time
that the immune system starts to clear the parasitized cells. The rules of the model will be
the same in both stages, except for the action of the immune system on the infected RBC in
the second stage. In the model, the non-parasitized RBC either may be infected if there are at
least IR parasitized cells in its neighbourhood or may die by regular apoptosis, considering its
average life span as 120 days. The parasitized RBC have an incubation period that may vary
between 1 and 2 days from cell to cell in the case of P. falciparum. In the first stage, during the
incubation period, infected RBC may die only by apoptosis, but in the second stage they may
either die due to apoptosis or to the action of the specific response with probability pis. A par-
asitized RBC after incubation time, dies due to the rupture releasing Nmer = [12, 32] parasites
in its neighbourhood. The released parasites may infect the neighbours inside a Moore neigh-
bourhood of radio R = 2. Dead cells represent vacancies generated by the death of cells due to
the mechanism of apoptosis with probability pdeath. Vacancies may later be later occupied by
healthy RBC, with probability preple or infected cells circulating in the blood (incoming flux)
with probability preple ∗ pinfec .
Since we have performed a detailed analysis of the parameter space (not dealt with herein),

we were able to search for parameter ranges that could simulate case-histories similar to the
observed cases we wished to study. Some parameters of the model are kept constant, since they
are inspired in biological data, as for instance the incubation period tincub = [1, 2], probability
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of cell death pdeath based on the average life time of 120 days of the erythrocytes, probability of
replenishment preple that we consider 0.95. After choosing the appropriate range for each para-
meter, we used the genetic algorithm [13] to generate 10.000 randomly chosen sets of parameters
that are used to simulate different case-histories inside the pre-determined intervals. To each
simulation (or parameter set) we estimated the prediction error, which is an absolute measure
of the dissimilarities of each simulation with respect to the observed case. The prediction error
e is given by:

ej =

√∑N
i=1(y

j
i − xi)2
N

(3.1)

where j stands for the sample j, N is the length of the time series, yji corresponds to the
parasitemia at time i of sample j and xi is the parasitemia at time i of the observed case-
history. The smaller e would correspond to the best set. We consequently proceeded by using
the best set obtained in this analysis to generate 400 samples. Somewhere in the region of 10–
20% of these samples were discarded since the behaviour of the time series did not permit the
estimation of one of the nine parameters. Therefore, by using such variables, such samples could
not be compared with the observed case. The differences between the samples time series reside
in the infection evolution differences due to distinct spatial distributions of the parasitized cells
in the initial configuration. For each of these samples we estimated the prediction error. The
best simulation would correspond to the smaller value of e.
In Figures 4, at the same plot we show the best simulation and the observed case-history

for two of the 7 patients of cluster 1: S567 (a) and S1288 (b). In table 1, we present the
values of the 9 parameters adopted to characterise the time series for the observed case S1288
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Fig. 4. The continuous line corresponds to the parasitemia counts of the observed case-history and
the dashed line to the best simulation. In (a) the best simulation of patient S567 was obtained by
adopting the following parameters: L = 216, tprim = 7, Nmer = [12, 19], β = 1.910

−4, pis = 0.416,
pinfec = 5.510

−4, IR = 6. For this sample e = 0.57. In (b) the best simulation of patient S1288 was
obtained for the following parameters: L = 268, tprim = 9, Nmer = [12, 20], β = 2.310

−4, pis = 0.415,
pinfec = 1.110

−4, IR = 6. For this sample e = 0.63.

Table 1. The behaviour of the 9 parameters adopted to characterise the parasitemia time series, for
325 samples out of 400 trials for patient 1288.

variable median deviation minimum maximum patient best simulation
init. slope 0.276 0.108 0.006 0.649 0.647 0.210
log 1st max. 3.367 0.542 1.322 4.444 4.469 4.019
No max. 6.969 2.021 2.000 12.000 11.000 9.000
slope max. –0.015 0.014 −0.114 0.025 −0.030 −0.033
GM interv. 15.648 5.886 8.088 52.459 9.910 10.397
SD log interv. 0.246 0.077 0.000 0.478 0.163 0.273
prop. + 1st 0.749 0.241 0.185 1.000 1.000 1.000
prop. + 2nd 0.533 0.293 0.015 1.000 0.828 0.661
last + day 113.249 21.621 23.000 129.000 114.000 110.000
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and the best simulated sample. Similar results were obtained for the other patients not shown
here, and parameter interval for the best simulations obtained for all patients belonging to
this cluster, can be summarised as follows: L = [268, 337], Nmer = [9, 20], tprim = [7, 9],
β = [1.010−4, 8.810−4], pis = [0.395, 0.416], pinfec = [110−4, 5.410−4] and IR = 6. We observe
that 8 out of 9 parameters are in excellent agreement when we compare the estimates for the best
samples and the observed case-histories of C1. In Figures 5 we show the best simulation and the
observed case-history for two of the 6 patients of cluster 2: S775 (a) and S895 (b). In table 2, we
present the values of the 9 parameters adopted to characterise the time series for the observed
case S775 and the best sample obtained from the simulations. In all the simulations performed
for C2, when we compare the estimates for the best samples and the observed case-histories 8
out of 9 parameters used to characterise the time series are in excellent agreement. The interval
of parameters for the best simulations obtained for patients belonging to this cluster, can be
summarised as follows: L = [307, 393], Nmer = [9, 16], tprim = [4, 7], β = [1.510

−4, 2.6410−4],
pis = [0.661, 0.863], pinfec = [2.3610

−4, 3.0410−4] and IR = [6, 7].
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Fig. 5. The continuous line corresponds to the parasitemia counts of the observed case-history and the
dashed line to the best simulation. In (a) the best simulation for patient S775 was obtained using the
following parameters: L = 393, tprim = 6, Nmer = [10, 26], β = 2.610

−4, pis = 0.66, pinfec = 3.010−4,
IR = 7. For this sample e = 0.58. In (b) the best simulation of patient 895 was obtained using the
following parameters: L = 309, tprim = 7, Nmer = [9, 16], β = 1.510

−4, pis = 0.72, pinfec = 2.910−4,
IR = 6. For this sample e = 0.66.

Table 2. The behaviour of the 9 parameters adopted to characterise the parasitemia time series, for
344 samples out of 400 trials for patient S775.

variable average deviation minimum maximum patient best simulation
init. slope 0.261 0.126 −0.012 0.656 0.703 0.396
log 1st max. 3.606 0.729 1.518 5.004 4.373 3.775
No max 4.570 1.097 2.000 8.000 4.000 4.000
slope max. −0.031 0.035 −0.201 0.047 −0.023 −0.011
GM interv. 11.510 4.540 5.429 39.000 14.461 13.481
SD log interv. 0.146 0.071 0.000 0.399 0.174 0.226
prop. + 1st 0.879 0.150 0.345 1.000 1.000 1.000
prop. + 2nd 0.769 0.209 0.069 1.000 0.500 0.483
last + day 55.529 3.218 35.000 57.000 55.000 57.000

4 Conclusions

In this work we have shown that the simulations of the recently introduced cellular automata
model [9] reproduces the parasitemia behaviour of the observed malaria patients belonging to
C1 and C2 very well. As in CA models for other diseases [8], such successful results reveal the
importance of local interactions for the dynamics of infectious diseases within the patient.
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From the cluster analysis we observe that the initial slope, the number of local maxima, the
slope of the local maxima and the proportion of positive observations in the second half of the
interval between the first and last positive days, are the differentiating parameters of clusters
C1 and C2. While in C1, the patients have longer time series with a monotone downward trend
of the local maxima, in C2 the time series are shorter (except for patient S1212), they exhibit
a small number of oscillations and few observations in the second half of the interval between
the first and last positive days. Crossing this information with the results obtained from the
simulations performed with the CA model for both clusters concerning the variation of the
parameters for both sets, we notice that L,Nmer, β, pinfec and IR are of the same order of
magnitude for both clusters. However, there are differences for tprim that are larger in C1 than
in C2, and also for pis that is 50% below the efficiency for C1 and above for C2. The results
for the patients belonging to clusters C1 and C2 suggest that the long time and monotone
decay series are linked to a lower IS efficiency in killing parasitized RBC and a longer delay in
generating specific responses. The short time series on the other hand, are linked to a greater
IS efficiency, and quicker delays in generating specific responses. Our conclusion is corroborated
by a more complete analysis (that will be published elsewhere) using 79 patients case histories
without treatment and reinfection, including in this case the parasitemia time series that could
be interpolated [9].
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