
Structural Safety 45 (2013) 10–17
Contents lists available at ScienceDirect

Structural Safety

journal homepage: www.elsevier .com/ locate/s t rusafe
Reliability based design of driven pile groups using combination of
pile driving equations and high strain dynamic pile monitoring
0167-4730/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.strusafe.2013.07.009

⇑ Corresponding author. Address: 365 Weil Hall, 32605 Gainesville, FL, USA. Tel.:
+1 352 392 9537.

E-mail addresses: haki@gmx.at (H. Klammler) mcm@ce.ufl.edu (M. McVay)
rodrigo.herrera@dot.state.fl.us (R. Herrera) peter.lai@dot.state.fl.us (P. Lai).
Harald Klammler a,b,⇑, Michael McVay a, Rodrigo Herrera c, Peter Lai c

a Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL, USA
b Department of Environmental Science and Sustainable Development, Federal University of Bahia, Barreiras, Brazil
c Florida Department of Transportation, Tallahassee, FL, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 23 March 2012
Received in revised form 26 July 2013
Accepted 27 July 2013
Available online 31 August 2013

Keywords:
Deep foundation
LRFD
Probability of failure
Axial resistance
Best linear unbiased estimation
Reliability based design (e.g., load and resistance factor design – LRFD) aims at meeting a maximum per-
missible probability of failure (target reliability) for engineered systems or major elements thereof. For
deep foundations, such as driven pile groups, statistical parameters of the random load and target reli-
abilities are naturally defined for entire pile groups, while pile driving criteria for stopping pile advance
are required for individual piles. We present an approach using dynamic equations (e.g., Gates) and
dynamic monitoring (e.g., PDA/CAPWAP) for estimating axial pile resistances. Dynamic equations are
site-specifically calibrated to dynamic monitoring results from test pile programs, for example, and resis-
tance estimates of production piles from equations (available at all piles) and monitoring (only available
at monitored piles) are combined by best linear unbiased estimation (BLUE). Resulting resistance esti-
mates and uncertainties of all piles in a group are further combined to obtain LRFD resistance factors
U for pile groups as well as explicit pile driving criteria for individual piles. An iteration procedure is pre-
sented to account for the possible presence of previously driven piles in a group. A practical example and
charts of U as a function of the degree of monitoring (percentage of piles monitored in a group) are used
to demonstrate and discuss results.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Within the category of deep foundations, driven piles are a
common alternative to drilled shafts. Depending on the stage of
implementation, numerous methods exist for the design and qual-
ity control of driven piles. These methods may be grouped into
three major categories [1]: (1) ‘‘Static equations’’ (e.g., Tomlinson
or Schmertmann methods) using measurements of certain soil
parameters, SPT and/or CPT data. (2) ‘‘Dynamic equations’’ (e.g.,
ENR or Gates equations) using information from the pile driving
process, such as blow count and hammer properties. (3) ‘‘Dynamic
measurements’’ (e.g., Case method or Case Pile Wave Analysis
Program – CAPWAP) using data from pile driving analyzer (PDA),
i.e., high strain dynamic testing (HSDT). More recently, embedded
data collectors (EDC) are available as an alternative to PDA with
gages at the bottom as well as at the top of the pile, and results
compare well to PDA/CAPWAP [2] as well as static load tests [3].
In a typical driven pile project (1) is applied in the pre-construction
phase for pile design, while (2) and (3) are used as pile driving
criteria during construction for stopping pile advance and may be
adjusted according to static validation load tests on a number of
piles [4,5].

Reliability based design (e.g., load and resistance factor design –
LRFD; [1,6]) aims at achieving a prescribed level of reliability (max-
imum permissible probability of failure) for engineered systems.
This requires a conceptual model, which is consistent with the de-
sign and construction procedure (e.g., the pile driving criteria) and
accounts for all types of uncertainties involved (e.g., uncertainties
of prediction methods, soil parameters or due to spatial variability
of ground properties within a site). Many approaches make use of
pile load test databases to determine reliabilities of existing foun-
dations or to establish LRFD resistance factors for future design
purposes. Under axial loads, these approaches include Allen [7]
for dynamic pile driving equations as well as Kwak et al. [8] for de-
sign based on SPT data. McVay et al. [9], Paikowsky [1] and Yoon et
al. [10] investigate reliability based performance of a series of dif-
ferent static and dynamic methods, while Zhang [5], Zhang et al.
[11] and Liang and Yang [12] propose the use of dynamic measure-
ments and static load tests for reliability based quality control at
the end of the construction phase. In an effort to reduce design un-
certainty based on large and possibly heterogeneous load test da-
tabases, Zhang et al. [13] apply Bayesian updating to incorporate
less variable regional and site-specific information. Alternative ap-
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Dimensionless

CVg(pre) estimation uncertainty of Rg

CVg0 estimation uncertainty of Rg for qs = 0
CVg1 estimation uncertainty of Rg for qs = 1
CVm estimation uncertainty of kmRm; coefficient of varia-

tion of em

CVp estimation uncertainty of kpRp; coefficient of variation
of ep

CVpm estimation uncertainty of R�pm
CVQ coefficient of variation of random load
CVQD LRFD dead load coefficient of variation
CVQL LRFD live load coefficient of variation
CVRm coefficient of variation of observed values of Rm at a

site
CVRp coefficient of variation of observed values of Rp

(or Rp’) at a site
CVe coefficient of variation of estimation error
Emp auxiliary variable defined as E[Rm/Rp]E[Rp]/E[Rm]
Epm auxiliary variable defined as E[Rp/Rm]E[Rm]/E[Rp]
i, j index variables
np number of piles in a group
nm number of monitored piles in a group
n0 number of previously driven piles in a group
wm BLUE weight of R�m
wp BLUE weight of R�p
b LRFD reliability index
cD LRFD dead load factor
cL LRFD live load factor
ei,j estimation errors for different piles in a group
em random estimation error of Rm with respect to Rt

ep random estimation error of Rp with respect to Rt

km bias of Rm with respect to Rt

kp bias of Rp with respect to Rt

kR LRFD resistance bias factor
kQD LRFD dead load bias factor
kQL LRFD live load bias factor
qpm correlation coefficient between estimation errors of

Rp (or Rp’) and Rm

qs average correlation coefficient of estimation errors
between different piles in a group

U LRFD resistance factor

Forces
Qdes LRFD nominal design load (expectation of random

load)
QD LRFD dead load
QL LRFD live load
Rt true pile resistance
Rm(i) estimated pile resistance from dynamic measure-

ments (of i-th pile in group)
Rp(i) estimated pile resistance from dynamic equation

(of i-th pile in group)
Rp(i)’ Rp(i) after site-specific adjustment to Rm

R�m Rm after bias correction
R�pðiÞ Rp(i) or Rp(i)’ after bias correction
R�pmðiÞ BLUE estimate of pile resistance based on R�p and R�m
Rg estimated (nominal) resistance of pile group
Rgt true (load tested) resistance of pile group
Rn estimated (nominal) resistance of single pile (equal to

expectation of Rt)
Rn0 uniform nominal resistance of each previously

installed piles in a group

Others
a, b linear regression coefficients

A, B, C, l auxiliary variables in dimension of force2

E[] expectation operator
H hammer stroke in meters
N blow count in blows per meter
W hammer weight in kilograms
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proaches combining uncertainties of relevant design parameters
by propagation through design equations rather than comparing
predictions against load test results are taken by Foye et al. [14]
and Kim et al. [15]. These methods do not rely on the compilation
of pertinent load test databases, however, they may not fully ac-
count for uncertainties of the design equations (method error)
and statistical properties of some design parameters (including
correlations between parameters) may not always be well defined.

While the vast majority of reliability studies focus on individual
piles (or even side and tip resistances separately), it is logical that
target reliabilities should apply to entire systems, i.e., containing
the superstructures [16]. However, due to the generally large com-
plexity of the problems (e.g., an entire bridge with many elements
influencing each other to a smaller or larger degree), super and sub-
structure design are widely decoupled in the sense that geotechnical
engineers receive prescribed target reliabilities and load properties
for each foundation element (e.g., one driven pile group). It has been
recognized that reliabilities at the pile and group level may be dras-
tically different due to effects of a rigid pile cap and pile redundancy
within a group (i.e., failure of a single pile does not necessarily lead to
failure of the whole group). In order to account for the latter, it has
been suggested and become part of design standards that assigned
pile reliabilities should be smaller than required target reliabilities
of pile groups [1,9,16]. In the present work, we establish a methodol-
ogy, which aims to achieve a given target reliability at the pile group
level by defining pile driving criteria for individual piles based on the
number of piles in a group and a combination of pile resistance pre-
dictions from dynamic equations and an arbitrary number of dy-
namic measurements. We hereby consider the predictions from
dynamic measurements as reliably calibrated to static load test da-
tabases (e.g., [1]) and perform site-specific calibration of dynamic
equations with respect to dynamic measurements. This is to reduce
the influence of variable driving equipment performance between
sites [4]. While the following sections deal with single piles and
the calibration and combination of predictions from dynamic equa-
tions and measurements, subsequent sections focus on the pile
group level and the development of LFRD resistance factors. A prac-
tical example problem and charts are presented thereafter to illus-
trate the findings.

2. Theoretical development

2.1. Site specific calibration of prediction equation

For the purpose of illustrating the statistical concept, assume a
large site with many statically load tested driven piles, such that all
‘‘true’’ pile resistances Rt are random, but known. Note that herein,
pile resistance always refers to the total axial resistance in general,
which is the sum of side plus tip contributions. For every pile it is
generally possible to make a prediction of Rt by one of the available
dynamic equations. This will be called the ‘‘predicted value’’ Rp in
the sequel and it is a random variable with bias and uncertainty
with respect to Rt. For example, if the Federal Highway Administra-
tion (FHWA) modified Gates equation [1] is used, one obtains after
conversion to SI units

Rp ¼ 0:021
ffiffiffiffiffiffiffiffiffi
WH
p

log10ð0:254NÞ � 0:445 ð1Þ
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where Rp is the Davisson resistance in MN, W is the hammer weight
in kilograms, H the hammer stroke in meters and N the blow count
in blows per meter. We further define a ‘‘monitored value’’ Rm of Rt,
which is also random and obtained from possible dynamic mea-
surements (e.g., PDA or EDC) during pile driving. Through a compre-
hensive database analysis of load tests and using the Davisson
criterion, Rt/Rm from using PDA with CAPWAP analysis, for example,
has been found to have an expectation (LRFD ‘‘bias’’) of km = 1.16
with a coefficient of variation CVm = 0.34 [1].

Analogous values of bias kp and uncertainty CVp for Rp are also
available; however, variability in hammer performance between
and even during particular driving jobs may be significant [4]. In or-
der to control this variability at least between different sites with-
out significant increase in cost due to static load testing, km and CVm

are assumed to be reliably known and we propose to calibrate Rp in-
directly to Rm rather than directly to Rt. Respective data are typically
available as depth profiles of Rp and Rm from preliminary test pile
programs at a site. According to LRFD practice the relationships

Rt ¼ kpRpep ð2Þ

Rt ¼ kmRmem ð3Þ

apply, where ep and em are random error terms (independent of Rp

and Rm, respectively) of unit expectation and coefficients of varia-
tion CVp and CVm. Since both estimators are unbiased, the expecta-
tions of the right-hand-sides of Eqs. (2) and (3) have to be equal to
the expectation of Rt, such that

kp ¼
kmE½Rm�

E½Rp�
ð4Þ

may be obtained with E[] denoting the expectation operator. Know-
ing km from historical data and E[Rm] and E[Rp] from the sample
means of observed data, kp may be inferred. Furthermore, the coef-
ficients of variation of Eqs. (2) and (3) may be written as CV2

Rp þ CV2
p

and CV2
Rm þ CV2

m, respectively, where CVRp and CVRm are the coeffi-
cients of variation of observed values of Rp and Rm. Both Eqs. (2)
and (3) have to reproduce the coefficient of variation of Rt leading to

CV2
p ¼ CV2

Rm þ CV2
m � CV2

Rp ð5Þ

with CVm again known from historical data. In analogy to standard re-
gression theory, CV2

Rp (or CV2
Rm) may be regarded as the portion of

variability in Rt explained by the estimator, while CV2
p (or CV2

m) repre-
sents the complementary portion not explained by the estimator.

The bias corrected estimators kpRp and kmRm are expected to be
correlated to each other as their common purpose is to closely re-
produce variable values of Rt. The respective relative estimation er-
rors ep and em about any fixed Rt may also possess a non-zero
correlation coefficient qpm to be determined. Eliminating Rt from
Eqs. (2) and (3) gives kmRm/(kpRp) = ep/em which possesses an expec-
tation Emp equal to E½Rm=Rp�E½Rp�=E½Rm� ¼ E½ep�=E½em�ð1þ CV2

m

�CVmCVpqpmÞ. The left-hand-side is found using Eq. (4) and may
be evaluated from field observations of Rp and Rm. The right-
hand-side is derived by Journel and Huijbregts [17, p. 426] using
a low order approximation. For log-normal ep and em in combina-
tion with qpm = 0 it can be shown (using [18, p. 103 and 645]) that
this approximation becomes exact. In the same way, an expecta-
tion Epm for the reciprocal may be expressed as
E½Rp=Rm�E½Rm�=E½Rp� ¼ E½em�=E½ep�ð1þ CV2

p � CVmCVpqpmÞ. With this,
the average (Emp + Epm)/2, for example, may be obtained from
observations and used to infer qpm as

qpm ¼
1þ 0:5ðCV2

m þ CV2
p � Emp � EpmÞ

CVmCVp
ð6Þ

where it is recalled that E[ep] = E[em] = 1. In summary, in the above
development it is assumed that km and CVm are reliably known from
databases. This immediately implies that the expectation and
coefficient of variation of Rt are also known reliably from Eq. (3), if
sufficient observations of Rm are available. Based on this knowledge
Eqs. (4) and (5) allow inferring kp and CVp from a series of observed
values of Rm and Rp at a site (e.g., from depth profiles of preliminary
test piles). Similarly, Eq. (6) explores the observed expectations Emp

and Epm to infer qpm; the use of (Emp + Epm)/2 as opposed to Emp or Epm

alone is hereby thought to avoid ambiguity (possibly different values
of qpm based on Emp or Epm alone). Most importantly, neither of Eqs.
(4)–(6) requires values of true load test resistances Rt.

It is noted, however, that the bias model of Eqs. (2) and (3) is
purely proportional, i.e, it is based on the assumption that scatter-
plots of Rt versus Rp and Rt versus Rm form clouds around a straight
line through the origin. As a consequence, data points of Rm versus
Rp should also scatter around a straight line through the origin. If
preliminary data indicates that this is not the case at a given site,
then the prediction equation for Rp (e.g., Eq. (1)) should be revised
to achieve this proportionality. A modified estimator R0p = a + bRp

based on standard linear regression between Rp and Rm can be used
in Eqs. (4)–(6) instead of Rp (see practical example in Section 3).
The adjustment by linear regression then implies that
E[R0p]/E[Rm] = 1 and CVRp < CVRm, which simplifies Eqs. (4) and (6)
and assures CVp > CVm in Eq. (5).

2.2. Combining predicted and monitored resistances of a single pile

Using the two unbiased estimators Rp� ¼ kpRp0 Rm� ¼ kmRm and
of Rt with their respective uncertainties, a best linear unbiased
estimator (BLUE; [19, p. 278]) of the form

R�pm ¼ wpRp� þwmRm� ð7Þ

is used with weights wp and wm to obtain an optimal (in the sense of
unbiasedness and minimum error variance) estimate R�pm of Rt. In
spatial interpolation this is equivalent to solving the Ordinary
Kriging system, which is here formulated based on estimation error
variances,

E½Rt �2CV2
p E½Rt�2CVpCVmqpm 1

E½Rt�2CVpCVmqpm E½Rt�2CV2
m 1

1 1 0

2
64

3
75

wp

wm

l

2
64

3
75 ¼

0
0
1

2
64

3
75 ð8Þ

and where E[Rt] is used as the common expectation of Rp� and Rm�.
Thus, the products on the diagonal of the coefficient matrix repre-
sent the variances of estimation errors ep and em, and the off-diago-
nal product represents the respective covariance. Parameter l is a
Lagrangian operator, which is not further required in the sequel,
and the zeros on the right-hand-side are due to independence be-
tween estimation errors and true resistances. Solving Eq. (8) gives

wp ¼
CV2

m � CVmCVpqpm

CV2
p þ CV2

m � 2CVmCVpqpm

ð9Þ

wm ¼
CV2

p � CVmCVpqpm

CV2
p þ CV2

m � 2CVmCVpqpm

ð10Þ

with an estimation uncertainty CV2
pm ¼ w2

pCV2
p þw2

mCV2
m þ 2wpwm

CVpCVmqpm of R�pm as

CV2
pm ¼

CV2
pCV2

mð1� q2
pmÞ

CV2
p þ CV2

m � 2CVmCVpqpm

ð11Þ

It can be shown that CV2
pm is always less than or equal to both CV2

p and
CV2

m, which illustrates the benefit of using a combination of two esti-
mates for Rt. This benefit increases as the two estimates become more
independent (qpm approaching zero). It is further noted that Eqs. (9)–
(11) for qpm = 0, and when expressed in variances rather than CV’s, are
formally identical to results of a Bayesian updating approach by
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Zhang et al. [13] between global and regional data. Finally, for unmo-
nitored piles, i.e., when Rm is not available, CVm/CVp may be set to a
very large value leading to the trivial results of wp = 1, wm = 0 and
CVpm = CVp. In cases when a number of piles is monitored, but qpm is
not reliably known or close to one, it is a conservative approximation
to disregard predicted resistances at monitored piles, i.e., to use CVp/
CVm >> 1 leading to wp = 0, wm = 1 and CVpm = CVm.

2.3. Pile groups with no previously installed piles

Consider a pile group of np piles, all of which are still to be driven
and where an arbitrary number nm of which are to be monitored.
Using Rp� and R�pm to estimate resistances of unmonitored and mon-
itored piles in the group, respectively, an unbiased estimate of total
group resistance Rg is obtained as the sum of each pile’s resistance es-
timate (considering a group efficiency factor of one; [16]). Due to un-
biasedness, Rg represents the expectation of true pile group
resistance at a particular location and it is, hence, equivalent to the
associated ‘‘nominal’’ pile group resistance in LRFD context.

Rg ¼
Xnm

i¼1

R�pmi þ
Xnp

i¼nmþ1

R�pi ¼ npRn ð12Þ

This assumes no contribution of the pile cap and that pile spa-
cing is large enough (e.g., over two times pile diameter), such that
the possibility of block failure may be excluded [16]. It is further
reasonable to assume that all piles are driven to the same nominal
resistance Rn, such that the final expression of Eq. (12) is valid.
Hereby, and in analogy to Rg, Rn is the unbiased estimate (expecta-
tion) of true pile resistance given by Rp� and R�pm for unmonitored
and monitored piles, respectively. The next goal is to find the value
of Rn, such that driving criteria for individual piles (monitored and
unmonitored) may be established, while satisfying the target relia-
bility at the group level.

For combining pile resistance uncertainties into a group resis-
tance uncertainty it is necessary to consider possible correlation
of estimation errors between different piles in a group. Zero or
small correlation may be expected if estimation errors are mainly
caused by random factors that are independent from pile to pile
(e.g., instrumentation/operation errors, rapidly changing ground
conditions, etc.). Stronger correlations will occur if estimation
errors are influenced by site or driving conditions, which vary be-
tween pile groups, but are relatively constant for a single pile
group. Hence, in general, estimation error may be regarded as a
spatially random function possessing a spatial covariance function
(or variogram) with a particular correlation length [17–19]. How-
ever, it is unlikely to obtain sufficient load test data at a site for cal-
culating estimation errors and their full variogram for exact
evaluation of pile group uncertainty. As an alternative, an average
spatial correlation coefficient qs is introduced, which expresses the
average degree of correlation between estimation errors of differ-
ent piles in a group. Similar to Eq. (6), qs may be determined from
the relationship E½ei=ej� ¼ E½ei�=E½ej�ð1þ CV2

ej � CVeiCVejqsÞ, where ei

and ej are known estimation errors (from Eq. (2) or (3)) at two dif-
ferent piles, which are not separated further than the maximum
pile separation distance in a production pile group. In other words,
E[ei/ej] may be evaluated by pairing up all possible combinations of
load tested piles, eliminating those pairs that are separated by
more than the maximum pile distance in a group and computing
the empirical mean of all remaining ratios ei/ej. Note hereby, that
piles paired up with themselves (zero separation distance) are
not included and that each valid pile pair contributes two ratios
ei/ej and ej/ei to the mean (which assures E[ei/ej] > 1). Knowing also
that E[ei] = E[ej] and CVei = CVej it is found that

qs ¼ 1� E½ei=ej� � 1
CV2

e

ð13Þ
Note that this method of estimating qs is analogous to using a single
point of the experimental variogram, except for exploring E[ei/ej] in-
stead of E[(ei � ej)2]. E[ei/ej] and Eq. (13) may be applied to both pre-
dicted (CVe = CVp) and monitored (CVe = CVm) resistance errors.
However, practical applicability may still be limited by requiring a
sufficient number of load tests (e.g., >20 load test pairs equivalent
to 7 load tests in one group) at short separation distances. As an al-
ternative, based on the definition of qs given here, it will be derived
further below in terms of load test results on entire pile groups
(rather than separate nearby single piles). For this purpose, the re-
sistance estimation uncertainty of pile groups is required.

The variance of a sum is known to be equal to the sum of all ele-
ments in the variance–covariance matrix of the summands. Apply-
ing this to Rg from Eq. (12) we obtain a symmetric np by np matrix
and a pile group uncertainty CV2

g after division by R2
g of

CV2
g ¼ 1

n2
p
ðAþ Bþ CÞ

A ¼ nmCV2
pm þ ðnp � nmÞCV2

p

B ¼ nmðnm � 1ÞCV2
pmqs þ ðnp � nmÞðnp � nm � 1ÞCV2

pqs

C ¼ 2nmðnp � nmÞðwpCV2
p þwmCVpCVmqpmÞqs

ð14Þ

The two terms in A correspond to the sums of the variances of nm

monitored and np � nm unmonitored piles. The first and second
terms in B are the sums of all covariances between monitored and
unmonitored piles, respectively. Finally, C represents the sum of
all covariances between monitored and unmonitored piles. Eq.
(14) implies that qs applies to predicted and monitored estimation
errors and that the correlation between a prediction error at one
pile location and a monitored resistance error at another pile loca-
tion is equal to qpmqs. Denoting by CVg0 and CVg1 the uncertainties
for the limiting cases of qs = 0 and qs = 1 Eq. (14) leads to

CV2
g0 ¼

1
np

nm

np
CV2

pm þ 1� nm

np

� �
CV2

p

� �
ð15Þ
CV2
g1 ¼ nm

np

� �2
CV2

pm þ 1� nm
np

� �2
CV2

pþ

2 nm
np

1� nm
np

� �
ðwpCV2

p þwmCVpCVmqpmÞ
ð16Þ

where wp, wm and CVpm are given by Eqs. (9)–(11). With this, Eq.
(14) may be rewritten in the simple form

CV2
g ¼ CV2

g0 þ ðCV2
g1 � CV2

g0Þqs ð17Þ

which immediately shows that CVg0 � CVg � CVg1. Setting nm/np = 0
in Eqs. (15) and (16) results in CV2

g0 ¼ CV2
p=np and CV2

g1 ¼ CV2
p , which

correspond to the pile group resistance uncertainties if no monitor-
ing is performed. In contrast, for full monitoring nm/np = 1 giving
CV2

g0 ¼ CV2
pm=np and CV2

g1 ¼ CV2
pm.

Eq. (17) gives CVg, which is the estimation uncertainty of pile
group resistance and equivalent to the coefficient of variation of
many ratios Rgt/Rg, where Rgt is a true pile group resistance from
load testing and Rg the respective estimate from Eq. (12). Hence,
if a sufficient number of load tests on entire pile groups is available
to reliably infer CVg from observed data, Eq. (17) may be inverted to
determine a value of qs. For nm = 0 (i.e., all pile resistance uncer-
tainties are the same) this yields

qs ¼
CV2

g

CV2
p
� 1

np

1� 1
np

ð18Þ

where CVp may be interpreted as an average pile prediction uncer-
tainty (of an arbitrary method) applicable to the piles in the load
tested groups.



Fig. 1. LRFD U as a function of pile group resistance uncertainty CVg for different
pile group reliabilities b = {2.5, 3, 3.5, 4} and resistance bias factor kR = 1. Exact
solution from Eqs. (14) and (15) (continuous) and approximation from Eq. (16)
(dashed).
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2.4. LRFD U and pile driving criteria

Knowing the expected pile group resistance Rg and uncertainty
CVg from above, and assuming a log-normal distribution of true
pile group resistance about Rg, the LRFD resistance factor U for
target reliability b and given load parameters may be found from
[1,6]

� ¼
kR cD

QD
QL
þ cL

� � ffiffiffiffiffiffiffiffiffiffiffi
1þCV2

Q

1þCV2
g

r

kQD
QD
QL
þ kQL

� �
exp b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln½ð1þ CV2

gÞð1þ CV2
Q Þ�

qn o ð19Þ

CV2
Q ¼

�
QD
QL

kQDCVQD

�2
þ
�
kQLCVQL

�2

�
QD
QL

kQD þ kQL

�2 ð20Þ

The term CVQ hereby denotes the coefficient of variation of the ran-
dom load, which is also assumed to be log-normally distributed. The
remaining parameters in Eqs. (19) and (20) may be chosen accord-
ing to AASHTO [6]. In the present work the recommended values for
load cases I, II, and IV are adopted: dead load factor cD = 1.25, live
load factor cL = 1.75, dead-to-live load ratio QD/QL = 2, dead load bias
factor kQD = 1.08, live load bias factor kQL = 1.15, dead load coeffi-
cient of variation CVQD = 0.128 and live load coefficient of variation
CVQL = 0.18. The resistance bias factor kR in Eq. (19) is set to one,
since bias correction is already incorporated in Eq. (7). Note that,
given log-normal pile resistances (or estimation errors thereof),
the assumption of log-normal pile group resistance (or estimation
error thereof) is an approximation. However, although it is known
that sums of log-normal variables are not strictly log-normal, it is
a reasonable approximation for sums of identically (and possibly
correlated) log-normal variables. This is known as ‘‘permanence of
log-normality’’ ([18, p. 433] and [20]) and does not contradict the
Central Limit Theorem, since the log-normal distribution
approaches the normal distribution for decreasing coefficients of
variation (e.g., due to summing or averaging).

In order to simplify design equations for practical use, an
approximation to Eq. (19) is presented in the form of

� � 1
0:73þ 0:12b� ð11� 7:5bÞCV2

g

¼for b¼3 1
1:09þ 11:5CV2

g

ð21Þ
Eqs. (19) and (21) are shown in Fig. 1 as continuous and dashed
lines, respectively, for different values of b. It is seen that the ap-
proximation is mostly conservative with a maximum absolute er-
ror of approximately 0.02. Following the LRFD principles and
given a nominal design load Qdes defined as the expectation of
the load distribution, the uniform nominal resistance of all piles
in a group is obtained as Rn = Qdes/(Unp). With this, the criteria
for stopping pile advance may be defined as R�pm ¼ Rn (Eq. (7)) for
monitored piles and Rp� ¼ kpRp0 ¼ Rn (Eq. (1)) for unmonitored
piles. In other words, pile driving is stopped when the estimated
pile resistance reaches the nominal value Rn.
2.5. Pile groups with previously installed piles

Since some or all piles of the preliminary test program may be-
come part of the constructed pile groups, the estimated resistances
of the previously driven piles must be accounted for in the con-
structed resistance of the remaining piles in the same group. Since
test piles are typically driven to larger resistances than the antici-
pated requirement, this means that the resistances of the remaining
piles may be reduced. Denote by n0 the number of previously
installed piles in a group, such that nm � n0 is the number of
monitored piles still to be driven (i.e., nm remains the number of
monitored piles from both preliminary and future driving) and
np � nm is the number of unmonitored piles still to be driven. Since
all previously driven piles are monitored, their combined resistance
may be estimated by

Pn0
i¼1R�pmi. In what follows, all previously driven

piles in a group are assumed to possess a uniform nominal resis-
tance Rn0. Together with the monitored and unmonitored piles not
yet installed, and which are assumed to be driven to a uniform nom-
inal resistance Rn, this results in an estimated group resistance of

Rg ¼
Xn0

i¼1

R�pmi þ
Xnm�n0

i¼n0þ1

R�pmi þ
Xnp

i¼nmþ1

R�pi ¼ n0Rn0 þ ðnp � n0ÞRn ð22Þ

This is a generalization of Eq. (12) and CVg from Eq. (14) may be
generalized to CVg,pre as

CV2
g;pre ¼

n2
pR2

nCV2
g þ n2

0CV2
pmðR

2
n0 � R2

nÞ
n0Rn0 þ ðnp � n0ÞRn
	 
2 ð23Þ

where the numerator is the estimation variance for n0 = 0 corrected
for the fact that n0 previously driven piles have a variance n2

0R2
n0CV2

pm

rather than n2
0R2

nCV2
pm. Eq. (23) uses a covariance between piles of

different nominal resistances Rn and Rn0 equal to the covariance, if
both piles shared the same nominal resistance Rn. For the typical
case of Rn0 > Rn this means that the estimation error associated with
the additional resistance Rn0 � Rn is not correlated to the estimation
error for pile resistance up to Rn.

Eq. (14) possesses the convenient property of being indepen-
dent of Rn, such that a design value of LRFD U may be directly com-
puted through Eqs. (19) and (21) or Fig. 1. This is no longer the case
with Eq. (23) and, for known values of n0 and Rn0, it is suggested to
determine U through iteration by picking a starting value for U
(e.g., 0.5) and repeating the following steps:

(1) Use the basic LRFD relationship to find Rg = Qdes/U.
(2) Compute Rn from Eq. (22).
(3) Compute CVg,pre from Eq. (23).
(4) Find U from Eqs. (19) and (21) or Fig. 1.
(5) Reinitiate iteration at (1) with resulting value of U and

continue until U reaches a stable value.

In the same way as above, knowing Rn the criteria for stopping
pile advance may be defined as R�pm ¼ Rn (Eq. (7)) for monitored
piles and Rp� ¼ kpRp0 ¼ Rn (Eq. (1)) for unmonitored piles.
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3. Practical example

In order to demonstrate the results of Section 2, data from the
installation of two driven piles in the state of Florida are used with
pile resistances determined from the Davisson criterion. Monitor-
ing was performed by the PDA/CAPWAP method, while pile resis-
tance predictions were obtained from the modified Gates
equation given in Eq. (1). Depth profiles of Rm and a scatter plot
of Rm versus Rp are shown in Fig. 2. In the scatter plot and all
subsequent analysis data with Rm < 0.5 MN were discarded, since
Rn > 1 MN is anticipated in the present example and to avoid divi-
sion by zero in the computation of Epm for Eq. (6). The linear regres-
sion fit of the remaining 70 data points in Fig. 2b confirms the
visual impression that the data cloud is roughly distributed about
a straight line, which, however, does not pass through the origin.
As a consequence, the proportional bias model of Eqs. (2) and (3)
is not entirely appropriate and instead of directly using Rp from
Eq. (1) as the predicted resistance, we use a site-specifically ad-
justed version Rp’ = 0.84Rp � 0.38 based on the linear regression
fit. This leads to E[Rm] = E[Rp] = 1.40 by taking the respective sam-
ple means and, knowing km = 1.16 from Paikowsky [1], it yields
kp = 1.16 by Eq. (4). Data further deliver CVRm = 0.32 and CVRp = 0.29
as the sample coefficients of variation and, in combination with
CVm = 0.34 from Paikowsky [1], Eq. (5) gives CVp = 0.37. Computing
Emp = 1.00 as the mean of all ratios kmRm/(kpRp) and Epm = 1.03 as
the mean of all ratios kpRp/(kmRm), Eq. (6) yields qpm = 0.88. By
Eqs. (9) and (10) this translates into estimation weights wp =
0.20 and wm = 0.80, further resulting in CVpm = 0.34 from Eq. (11).

At the example site, single pile load test data for evaluation of qs

through Eq. (13) is not available. We opt to apply Eq. (18) with an em-
pirical value of CVg inferred from a series of load test results on pile
groups at different sites of mainly np = 9 piles compiled by Zhang
et al. [16, Table 2]. They report a maximum (most conservative)
CVg = 0.24 for freestanding pile groups in cohesionless soils. Without
explicit information about the resistance estimation methods in-
volved in the load tests an exemplary value of CVp = 0.35 is adopted
[16, Table 1] as the resistance prediction uncertainty for single piles.
With this, Eq. (18) delivers qs = 0.40. Furthermore, partially based on
results of Zhang et al. [16] and a survey of common practice/state-of-
the-art, Paikowsky [1] recommends a target reliability of b= 3 for pile
groups and a reduced b = 2.33 for single piles in redundant (np � 5)
pile groups. Thus, applying Eq. (21) to a single pile with an exemplary
value of CVg = CVp = 0.35 and b = 2.33 results in a design value of
U = 0.55. This leads to a pile group uncertainty CVg = 0.25, obtained
from inversion of Eq. (21) with b = 3 and U = 0.55 (i.e., equal design
based on pile and group reliabilities). In other words, the recom-
mended reliability reduction from b = 3 to b = 2.33 between pile
groups and redundant piles is equivalent to an assumed uncertainty
reduction from a chosen CVp = 0.35 for single piles to CVg = 0.25 for
pile groups. By Eq. (18) this leads to an estimate of qs = 0.44 for
np = 9, which is in reasonable agreement with qs = 0.40 from above.
In fact, Eq. (18) demonstrates that qs increases with np to reach an
asymptotic value of qs ¼ CV2

g=CV2
p � 0:50, which is adopted in the

sequel as a conservative upper bound for both predicted and moni-
tored resistance estimation errors. The intermediate value of qs be-
tween zero and one also indicates that portions of spatial
variability of estimation errors are contained within pile groups as
well as between pile groups.

To continue the example, suppose that a pile group consists of 5
piles with monitoring on two piles (i.e., np = 5 and np = 2) and that
the design load Qdes = 5 MN for the group with a target reliability of
b = 3. Eqs. (15)–(17) and (21) immediately yield CVg0 = 0.16,
CVg1 = 0.35, CVg = 0.27 and U = 0.52. Using the fundamental LRFD
design equation we arrive at Rn = Qdes/(Unp) = 1.93 MN for the nom-
inal resistance of a single pile. The criteria for stopping pile advance
are, thus, found as R�pm ¼ wpkpRp0 þwmkmRm ¼ 0:19Rp þ 0:93Rm
�0:09 ¼ Rn for monitored piles and Rp� ¼ kpRp0 ¼ 0:97Rp � 0:44
¼ Rn for unmonitored piles. Furthermore, we consider the scenario
where one pile of the group was already driven to a resistance
Rn0 ¼ R�pm ¼ 2:6 MN during the test pile program. Of the remaining
four piles, one is to be monitored, such that np = 5, nm = 2 and
n0 = 1 apply. Using the iterative procedure of Section 2.5 we arrive
at U = 0.55 and Rn = 1.63 MN. With this, the driving criteria of the re-
maining piles may be defined analogous to above. It may be observed
that in spite of a rather small change in U the latter values of Rn are
significantly smaller than those obtained for n0 = 0. This may be at-
tributed to the fact that the presence of a rigid pile cap is assumed
to perfectly redistribute excess loads from failed piles to still intact
piles (e.g., stronger test piles). It is noted that if Rn0 happens to be
equal to Rn for n0 = 0, then the iteration process of Section 2.5 delivers
identical results to those of the direct solution in Section 2.3.
4. Discussion of results

Fig. 3 graphically represents further results in terms of LRFD U
as a function of the degree of monitoring nm/np, which are based on
the practical example in combination with the parameters given in
each chart. The circles correspond to the hypothetical scenario of a
single pile in a group (np = 1) and represent minimum values of U.
Asterisks are used for np = 5 and the continuous lines correspond to
maximum values of U that are approached as np becomes very
large (np >> 1). It may be consistently observed that U grows ap-
proximately linear with nm/np between a minimum and a maxi-
mum value. These bounds correspond to a maximum group
uncertainty CV2

g;max ¼ CV2
p½1=np þ ð1� 1=npÞqs� and a minimum

group uncertainty CV2
g;min ¼ CV2

pm½1=np þ ð1� 1=npÞqs�
¼ CV2

g;maxCV2
pm=CV2

p , which are obtained from Eqs. (15)–(17) by
using nm/np = 0 and 1, respectively. Fig. 3a shows that U is rela-
tively constant with nm/np. This may be attributed to the large va-
lue of qpm = 0.88 resulting in an insubstantial uncertainty
reduction through monitoring. Mathematically, this is reflected
by CVpm � CVp and CVg,max � CVg,min. In other words, the high corre-
lation between the estimation errors of predicted and monitored
resistances observed in the practical example renders pile moni-
toring largely redundant with respect to prediction equations. As
a consequence, the benefit of (additional) monitoring is limited
and may not be worth the cost. However, this observation should
not be arbitrarily generalized, since qpm in the practical example
is inferred from depth profiles of only two piles, such that the ra-
tios Rm/Rp and Rp/Rm may not contain the full site variability (i.e.,
Emp and Epm in Eq. (6) would be larger with more data, thus de-
creasing qpm). Smaller values of qpm also appear plausible in view
of the fact that the random errors of prediction and monitoring
methods may be attributed to quite different factors (e.g., hammer
performance for predictions and strain sensor precision for moni-
toring). Moreover, qpm near unity would imply basically identical
performance of prediction equations and monitoring approaches.

Fig. 3b illustrates the effect of a decrease in qpm to a hypotheti-
cal value of 0.1. While this does not affect U for nm/np = 0 (no mon-
itoring and, hence, qpm irrelevant), the reduced correlation leads to
increasingly higher values of U as the degree of monitoring grows.
In Fig. 3c prediction uncertainty CVp is hypothetically raised from
0.37 to 0.6. As to be expected, this leads to a lowering of U, which
is more pronounced for low degrees of monitoring and which be-
comes weaker as the influence of monitoring grows. Fig. 3d de-
monstrates the effect of decreasing spatial correlation qs from 0.5
to a hypothetical value of 0.1. For np = 1, qs is irrelevant and no
changes are observed. For np > 1, U is seen to increase more
strongly, which is due to the elevated independence of estimation
errors between piles and a larger degree of uncertainty reduction
after summing those errors into a pile group uncertainty. For the



Fig. 2. Pile driving data from piles 1 and 8 of the Dixie Highway project in Florida. (a) Depth profiles of PDA/CAPWAP monitored resistances Rm and (b) scatter plot of all Rm >
0.5 MN versus Rp from modified Gates equation (Eq. (1)) with linear regression fit.

Fig. 3. LRFD U from Eq. (21) for b = 3 as a function of degree of monitoring nm/np for the practical example in combination with the parameters indicated in each chart.
Continuous lines are asymptotic maxima for np >> 1, asterisks are for np = 5 and circles are minima for hypothetical case of np = 1.
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preliminary empirical estimate of qs = 0.5 from pile group load
tests and current design practice, Fig. 3a–c illustrates the conveni-
ent fact that U is quite close to its asymptotic maximum value for
np � 5. This closeness increases for qs > 0.5 and means that in an
initial design phase a conservative minimum resistance factor Umin

(corresponding to CVg,max for np = 5 and qs = 0.5) and a conservative
maximum resistance factor Umax (corresponding to CVg,min for
np = 5 and qs = 0.5) may be determined to linearly approximate
U � Umin + (Umax � Umin)nm/np. This simple relationship is inde-
pendent of the total number np of piles in a group and relates the
degree of monitoring nm/np directly to a value of LRFD U. Fig. 3a–
c further illustrates that, for an inferred value of qs = 0.5, maximum
values of U for full monitoring range between approximately 0.55
and 0.65. This agrees well with current design practice as reflected
by an efficiency factor U/kR = 0.56 reported by Paikowsky [1,
Table 20] for b = 2.33 (single pile). It is recalled once more that
the present approach applies bias correction at the very beginning,
such that resulting values of U are identical to respective efficiency
factors (kR = 1). The partial superiority of the present approach
(larger U/kR) may be attributed to the combination of predicted
and monitored resistances and, as such, becomes more pronounced
for smaller values of CVp and qpm (Fig. 3b and c).

The proposed site-specific calibration of pile resistance predic-
tions from dynamic equations to those of dynamic measurements
(monitoring) from a test pile program attempts to ensure appropri-
ate bias and uncertainty parameters for a site. However, hammer
performance, for example, may be highly variable during pile driv-
ing within a single site [4]. That is, a successful initial calibration
from a test pile program may deteriorate in the course of a pile
driving job. It is recommended, therefore, that the relationship be-
tween predicted and monitored resistances be accompanied and/
or up-dated as data from monitored production piles become avail-
able. In addition, validation load tests as proposed by Zhang [5] and
Liang and Yang [12] may serve to gain additional confidence in re-
liable pile group construction over the whole site.
5. Summary

Many national construction standards require reliability based
design (e.g., [6]) to assure acceptable levels of reliabilities of engi-
neered systems. Driven pile groups are a common type of deep
foundation and probabilistic load parameters as well as target reli-
abilities are generally defined at the pile group level, i.e., not for
single piles or components thereof. Pile driving criteria, however,
are required for individual piles, which is currently achieved by
using different target reliabilities at the pile and group levels [1].
In the present work we consider piles under axial loading and pre-
sent an approach for defining pile driving criteria for individual
piles, while satisfying target reliability at the group level. Total pile
resistances (side plus tip components) are estimated from dynamic
predictions (e.g., Gates equation) at all piles and from dynamic
monitoring (e.g., PDA/CAPWAP) at an arbitrary number of moni-
tored piles in a group. Resistance estimates from equations may
strongly depend on variable properties of the driving equipment
and are site-specifically calibrated to monitored resistances from
test pile programs, for example. Estimates from dynamic equations
and monitoring are then combined through best linear unbiased
estimation (BLUE) to arrive at improved resistance estimates of
monitored piles. The latter are again combined with resistance es-
timates from dynamic equations at unmonitored piles to yield an
estimated pile group resistance with uncertainty.

Based on this, expressions for LRFD U and pile driving criteria
are formulated as a function of prediction uncertainty CVp, moni-
toring uncertainty CVm, correlation coefficient between estimation
errors of prediction and monitoring methods qpm and correlation
coefficient qs between estimation errors at different piles within
a group. While CVm and qs are inferred from load test data bases,
CVp and qpm are indirectly calibrated to monitored resistances at
an exemplary site (using Davisson criterion through the FHWA
modified Gates equation and PDA/CAPWAP monitoring). Results
in Fig. 3 show that for qs � 0.5 and five or more piles in a group
(np � 5) U becomes relatively insensitive to np and grows approxi-
mately linear with the degree of monitoring nm/np between a mini-
mum and a maximum value. Overall, and as to be expected, U
decreases with increasing CVp and CVm (larger uncertainties) as
well as with qpm and qs (more data redundancy). In order to benefit
from a significant increase in U due to monitoring both CVm and
qpm have to be small. Besides these general results for U, an itera-
tive method for reliability based pile group design in the presence
of previously driven piles in the group is also presented. It allows
for the flexibility to decrease nominal pile resistances of the re-
maining piles, if previously driven piles in the group (e.g., from test
pile program) are advanced to larger depths (resistances).
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