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Abstract. The formulation and solution of the inverse problem of damage identification based on an one-dimensional wave
propagation approach are presented in this paper. Time history responses, obtained from pulse-echo synthetic experiments, are
used to damage identification. The identification process is built on the minimization of the squared residue between the synthetic
experimental echo, obtained by using a sequential algebraic algorithm, and the corresponding analytical one. Five different hybrid
optimization methods are investigated. The hybridization is performed combining the deterministic Levenberg-Marquardt method
and each one of the following stochastic techniques: The Particle Swarm Optimization; the Luus-Jaakola optimization method;
the Simulated Annealing method; the Particle Collision method; and a Genetic Algorithm. A performance comparison of the
five hybrid techniques is presented. Different damage scenarios are considered and, in order to account for noise corrupted data,
signals with 10 dB of signal to noise ratio are also considered. It is shown that the damage identification procedure built on the
Sequential Algebraic Algorithm yielded to very fast and successful solutions. In the performance comparison, it is also shown
that the hybrid technique combining the Luus-Jaakola and the Levenberg-Marquardt optimization methods provides the faster
damage recovery.

Keywords: Structural damage identification, acoustic wave propagation in solids, sequential algebraic algorithm, stochastic opti-
mization methods, hybrid optimization methods

1. Introduction

Structural health monitoring (SHM) and damage identification (DI) are prime concerns in the realm of civil,
mechanical and aerospace engineering. They represent essential issues to determine the safety and reliability of
their systems and structures.

Different nondestructive SHM and DI approaches are proposed in the literature. Most of them, however, are built
on changes in the vibration characteristics of the structures under concern [1,18]. The basic idea of these approaches
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is that the modal properties (frequencies, mode shapes and damping ratios) are functions of the physical properties
of the structure (mass, stiffness and damping) and, therefore, changes due to damage in the physical properties will
be reflected in the modal ones, which, can be measured and used to infer about the damage state.

Although the vibration-based damage identification approaches have been successfully applied to practical prob-
lems [10,25], it is well known that small defects may yield to excessively small or even no effects on the modal
properties of the structure, making the damage identification a more difficult task. Damage identification methods
built on the acoustic wave propagation approach, on the other hand, are highly sensitive to changes in local dynamic
impedance such as those caused by small defects [3,22]. Besides the higher sensitivity to small defects, the wave
propagation based approaches are directly defined in the time domain and, therefore, differently from most of the
vibration based methods, they do not require any signal processing for compressing the acquired data to the modal
space, which inherently results in some loss of information.

Applications of the elastic wave propagation approach in the framework of structural damage identification are
recently reported in the literature. Damage identification in laminated beams are reported in [8,13]. Fatigue damage
assessment is presented in [2,14]. Applications in damage assessment and structural health monitoring in aircraft
fuselages are reported in [26,27]. The modeling of the acoustic wave propagation phenomenon in the frequency
domain by the Espectral Element Method for damage identification purposes has been extensively considered. Ap-
plications are reported for beam type structures [7,30], plates [29,31] and L-join elements [28].

The main goal of this research is to study the inverse problem of damage identification in bars within the frame-
work of acoustic wave propagation approach. In a previous work [23], the direct problem of one-dimensional acous-
tic wave propagation was addressed by considering the Sequential Algebraic Algorithm (SAA). The inverse problem
of damage identification was then casted as a minimization one, in the time domain, and the Particle Swarm Opti-
mization was considered for minimizing the squared difference between the experimental (or synthetic) echo and
the one predicted by the SAA. An experimental validation of the SAA model was also presented.

In the present work, aiming at solving the inverse damage identification problem, five hybrid optimization tech-
niques are considered. The hybrid techniques are obtained by combining a stochastic optimization method with the
deterministic method of Levenberg-Marquardt (LM). The main interest in using hybrid techniques relies on the fact
that, in spite of being a fast technique, the results provided by the LM method strongly depend on an arbitrary param-
eter, the relaxation factor. For an unsuitable choice of this parameter the result of the LM method may even diverge.
On the other hand, the stochastic optimization methods usually yield to a relatively large residual error in the iden-
tification or to a prohibitively large computational cost. The combination of the two techniques, however, provides
damage assessment results with greater performances and better accuracy. The stochastic methods considered for
hybridization with the LM method are: the Particle Swarm Optimization method (PSO) [5]; the Luus-Jaakola opti-
mization method (LJ) [9]; the Simulated Annealing (SA) method [6]; the Particle Collision Algorithm (PCA) [19];
and a Genetic Algorithm (GA) [4].

For each damage scenario, a pulse-echo synthetic experiment is performed and the excitation and corresponding
response are considered in the damage identification procedure. In this work, the damage state is described by the
cross section area A(x) of the bar, were x is the position variable along the bar. Therefore, the damage identification
is performed by minimizing, with respect to A(x), the squared norm between the experimental (synthetic) echo and
the predicted one.

The paper is organized as follows. In Section 2 a summary of the theoretical wave propagation direct model
is presented. It is almost the same as presented in [23], but discussed again here for the sake of completeness.
In Section 3 the adopted optimization procedures are displayed. For each one of the adopted techniques a short
summary is shown. Section 4 presents the damage scenarios addressed in the present paper. In Section 5 the damage
identification results with noiseless data is presented. Section 6 is devoted to the results of damage identification
with noisy data. The performance comparison of the considered hybrid methods is discussed in Section 7. Finally,
the main conclusions are presented in Section 8.

2. Mathematical formulation of the direct problem

The one-dimensional longitudinal acoustic wave propagation in a non-homogeneous slender bar can be described
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by the hyperbolic second-order differential equation [17]

σtt − c2

[
σxx +

(
A′

A
− ρ′

ρ

)
σx + ρ
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ρA

)′
σ

]
= 0, (1)

where σ(x, t) is the longitudinal stress field, depending on the position x and time t, A(x) is the bar cross section
area, ρ(x) is the bar density, both depending on the position x, c is the longitudinal acoustic wave speed, the prime
stands for total derivative, and the subscripts, as usual, represent partial derivatives.

The general D’Alembert solution for Eq. (1) cannot be obtained in a closed form. However, it can be shown [21],
that Eq. (1) can be written in an alternative form, in the characteristic plane (r, s), as the following system of first-
order equations:

Ur +
Ż

4Z
U = 0;

Vs − Ż

4Z
V = 0,

(2)

whereZ = ρcA is called the generalized acoustical impedance,U(r, s) and V (r, s) are, respectively, the progressive
and regressive stress wave components traveling along the characteristic plane, defined as

r = t+ τ ;

s = t− τ,
(3)

and the dot stands as derivative with respect to the independent variable τ , the travel time, defined as

τ(x) =

∫ x

0

dξ

c(ξ)
. (4)

Equations (2) are a compact and uncoupled pair of first order differential equations that describes the longitu-
dinal acoustic wave propagation phenomenon in a more convenient way. To integrate it, boundary conditions in
the (r, s) plane must be provided, corresponding to the physical situation under concern. Let us, for instance, con-
sider the probing of a medium, x � 0, by a pulse excitation at x = 0. Assuming also the Sommerfeld radiation
hypothesis [16], the boundary conditions can be stated as:

U(s, s) = F (s) = f(t); V (r, 0) = 0, (5)

where f(t) is the incident longitudinal stress being applied at the boundary r = s (x = 0) and the second equation
ensures that there is no disturbance at s � 0 (t � x/c). Note that f(t), being the longitudinal stress at the physical
boundary x = 0, corresponds to U(s, s), a progressive wave component. Analogously, the echo observed at x =
0, due to the inhomogeneity caused by the damage, will be the output signal g(t) = V (s, s), a regressive wave
component.

Assuming now that the bar under study has lenght l and is discretized in n sections with equal length Δx = cΔt,
so that l = nΔx. The (known) discrete incoming pulse is written then as

Fj = f
(
2(j − 1)Δt

)
, j = 1, 2, . . . , N, (6)

and the discrete outgoing echo is

Gj = g(2jΔt), j = 1, 2, . . . , N, (7)

where NΔt � ΔT is the total time interval under consideration.
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It can be shown that Eq. (2), with the boundary conditions given in Eq. (5), have, after the discretization given in
Eqs (6) and (7), the following algebraic solution for the echo [21]

Gj =

j∑
k=1

(
Rk +

k−2∑
p=1

Qp
k

)
Fj−k+1, j = 1, 2, . . . , N (8)

where the polynomials Qp
k have the general recursive formula

Qp
k = Rk−p

[
Qp

k−1

Rk−p−1
−Rk−p−1

(
Rk−1 +

p−1∑
l=1

Ql
k−1

)]
, k = 1, 2, . . . , p = 1, 2, . . . , k − 2. (9)

In Eqs (8, 9), Ri stands for the reflection coefficient at the i-th layer of the medium, defined as

Ri =
Zi − Zi−1

Zi + Zi−1
, i = 1, 2, . . . , n. (10)

where Zi = ρcAi is the discretized generalized acoustical impedance of the medium. Since ρ and c are assumed as
constant, the reflection coefficient can be written as

Ri =
Ai −Ai−1

Ai +Ai−1
, i = 1, 2, . . . , n. (11)

The mathematical procedure, in the direct wave propagation approach, consists then in the following steps. The
medium, with a nominal cross-section area A0 and nominal generalized acoustical impedance Z0, is discretized
into n elements. Then, the reflection coefficients are computed by Eq. (11). In the sequel, the polynomials Qp

k
are calculated from Eq. (9). Finally, the output echo is computed from Eq. (8). The described technique is called
Sequential Algebraic Algorithm (SAA).

It is worth stressing that the mathematical model above provides an original algebraic formula to solve the direct
acoustic wave propagation problem. It also permits, in the identification procedure, to identify one parameter per
step. As it will be seen in the damage assessment results, the number of parameters that may be updated in the
identification is significantly larger than what is usually found in an optimization processes.

It is worth noting that it is not necessary to consider an infinite or even a semi-infinite medium. The echoes will
be observed in the interval ΔT , that means, t ∈ (0, 2l/c). This means that the echo originated by the right end of
the bar – whatever is its boundary condition – is irrelevant for the analysis.

3. Identification procedure

For damage identification purposes, the bar is spatially discretized into n sections with equal length, so that the
cross section area profile A(x) is approximated by sectionally constant values Ai, i = 1, 2, . . . n.

Defining the vector

A = {A1, A2, . . . , An}, (12)

the damage identification problem under concern may be posed as a finite dimensional minimization one as follows.

min
A

E, (13)

where the functional E is the squared norm of the residue vector r(A), which is defined as

r(A) =

⎧⎪⎪⎨
⎪⎪⎩

G1(A)−G1

G2(A)−G2

...
GN (A)−GN

⎫⎪⎪⎬
⎪⎪⎭, (14)

where N is the number of data in the time series considered for the identification process, Gj(A) is the echo
predicted by the SAA model at the time instant tj , and Gj is the corresponding experimental (or synthetic) echo.
Therefore, from Eq. (14), one has

E =

N∑
j=1

[
Gj(A)−Gj

]2
. (15)
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3.1. Hybrid optimization methods

Aiming at solving the damage identification problem defined in Eq. (13), the present work considers hybrid
optimization techniques, which were obtained through the combination of the deterministic Levenberg-Marquardt
(LM) method and each one of the following stochastic methods: The Particle Swarm Optimization (PSO) method,
the Luus-Jaakola (LJ) method, the Particle Collision Algorithm (PCA) method, the Genetic Algorithm (GA) method,
and the Simulated Annealing (SA) method.

Recently, hybrid approaches, coupling stochastic methods and the LM one have been successfully used for solving
inverse problems of parameter estimation [20] as SA-LM (Simulated Annealing and Levenberg-Marquardt) and GA-
LM (Genetic Algorithms and Levenberg-Marquardt).Other hybrid strategies combining stochastic and deterministic
methods are reported in the literature [24].

In general, stochastic methods require an extremely large number of evaluations of the cost function to achieve
the global minimum, but the convergence of the solution to a local minimum can be avoided. The deterministic
Levenberg-Marquardt method, on the other hand, presents faster convergence to the global minimum if a good initial
guess for the parameters to be identified is available. Therefore, in each hybrid technique considered in the present
work, the corresponding stochastic method is applied to the problem with the aim at obtaining a good initial guess
for the Levenbarg-Marquardt method. Hence, each hybrid method tries to keep the best features of the stochastic
and the deterministic methods, so that the global minimum is likely to be achieved and the number of iterations
required to obtain the minimum is greatly reduced. In the present work, a very brief description of the general idea
of the addressed methods is presented. For more details, a basic literature is furnished.

3.1.1. The particle swarm optimization method
The PSO is a population based search algorithm. It was inspired from natural behavior of animals [5]. The popu-

lation contains a set of individuals, or agents, referred to as particles, where each one represents a possible solution
for a given optimization problem. These particles are, in general, randomly initialized. During the PSO process,
each particle, based on a given evaluation criterion, updates its own position with a certain speed, which is com-
puted based on both the best experience of the particle itself and that of the entire population. This update process
is repeated for a certain number of generations. The update process stops either when the objective is achieved or
when the maximum number of generations is reached.

Step 1. The number m of particles in the swarm is specified. The position and velocity of the particle i at the time
step k are represented, respectively, by xi,k and vi,k . The initial position and velocity of each particle is
randomly generated as

xi,0 = xmin + r(xmax − xmin), (16)

vi,0 =
xmin + r(xmax − xmin)

δt
, (17)

where r is a random number within the interval [0, 1], xmin and xmax defines the search domain and δt
is the time discretization. Here, δt was adopted as 1 and a new time instant corresponds simply to a new
iteration of the algorithm;

Step 2. Each particle velocity is updated as

vi,k+1 = c1 vi,k + c2r1(pi,k − xi,k) + c3r2(gk − xi,k), (18)

where c1 is the inertia weight, which controls the impact of the previous velocity on the current one;
c2 and c3 are positive constants, called cognitive and social parameters, respectively; r1 and r2 are two
random numbers in the range [0, 1], whose role is to keep the population diversity; pi,k is defined as the
best location found by particle i up to time k; and gk is the best global position found among all particles
in the swarm, up to time k;

Step 3. Each particle position is updated as

xi,k+1 = xi,k + vi,k+1; (19)

Step 4. Check of stopping criteria.



868 R.A. Tenenbaum et al. / Damage identification in bars with a wave propagation approach

The fitness for the locations pi,k and gk is defined as fi,best and fg,best, respectively. The objective is then to
minimize the difference between fi,best and fg,best such that no further improvement is introduced. It normally
takes from few hundred to few thousand iterations until convergence is achieved. In the present problem, the values
for the positions of the particles (xi,k) are the cross-section areas (Ai) at the iteration k.

3.1.2. The genetic algorithm method
The Genetic Algorithms (GA) were developed firmly based on the evolution laws of biological species [4]. These

algorithms have their philosophical basis in Darwin’s theory on the survival of the best adapted to the environment
by means of natural selection. The main steps for a GA applied to damage identification are given below.

Step 1. To generate an initial population with 0’s and 1’s, for a specified length of the binary chain;
Step 2. To evaluate the adaptability function for each individual;
Step 3. To verify if some stoping criterion is satisfied. If not, go to the next step. If yes, stop the algorithm;
Step 4. To select individuals for cross-breeding;
Step 5. To create a new generation through the cross-breeding and mutation;
Step 6. To evaluate the adaptability of the new generation;
Step 7. To substitute the old generation by the new one. Go to Step 3.
In Step 1, a small population does not has enough genetic material and consequently it does not represent well

the project space, while a too big population increases the computational effort, loosing efficiency [4]. In Step 3 the
stop criteria is established and the maximum number of generations is set. The computing time or the number of
generations without a slight improvement can be used as a parameter for the stop criteria. In Step 4, the simpler idea
is to take the probability proportional to the value of the parameter to be found. The better adapted individual will
have the bigger probability of choice.

3.1.3. The Luus-Jaakola method
The Luus-Jaakola method (LJ) is a global optimization algorithm aiming at minimizing a given functional E. It

was first proposed in 1973 by Luus and Jaakola [9] to solve a non-linear optimization problem, based on a stochastic
search.

The technique is conceptually and practically simple, and encompass the following steps.
Step 1. The counter variable k is set to 1. For each counter value and for a specified number of iterations, one has

A = A∗ + Zd, (20)

where A∗ is the vector of current parameters, Z is a diagonal matrix containing random numbers in the
interval [−1, 1], and d is a vector containing the diameter of the search regions for the parameters to be
identified. At the end of each iteration, A∗ is substituted by A in the case that this one presents a better
configuration, that is, it yields a lower functional value;

Step 2. The search region is contracted according to

dk+1 = (1− ε)dk, (21)

where ε is an arbitrarily small number. If some stop criterium is reached or the counter is greater than a
specified value, the algorithm stops. If not, the algorithm goes back to Step 1.

As aforementioned, the technique is simple and, as it will be shown in the numerical results, it yielded to very
fast and surprisingly good results when it was combined with the Sequential Algebraic Algorithm for the damage
identification.

3.1.4. The particle collision algorithm method
The Particle Collision Algorithm (PCA) is a relatively new stochastic optimization technique. It was originally

developed in the nuclear research area and it was inspired in nuclear particles scattering [19].
In a concise form, the main steps of the canonic PCA method follow.
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Step 1. The counter variable is set to 1;
Step 2. An initial solution is randomly generated in the search domain. Let us call it OC (Old Configuration). It

is defined by

OC = L+ (U − L)r, (22)

where L and U are, respectively, the lower and upper limits in the search domain, and r is a random
number in the interval [0, 1];

Step 3. If the counter achieves the established maximum value, the algorithm stops. If not, a new solution NC
(New Configuration) is computed using the relationships

NC = OC[(U −OC)r − (OC − L)(1− r)],
where NC = L, if NC < L,
and NC = U, if NC > U. (23)

If the value of the objective function for NC is lower than that for OC, then NC takes the value of OC
and the algorithm goes to Step 4. Otherwise, goes to Step 5. It is suggested [19] to maintain a variable BC
(BestConfig) that retains the value of the best solution at the moment (iteraction). When a new solution
is assigned to OC, it must be verified if this solution is better than BC and, if this is the case, make
BC = OC;

Step 4. The following procedure is then repeated nexp (number of exploitations) times:
NC = OC + [(U∗ −OC)r − (OC − L∗)(1 − r)]

where NC = L, if NC < L,
and NC = U, if NC > U. (24)

In the previous procedure, it is taken
U∗ = (1 + 0.2r)OC,

and L∗ = (1− 0.2r)OC. (25)
In this step, therefore, if the objective function for NC is lower than the one for OC then OC = NC.
When a new solution is adopted as OC it should be checked if it is better than BC and, this being the
case, make BC = OC. Once the procedure described in this step is repeated nexp times, go to Step 3;

Step 5. Compute the scattering probability, pscat, as

pscat = 1− E(BC)

E(NC)
. (26)

Generate a random number r. If pscat > r then OC = NC and go to Step 4. Otherwise, go to Step 2.
It is worth noting that by the end of the PCA method the estimate of the objective function minimum is
given by BC.

3.1.5. The simulated annealing method
The Simulated Annealing method is based on principles of statistical mechanics. The application of this method in

distinct inverse problem areas has proven to succeed [20]. Consider the metal fusion process, where the probability
of existence of a certain configuration after a change of energy ΔE in a given equilibrium temperature T is given as

p(ΔE) = exp

(−ΔE

kBT

)
, (27)

where kB is the Boltzmann constant.
A finite number of randomic variations in temperature T is considered. They constitute a cycle in the optimization

procedure. The temperature is then reduced according with a cooling pattern, up to a final prescribed value, with the
simple procedure

T n+1 = RtT
n, (28)
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where n is an integer and Rt is the cooling rate that establishes the desired annealing scheme. At each new discrete
temperature the procedure is repeated.

Let us use the following notation for the variables: A is the solution in the current iteration; A∗ is the best solution
found; E is the objective function; T0 is the initial temperature; T is the current temperature; and r is a random
number in the interval [0, 1]. The SA method can then be (briefly) expressed by a 12 steps procedure as follow.

Step 1. Give to A an initial solution;
Step 2. Make A∗ = A;
Step 3. Define an initial temperature T0;
Step 4. Verify if the stopping criteria were reached. If yes, stop the procedure;
Step 5. Choose a solution A′ in a neighborhood of A as

A′ = A+ Zv (29)
where Z is a diagonal matrix containing random numbers in the interval [−1, 1], and v is the step vector;

Step 6. Compute ΔE = E(A′)− E(A);
Step 7. Verify if ΔE < 0;
Step 8. If the comparison stated in Step 7 is true, make A = A′;
Step 9. Otherwise, generate a new random number r′ in the interval [0, 1]. If r′ < e−ΔE/T , then make A′ = A;

Step 10. Go back to Step 5;
Step 11. Update the variable T ;
Step 12. Go back to Step 4.
It is worth noting that in Step 9, if E(A′) is greater than or equal to E(A), the Metropolis criterion [12] decides

if the point is accepted or not.

3.2. The Levenberg-Marquardt method

Briefly, the deterministic Levenberg-Marquardt (LM) method [11] consists in constructing an iterative procedure,
which starts with an initial guess A0, and, at the (k + 1)-th iteration, the new estimate is given by

Ak+1 = Ak +ΔAk, k = 0, 1, . . . , (30)
with the variation ΔAk being computed from

ΔAk = −
((

JT
)k

Jk + λkI
)−1

(JT )k Γ rk, (31)

where λ is a damping parameter that is adjusted at each iteration, I is the identity matrix, Γ is a relaxation factor,
and the elements of the Jacobian matrix J are defined as

Jji =
∂Gj

∂Ai
, j = 1, 2, . . . , N, i = 1, 2, . . . , n. (32)

The iterative procedure is continued until some convergence criterion is satisfied, for instance, |Ek| < ε1 or
|Ek+1 − Ek| < ε2, where ε1 and ε2 are arbitrarily small numbers.

Being deterministic and based on the Jacobian matrix that depends on the gradients ∂Gj/∂Ai, the LM method
presents a fast convergency but with the risk to stop in a relative minimum. Furthermore, as it is shown in [23], there
is a strong dependence on the parameter Γ, which must be adjusted in an ad hoc manner for each situation. On the
other hand, as mentioned before, if the initial guess is a reasonable one – as the one obtained by the output of a
stochastic optimization method –, then the LM is likely to achieve the desired minimum with a few iterations.

The parameters of the optimization methods were adopted as follows.
1. PSO: m = 25, xmin = 0, xmax = 1, c1 = c2 = c3 = 0.05;
2. GA: max. number of generations = 20, population size = 4;
3. LJ: ε = 0.05,d = 1;
4. PCA: L = 0, U = 1, nexp = 10,000;
5. SA: Rt = 0.75, T0 = 5,v = 1;
6. LM: Γ = 10, λ was set an initial value of 10 and it was dynamically adjusted according to the objective

function value E.
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Fig. 1. Damage scenarios imposed to the slender bar.

Fig. 2. Depict of an experimental pulse-echo setup.

4. Damage scenarios addressed

In order to numerically assess the performance of the proposed damage identification methods, a nonuniform
aluminium bar with three distinct damage scenarios is considered in the present work. The structure under concern
has length l = 1000 mm, nominal thickness h = 10 mm, width w = 30 mm, yielding a nominal rectangular
cross-section area A = 300 mm2, elasticity modulus Ea = 7.1 × 1010 Pa, mass density ρ = 2.7× 103 kg/m3 and
longitudinal plane wave speed c = 5128 m/s. As it is well known, such a slender bar works as a plane waveguide, as
demonstrated by experimental tests in [15,23]. Therefore, the one-dimensional SAA, presented in Section 2, applies
quite well.

Three different damage scenarios, referred to as Cases 1 to 3, as depicted in Fig. 1, are imposed to the structure.
Case 1 presents a triangular shape, at the center of the bar, with a maximum depth d = 5 mm and maximum length
(the triangle base) a = 30 mm, as shown in Fig. 1(a). Case 2 presents a double triangular shape, the first one with
the same maximum depth and the second one with half of the depth, as shown in Fig. 1(b). Case 3 corresponds
to a cylindrical hole crossing the whole bar’s width, with a diameter of 5 mm, as shown in Fig. 1(c). Among the
damage scenarios, Case 1 was selected as a benchmark for assessing the comparative performance of the considered
optimization methods.

For the sake of completeness a brief description of an actual experiment in a non-homogeneous bar is presented.
The reader is referred to [23] for more details. Figure 2 illustrates the experimental apparatus, which consists of
an improved Hopkinson bar. A strain gage sensor is placed near the left free end of the damaged bar in order to
measure both the incident wave pulse (progressive wave) and the corresponding echo (regressive wave), resulted
from the interaction of the incident wave with the damage within the bar. A damper at the right end of the bar
provides the absorption of the impact energy. The mechanical impact is produced by the collision of a smaller
bar (the projectile), with the same diameter, at the left end of the bar under test. This impact produces a roughly
rectangular shaped incident progressive wave that travels along the test bar, with a constant speed, crossing the strain
gage station and reaching the damaged region.

In the present work, in order to obtain the pulse and echo signals, required for the damage identification process,
a pulse-echo synthetic experiment was performed for each damage scenario as follows. A longitudinal rectangular
pulse was considered as the excitation signal applied at the left end of the bar. Then, the direct acoustic wave
propagation problem is computed by using the SAA and the corresponding echo signal, resulted from the iteration
between the incident wave pulse and the considered damage scenario, is computed.
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Fig. 3. Noiseless pulse and echo signals for Cases 1, 2 and 3.

5. Identification with noiseless data

In this section, the proposed hybrid methods are considered for solving the inverse problem of damage iden-
tification in the absence of noise in either the input and echo signals. The rectangular pulse excitation and the
corresponding echo signals for Cases 1, 2 and 3 in the absence of noise, are depicted in Fig. 3. These signals were
obtained considering an uniform spatial discretization of the bar in layers of length Δx = 1 mm.

It is worth noting that the echoes themselves provide important and useful information about the damage location.
For instance, considering the acoustic wave speed in the present case, c = 5128 m/s, and the echo signal for Case 1,
Fig. 3(b), which is non-null between approximately 190 and 200 μs, one may infer that the damaged region is
located between 487.5 and 512.5 mm, which actually corresponds to the damaged region for Case 1, as depicted in
Fig. 1. Therefore, although the bar was discretized into 1000 elements, only 50 parameters were recovered in our
examples, due to the restricted dimensions of the damaged regions. However, the damage shape cannot be identified
without solving the corresponding inverse problem, since it cannot be inferred by inspection from Figs 3(b), (c) or
(d).

The accuracy of the results is dependent on the discretization of the bar, that is, of the parameter n. As will
be shown in the examples that follow, n = 1000 is proved to be a good choice for the considered situations.
However, for some actual impedance profiles, as those caused by a corrosion process, probably, to obtain a more
precise description of the damage, a greater value of n must be adopted, which corresponds to a greater number of
parameters to be recovered within the same damaged region.

Figure 4 shows the results of the identification for, respectively, Cases 1, 2 and 3, by applying each one of the five
hybrid methods under concern.

It is worth noting that, since the plane wave model applies to a waveguide, the identification of the hole in Case 3
is not expected, but only the corresponding variation of the bar’s cross section area. As can be seen in Fig. 4, as
expected, for all the three cases the profile recovery is almost perfect for all hybrid optimization techniques. There-
fore, one may conclude that, no matter what optimization method is adopted, the proposed damage identification
procedure can identify the actual impedance profile when noiseless data are under concern.
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Fig. 4. Identification with noiseless data for Cases 1 to 3.

Fig. 5. Pulse and echo signals for Cases 1, 2 and 3 with a SNR = 10 dB.

6. Identification with noisy data

In actual situations, the experimentally obtained pulse and echo signals are always corrupted by some level of
noise. Therefore, aiming at analyzing the behavior of the optimization methods in the presence of noisy data, a zero
mean random noise was added to both pulse and echo signals. As observed in [23], where an actual pulse-echo
experiment in bars is reported, typically a 20 dB of signal to noise ratio (SNR) is found. In the numerical tests
considered in the sequel, a higher noise level is adopted, leading to a SNR of 10 dB.
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Fig. 6. Damage identification for Case 1: Stochastic methods.

Fig. 7. Damage identification for Cases 1 to 3: Hybrid methods.

Figure 5(a) presents the rectangular pulse excitation with a SNR of 10 dB. Figures 5(b)–(d) present the corre-
sponding echoes for Cases 1, 2 and 3, respectively, with the same level of additive random noise.

In the identification procedure, as aforementioned, each stochastic method is used to generate an initial guess for
the Levenberg-Marquardt method. In the present paper, the stopping criterion adopted for the stochastic methods
was based on the functional E. That is, if the functional value was below 10−2, the execution of the algorithm is
stopped. However, since the five considered stochastic methods are very distinct, the actual final value obtained
is different for each method. Figure 6 illustrates the output of the considered stochastic methods in the damage
identification for Case 1.

It becomes clear that each stochastic method generates a different solution, as expected. In this case, the PCA
technique provided the worst result. However, the output of all stochastic methods represents a good initial guess for
the LM one. Indeed, as can be seen from Fig. 7(a), after the complete process, with the five hybrid methods applied,
there is no noticeable difference among the identification results.

Figures 7(b) and (c) present the identification results of the hybrid methods for Case 2 and 3, respectively.
In Fig. 7 it can be observed an oscillation of the identified profile, around the exact one for the three cases, and this
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Table 1
Performance of the stochastic methods in the benchmark damage identification problem

Method PSO LJ PCA GA SA
SNR Without noise
Executions – SAA 950 7600 4379 3040 42970
Cost function E 2.39·10−2 8.14·10−4 9.48·10−2 2.50·10−3 8.16·10−5

Execution time (s) 21.68 3.15 23.56 23.52 59.28

SNR 10 dB
Executions – SAA 950 7600 4277 3040 39971
Cost function E 3.90·10−2 2.83·10−3 1.14·10−1 1.08·10−2 6.78·10−4

Execution time (s) 22.20 3.15 24.36 27.32 58.60

Table 2
Performance of the Levenberg-Marquardt method alone with an input given by the stochastic methods, in the benchmark damage identification
problem

Method PSO-LM LJ-LM PCA-LM GA-LM SA-LM
SNR Without noise
Iterations – LM 7 7 7 7 8
Cost function E 1.19·10−20 1.18·10−20 1.19·10−20 1.22·10−20 1.20·10−20

Execution time (s) 10.07 10.01 10.24 10.09 11.70

SNR 10 dB
Iterations – LM 9 8 9 8 8
cost function E 1.99·10−17 9.88·10−18 1.99·10−17 1.99·10−17 1.99·10−17

Execution time (s) 14.38 12.48 14.41 13.01 12.86

phenomenon is due the high level of noise introduced in the synthetic data. On the other hand, if the identification
error is quite the same a performance study – namely, an analysis of the computing time and final error in the cost
function – would provide some hints about the methods characteristics and better adequacy to solve this specific
problem.

7. Performance comparison

This section presents a comparison of the computational efforts of each hybrid method in identifying the damage
scenario in Case 1. All algorithms were implemented using the Fortran computational language and the results
presented in Tables 1 to 3 were obtained by using a processor Intel Core I5-2410M with 2.30 GHz and 6 GB of
RAM memory, running in an operational system Windows 7 of 64 Bits.

Table 1 presents the main figures relative to the first step of the damage identification process, when the stochastic
algorithm is executed in the hybrid method. The simulations were performed considering both noiseless data and a
SNR of 10 dB applied to the signals. The execution of each algorithm was stopped if the functional value was below
10−2, as before. However, for some techniques, the stopping criterion was imposed in an outer loop of the algorithm
and, in that case, a relatively lower functional value may be obtained.

One interesting observation is that the five stochastic methods run with similar computation times for the noiseless
and the noisy cases. Among the considered methods, the LJ presented the lower computation time. It is worth noting
that the number of executions of the SAA has little influence on the performance of the methods. This is due to the
fact that being an exact algebraic solution for the discretized direct problem, the execution of the SAA is extremely
fast.

Table 2 presents the comparative performance of the Levenberg-Marquardt method alone with its input given
by each one of the stochastic methods, in the benchmark damage identification problem. It can be seen that the
computing time is lower than 12 seconds without noise and lower than 15 seconds with SNR of 10 dB. The most
important difference among noiseless and noisy data is in the order of the final cost function (10−20 and 10−17,
respectively).

Table 3 presents the global computing time comparative results among the five considered hybrid techniques, for
noiseless and noisy data. It is worth noting that there is no significant influence in the execution time of the level of
noise.
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Table 3
Comparative performance of the hybrid techniques (computing time) in the benchmark damage identification problem

Method PSO-LM LJ-LM PCA-LM GA-LM SA-LM
SNR Without noise
Execution time (s) 32.38 13.16 33.80 33.61 70.98

SNR 10 dB
Execution time (s) 36.58 15.63 38.77 40.33 69.46

As a conclusion, since the obtained final cost function is almost the same and the computing time of the LM
method is around the same – from 10.01 to 11.70 seconds without noise and from 12.48 to 14.41 seconds with
noise – the performance is governed by the stochastic method.

The Luus-Jakoola/Levenberg-Marquardt hybrid optimization method obtained the lowest execution time, corre-
sponding to 13.16 seconds with noiseless data and 15.63 seconds with SNR of 10 dB as shown in Table 3.

It is important to observe that, if the fastest Hybrid technique run the identification in 15.63 seconds, with noise,
the lowest one spent 69.46 seconds. This means that all methods succeed in identifying the damage for our bench-
mark (Case 1) with a low computational cost. Two main aspects should be stressed here. The first one is that, as
aforementioned, the Sequential Algebraic Algorithm, being an exact algebraic solution for the discretized direct
problem, runs extraordinarily fast, so that it takes very little time consuming during the several iterations performed
by the stochastic methods (see, for instance the third line of Table 1). A second and important feature is that the
SAA allows the identification of the parameters in a sequential procedure, and this facilitates to deal with a rea-
sonably great number of parameters to be identified. Indeed, in our benchmark, approximately 50 parameters were
recovered.

8. Conclusions

The damage identification in bars built on a longitudinal acoustic wave propagation approach was addressed in the
present paper. The direct problem was solved trough the Sequential Algebraic Algorithm (SAA), a reliable and fast
technique, as it was proven in a previous paper [23], where the SAA method was able to preview the experimentally
obtained echo generated by an inhomogeneity in the structure due to the presence of damage. The corresponding in-
verse problem of damage identification was then addressed considering five distinct hybrid optimization techniques,
based on the combination of one of the five stochastic optimization methods: PSO, GA, LJ, PCA and SA, with the
deterministic Levenberg-Marquardt method.

Three damage scenarios were addressed in the numerical tests. Also, two conditions were considered: noiseless
data and noisy data with the relatively high signal to noise ratio (SNR) of 10 dB. With the noiseless data, the
damage recovery was almost perfect for the three considered damage scenarios and with all five hybrid optimization
techniques. The numerical tests with SNR of 10 dB showed good identification results, but, due to the presence of
noise in both the pulse and echo signals, the estimated cross-section area profile presented some small oscillations
further the actual damaged regions. Therefore, the damage identification procedure built on the SAA was shown
robust with respect to noise corrupted signals, yielding to satisfactory results even in the presence of a high level
noise.

It is worth noting that in the first step of the hybrid optimization procedure, the identification result strongly
depends on the stochastic method considered, as shown in Fig. 7. However, after the second step, in which the LM
method is applied, the damage recovery was almost the same for the five hybrid techniques, as shown in Figs 8–10.

In order to assess the computational performance of the methods, one damage scenario (Case 1) was considered
as a benchmark. Since none of the techniques presented a significant memory charge, the execution time was the
main feature under concern. It became clear that the LJ-LM hybrid technique presented the lowest execution time,
even with a larger number of execution of the direct problem than, for instance, the PSO-LM technique, as seen in
Table 1.

It is worth emphasizing that the sequential algebraic algorithm (SAA) yields an exact solution for the discretized
inhomogeneous wave propagation phenomenon without adding a relevant computational burden. Besides, its for-
mulation enables one to identify only one parameter at once, instead of all the parameters together, as usual. This
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feature facilitates the use of the stochastic optimization techniques and, of course, the hybrid ones. The number of
identified parameters in each considered damage scenario was of the order of 50, which is not usual in optimization
procedures. As a consequence, not only the damage location and severity were identified but the damage shape was
also recovered.
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