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Abstract
We propose a new numerically optimized discrete variable representation using
eigenstates of diabatic Hamiltonians. This procedure provides an efficient
method to solve non-adiabatic coupling problems since the generated basis sets
take into account information on the diabatic potentials. The method is applied
to the B1�+ − D′1�+ Rydberg-valence predissociation interaction in the CO
molecule. Here we give an account of the discrete variable representation and
present the procedure for the calculation of its optimized version, which we
apply to obtain the total photodissociation cross sections of the CO molecule.

1. Introduction

The existence of non-adiabatic couplings between different electronic states is rather common
in molecular systems. They play an important role in various molecular and chemical
processes such as, for example, photodissociation, predissociation, charge transfer and spin-
changing reactions (see Tully (1986), Baer (1985), Nakamura (1991), Yarkony (1996) and
references therein). In such processes involving coupled electronic states, the Hamiltonian
operator associated with the motion of the nuclei can be represented by a matrix in a diabatic
representation, where the diagonal elements are the diabatic potentials and the off-diagonal
elements are the coupling terms. In the particular case of two coupled final states, the diabatic
potentials can have completely different characteristics, as in the case of the predissociation
processes where an electronic state presents rovibrational bound states and the other is purely
repulsive. In these conditions it is not easy to find basis functions simultaneously appropriate to
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expand the eigenfunctions of the coupled problem. The number of basis functions necessary
to treat this problem tends to increase quickly and it implies a large computational effort,
due to the dimensions of the matrix arising from the application of the variational method. This
is particularly observed in problems involving polyatomic molecules and/or larger number
of coupled (diabatic or adiabatic) electronic states. Therefore, it is important to look for
procedures that reduce the number of basis functions used to expand the eigenfunctions of the
problem and consequently decrease the computer time necessary to treat the coupled problem.

One technique that has been widely used with success to solve quantum problems in
molecular physics and other fields is the discrete variable representation (DVR) method
(Harris et al 1965, Dickinson and Certain 1968, Lill et al 1982, Light et al 1985, Muckerman
1990, Szalay 1996, Prudente et al 2001, Prudente et al 2005). In particular, the DVR method
has been employed to study problems such as bound states (Wei and Carrington 1992, Choi
and Light 1992, Tennyson 1993, Costa et al 1999, Bittencourt et al 2004), predissociation
(Brems et al 1996, Prudente et al 1997), photodissociation (Heather and Light 1983, Quéré
and Leforestier 1991, Seideman 1993a, Prudente et al 1997) and reactive scattering (Colbert
and Miller 1992, Lill et al 1986, Manopoulos and Wyatt 1988, Baćic et al 1990, Seideman and
Miller 1992a), because it provides a simple and efficient procedure to evaluate the potential
and kinetic energy matrix elements. In such a method, the DVR basis functions are obtained
by diagonalizing the matrices of coordinates from primitive basis sets. Many applications
are discussed in detail in recent reviews (Baćic and Light 1989, Light and Carrington 2000).
One of the most efficient and employed DVR procedures is the potential-optimized DVR (PO-
DVR) (Echave and Clary 1992, Wei and Carrington 1992) where the quadrature points and
the associated DVR functions are built according to features of the potential energy surface.
These functions are generated using as primitive basis set the lowest eigenfunctions of a
one-dimensional Hamiltonian with a convenient reference potential. Recently, some progress
has been made to obtain multidimensional DVR basis functions that are not a direct product
of one-dimensional DVRs (see Littlejohn et al (2002), Dawes and Carrington (2004), Yu
(2005) and references therein). It is interesting to point out that other potential-optimized
methods have been recently introduced and successfully employed in molecular physics to
treat both bound and scattering problems as, for example, the mapped grid methods (Tiesinga
et al 1998, Kokoouline et al 1999, Willner et al 2004, Grozdanov and McCarroll 2007), the
phase-space-optimized DVR (Poirier and Light 1999, 2001, Bain and Poirier 2003) and the
optimized mesh finite element method (Prudente and Soares Neto 1999).

In the present paper, we propose a procedure inspired in PO-DVR and in the numerical
generation of DVR (Soares Neto and Costa 1998) to treat systems which have non-adiabatic
couplings between two or more electronic states. This method, named diabatic potential-
optimized DVR (DPO-DVR), consists of building DVR basis functions on a grid numerically
generated that employs information on the diabatic potential energy surfaces involved in the
problem. We have applied the DPO-DVR technique to study the photodissociation process
where there is a transition into two final coupled electronic states. In the case treated here,
the process is dominated by the existence of non-adiabatic coupling between an electronic
state which contains bound states and one which contains only continuum states. This non-
adiabatic coupling is responsible for the appearance of the predissociative resonances on the
total photodissociation cross section (PCS).

The photodissociation process can be studied by using exact quantum mechanical
formulations and approximate approaches (see Schinke (1993) and references therein). When
the resonance effects are important, the time-independent approaches are appropriate because
they determine more accurately the details of the resonant structure (Schinke 1998) (see
Prudente et al (2003) for a time-dependent example). One of the time-independent formalisms
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uses formal Green’s functions (Roman 1964) which is very complicated to employ for the
scattering problem. However, it is possible to obtain a well-behaved representation of
Green’s operator adding a non-physical negative imaginary (or complex) function to the
physical potential in the dissociative region (Seideman 1993a). In such a case, the molecular
Hamiltonian becomes non-Hermitian and the process to obtain Green’s operator is, in principle,
transformed into that of inverting a non-Hermitian matrix (see discussion in section 3).
This procedure, named as the negative imaginary potential (NIP) or absorbing boundary
conditions (ABC) methods, was originally proposed to study nuclear reactions (Feshbach
et al 1954) and it has been utilized to treat molecular reactions (Neuhasuer and Baer 1989
Seideman and Miller 1992a, 1992b), metastable states (Jolicard and Humbert 1987, Jolicard
et al 1988, Prudente et al 1997) and photodissociation processes (Seideman 1993a, 1993b,
Mayrhofer and Bowman 1994, Grozdanov and McCarroll 1996, Prudente et al 1997, Prudente
and Soares Neto 1998).

In order to test the DPO-DVR methodology, we have applied it, jointly with the NIP
method, to calculate the total photodissociation cross section of the B1�+ − D′1�+ Rydberg-
valence predissociation interaction of the CO molecule. Indeed, the strong non-adiabatic
coupling between the bound B1�+ Rydberg state and dissociative D′1�+ valence state
causes significant changes in the vibrational and rotational constants of the B state and in
its predissociation of many rovibrational levels of B (Tchang-Brillet et al 1992, Baker et al
1995). This indicates that it is necessary to consider the two coupled states to describe
the photodissociation process correctly. Moreover, the existence of both wide and narrow
resonances in the photodissociation cross section makes this system a highly sensitive test of
the novel theoretical methodologies (Andric et al 1999). Tchang-Brillet et al (1992) proposed
a two-state diabatic coupling model of B1�+ −D′1�+ interaction optimized to best reproduce
and explain the experimental data of the B1�+(ν = 0−2) states. This model has been widely
employed to interpret the vibrational levels of the B1�+ Rydberg state from the experiment
(Baker et al 1995, Baker 2005), and to determinate theoretically the photodissociation cross
section (Andric et al 1999, Andric et al 2004, Grozdanov et al 2004) and metastable states
(Monnerville and Robbe 1994, Li et al 1997, Monnerville and Robbe 1999, Karlsson 2000)
of the B1�+ − D′1�+ Rydberg-valence predissociation interaction of the CO molecule. In
particular, in the present paper we have used the DPO-DVR methodology with different
numbers of basis functions to calculate the photodissociation cross sections. The calculations
have been compared with results obtained here using the equally spaced discrete variable
representation (ES-DVR) method.

The structure of the paper is as follows. Section 2 presents the basic theory of DVR
basis and our optimization DVR basis: section 2.1 describes the general formalism, while the
DPO-DVR method is presented in section 2.2. The theoretical framework and the main aspects
of the total photodissociation cross-section calculation are presented in section 3. Section 4
presents a comparison between different numbers of DPO-DVR basis functions to calculate
PCS and resonance states. The paper ends with some concluding remarks in section 5.

2. DVR methodology

2.1. General formalism

In the present subsection, we present a brief introduction to DVR and PO-DVR methods
considering only one adiabatic electronic state. More details of the DVR methodology can be
found in many other papers (e.g., see Baćic and Light (1989), Light and Carrington (2000),
Prudente et al (2001), Littlejohn et al (2002) and references therein).
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Consider the one-dimensional time-independent Schrödinger equation given by(
− 1

2µ

d2

dx2
+ V (x)

)
ψ(x) = (

T̂ + V (x)
)
ψ(x) = Eψ(x). (1)

The DVR method consists of (i) the construction of a set of orthonormalized basis functions
{fi(x)}, i = 1, . . . , k obeying the following condition:

fi(xj ) = δij√
wi

, (i, j = 1, . . . , k), (2)

where {xi} and {wi}, i = 1, . . . , k, are the points and the weights of the Gaussian quadrature,
(ii) the expansion of the eigenfunction ψ(x) using the basis functions {fi(x)}, and (iii) the
solution of the associated eigenvalue-eigenvector problem. In this method, the matrix elements
of the potential energy using the DVR basis (2) are given by

Vij ≈ V (xi)δij , (3)

while, in general, the kinetic energy matrix elements can be calculated analytically. The
DVR basis functions {fi(x)} (equation (2)) are obtained by using the set of orthonormalized
primitive functions {gl(x)}, (l = 1, 2, . . . , k), which generate one given Gaussian quadrature
as follows:

fi(x) =
n∑

l=1

√
wig

∗
l (xi)gl(x), (i = 1, . . . , k). (4)

A usual Gaussian quadrature has an equally spaced grid,

xi = a +
(b − a)i

n
, (i = 1, 2, . . . , k), (5)

with a grid spacing (or the weights) given by

wi ≡ �x =
(

b − a

n

)
, (6)

where n = k + 1. The primitive functions for this particular quadrature are eigenfunctions of
a particle in a one-dimensional box of range [a, b],

gl(x) =
(

2

b − a

) 1
2

sin

[
lπ(x − a)

b − a

]
, (l = 1, 2, . . . , n − 1), (7)

and it generates the equally spaced DVR functions using equation (4). In such a case, the
kinetic energy matrix elements are then given by (Colbert and Miller 1992)

[T]ii = 1

2µ

π2

2(b − a)2

[
2n2 + 1

3
− 1

sin2
[

iπ
n

]
]

, (8)

for diagonal elements, and

[T]ij = 1

2µ

π2(−1)i−j

2(b − a)2

[
1

sin2
[

π(i−j)

2n

] − 1

sin2
[

π(i+j)

2n

]
]

, (9)

for off-diagonal elements (i �= j). We can note that these expressions depend only on the grid
points, so they are a general expression for all one-dimensional systems.

On the other hand, the PO-DVR method (Echave and Clary 1992) allows us to obtain
DVR basis functions that already incorporate information on the potential energy surface of
a specific system. In such a method, the purpose is to solve the Schrödinger equation for a
multidimensional Hamiltonian given by

Ĥ = Ĥ 0 + V̂ (x, y, . . .), (10)
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where Ĥ 0 is written as Ĥ 0 = Ĥ x
ref(x) + Ĥ

y

ref(y) + · · ·, with the reference Hamiltonians
Ĥ x

ref(x), Ĥ
y

ref(y), . . . chosen according to the problem and containing the term of kinetic
energy and a part of the potential energy, while V̂ (x, y, . . .) is the potential part not considered
in Ĥ 0.

This method consists of the construction of basis functions to treat the multidimensional
problem as the direct product of the unidimensional PO-DVR basis functions for the
dimensions x, y, . . . , i.e.

fij...(x, y, . . .) = f
′po
i (x)f

′po
j (y) . . . , (11)

where each set of unidimensional PO-DVRs
({

f
′po
i (x)

}
,
{
f

′po
j (y)

}
, . . .

)
is generated from

primitive basis sets
({

g
po
l (x)

}
,
{
g

po
m (y)

}
, . . .

)
following the steps described previously.

The primitive functions for each coordinate,
{
g

po
l (x), l = 1, . . . , n

po
x

}
,
{
g

′po
m (y),m =

1, . . . , n
po
y

}
, . . . , are the eigenfunctions of each unidimensional reference Hamiltonian(

Ĥ x
ref(x), Ĥ

y

ref(y), . . .
)

obtained by solving the respective one-dimensional Schrödinger
equations employing an usual DVR method. These primitive functions define novel Gaussian
quadratures which are optimized with respect to the reference potentials. The number of
primitive functions for each space direction

(
n

po
x , n

po
x , . . .

)
depends on the potential features

and on the problem to be solved.

2.2. DPO-DVR method

We are considering a one-dimensional system with non-adiabatic coupling between two
diabatic electronic states, and therefore the Hamiltonian operator is a 2 × 2 matrix (for more
details, see Köppel et al (1984) and references therein). The generalization of the algorithm
is straightforward for more states and also to an adiabatic formulation. In an adiabatic
representation, the Hamiltonian can be formulated in a way that is numerically Hermitian
within a DVR and involve operators that can be evaluated analytically (Tuvi and Band 1997).
The diabatic Hamiltonian matrix representation, with fixed total angular momentum J , in a
DVR basis has a 2k × 2k dimension, where k is the number of DVR basis functions, and is
given by

Hd
J (R) = TR + VJ (R)

=
(

Tij 0
0 Tij

)
+

([
V1 + J (J+1)h̄2

2µR2

]
δij [V12]δij

[V12]δij

[
V2 + J (J+1)h̄2

2µR2

]
δij

)
, (12)

where R is the internuclear distance, TR is the radial kinetic energy operator

TR = − 1

2µ

d2

dR2
(13)

and VJ is the effective potential energy, V1 and V2 are the diabatic potentials and V12 is the
coupling term.

The present proposal to obtain DPO-DVR basis functions consists of the following.

(i) Generate a set of DVR basis functions {fi(R), i = 1, 2, . . . , k}, using a set of primitive
functions {gl(R), l = 1, 2, . . . , k}, for example equally spaced quadrature with points
{xj } and weights {wj }, j = 1, . . . , k.

(ii) Obtain the eigenfunctions and eigenvalues for each diabatic potential by solving

Ĥ d
1g

1
l (R) = E1

l g
1
l (R) (l = 1, . . . , k)

Ĥ d
2g

2
m(R) = E2

mg2
m(R) (m = 1, . . . , k),

(14)
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where

g1
l (R) =

k∑
i=1

c1
lifi(R) and g2

m(R) =
k∑

i=1

c2
mifi(R). (15)

A set of these eigenfunctions is then used to obtain a new set of primitive functions,
typically establishing an upper limit for the energy. In particular, one can use n1

eigenfunctions of V1, and n2 of V2:

{g1
l (R), l = 1, . . . , n1}

{g2
m(R),m = 1, . . . , n2},

(16)

where the numbers n1 and n2 are arbitrary. Here we propose a criterion based on the
energy eigenvalues where n1 and n2 are, respectively, the number of eigenvalues E2

l

and E2
m (and of eigenfunctions) with smaller values than a certain cut energy Ecut. This

choice will depend on the eigenvalues associated with the eigenfunctions for each diabatic
potential. It is natural to expect that n1 + n2 � k for the proposed set of functions.

(iii) Define a set {G̃i (R), i = 1, . . . , n1 + n2} as

G̃i (R) = g1
i (R), (i = 1, . . . , n1)

G̃i (R) = g2
i−n1

(R), (i = n1 + 1, . . . , n1 + n2).
(17)

(iv) Construct a new set of primitive functions, orthonormalizing the set {G̃i (R)}, for example
using the Gram–Schmidt algorithm (Press et al 1986)

{Gi (R), i = 1, . . . , n1 + n2}. (18)

Using equation (15), then

Gj (R) =
k∑

i=1

bjifi(R), (j = 1, . . . , n1 + n2), (19)

where bji are obtained through the orthonormalization process.
(v) Solve the eigenvalue equation

R̂Fα(R) = RαFα(R), (α = 1, . . . , n1 + n2), (20)

where the eigenvalues Rα are the points of the optimized quadrature and the eigenfunctions
are obtained by the expansion

Fα(R) =
n1+n2∑
j=1

dαjGj (R), (21)

where dαj are the coefficients to be determined by solving equation (20). According to
equation (19),

Fα(R) =
n1+n2∑
j=1

dαj

k∑
i=1

bjifi(R), (α = 1, . . . , n1 + n2). (22)

Considering the points of the initial quadrature, denoted by {Rj }, (j = 1, . . . , k), it can
be shown that

Fα(Rj ) =
n1+n2∑
i=1

dαi

bij√
wj

, (α = 1, . . . , n1 + n2). (23)

On the other hand, the weights of this optimized quadrature are given by

wα =

n1+n2∑

β=1

G∗
β(Rα)Gβ(Rα)




−1

. (24)
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Alternatively, one could use a set of non-orthonormalized primitive functions and, in this
case, the DPO-DVR basis functions will be obtained by a generalized eigenvalue problems.
We have used the Gram–Schmidt algorithm because it works well in our case, when functions
(eigenfunctions of the diabatic potentials) are in two different regions of the space.

The Hamiltonian matrix representation in a DPO-DVR basis {Fα(R)}(α = 1, . . . , n1 +n2)

has a 2(n1 + n2) × 2(n1 + n2) dimension, so

Hd(R) =
(

Tαβ 0
0 Tαβ

)
+




[
V1 + J (J+1)h̄2

2µR2

]
αβ

[V12]αβ

[V12]αβ

[
V2 + J (J+1)h̄2

2µR2

]
αβ


 . (25)

Since the DPO-DVR preserves the DVR basis properties, the potential energy matrix
representation V(R) is block diagonal and its elements are the potentials calculated on the
quadrature points. The kinetic energy matrix elements are

Tαβ =
n1+n2∑
j,j ′=1

dαjdβj ′

k∑
i,i ′=1

bjibj ′i ′Tii ′ , (26)

where Tii ′ are the kinetic energy matrix elements shown in equations (8) and (9), and
α, β = 1, . . . , n1 + n2.

The number of functions of the DPO-DVR basis necessary to solve problems with non-
adiabatic couplings should be smaller than the equally spaced DVR, because these functions
take into account information of the diabatic potential in the spirit of the PO-DVR procedure.

3. Photodissociation cross section

The total photodissociation cross section is presented in the Green operator formalism for
the weak radiation field limit and in the electric dipole approximation. In the particular case
of transitions from an initial electronic state to two coupled states with the integration over
rotational degrees of freedom carried out (Seideman and Miller 1992b, Seideman 1993a), the
total photodissociation cross section can be written as

σi0(ω) = −4πω

3c
Im〈ψi,0|ε̂ · µ

[
J0 + 1

2J0 + 1
Ĝ+(E, J0 + 1) +

J0

2J0 + 1
Ĝ+(E, J0 − 1)

]
ε̂ · µ|ψi,0〉,

(27)

where ω = E − Ei is the radiation frequency, while Ei, J0 and |ψi,0〉 are, respectively, the
energy, the total angular momentum and the wavefunction of the molecule in the initial state,
the ε̂ · µ term is the electric dipolar operator in the direction of the electromagnetic field and
Ĝ+(E) is the Green operator given by (Sakurai 1994)

Ĝ+(E, J ) = lim
η→0

1

E − Ĥ J + iη
. (28)

In studying general behaviour of the photodissociation cross sections, the differences between
G+(E, J0 + 1),G+(E, J0) and G+(E, J0 − 1) can be disregarded (Seideman 1993a, Andric
et al 1999) and equation (27) becomes

σi0(ω) =
(−4πω

3c

)
Im〈ψi,0|ε̂ · µĜ+(E, J0)ε̂ · µ|ψi,0〉. (29)

We can assume that the initial molecular state, within the Born–Oppenheimer
approximation, can be rewritten as

ψi,0 = ξi,0(R)ζ0(r; R), (30)
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where ξi,0(R) is the ith bound rovibrational state from the ground electronic state ζ0(r; R),
and that the functions {ζγ (r; R)} constitute a complete set of electronic states that satisfy the
completeness relation∑

γ

ζγ (r; R)ζ ∗
γ (r′; R) = δ(r − r′). (31)

In such a case, the total photodissociation cross section (equation (29)) for a diatomic system,
after integration over the electronic coordinates, is given by

σi(ω) =
(−4πω

3c

)
Im

∑
γ γ ′

∫
dR

∫
dR′ξ ∗

i,0(R)ε̂ · µ0γ (R)

× Ĝ+
γ γ ′(R,R′;E, J0)ε̂ · µγ ′0(R

′)ξi,0(R
′), (32)

where R is the radial nuclear coordinate, µγ,0(R) is the dipole transition moment operator
between the ground and excited electronic states, i.e.

µ0γ (R) =
∫

ζ ∗
0 (r;R)ε̂ · d(r, R)ζγ (r;R) d3N r d3NAR;

and G+
γ γ ′(R,R′;E, J0) is an element of the matrix representation of the Green operator in the

electronic basis set, i.e.

G+
γ γ ′(R,R′;E, J0) =

∫
ζ ∗
γ (r′′;R)Ĝ+(r′′, R, r′′′, R′;E, J0)ζγ ′(r′′′;R)d3N r′′d3N r′′′, (33)

with

Ĝ+(r′′, R, r′′′, R′;E, J0) = 〈r′′, R|Ĝ+(E, J0)|r′′′, R′〉. (34)

Rewriting equation (32) in the Dirac notation and expanding it in a DVR basis set {|fi〉}
which satisfies the relation

1 ≈
∑

k

|fk〉〈fk|, (35)

the total photodissociation cross section becomes {|fk〉}:

σi(ω) =
(−4πω

3c

)
Im

∑
γ γ ′

∑
kk′

〈ξi,0|ε̂ · µ0γ |fk〉〈fk|Ĝ+
γ γ ′(E, J0)|fk′ 〉〈fk′ |ε̂ · µγ ′0|ξi,0〉, (36)

or

σi(ω) =
(−4πω

3c

)
Im

∑
γ γ ′

∑
kk′

(c∗
i,0)kε̂ · µ0γ (Rk)Ĝ

+
γ γ ′kk′(E, J0)ε̂ · µγ ′0(Rk′)(ci,0)k′ , (37)

where it is assumed that

〈fk|ε̂ · µr
γ 0|ξi,0〉 = µr

γ 0(Rk)(ci,0)k, (38)

with (ci,0)k being the kth coefficient of the expansion

ξi,0(R) =
∑

k

(ci,0)kfk(R). (39)

The matrix representation of the Green operator in the DVR basis, within the NIP method, is
obtained by the introduction of the negative imaginary potential −iU(R) in the Hamiltonian
as follows:

〈fk|Ĝ+
γ γ ′(E, J0)|fk′ 〉 = Ĝ+

γ γ ′kk′(E, J0) = [(
E + iU − ĤJ0

)]−1

γ k,γ ′k′ . (40)
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Figure 1. Diabatic potential energy curves corresponding to predissociation B1�+ −D′1�+ states
of the CO molecule.

For the potential U(R), we have used a power law (Rom et al 1991):

U(R) =
{

0, R � R0

go

(
R−R0

Rmax−R0

)2
, R0 < R < Rmax,

(41)

where go, R0 and Rmax are the parameters which have to be chosen in order that we have the
total absorption of the wavefunction in the dissociation interval. So, this function has to rise
slowly in the asymptotic region and vanish inside the strong interaction region.

Equation (40) shows that the matrix representation of the Green operator (G+(E, J0)) can
be determined directly by inversion of the A = (ES + iU − H) matrix for each total energy E
(S is an overlap matrix which is equal to the identity within DVR methods). However, there
are various approaches that evaluate G+(E, J0) more efficiently as, for example, by means of
its spectral decomposition from the eigenvectors and eigenvalues of the complex symmetric
matrix H−iU (Mayrhofer and Bowman 1994) or by using recursive methods based on damped
Chebyshev polynomial expansions (Mandelshtam and Taylor 1995, Grozdanov and McCarroll
1996, Guo 1998) or the Lanczos algorithm (Moro and Freed 1981, Karlsson and Goscinski
1994, Xu et al 2002, Grozdanov et al 2004). Despite this, since the major goal of this paper is
to present a novel methodology of expansion of the wavefunction with the objective to reduce
the number of basis functions (and consequently, the dimension of the involved matrices), we
have employed the process of inversion of the A matrix to determine G+(E, J0).

The application to the CO molecule involves two electronic states, and therefore the
photodissociation cross section is calculated by equation (37) with γ, γ ′ = 1, 2.

4. Results

The DPO-DVR method is applied here for the calculation of the total photodissociation cross
sections of the CO molecule corresponding to transitions from the ground X1�+ state into
Rydberg-valence predissociation B1�+ − D′1�+ states.

We have used the model proposed by Tchang-Brillet et al (1992), Andric et al (1999) to
represent the interaction states. In the previous notation, the diabatic potential V̂1 corresponds
to B1�+ electronic state and it is a Rydberg–Klein–Rees (RKR) potential. In particular, we
have used a cubic spline interpolation of RKR’s points (Tchang-Brillet 2003). The diabatic
potential V̂2 corresponds to D1�+ electronic state, and it is a purely repulsive potential. These
diabatic potentials are presented in figure 1. The range of the nuclear configurations considered
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Figure 2. Eigenfunctions, respectively, for the diabatic potentials V̂1(R) and V̂2(R) using equally
spaced DVR: (a) the four lowest eigenfunctions g1

l (R) and (b) the nine lowest eigenfunctions
g2

m(R).

in our calculation is from 0.8 Å to 2.7 Å. In such a model the coupling operator V̂12 is given
by

V12(R) =
{

2900, R � Rc

2900 exp
[−ln 2

(
R−Rc

�R

)2 ]
, R > Rc,

(42)

where Rc = 1.30711 Å and �R = 0.20 Å. For the potential energy of the electronic
ground state X1�+, we have used a Morse potential (Murrell et al 1984), with De =
83776.6874 cm−1, Re = 1.128323 Å, αe = 0.01750441 cm−1, ωe = 2169.81358 cm−1, and
Be = 1.93128087 cm−1. These parameters were determined experimentally by Floch (1991).

As discussed previously, the first step to calculate the photodissociation cross section
is the determination of the DPO-DVR basis functions using the procedure described in
subsection 2.2. For this, we have to solve the radial Schrödinger equation for each diabatic
potential [

T̂ + V̂1(R) +
J0(J0 + 1)

2µR2

]
g1

l (R) = E1
l g

1
l (R)[

T̂ + V̂2(R) +
J0(J0 + 1)

2µR2

]
g2

m(R) = E2
mg2

m(R),

(43)

where T̂ = − 1
2µ

d2

dR2 , µ is the reduced mass of the CO molecule, and g1
l (R) and g2

m(R) are the

eigenfunctions with associated eigenvalues E1
l and E2

m, respectively, for the diabatic potentials
V̂1(R) and V̂2(R). In such a case, we have used equations (3), (8) and (9) with a set of 140
equally spaced (ES) points in the interval from 0.8Å up to 2.7Å. These parameters have been
used in the literature (Andric et al 1999).

We emphasize that in the DPO-DVR procedure g1
l (R) and g2

m(R) do not have any physical
significance. They are used to originate a new set of functions as in equation (17). The number
of eigenfunctions considered in the present calculations is in agreement with the energy
criterion discussed in section 2.2. In table 1, the considered values of Ecut are shown together
with the number of eigenfunctions n1 and n2 associated with the V1 and V2 potentials. As an
example, in figure 2 the four lowest eigenfunctions g1

l (R) and the nine lowest eigenfunctions
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Figure 3. DPO-DVR basis functions calculated using four eigenfunctions g1
l (R) and nine

eigenfunctions g2
m(R).

Table 1. Numbers of eigenfunctions n1 and n2 associated with the V1 and V2 diabatic potentials of
the B1�+ and D′1�+ electronic states with the eigenvalues below Ecut (cm−1); n1 + n2 represents
the number of DPO-DVR basis functions.

Ecut(cm−1) n1 n2 n1 + n2

21 000 12 40 52
22 000 13 42 55
23 000 13 43 56
25 000 15 45 60
26 000 16 46 62
30 000 23 50 73

g2
m(R) are displayed. Note that due to the small number of basis functions employed, only a

small overlap between the eigenfunctions of g1
l (R) and g2

m(R) is shown.
Next we have employed the Gram–Schmidt orthonormalization algorithm to construct the

set of primitive functions {Gj (R); j = 1, . . . , n1 + n2}, equation (19). The orthonormalization
is performed only in this stage of the calculation and involves only the number (n1 + n2)

of functions that will be orthonormalized. Finally, these functions allow us to generate a
diabatic potential-optimized quadrature and the DPO-DVR basis functions ({Fα(R);α =
1, . . . , n1 + n2}), following the procedure described in section 2.2. Figure 3 displays the set of
13 DPO-DVR functions Fα(R) calculated using four g1

l (R) and nine g2
m(R) eigenfunctions

shown in figure 2.
The total photodissociation cross section is then calculated using equation (37). The initial

rovibrational state ξi,0(R) is assumed to be the fundamental one (i = (ν0, J0) = (0, 0)) and is
obtained by diagonalization of the Hamiltonian matrix representation of the ground electronic
state in the DPO-DVR basis set. As parameters of the negative imaginary potential (U(R))

given by equation (41), we have defined R0 = 1.8 Å and Rmax = 2.7 Å, because the segment
[R0;Rmax] represents the asymptotic region of the scattering coordinate, and g0 = 0.5, as has
been used in literature (Andric et al 1999).

Figures 4(a) and (b) present the total photodissociation cross sections using different
DPO-DVR quadratures, in the energy intervals from 4000 cm−1 to 14 000 cm−1 and from
14 000 cm−1 to 22 000 cm−1. In all cases, we have compared our DPO-DVR calculations with
those performed using an ES-DVR with 300 basis functions.
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(a) (b)

Figure 4. Total photodissociation cross sections to transitions X1�+ → B1�+ − D′1�+ of the
CO molecule using: (a) 52, 55 and 56 DPO points; and (b) 60, 62 and 73 DPO points, compared
with a similar calculation using 300 ES points.

In figure 4(a), the photodissociation cross sections calculated with 52, 55 and 56 diabatic
potential-optimized points are displayed, while in figure 4(b) we have employed 60, 62 and 73
DPO-DVR points according to the choice shown in table 1. From the obtained comparison,
we can see a close relationship between the quality of the calculated cross section and the
number of eigenfunction of each diabatic potential used to construct the DPO-DVR basis.
The analysis of figures 4(a) and (b) allows us to conclude that the photodissociation cross
section for each basis is satisfactory for energies below Ecut from table 1. Moreover, the
calculated photodissociation cross section becomes more accurate as the number of basis
functions increase when compared with the ES-DVR results; therefore, this illustrates the
convergence properties of the method.

The features of the photodissociation cross sections presented here are in agreement with
previous ones (Andric et al 1999, Grozdanov et al 2004, Andric et al 2004). We can observe
structures revealing different behaviour for a given resonance state ν. The resonances for the
bound region, ν = 2 and 3, are quite narrow, while in the coupling region ν = 4, 5 and 6
are weak and wide. In the energy interval from 14000 cm−1 to 20 000 cm−1, where strong
interference effects can be observed, the resonance ν = 7 and specifically resonance ν = 10
are very narrow, while resonances ν = 8 and 9 are very wide.

We present in figures 5(a) and (b) a closeup of figures 4(a) and (b), respectively, to offer
a more detailed analysis. In figure 5(a), we have used the following energy intervals: from
6700 cm−1 to 6900 cm−1 and from 17 200 cm−1 to 17 600 cm−1, which present details of
resonances ν = 2 and ν = 9, respectively. In figure 5(b), we have used the following energy
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(a) (b)

Figure 5. Total photodissociation cross sections using the following energy intervals: (a) from
6700 cm−1 to 6900 cm−1 and from 17 200 cm−1 to 17 600 cm−1, using 52, 55 and 56 DPO points;
and (b) from 6700 cm−1 to 6900 cm−1 and from 18 500 cm−1 to 20 500 cm−1, using 60, 62 an
73 DPO points. Comparison is made with a similar calculation using 300 ES points.

intervals: from 6700 cm−1 to 6900 cm−1 and 18 500 cm−1 to 20 500 cm−1 to show details of
resonances ν = 2 and ν = 10, respectively. The comparison is made with the ES-DVR
calculation using 300 basis functions.

In figure 5(a), in the energy interval from 17 200 cm−1 to 17 600 cm−1, the curves present
prominent disagreement as the basis decreases. However, we note that until approximately
17 300 cm−1 the calculation using 56 optimized points, with cut energy Ecut = 23 000 cm−1,
presents good agreement. In figure 5(b), in the energy interval from 18 500 cm−1 to
20 500 cm−1, until approximately 19 000 cm−1 the calculation using 60 optimized points,
with cut energy Ecut = 25 000 cm−1, presents excellent agreement. We note that the curves
using 62 and 73 points in the considered energy interval are similar to those from ES-DVR
calculation with 300 points. Then we can conclude that the photodissociation cross section
is accurately reproduced up to energies approximately 6000 cm−1 below Ecut. This value can
be considered as an estimate of the limit to the accuracy of photodissociation cross-section
calculations using the DPO-DVR procedure.

We have shown that it is possible to reduce the number of basis functions of the cross-
section calculation in comparison with the usually chosen basis. Andric et al (1999) have
presented a study for the title system using 140 equally spaced DVR points which leads to work
with matrices with dimension 280 × 280. A similar number of ES-DVR functions have been
employed in another recent work of same research group (Grozdanov et al 2004) to analyse the
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use of Lanczos algorithm in the calculation of the photodissociation cross sections. However,
our calculations have involved matrices of maximum dimension 146 × 146 that represent 73
DPO-DVR basis functions. Considering that the DPO-DVR basis set needs to be calculated
only one time to a given problem and it is independent of NIP parameters, the decrease of
the number of basis functions reduces the computation cost since the Green operator must be
determined for each energy of the spectrum.

5. Concluding remarks

The present study confirms the efficiency of our proposed DPO-DRV method. We
calculated the total photodissociation cross section for the B1�+ − D′1�+ Rydberg-valence
predissociation interaction in the CO molecule, comparing the number of DPO-DVR basis
functions with those giving similar results using equally spaced grids.

The total photodissociation cross sections were calculated with satisfactory agreement up
to energy below about 6000 cm−1 under the Ecut considered in the definition of the basis sets.
Therefore, it has demonstrated that our DPO-DVR method involves the reduction of the basis
needed for the treatment of problems which include non-adiabatic couplings.

As a perspective, we will study the rovibrational predissociated states using the DPO-
DVR method. The energies and widths (respectively the real and the imaginary parts of
the resonance) of predissociated states of diatomic molecules are straightforwardly obtained
by using the negative imaginary potential (or absorbing boundary condition) method (see
(Jolicard and Austin 1985, Jolicard and Humbert 1987, Jolicard et al 1988, Monnerville and
Robbe 1994, Prudente et al 1997, Monnerville and Robbe 1999) and references therein).
We are interested to understand the convergence of these states with the DPO-DVR method.
Moreover, a numerical comparison of the DPO-DVR with other types of mapped grids as the
ones cited in the introduction can be instructive, and we plan to make it in the near future.
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