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for the Schrödinger equation subject to a potential V (r) of a form more general than the exponential
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Manning–Rosen potentials including the centrifugal term. The bound state energy eigenvalues for these
potentials and for arbitrary values of n and l quantum numbers are presented.
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1. Introduction

In the last decade a large community of researchers have been
involved a search of approximate solutions for wave equations
(non-relativistic or relativistic) including the centrifugal term and
subject to different potential functions V (r). The main characteris-
tic of these solutions lies in the substitution of the centrifugal term
by an approximation, so that one can obtain an equation, normally
hypergeometric, which is solvable.

Indeed, C.L. Pekeris [1] is the pioneer in the study, since, he
managed to obtain analytic solutions for the radial Schrödinger
equation with the Morse potential [2], through an expansion for
the centrifugal term. For many molecules, the results obtained for
the spectroscopic constant αe were in excellent agreement with
the experimental values.

Approximately forty years later, Greene and Aldrich [3] pro-
posed another approximation for the centrifugal term, able to
solve the Schrödinger equation. Using variational methods for the
Hulthén potential [4], they obtained the energy levels for the states
2p, 3p, 3d, 4p, 4d and 4 f , in excellent agreement with the results
of more elaborate methods [5].

Since then, most of the approximations proposed for the cen-
trifugal term (generally, for potentials of the exponential type)
were some variants of the approximations proposed by Pekeris,
Greene and Aldrich. In particular, making use of an approximation
very similar to those elaborated by Pekeris, Greene and Aldrich,
bound state and scattering state solutions for the Schrödinger
equation subject to the Manning–Rosen potential [6] was obtained
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in [7–12] and [13,14], correspondingly, and through of the proper
quantization rule in [15,16]. In the relativistic framework, the same
kind of approximation for the centrifugal term was used in [17,18]
to obtain solutions of the Dirac equation. Bound-state solutions of
the Klein–Gordon equation have been studied in [19,20]. Analytical
solutions for the Schrödinger equation and Dirac equation includ-
ing the centrifugal term subject to Rosen–Morse potential [21]were
obtained in [22] and [23,24], respectively.

The approximations proposed by Pekeris, Greene and Aldrich
for the centrifugal term, as well as their modifications, have made
it possible to find good results and represent a significant improve-
ment. However, these approaches have been applied to a relatively
narrow class allowed us treat of potential functions V (r) of an ex-
ponential type. Moreover, in some cases, the approximation used
for the centrifugal term is not convenient because it does not pro-
vide physically reasonable wave functions [13,22,25,26].

In the present Letter, we propose a generalization of the Pekeris
approximation [1] for the centrifugal term, allowing potential func-
tions of more general form to be treated. It provides physically
reasonable wave functions.

The Letter is organized as follows. In Section 2, we present the
generalized approximation for the centrifugal term, and discuss
its role as head gear for the development of the new resolution
method. In Sections 3 and 4 we solve the radial Schrödinger equa-
tion with Manning–Rosen and Rosen–Morse potentials and with a
centrifugal term. The conclusions are given in Section 5.

2. General procedure

Observing closely the Pekeris approximation [1] for the cen-
trifugal term
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where y = exp[−a(r − re)], re is the internuclear distance at equi-
librium, and a is related to the potential range. We are going to
show that it is possible to perform a generalization for the expan-
sion (1) through an appropriate redefinition of the variable y.

Consider the function
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where y = f [±a(r − re)], f and its inverse f −1 being analytical
functions to be defined, a and re are the physical constants previ-
ously defined, and m a real number. The particular cases
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]
, (4)

has physically importance and we will treat them in this work.
The Taylor expansion series for the function (3) or (4), is given

by

F (y) =
∞∑

n=0

cn(y − α)n with cn = 1

n!
dn F (y)

dyn

∣∣∣∣
y=α

. (5)

Clearly we can realize that the expansion for the centrifugal
term (1) proposed by Pekeris, can be obtained through (5) with
α = 1 and y = exp[−a(r − re)], the coefficients cn can be ob-
tained by (5) taking F (y) in (4) with f −1(y) = ln y. The chosen
value of α = 1 isn’t random, this value assures that the coeffi-
cients cn will be calculated at r = re , since ln y = −a(r − re), being
y = exp[−a(r − re)], then ln 1 = −a(r − re) leads to r = re , and be-
long to domain of the function f −1(y) = ln y.

Considering terms until n = 2 in (5), we have that

F (y) =
(

re
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2
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2
y2, (6)

substituting the approximation (6) into the radial Schrödinger
equation

d2 R

dr2
+ 2μ

h̄2

(
E − V (r)

)
R − l(l + 1)

r2
e

(
re

r

)2

= 0, (7)

where E is the energy, μ is the reduced mass, V (r) is an arbitrary
potential, and Ψ (r, θ.φ) = Y m

l (θ,φ)R(r)/r, we obtain

d2 R

dr2
+ 2μ

h̄2
(W − V ef )R = 0 (8)

with

W = E − l(l + 1)h̄2

2
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2
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)
(9)
2μre
the renormalized energy, and

V ef = V (r) + l(l + 1)h̄2

2μr2
e

[
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2
y2

]
(10)

the effective potential.
In the case treated by Pekeris in [1] Eq. (7) with the Morse

potential

d2 R

dr2
+ 2μ

h̄2
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]

+ 2De exp
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])
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r2
e

(
re
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R

= 0, (11)

after the substitution of approximation (1) with only the first three
terms, has the form

d2 R

dr2
+ 2μ

h̄2

[
E − c + (2De − c1)

exp[a(r − re)] − (De − c2)

exp[2a(r − re)]
]

R

= 0, (12)

the renormalized energy is given by

W = E − A

[
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]
, with A = l(l + 1)h̄2
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e

,

and the effective potential

V ef = (De − c2)exp
[−2a(r − re)

] − (2De − c1)exp
[−a(r − re)

]
,

being

c = A − 3A

are
+ 3A

(are)2
, c1 = 4A

are
− 6A

(are)2
, and

c2 = 3A

(are)2
− A

are
,

Eq. (12) is very similar to the equation obtained by Morse in [2]
with (l = 0).

In short, we will establish now the steps which will lead us
to solve Eq. (7), subjected to a potential function V (r) using the
approximation (6), they are:

1. Given the potential function V (r) in Eq. (7), we must de-
fine the function f in the general expression (3) or (4). The
function f has to be chosen in such a way that, after the
substitution of the approximation (6) in (7), the terms of the
expression (6) to be absorbed by V (r) generating a solvable
effective potential V ef .

2. With the choice of the functions f , we must perform the ex-
pansion in Taylor (or Maclaurin) series, keeping the terms until
n = 2 in (5). The value chosen for α must belong to the do-
main of the inverse function f −1.

3. After replacement of the approximation (6) into Eq. (7), the
constant terms in the expansion (6) are absorbed in the ex-
pression for the renormalized energy W in (9) while the other
terms are absorbed by the effective potential V ef in the ex-
pression (10). So, the new Schrödinger equation obtained in
(8) can be resolved by the same method used in the treatment
of Eq. (7) without the centrifugal term (i. e., the equation for
l = 0).

In the following section we solve Eq. (7) with the Rosen–Morse
and Manning–Rosen potentials. We will demonstrate that the wave
function obtained possesses the same form that the solution of
radial Schrödinger equation (7) with (l = 0), i.e., disregarding the
centrifugal term, as Pekeris has already pointed out in [1].
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3. Rosen–Morse potential

The potential proposed by Rosen and Morse [21], in their study
of the vibrational states of polyatomic molecules, with a special
application for the molecule of ammonia, has the form

V (r) = B tanh

(
r − re

d

)
− C sech2

(
r − re

d

)
, (13)

where B and C are the depth of the potential 1/d the range of the
potential, and re equilibrium internuclear distance.

In [27] an equivalence was established of the Wei potential
model and Tietz potential model for standard Morse, Rosen–Morse
and Manning–Rosen potentials, when the parameter h in the Tietz
potential has some special values. By employing the dissociation
energy and the equilibrium bond length for a diatomic molecule as
explicit parameters, in [28] improved expressions were generated
for both versions of the Schiöberg potential energy function, which
are the Rosen–Morse and Manning–Rosen potential functions.

Eq. (7) with the potential (13) is given by

d2 R

dz2
+ 2μd2

h̄2

(
E − B tanh z + C sech2 z

)
R − l(l + 1)d2

r2
e

(
re

r

)2

R

= 0, (14)

where z = (r − re)/d.
According to the method described in the previous section, we

must choose appropriate functions f and f −1. So, let us consider
y = tanh[(r − re)/d] and f −1(y) = tanh−1 y. Substituting this func-
tions into (3), with a = 1/d, we obtain the following identity

(
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=
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)−2

.

The approximation (6) has the form
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and the coefficients (5), with n = 0,1,2 are
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(

re + d tanh−1 α
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)−2

,
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e (re + d tanh−1 α)−3

(1 − α2)
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(1 − α2)2
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with α being a number limited to interval |α| < 1, the domain of
the function f −1(y) = tanh−1 y.

Substituting (15) into (14), we have that

d2 R

dz2
+ (−W − β tanh z + γ sech2 z

)
R = 0, (17)

where

−W = 2Eμd2
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e
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2
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2
c2

)
(18)

is the renormalized energy, and

V ef = β tanh z − γ sech2 z (19)
is the effective potential, with

β = 2μBd2

h̄2
+ l(l + 1)d2
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e
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γ = 2μCd2

h̄2
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2r2
e

c2, (20)

being the renormalized coefficients of effective potential (19).
Eq. (17) is essentially the equation obtained by Rosen and

Morse [21] for the case l = 0, but the coefficients β and γ are
renormalized according to (20).

Following Rosen and Morse [21], we introduce the function
F (z) by R(z) = eaz cosh−b zF (z), and, replacing it into Eq. (17), we
obtain

d2 F

dz2
+ 2(a − b tanh z)

dF

dz
+ (

a2 + b2 − W
)

F (z)

− (2ab − β) tanh zF (z) + [
γ − a(b + 1)

]
sech2 zF (z)

= 0. (21)

Imposing the conditions

2ab = β and a2 + b2 = W , (22)

which can be satisfied if

a = [(W − β)1/2 − (W + β)1/2]
2

and

b = [W + β)1/2 + (W − β)1/2]
2

, (23)

one puts Eq. (21) into the form

d2 F

dz2
+ 2(a − b tanh z)

dF

dz
+ [

γ − b(b + 1)
]

sech2 zF (z) = 0. (24)

Then, performing the change of variables u = 1
2 (1 + tanh z) in (24),

we obtain the hypergeometric equation

u(1 − u)
d2 F

du2
+ [

a + b + 1 − 2(b + 1)u
]dF

du
+ [

γ − b(b + 1)
]

F (u)

= 0, (25)

having as solution the hypergeometric function F (u) =
2 F1(ζ,η,κ, u) given by

F (u) = 1 + ζ.η

1.κ
u + ζ(ζ + 1)η(η + 1)

1.2.κ(κ + 1)
u2 + · · · , (26)

with parameters:
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2
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4
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,

η = b + 1

2
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(
γ + 1

4

)1/2

, and κ = a + b + 1. (27)

It is clear from the definition (26) of the hypergeometric func-
tion that the parameter κ should never vanish or take a negative
integer value. On the other hand, if some of the parameters ζ

and η is equal to zero or to a negative integer, the series (26)
will be truncated and the hypergeometric function will become a
polynomial, according to [29]. So, if ζ = −n, where n = 0,1,2, . . . ,
Eq. (27) for ζ leads to

b =
(
γ + 1

)1/2

− n − 1
,

4 2
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and from the first condition in (22) we can obtain the other con-
stant a under the form

a = − β

(4γ + 1)1/2 − 2n − 1
.

The allowed values for the energy are given through the second
condition in (22) and the value for the renormalized energy (18),
then

−En = (βh̄)2

2μd2[(4γ + 1)1/2 − 2n − 1]2

+ h̄2

2μd2

[(
γ + 1

4

)1/2

− n − 1

2

]2

− l(l + 1)h̄2

2μr2
e

(
c0 − αc1 + c2

2
+ α2

2
c2

)
. (28)

The radial wavefunction is

Rn(z) =
∞∑

n=0

Nn eaz cosh−b z 2 F1

[
−n, η,κ,

1

2
(1 + tanh z)

]
,

and the normalization constant Nn will be calculated through the
integral

d|Nn|2
∫

e2az cosh−2b z

(
2 F1

[
−n, η,κ,

1

2
(1 + tanh z)

])2

dz

= 1. (29)

Using the result of [30] for the integral (29), we have that the
normalization constant is

Nn = d−1/2

2b−1/2

[
(λ + 1)Γ (n + k + 1)Γ (n + k + λ + 2)

Γ (k + 1)2Γ (n + λ + 2)

]1/2

, (30)

being k = a + b − 1 and λ = b − a − 1.

4. Manning–Rosen potential

Let us consider the potential proposed by Manning and Rosen
in [6]

V (r) = h̄2

2μd2

[
β(β − 1)exp[−2(r − re)/d]

(1 − exp[−(r − re)/d])2

− A exp[−(r − re)/d]
1 − exp[−(r − re)/d]

]
(31)

where A and β are dimensionless parameters, while d character-
izes the range of the potential and has dimension of length, and re

equilibrium internuclear distance.
It was determined in [31] that the Manning–Rosen potential,

Schiöberg and Deng–Fan potential are the same solvable empiri-
cal potential energy function for diatomic molecules. Some values
for the anharmonicity ωexe and vibrational rotational coupling pa-
rameter αe for 16 molecules have been calculated by choosing
the experimental values of the dissociation energy De , equilibrium
bond length re and vibrational frequency ωe as inputs.

The potential (31) can also be written as

V (r) = β(β − 1)h̄2

8μd2
cosech2

[
(r − re)

2d

]
− νh̄2

2μd
coth

[
(r − re)

2d

]

+ νh̄2

2μd
(32)

according to Infeld and Hull in [32], with ν = [A + β(β − 1)]/2d.
Substituting the potential (32) into Eq. (7), with z = (r − re)/2d,

we have that
d2 R

dz2
+

[
8μd2

h̄2
E − 4dν − 4dν coth z − β(β − 1) cosech2 z

− 4l(l + 1)d2

r2
e

(
re

r

)2]
R = 0. (33)

Defining the functions y = coth[(r − re)/2d] and f −1(y) =
coth−1 y in (3), with a = 1/2d, we obtain the identity

(
re

r

)2

=
(

1 + 2d coth−1 y

re

)−2

.

The approximation (6) takes the form

(
re

r

)2

≈ c0 − αc1 + α2

2
c2 + c2

2
+ (c1 − αc2) coth z

+ c2

2
cosech2 z, (34)

with the coefficients

c0 =
(

re + 2d coth−1 α

re

)−2

,

c1 = −4d(re + 2d coth−1 α)−3

r−2
e (1 − α2)

, and

c2 = −8dα(re + 2d coth−1 α)−3

r−2
e (1 − α2)2

+ 24d2(re + 2d coth−1 α)−4

r−2
e (1 − α2)2

,

being α a number in the interval |α| > 1 (the domain of the func-
tion f −1(y) = coth−1 y).

Substituting (34) into Eq. (33), we obtain

d2 R

dz2
+ (−W − B coth z − A cosech2 z

)
R = 0, (35)

with the renormalized energy

W = −8μd2 E

h̄2
+ 4dν + 4l(l + 1)d2

r2
e

(
c0 − αc1 + α2

2
c2 + c2

2

)
,

(36)

and the effective potential

V ef = B coth z + A cosech2 z, (37)

being

A = β(β − 1) + 4l(l + 1)d2

r2
e

c2 and

B = −4dν + 4l(l + 1)d2

r2
e

(c1 − αc2)

the renormalized coefficients of the effective potential (37).
Introducing the function F (z) in (35) by mean R(z) =

eaz sinh−b zF (z), we obtain

d2 F

dz2
+ 2(a − b coth z)

dF

dz
+ (

a2 + b2 − W
)

F (z)

− coth z(2ab − B)F (z) + [
b(b + 1) − A

]
cosech2 zF (z)

= 0. (38)

Imposing the same conditions (22) and (23) as in the previous sec-
tion, Eq. (38) reduces to

d2 F

dz2
+ 2(a − b coth z)

dF

dz
+ [

b(b + 1) − A
]

cosech2 zF (z) = 0.

(39)
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Now let u = 1
2 (1 − coth z), from this transformation Eq. (39) be-

comes the hypergeometric equation

u(1 − u)
d2 F

du2
+ [−a + b + 1 − 2(b + 1)u

]dF

du
− [

b(b + 1) − A
]

F (u) = 0, (40)

with solution given by (26) having parameters

ζ = b + 1

2
−

(
A + 1

4

)1/2

,

η = b + 1

2
+

(
A + 1

4

)1/2

, and κ = −a + b + 1. (41)

As in the previous section, if ζ = −n Eq. (41) for ζ leads to

b =
(

A + 1

4

)1/2

− n − 1

2
,

and, using the first condition in (22), we obtain

a = − B

(4A + 1)1/2 − 2n − 1
.

From the second condition in (22) and the expression for the
renormalized energy (36), we obtain the energy spectrum

−En = (h̄B)2

8μd2[(4A + 1)1/2 − 2n − 1]2

+ h̄2

8μd2

[(
A + 1

4

)1/2

− n − 1

2

]2

− l(l + 1)h̄2

2μr2
e

(
c0 − αc1 + α2

2
c2 + c2

2

)

− 2
[

A + β(β − 1)
]
. (42)

The solution of Eq. (35) is the wave function

Rn(z) =
∞∑

n=o

Nneaz sinh−b z2 F1

(
−n, η,κ,

1

2
(1 − coth z)

)
, (43)

where the constant Nn is obtained from the normalization condi-
tion [30]

d|Nn|2
∫

e2az sinh−2b z

(
2 F1

[
−n, η,κ,

1

2
(1 − coth z)

])2

dz

= 1, (44)

of the same form that in the previous sections, with k = −a +b −1
and λ = a + b − 1, we have that the normalization constant will
have the form

Nn = (−1)a−b−1

2b−1/2d1/2

[
(λ + 1)Γ (n + k + 1)Γ (n + k + λ + 2)

Γ (k + 1)2Γ (n + λ + 2)

]1/2

.

(45)

Mathematically nothing prevents us of use the expansion (5)
with n > 2, this will depend on the particular shape of the poten-
tial V (r) to be treated. For the potentials studied here, we could
use any value of n > 2, as long as we eliminate the terms of order
greater than y2, in the approximation (15) for Rosen–Morse poten-
tial and in the approximation (34) for Manning–Rosen potential.

The way as the method was developed in Section 2 requires α
to be in the domain of the function f −1. Due to this condition it
would not always be possible to choose r = re as the expansion
point in the series (5).
In the case of Rosen–Morse potential if α = 0 in (15), and using
the fact that tanh y−1 = a(r − re), with y = tanh[a(r − re)], then
tanh−1 0 = a(r − re) lead us r = re . For this case the coefficients
(16) in the approximation (15) can be estimated at r = re , so

(
re

r

)2

≈ 1 + 3d2

r2
e

− 2d

re
tanh z − 3d2

r2
e

sech2 z,

replacing this approximation in Eq. (14) and following the same
steps we obtain for the energy spectrum the expression

−En = (βh̄)2

2μd2[(4γ + 1)1/2 − 2n − 1]2

+ h̄2

2μd2

[(
γ + 1

4

)1/2

− n − 1

2

]2

+ l(l + 1)h̄2

2μr2
e

(
1 + 3d2

r2
e

)

with the constants β and γ is given by

β = 2μBd2

h̄2
− 2l(l + 1)d3

r3
e

and γ = 2μCd2

h̄2
+ 3l(l + 1)d4

r4
e

.

On the other side, for the Manning–Rosen potential isn’t pos-
sible calculate the series (34) at r = re , the function f −1(y) =
coth−1 y hasn’t the number zero in its image, i.e, there is no α
such that coth−1 α = a(r − re) = 0.

5. Conclusion

In this Letter we propose a generalization to the centrifu-
gal term, based on the Pekeris approximation, able to solve the
Schrödinger equation with a potential V (r) having a more general
form. The eigenvalues for the bound state quantum number n and
l were found to potential Rosen–Morse and Manning–Rosen. The
wave functions obtained have the same form as in the case l = 0,
but with renormalized values of the parameters.

From the expressions obtained for the energy (28) and (42), we
can see that the value of α, which can be any number belonging to
domain of the function f −1 in (3) or (4), can become a parameter
correction for the energy spectrum, and its influence should be
studied case by case.
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