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Abstract In previous work, we undertook to study static
and anisotropic content in f (T ) theory and obtained new
spherically symmetric solutions considering a constant tor-
sion and some particular conditions for the pressure. In this
paper, still in the framework of f (T ) theory, new spherically
symmetric solutions are obtained, first considering the gen-
eral case of an isotropic fluid and later the anisotropic con-
tent case in which the generalized conditions for the matter
content are considered such that the energy density, the ra-
dial and tangential pressures depend on the algebraic f (T )

and its derivative fT (T ). Moreover, we obtain the algebraic
function f (T ) through the reconstruction method for two
cases and also study a polytropic model for the stellar struc-
ture.

1 Introduction

Through the proposal of Einstein for constructing a new ver-
sion for the General Relativity (GR) [1], the Teleparallel
Theory (TT) arose but it had been abandoned later for many
years. However, from the considerations made by Moller,
the proposal for an analogy between TT and GR has been
undertaken and developed once again [2–8]. GR is a theory
that describes the gravitational interaction through the cur-
vature of spacetimes. Since the Cartan manifold may pos-
sess curvature and torsion, we can define a connection free
of torsion, called Levi-Civita’s connection, for which the in-
teraction between the gravitation and matter is described by
GR. With the progress of the TT, it can be observed that GR,
in other words, the interaction of the curvature free of the
torsion with the matter, can analogously be viewed as a the-
ory that possesses uniquely torsion and being free from cur-
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vature, and whose Riemann tensor without torsion is identi-
cally null. Then TT is described as a geometrical theory for
which the Weitzenbock connection [9] generates a torsion,
which in turn defines the action which remains invariant un-
der the local Lorentz transformation [10]. From the global
formulation of TT for gravitation, one can compare it with
experiments of quantum effects in gravitational interaction
of neutron interferometer [11–13].

With the progress of the measurements about the evo-
lution of the universe, as the expansion and the accelera-
tion, the dark matter and dark energy, various proposals for
modifying the GR are being tested. As the unifications the-
ories, for the scales of low energies, it appears in the effec-
tive actions besides the Ricci scalar, the terms R2, RμνRμν

and RμναβRμναβ and the proposal of modified gravity that
agrees with the cosmological and astrophysical data is f (R)

theory [14–17]. The main problem that one faces with this
theory is that the equation of motion is of order 4, being
more complicated than GR for any analysis. Since GR pos-
sesses TT as analogous, it has been thought that the so-called
f (T ) theory, T being the torsion scalar, which would be the
analog generalizing GR, the f (R) theory. The f (T ) the-
ory is the generalization of TT, as we shall see later. Note
also that the f (T ) theory is free from curvature, i.e., it is
defined from the Weitzenbock connection. However, it has
been shown recently that this theory breaks the invariance of
the local Lorentz transformations [18, 19]. Another recent
problem is that the f (T ) theory appears to be dependent on
the used frame, i.e., it is not covariant [18–20].

In cosmology, the f (T ) theory has originally been used
as the source driving the inflation [21]. Posteriorly, it has
been used as an alternative proposal for the acceleration of
the universe, without requiring the introduction of the dark
energy [22–24]. Recently, the cosmological perturbations of
this theory have been analyzed [25, 26]. In gravitation, this
theory started by obtaining solutions of black hole BTZ [27].
Note also that spherically symmetric solutions have been ob-
tained freshly for stars [28, 29].
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In this paper, as well as in the simplification methods for
the equations of motion used in GR, for obtaining the solu-
tions with anisotropic symmetry [30, 33], we propose to an-
alyze the possibility of getting new gravitational solutions in
f (T ) theory. Fixing the spherical symmetry and the staticity
of the metric for a matter content described by a energy mo-
mentum tensor for an anisotropic fluid, we can impose some
conditions on the functions which define the metric or on the
radial pressure. Thus, one can obtain equations for the tor-
sion scalar, and this results in the complete determination of
the Weitzenbock geometry through the differential equation
that defines the torsion scalar.

This paper is organized as follows. In Sect. 2, we will
present a brief revision of the fundamental concepts of the
Weitzenbock geometry, the action of the f (T ) theory and
the equations of motion. In Sect. 3, we will fix the symme-
tries of the geometry and present the equations of the energy
density, the radial and tangential pressures. Section 4 is de-
voted to obtaining new solutions in the f (T ) theory with
constant torsion, and the matter content depending on the
function f (T ) and its derivative. In Sect. 5, we present a
summary of the reconstruction method for the static case of
the theory f (T ), showing its effectiveness for two illustra-
tive examples. In Sect. 6 we study the stellar structure in our
conjecture for the f (T ) theory. The conclusion and perspec-
tives are presented in Sect. 7.

2 The field equations from f (T ) theory

As the f (T ) theory has been extensively studied these last
months, several works have established with great consis-
tency their mathematical bases and physical basic important
concepts for their understandability [10, 31]. Let us define
the notation of the Latin subscript as those related to the
tetrad fields, and the Greek one related to the spacetime co-
ordinates. For a general spacetime metric, we can define the
line element as

dS2 = gμν dxμ dxν. (1)

One can describe the projection of this line element in the
tangent space to the spacetime through the matrix called
tetrad as follows:

dS2 = gμν dxμ dxν = ηij θ
iθj , (2)

dxμ = ei
μθi, θ i = ei

μdxμ, (3)

where ηij = diag[1,−1,−1,−1] and ei
μei

ν = δ
μ
ν or

ei
μej

μ = δ
j
i . The square root of the metric determinant is

given by
√−g = det [ei

μ] = e. For describing the space-
times in terms of the tetrad matrix, we choose the connec-
tion such that the Riemann tensor vanishes identically and

the Weitzenbock connection is given by

Γ α
μν = ei

α∂νe
i
μ = −ei

μ∂νei
α. (4)

For this spacetime, the curvature is always null, while the
pressure can vanish. Due to the fact that the antisymmetric
part of the connection does not vanish, we can define directly
the components of the connection, the tensors, the torsion
and contorsion, whose components are given by

T α
μν = Γ α

νμ − Γ α
μν = ei

α
(
∂μei

ν − ∂νe
i
μ

)
, (5)

Kμν
α = −1

2

(
T μν

α − T νμ
α − Tα

μν
)
, (6)

which allow us to define new components of the tensor Sα
μν

as

Sα
μν = 1

2

(
Kμν

α + δμ
α T βν

β − δν
αT βμ

β

)
. (7)

We are now able to define easily the scalar that makes up the
action of f (T ) theory, the torsion scalar T . Through (5)–(7),
we define the scalar torsion scalar as

T = T α
μνSα

μν. (8)

GR couples matter content with the Einstein–Hilbert action
(linear function of R), and the equation of motion is ob-
tained by the minimum action principle. The f (R) theory
in the same way seeks the coupling with the matter content,
defining instead of a linear term of the curvature scalar for
the geometrical part, an arbitrary function of R, f (R). In
this paper, we will make the same considerations for cou-
pling the geometrical part of the theory, which is the gener-
alization of TT, through a function depending on the torsion
scalar, f (T ), with the Lagrangian density of the matter con-
tent. Thus, we define the action of the f (T ) theory as

S
[
ei
μ,ΦA

] =
∫

d4x e

[
1

16π
f (T ) + LMatter(ΦA)

]
, (9)

where we used the units in which G = c = 1 and the ΦA are
the matter fields. Considering the action (9) as a functional
of the fields ei

μ and ΦA, and the variation of the functional
with respect to the field ei

ν vanishing, one obtains the fol-
lowing equation of motion [18, 19]:

Sμ
νρ∂ρTfT T + [

e−1ei
μ∂ρ

(
eei

αSα
νρ

) + T α
λμSα

νλ
]
fT

+ 1

4
δν
μf = 4π T ν

μ , (10)

where T ν
μ is the energy momentum tensor, fT = ∂f (T )

∂T
and

fT T = ∂2f (T )

∂T 2 . If we consider again f (T ) = a1T +a0, TT is
recovered with a cosmological constant. For obtaining more



Eur. Phys. J. C (2012) 72:1890 Page 3 of 12

general solutions in this spacetime, we will study the mat-
ter content described by a energy-momentum tensor of an
anisotropic fluid,

T ν
μ = (ρ + pt )uμuν − ptδ

ν
μ + (pr − pt)vμvν, (11)

where uμ is the four-velocity, vμ the unit space-like vector
in the radial direction, ρ the energy density, pr the pres-
sure in the direction of vμ (radial pressure) and pt the pres-
sure orthogonal to vμ (tangential pressure). Since we are as-
suming an anisotropic spherically symmetric matter, on has
pr �= pt , such that their equality corresponds to an isotropic
fluid sphere.

In the next section, we will make some considerations for
the manifold symmetries in order to obtain simplifications
in the equation of motion and the specific solutions of these
symmetries.

3 Spherically symmetric geometry

The line element of a spherically symmetric and static
spacetime can be described, without loss of generality, as

dS2 = ea(r) dt2 − eb(r) dr2 − r2(dθ2 + sin2(θ) dφ2). (12)

In order to re-write the line element (12) into the invariant
form under the Lorentz transformations as in (2), we define
the tetrad matrix (3) as

{
ei

μ

} = diag
{
ea(r)/2, eb(r)/2, r, r sin(θ)

}
. (13)

This choice of tetrad matrices is not unique, because the
aim of letting the line element invariant under local Lorentz
transformations results in the form (2). Other choices
have been made with non-diagonal matrices, as in refer-
ences [29, 46]. Using (13), one can obtain e = det [ei

μ] =
e(a+b)/2r2 sin(θ), and with (4)–(8), we determine the torsion
scalar and its derivatives in terms of r :

T (r) = 2e−b

r

(
a′ + 1

r

)
, (14)

T ′(r) = 2e−b

r

(
a′′ − 1

r2

)
− T

(
b′ + 1

r

)
, (15)

where the prime (′) denotes the derivative with respect to the
radial coordinate r . One can now re-write the equations of
motion (10) for an anisotropic fluid as

4πρ = f

4
−

(
T − 1

r2
− e−b

r

(
a′ + b′)

)
fT

2
, (16)

4πpr =
(

T − 1

r2

)
fT

2
− f

4
, (17)

4πpt =
[
T

2
+ e−b

(
a′′

2
+

(
a′

4
+ 1

2r

)

× (
a′ − b′)

)]
fT

2
− f

4
, (18)

cot θ

2r2
T ′fT T = 0, (19)

where pr and pt are the radial and tangential pressures, re-
spectively. In (16)–(18), we used the imposition (19), which
arises from the θ r non-diagonal components (2-1) of the
equation of motion (10). This imposition does not appear in
the static case of GR, but making use of it in (19), we get
only the following possible solutions:

T ′ = 0 ⇒ T = T0, (20)

fT T = 0 ⇒ f (T ) = a0 + a1T , (21)

T ′ = 0, fT T = 0 ⇒ T = T0, f (T ) = f (T0), (22)

which always relapses into the particular case of Teleparallel
Theory, with f (T ) a constant or a linear function. In the
next section, we will determine new solutions for the f (T )

theory making some consideration of the matter components
ρ(r),pr(r) and pt (r).

4 New solutions for an anisotropic fluid in the
Weitzenbock spacetime

Several works have been done in cosmology, modeling and
solving some problems, using the f (T ) theory as basis. Ac-
tually, in local and astrophysical phenomena, their is still
slow progress to obtain new solutions. Recently, Delidu-
man and Yapiskan [20] have shown that there could not ex-
ist for relativistic stars, such as that of neutrons and others,
in 4D, except in the linear trivial case, the usual Teleparal-
lel Theory. However, Boehmer et al. [29] showed that for
cases where T = 0 and T ′ = 0, there exist solutions of rel-
ativistic stars. Wang [28] also has shown the existence of a
class of solutions, coupled with Maxwell field, in the f (T )

theory. Similarly, Vasquez et al. [38] show some classes of
solutions with rotation of the f (T ) theory in 3D, some of
them coupled with the Maxwell field. In a previous paper,
we also drew on the same idea and have shown some classes
of new solutions in f (T ) theory with some specific condi-
tions for the torsion and radial pressure for anisotropic flu-
ids [32]. In order to extend this same idea, we will show in
this paper some classes of spherically symmetric static solu-
tions coming from f (T ) theory, generalizing the condition
of the matter content as depending on the algebraic func-
tions f (T ) and fT (T ) and algebraic functions of the radial
coordinate r . Meanwhile, in order to start with the simplest
cases, and later performing the generalization, we will show,
first, the general case of isotropy in the next subsection.
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4.1 The isotropic case

Before discussing the general anisotropic case, we will es-
tablish the general condition of isotropy of the solutions
the f (T ) theory with the metric (12). Taking the equality
pr(r) = pt (r), with the expressions (17) and (18), we get

T (r) = 2

r2
+ e−b

[
a′′ +

(
a′

2
+ 1

r

)(
a′ − b′)

]
. (23)

Taking a′ and a′′ in terms of T (r), b(r) and their deriva-
tives, through (14), we obtain

a′ = r

2
T (r)eb − 1

r
,

a′′ = eb

2

(
T + rT ′ + rT b′) + 1

r2
,

(24)

which, substituted in (23) yield

B ′(r)
2r

[
1 − r2T (r)

2B(r)

]
+ B(r)

2r2

[
1 + r4T 2(r)

4B2(r)

]

+ 2

r2

[
1 − r2

4
T (r) + r3

4
T ′(r)

]
= 0, (25)

where B(r) = e−b(r). This is the general equation for a
model with isotropic matter content in f (T ) theory, for the
metric (12), firstly obtained in this work. As the differential
equation (25) is nonlinear and very complicated for a direct
integration, with some manipulation, we have three simpli-
fied cases:

1. For T (r) = 0, where a(r) = ln(r0/r), (25) becomes

B ′(r) + 1

r
B(r) + 4

r
= 0, (26)

whose general solution is

B(r) = e−b(r) = c0

r
− 4. (27)

The line element (12) becomes

dS2 = r0

r
dt2 −

(
c0

r
− 4

)−1

dr2 − r2 dΩ2, (28)

where r0 > 0 and c0 is a real constant. With this, we have
the following possibilities for the signature of the metric:
(a) when c0 > 4r , the signature is (+ − −−); (b) when
c0 < 4r , the signature is (+ + −−).1 This solution was
first obtained by Boehmer et al. [29], but with a general

1Metrics with two timelike coordinates were studied in strings models
with timelike T-duality [47], in branes [48], in Sigma model [52] and
other physical applications [49–51].

equation of isotropy different from ours, and with an in-
correct limit.2

Boehmer et al. obtained this solution by using a wrong
limit, and have not drawn up any analysis. This solution
could be viewed as a wormhole. We can observe this by
following the same process as in [32]. This line element
(12) can be put in the form

dS2 = ea(r) dt2 − dl2 − r2(l) dΩ2, (29)

where a(r) is denoted redshift function, and through
the redefinition β(r) = r[1 − e−b(r)], with b(r) being
the metric function given in (12), β(r) is called the
shape function. Therefore, the conditions of existence
of a traversable wormhole are: (a) the function r(l)

must possess a minimum value r1 for r , which imposes
d2r(l)/dl2 > 0; (b) β(r1) = r1; (c) a(r1) has a finite
value; and finally (d) dβ(r)/dr|r=r1 � 1.

The solution (28) satisfies the conditions (a), for c0 <

0 (signature (+ + −−)), (b) and (c), but not the condi-
tion (d), because β ′(r1) = 5 > 1, and then seems to be a
wormhole, but not a traversable one. However, as the sig-
nature must be (+ + −−), it could not be a usual worm-
hole, with the evolution given by Einstein–Rosen bridge,
and then is discarded because of being non-physical.
Now, the solution with c0 > 4r (signature (+ − −−)) is
not a wormhole, but a possible solution for a null torsion
scalar.

The energy density and the pressure (isotropic case)
are given by

ρ(r) = f (0)

16π
+ 5fT (0)

8πr2
, (30)

pr(r) = pt (r) = −f (0)

16π
− fT (0)

8πr2
. (31)

This solution presents a matter content divergent in
r = 0, and then is called singular. The matter content
must satisfy the weak energy condition (WEC) and the
null energy condition (NEC), given by ρ(r) � 0, ρ(r) +
pr(r) � 0 and ρ(r) + pt(r) � 0. Then, for guaranteeing
the WEC and NEC, we need to have f (0), fT (0) � 0,
or f (0) � 0 and fT (0) � 0, with 0 � r � r+, where
r+ = √−10fT (0)/f (0).

2. Choosing the condition

a′(r) = −1

r
+ c0, c0 ∈ R, (32)

2They choose the torsion as constant and make the limit r2
0 T0 � 1 in

an equation similar to (25), which clearly does not lead to (26), due to
the terms where there exists B−1(r) in (25).
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that generalizes the previous case, where we had T = 0,
through (14), (25) becomes

B ′(r)(1 + c0r) + B(r)

(
1

r
+ c2

0r − 4c0

)
+ 4

r
= 0. (33)

The general solution of this equation is given by

B(r) = r−1e−c0r (1 + c0r)
6
(

c1 − k(r)

180ec0

)

+ 1

180c0r

(
154 + 51c0r + 28c2

0r
2 + 16c3

0r
3

+ 6c4
0r

4 + c5
0r

5), (34)

where k(r) = exp(− ∫ ∞
−r

z−1e−z dz) and c1 is a real con-
stant. The solution of a(r), coming from (32), is given
by

ea(r) = r0

r
ec0r . (35)

The expression of energy density, the radial and tangen-
tial pressures are too long and cannot be written here.
However, it is important to note that they are singular in
r = 0. This is a new isotropic solution obtained for the
first time in this work.

3. Taking the so-called quasi-global coordinate condition

a(r) = −b(r), (36)

from (16) and (17) one obtains the equality

pr(r) = −ρ(r). (37)

The isotropy requires pr(r) = pt(r), which, from (17)
and (18) yields (23). Replacing the condition (36) in (14)
and equating with the expression (23), we get the follow-
ing differential equation:

b′′ − (
b′)2 + 2

r2

(
1 − eb

) = 0. (38)

The solution of this equation is

ea(r) = e−b(r) = 1 − c0

r
+ c1

3
r2, (39)

where c0, c1 ∈ R. This solution (39) behaves as the equa-
tion of state of dark energy, pr(r) = pt(r) = −ρ(r), with

ρ(r) = a0 − 2a1c1

16π
, (40)

where we took into account the imposition (21). This is
a new black hole solution obtained in this work. This so-
lution is similar to the S-(A)dS one, for c0 = 2M and
c1 = −Λ. The conditions ρ(r) + pr(r) � 0 and ρ(r) +
pt(r) � 0 are always satisfied, since ρ(r) + pr(r) =

ρ(r) + pt (r) = 0 in this case. The condition ρ � 0 im-
pose a0 � 2a1c1, for a0 > 0, and 2|a1c1| � |a0|, for
a0 < 0 and sign(a1c1) = −1. Here, the torsion scalar (14)
cannot be a constant.

A similar solution to this one was obtained in our pre-
vious paper [32]. It was obtained as a particular case of
anisotropic solution for the choice of the constant radial
pressure, which, by the quasi-global coordinate condi-
tion, resulted in a isotropized solution. But here, we have
obtained a general isotropic solution for the quasi-global
condition (36), which leads to a matter content that sat-
isfies the equation of state of the dark energy, with a
constant energy density (40). Comparing the latter with
our particular case previously obtained (solution (55) in
[32]), it appears that the constant pressure pr must be
equal to the energy density (40), which fixes the pressure
in terms of the constants of the algebraic function f (T )

and c1.

4.2 The anisotropic content case

Now, as already shown in our previous paper [32], the equa-
tions of motion (16)–(18) allow us to establish the following
generalized conditions:

ρ(r) = g1(r)

16π
f (T ) + g2(r)

8π
fT (T ) + g3(r)

16π
, (41)

pr(r) = g4(r)

16π
f (T ) + g5(r)

8π
fT (T ) + g6(r)

16π
, (42)

pt(r) = g7(r)

16π
f (T ) + g8(r)

8π
fT (T ) + g9(r)

16π
, (43)

where the functions gi(r), with i = 1, . . . ,9, are algebraic
functions of only the radial coordinate r . These generalized
conditions for the matter content are first used here, resulting
in new solutions originally obtained in this work. We will
distinguish three main cases here:

1. When the energy density obeys the condition (41), equat-
ing (16) and (41), and taking into account the imposition
(21), we get

T (r) = a0

a1

[
2k1(r) − 1

] − 2k1(r)

×
[
g2(r) + g3

2a1
− 1

r2
− e−b

r

(
a′ + b′)

]
, (44)

where k−1
1 (r) = g1(r) + 1. Three important sub-cases

can be observed:
(a) Making use of the coordinate condition (32), we ob-

tain directly the solution (35) for a(r). Equating (14)
and (44), then substituting (35), we get the following
differential equation:
(
e−b

)′ + x1(r)
(
e−b

) + y1(r) = 0, (45)
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x1(r) = c0

(
1

k1(r)
− 1

)
+ 1

r
, (46)

y1(r) = r

[
g2(r) + g3(r)

2a1
− 1

r2

− a0

a1

(
1 − 1

2k1(r)

)]
, (47)

whose general solution is

e−b(r) = exp

(
−

∫
x1(r) dr

)

×
[
c1 −

∫
exp

(∫
x1(r) dr

)
y1(r) dr

]
,

(48)

where c1 ∈ R, x1(r) and y1(r) are given in (46) and
(47), respectively.

A particular case is when we choose

k1(r) = c0r

c0r − 1
,

g2(r) =
∑

n

h(n)r
n−1 − g3(r)

2a1
+ 1

r2

+ a0

a1

(
c0r + 1

2c0r

)
.

(49)

In this case, we get x1(r) = 0 and y1(r) = ∑
n h(n)r

n,
from which, using (48), yields

e−b(r) = −h(−1) ln r −
∑

n

h(n)

(n + 1)
rn+1, n �= −1.

(50)

Now, if we use only the terms in which n = h(−1) = 0
and n = −2, we regain a wormhole already obtained
in [32], for h(0) = −a0/2a1c0 and h(−2) = 1/c0.

Another particular case would be a generalization
of several classes of traversable wormholes that con-
nect two non-asymptotically flat regions. We explicit
mention here two cases:
(i) When the unique terms of (50) are for the orders

r and r2 (h(−1) = 0), we get

e−b(r) = −h(0)r − h(1)

2
r2. (51)

This solution is a traversable wormhole. We can
show this as follows: The shape function and its
derivative are given by

β(r) = r

[
1 + r

(
h(0) + h(1)

2
r

)]
,

β ′(r) = 1 + r

(
2h(0) + 3h(1)

2
r

)
.

(52)

From (51), we take dr/dl = √
e−b(r) = 0, and

solving we obtain r1 = −2h(0)/h(1). As
d2r/dl2 = [β(r)−rβ ′(r)]/2r2 > 0 [53] is a con-
dition for the minimum and in this case we get
d2r/dl2|r1 = h(0)/2, which is greater than zero
for h(0) > 0, r1 being a minimum for r(l). The
redshift function a(r) has a finite value in r1. The
shape function satisfies β(r1) = r1 and β ′(r1) =
1 + (2h2

(0)/h(1)) < 1, for h(1) < 0. In general, in

order to get consecutive orders rp and rp+1, in
(50), we obtain traversable wormholes with min-
imum in r1 = −(p +2)h(p)/(p +1)h(p+1), with
h(p) > 0 and h(p+1) < 0.

(ii) When we have only the terms of orders r and r3

in (50), we get

e−b(r) = −h(0)r − h(2)

3
r3. (53)

This solution is a traversable wormhole. The
function r(l) has a minimum in

r1 = √−3h(0)/h2,

for h(0) > 0. The redshift function a(r) has
a finite value in r1. The shape function satis-
fies β(r1) = r1 and β ′(r1) = 1 + (6h2

(0)/h(2)) <

1, for h(2) < 0. In general, for obtaining con-
secutive orders rp and rp+2, in (50), we get
traversable wormholes with minimum in

r1 =
√

−(p + 3)h(p)/(p + 1)h(p+2),

with h(p) > 0 and h(p+2) < 0. We also have a
multitude of other solutions of traversable worm-
holes in (48) that connect two non-asymptotically
flat regions.

(b) When the condition of coordinates is given by the
quasi-global coordinate (36), equation (14) yields the
following equation:

(
e−b

)′ + 1

r

(
e−b

) − r

2
T (r) = 0, (54)

whose general solution is

ea(r) = e−b(r) = c0

r
+ 1

2r

∫
r2T (r) dr, c0 ∈ R,

(55)

for which, from (44), the torsion scalar is given by

T (r) = a0

a1

[
2k1(r) − 1

]

− 2k1(r)

[
g2(r) + g3

2a1
− 1

r2

]
. (56)
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We can show a particular case that highlights the gen-
eralization of this solution. Taking

k1(r) =
a0
a1

+ ∑
n h(n)r

n

2[ a0
a1

− g2(r) − g3(r)
2a1

+ 1
r2 ] , (57)

where h(n) are real constants and n ∈ Z, the torsion
scalar in (56) becomes T (r) = ∑

n h(n)r
n. Substitut-

ing it in (55), we get the following particular case:

ea(r) = e−b(r)

= c0

r
+ h(−3)

2r
ln r + 1

2

∑

n

h(n)

(n + 3)
rn+2, (58)

with n �= −3. Two specific cases of this particular
case are: (a) when h(−3) = n = 0, we regain the same
result as obtained in [32], with h(0) = T0; (b) when
we only have the terms for the values of n = h(−3) =
0, n = −2 and n = −4. In this case the solution is
of type Reissner–Nordstrom–(Anti) de Sitter (RN-
(A)dS), with mass M = −c0/2, the electric charge
q2 = −h(−4)/2 (h(−4) < 0) and cosmological con-
stant Λ = −h(0)/2.

This particular case reproduces various known
terms, with respect to the power of the radial coor-
dinate r , as the linear term [40], the logarithmic term
(in GR [45], in f (R) theory [41] and in other modi-
fied gravities [42]), the term of fourth power [35–37,
44], in that of the nth order [35–37, 43, 45] among
others. In fact, the general case is more comprehen-
sive.

If we take the particular case of the example (b),
with the unique terms h(−2) and h(0), for h(−2) = 2
(type S-dS), we obtain the line element as

dS2 =
(

1 + c0

r
+ h0

6
r2

)
dt2

−
(

1 + c0

r
+ h0

6
r2

)−1

dr2 − r2 dΩ2. (59)

The horizon is obtained through g00(rH ) = 0. The
energy density in this case is given by ρ = (a0 −
a1h0)/16π . Then the total mass is given by M =
4π

∫ rH
0 ρr2 dr = (4π/3)ρr3

H . Making the match of
the interior metric with an exterior one, of type S-dS,
where c0 = −2M , the horizon is then obtained in the
form rH = √

6/[a0 − h0(1 + a1)]. With g00(rH ) =
0, we write the total mass and its differential as

M = rH

2

(
1 + h0

6
r2
H

)
, (60)

dM = drH

2

(
1 + h0

2
r2
H

)
. (61)

The Hawking temperature, the entropy and its differ-
ential can be calculated through (59), as

TH = g′
00

4π
√−g00g11

∣∣∣
∣
r=rH

= 1

4π

(
2M

r2
H

+ h0

3
rH

)
,

(62)

S = 1

4
AH = 1

4

∫ π

0

∫ 2π

0

√
g22g33 dθφ

∣∣
r=rH

= πr2
H ,

(63)

dS = 2πrH drH . (64)

From the expressions (61), (62) and (64), taking
into account (60), we can show that the solution
(59) obeys the first law of thermodynamics for black
holes,

dM = TH dS. (65)

This fact is not surprising. Recently, Miao Li and
collaborators [61] have demonstrated that there can
exist a violation of the first law of thermodynam-
ics in f (T ) theory, when the invariance by the lo-
cal Lorentz transformation is broken, due to the term
fT T (T ) in the equations of motion (10). When the
first law is violated, there exists entropy produc-
tion. But for our specific case of the choice of a set
of diagonal tetrads in (13), there appears the impo-
sition (21), which eliminates the terms of fT T (T )

in the equations of motion. Then we observe that
the first law is always obeyed, as shown by Mian
Li and collaborators [61], with the entropy S =
(fT [T (rH )]/4)AH . Here, we obtained the entropy
by (63), but this is due to the fact that we can use the
symmetry of temporal translation in the action (9),
and put f (T ) = a1[T + (a0/a1)] (a0/a1 → â0), then
eliminating the constant a1 in dt . With this, we get
fT [T (rH )] = 1, conciliating our result with the gen-
eral conjecture of Miao and collaborators. The same
thermodynamic analysis can be made for other black
holes solutions obtained in this work. We will just
explain this particular case, due to the wide rang of
classes of solutions obtained in this work.

(c) When the coordinate condition is given by

b′ = −1

r
, (66)

(14) yields

T (r) = 2

r0r
+ 2

r0
a′, (67)
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where r0 is a positive integration constant. Substitut-
ing (67) into (44), we get

a(r) =
∫ [

1

r

(
k1(r) + 1

k1(r) − 1

)
+ r0k1(r)

(k1(r) − 1)

×
(

g2(r) + g3(r)

2a1
− 1

r2

)

− r0a0

2a1

(
2k1(r) − 1

k1(r) − 1

)]
dr, (68)

and

eb(r) = r0

r
. (69)

Now, in particular, if we choose

k1(r) =
a0
a1

+ 2
r0

ln(
∑

n h(n)r
n)

2[ a0
a1

− g2(r) − g3(r)
2a1

+ 1
r2 ] , (70)

we regain the results mentioned in the previous item
according to the choice of the constants r0 and h(n),
but with b(r) given in (69) and a(r) in (53), and
which reproduces the various terms of this case.

2. When the tangential pressure obeys the condition (43),
equating (18) and (43), considering the imposition (21),
and making g7(r) = k−1

2 (r), we obtain

T (r) = k2(r)

[
2

(
e−b

(
a′′

2
+

(
a′

4
+ 1

2r

)(
a′ − b′)

)

− g8(r)

)
− g9(r)

a1

]
− a0

a1

[
k2(r) + 1

]
. (71)

A direct solution can be obtained by taking the condition
(32) and substituting into (71), which leads to

x2(r)
(
e−b

)′ + y2(r)
(
e−b

) − z2(r) = 0, (72)

x2(r) = k2(r)

4

(
c0 + 1

r

)
,

(73)

y2(r) = k2(r)

4

(
c2

0

4
+ 1

2r2

)
− c0

r
,

z2(r) = k2(r)

(
g8(r) + g9(r)

2a1

)
+

(
a0

2a1

)[
k2(r) + 1

]
.

(74)

The general solution of (72) is

e−b(r) = exp

(
−

∫
y2(r)

x2(r)
dr

)

×
[
c1 +

∫ (
exp

[∫
y2(r)

x2(r)
dr

])
z2(r)

x2(r)
dr

]
,

(75)

where c1 ∈ R, x2(r), y2(r) and z2(r) are given in (73)
and (74). For the particular case in which

k2(r) = 16c0r

c2
0r

2 + 2
,

g8(r) = (c0r + 1)

4

∑

n

h(n)r
n−1

− a0

2a1

(
1 + c2

0r
2 + 2

16c0r

)
− g9(r)

2a1
,

(76)

we get

e−b(r) = h(−1) ln r +
∑

n

h(n)

(n + 1)
rn+1, (77)

with n �= −1. This solution reproduces the cases of (50),
substituting hp → −hp .

3. When the radial pressure obeys the condition (42). Equat-
ing (17) and (42), taking into account the imposition (21),
putting k−1

3 (r) = 1 − g4(r) we get

T (r) = a0

a1

[
2k3(r) − 1

] + 2k3(r)

[
1

r2
+ g5(r) + g6(r)

2a1

]
.

(78)

Here we observe three important cases:
(a) For the coordinate condition (32), we get

ea(r) = r0

r
ec0r , eb(r) = 2c0

rT (r)
, (79)

where T (r) is given in (78).
(b) For the coordinate condition (36), one gets equation

(54), whose solution is (55), but in this case T (r) is
given by (78).

(c) For the coordinate condition (66), whose solution is
(69), we get equation (67), which results in

ea(r) = r1

r
exp

(
r0

2

∫
T (r) dr

)
, (80)

where r0, r1 > 0 and T (r) is given by (78).
We could reclaim the particular cases 2–5, of

the radial pressure, treated previously in [32], mak-
ing g4(r) = g5(r) = g6(r) = 0 (pr(r) = 0), g4(r) =
[8πpr/(a0 + 8πpr)], g5(r) + (g6(r)/2a1) =
−g4(r)/r2 (pr(r) = pr ∈ R), g4(r) = (16π/c0),

g5(r) = g6(r) = 0 (pr(r) = f (T )/c0) and g4(r) =
g6(r) = 0, g5(r) = η/r2 (pr(r) = (η/r2)fT (T )), re-
spectively. But in general, we have much more com-
prehensive solutions here.
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5 Reconstruction in static f (T ) theory

A method widely used in cosmology is called reconstruc-
tion. This method stems from the introduction of an auxil-
iary field for the reconstruction of the algebraic function of
the main action, as in the case of the f (R) theory, for exam-
ple [54].

We can briefly present this method as follows. Consider-
ing the algebraic function

f (T ) = P(ϕ)T + Q(ϕ), (81)

the functional variation of the action (9), with respect to ϕ,
is given by

δS

δϕ
= e

16π

[
dP

dϕ
T + dQ

dϕ

]
= 0. (82)

Solving this equation, we get ϕ ≡ ϕ(T ), then f (T ) =
P [ϕ(T )]T + Q[ϕ(T )]. Hence, we have the following iden-
tities:

fT (T ) = P +
(

dP

dϕ
T + dQ

dϕ

)
dϕ

dT
= P

[
ϕ(T )

]
, (83)

fT T (T ) = dP [ϕ(T )]
dT

. (84)

Having at hand equations (81), (83) and (84), and substitut-
ing into (16)–(19), we get

4πρ = P

2

[
1

r2
+ e−b

r

(
a′ + b′) − T

2

]
+ Q

4
, (85)

4πpr = P

2

[
T

2
− 1

r2

]
− Q

4
, (86)

4πpt = P

4
e−b

[
a′′ +

(
a′

2
+ 1

r

)(
a′ − b′)

]
− Q

4
, (87)

dP

dr
= 0. (88)

The reconstruction can be performed directly, making use of
the auxiliary field ϕ = r . Equation (88) shows that P ∈ �,
which is a constant. Thus, for reconstructing f (T ), we have
to determine Q in (81). In order to avoid repetition, we will
show a simplest case in which the radial pressure is constant,
and the process of re-obtaining the isotropic cases treated in
Sect. 4.1, since we do not want to re-obtain all the solutions
shown in this paper. However, this method may be used for
re-obtaining or reconstructing, when the inversion r ≡ r(T )

is possible, for the f (T ) theory in the static case.
Let us draw up two cases here:

1. When the radial pressure (86) is a constant pr ∈ �. In
this case, from (86), we get

Q = PT − 2P

r2
− 16πpr, (89)

which, substituting in (81), yields

f (T ) = 2P

(
T − 1

r2

)
− 16πpr . (90)

Differentiating (90) with respect to the torsion scalar T ,
and equating to (83), we obtain

fT (T ) = 2P + 4P

r3

dr

dT
= P, (91)

which, integrating, leads to

T (r) = T0 + 2

r2
. (92)

This result agrees with that of [32]. Now, if we reverse
this equation, for obtaining r(T ), one may substitute it in
(90), getting

f (T ) = PT + PT0 − 16πpr . (93)

We then obtain Q = PT0 − 16πpr , and finalize the re-
construction of the algebraic function f (T ) in (93). In
this case, the solution is linear, in agreement with the
constraint (21).

2. For the case in which

4π
dpr

dT
= g(T ), (94)

where g(T ) is an algebraic function. Integrating (94) and
equating with (86), one gets

Q = PT − 2P

r2
− 4

∫
g(T )dT . (95)

Substituting (95) into (81), one gets

f (T ) = 2P

(
T − 1

r2

)
− 4

∫
g(T )dT , (96)

which, differentiating with respect to T , equating with
(83) and integrating, yields

r−2 = 1

2
(T − T0) − 2

P

∫
g(T )dT . (97)

Inserting (97) into (96), the algebraic function is recon-
structed as

f (T ) = PT + PT0, (98)

as Q = PT0 and is f (T ) linear, obeying again the
imposition (21). The radial pressure can be given as
a power law of the torsion scalar, for example, if
g(T ) = ∑

n h(n)T
n, and getting 4πpr = h(−1) lnT +∑

n[h(n)/(n + 1)]T n+1, with n �= −1.
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We can obtain several cases here. Our general solutions can
also be regained by this method of reconstruction. An exam-
ple is when we make use of the general condition of isotropy
pr = pt , matching (86) with (87), leading to the expres-
sion (23). So, we can follow the same procedures as those
of Sect. 4.1 and regain all previously cases treated there.

The reconstruction method presented in this section for
reconstructing the algebraic function f (T ) is the same as
usually used and well known in cosmology, where there is
already a pre-established metric, that of FRW. Moreover,
we emphasize here that in gravitation, the situation can be
viewed in another way, since in some cases, we also need
to obtain a metric. Then the reconstruction method appears
to be of interest for two reasons. It can be used for recon-
structing the algebraic function f (T ), the static case, or for
obtaining new solutions (metric), because the equations of
motion (16)–(19) are more easily solved than the (85)–(88)
ones, where this method is not used.

An observation for which we pay special attention here
is that the choice of a set of diagonal tetrad for a spherically
symmetric and static metric, always results in the imposition
(19), which always results in the possibilities (20)–(22). Our
results are consistent with these possibilities.

6 Stellar structure in hydrostatic equilibrium

In this section, we will study the stellar structure for the so-
lutions coming from the equations of motion (16)–(19). To
do this, we have to take into account the results previously
obtained in this paper. The first is that a choice of the diag-
onal tetrad, as we have done in (13), leads to the equations
of motion that impose a linear algebraic function f (T ), as
in (21). Hence, we consider the case without cosmological
constant, a0 = 0, and simplify setting a1 = 1, and then we
have f (T ) = T and fT = 1. This does not lead us to a loss
of generality in this case, since the imposition (21) comes
from the equations of motion.

In the second way, we will take the line element (12) as

dS2 = e2Φ(r) dt2 −
[

1 − 2M(r)

r

]−1

dr2 − r2 dΩ2, (99)

where M(r) is the mass function of the star, given by the
expression

M(r) = 4π

∫
r2ρ(r) dr (100)

and Φ(r), in an approximation of first order, is the gravi-
tational Newtonian potential [60]. Comparing (12) and (99),
we get a(r) = 2Φ(r) and e−b(r) = 1− (2M/r). Substituting
this into (14), we obtain

T (r) = 2

r3

[
1 + 2rΦ ′(r)

][
r − 2M(r)

]
. (101)

Inserting (101) into (17), we get

dΦ

dr
= M(r) + 4πr3pr

r[r − 2M(r)] , (102)

which, for the Newtonian limit 4πr3pr � M(r) � r [60],
is

dΦ

dr
≈ M(r)

r2
. (103)

In this limit, multiplying (103) by r2, differentiating, with
the account of (100), we obtain the Poisson equation

1

r2

d

dr

(
r2 dΦ

dr

)
= 4πρ. (104)

Now, we can obtain the equation of conservation in our case.
Deriving (17) with respect to r , we get

4πp′
r = T ′

4
+ 1

r3
. (105)

Summing (16) with (17) and multiplying by a′/2, we obtain

2πa′(ρ + p′
r

) = a′e−b

4r

(
a′ + b′). (106)

For the isotropic case

4π(pt − pr) = e−b

2

[
2a′

r
+ 2

r2
− a′′

− (a′)2

2
+ a′b′

2
− (a′ − b′)

r

]
− 1

r2
= 0

⇒ a′′ = 2a′

r
+ 2

r2
− (a′)2

2
+ a′b′

2

− (a′ − b′)
r

− 2e−b

r2
. (107)

Summing (105) with (106), and taking into account (107),
we get

4πp′
r + 2πa′(ρ + pr) = 0, (108)

where pr = pt . Considering now the line element (99),
(108) becomes

dpr

dr
= −(ρ + pr)

dΦ

dr
, (109)

which, in the Newtonian limit pr � ρ [60], turns into

dΦ

dr
≈ − 1

ρ

dpr

dr
. (110)

Substituting (110) into (104), we get

1

r2

d

dr

(
r2

ρ

dpr

dr

)
= −4πρ. (111)



Eur. Phys. J. C (2012) 72:1890 Page 11 of 12

We assume that we may model the structures as polytropic
distributions, and then [56–59]

pr = Kργ , (112)

where K,γ ∈ �. Defining the so-called polytropic index
n = 1/(γ − 1), we may write the energy density as ρ(r) =
ρcθ

n(r), with 0 � θ(r) � 1 and ρc being the energy density
at the center, and making use of the coordinate transforma-
tion r = αx, with α = (ρ

(1−n)/(2n)
c /2)

√
(n + 1)K/π , (111)

becomes the equation of Lané–Emden:

1

x2

d

dx

(
x2 dθ(x)

dx

)
= −θn(x). (113)

Taking the initial conditions θ(xc = 0) = 1, θ ′(0) = 0, with
xc at the center, this equation possesses exact solutions,
among which, for n = 0,1,5 (γ = +∞,2,6/5), we get
⎧
⎪⎨

⎪⎩

θ(0)(x) = 1 − x2

6 , xs = √
6,

θ(1)(x) = sinx
x

, xs = π,

θ(5)(x) = (1 + x2/3)−1/2, xs → ∞,

(114)

with xs being the value at the surface of the star. The func-
tion θ(x) must satisfy the condition θ(xs) = 0. Taking into
account (113), the radius and the total mass of the star are
given by [56–59]

rs = αxs, (115)

M(rs) = 4πα3ρcx
2
s

dθ

dx

∣∣∣∣
x=xs

. (116)

The well known values of the polytropic index are: (a) the
relativistic case n = 3 (γ = 4/3); (b) the non-relativistic
case n = 3/2 (γ = 5/3).

If we consider a choice of tetrad as non-diagonal, as in
[29, 46], and taking the algebraic function f (T ) = T , the
same results shown here are recovered. Since our goal in
this work is to deal with a diagonal tetrad, we propose to
investigate the contribution of the terms of higher orders in
the torsion, as T m, with m ∈ �, in a future work. The con-
tribution of a general algebraic function in f (R) theory, has
been done in [55], showing a generalized equation of Lané–
Emden. We hope that a similar result may be found in the
case of non-diagonal tetrad for the f (T ) theory.

7 Conclusion

We considered the f (T ) theory coupled with an anisotropic
fluid. For static spacetimes with spherically symmetry, we
obtained several classes of solutions by imposing conditions
to the metric functions a(r), b(r) and to the matter content,
represented by the energy density ρ(r) and the radial pres-
sure pr(r) and the tangential pt (r).

We analyzed first the general isotropic case (pr = pt ),
which results in (25). This equation is solved for three cases,
T = 0, T �= 0 with the conditions (32) and (36). For T = 0,
we regained the Boehmer’s solution [29], which in GR is
classified in [39]. This solution has a singularity at r = 0
and can possess a metric with the signature (+ − −−) and
(+ + −−), depending on the choice of c0 with respect to r .
The case of the non-vanishing torsion and the condition (32),
we obtained a new solution with the matter content singu-
lar at r = 0. For the case of the condition (36), the solution
obeys an equation of state identical to that of dark energy
and which is singular at r = 0. The solution (39) is a peri-
odic solution which limits the value of the radial coordinate
r , according to the choice of the constants c0 and c1.

When the matter content is anisotropic, we supposed that
the energy density, the radial and tangential pressures de-
pend on the algebraic functions f (T ) and fT (T ), and also
on arbitrary functions of the radial coordinate r according
to the generalized conditions (41)–(43). When the energy
density obeys the condition (41), we have three new solu-
tions for the generalized coordinate conditions (32), (36)
and (66). When the tangential pressure obeys the condition
(43), we get an explicit example of a new solution to the
generalized coordinate condition (32). When the radial pres-
sure obeys the generalized condition (42), this resulted into
three new solutions, considering the conditions of coordi-
nate (32), (36) and (66). These solutions generalize our so-
lutions previously obtained in [32], according to the choice
of functions g4(r), g5(r) and g6(r).

We present a short summary of the reconstruction method
for a spherically symmetric and static case for the f (T ) the-
ory. This method has proven effective in regaining and even
obtaining new solutions. We show two simplest examples in
Sect. 5, reconstructing the algebraic function f (T ) in (93)
and (98), as a linear function in T , always obeying the im-
position (21), arising from the non-diagonal equation (19).
This is a consequence of the choice of a set of diagonal
tetrad, for characterizing the frame of the metric (12). As
this choice is not unique, we may also introduce other sets
of tetrad matrices for the most comprehensive study of the
reconstruction of the function f (T ), and it may not be lin-
ear.

Due to our conjecture for the f (T ) theory, i.e., the choice
of a set of diagonal tetrad, resulting in a linear function for
the scalar torsion, the regain the same result as in GR, for
the stellar structure. The equation of Lané–Emden has been
obtained for an approximation of first order.

Through a clear methodology, we found various classes
of anisotropic solutions, and three isotropic ones, for f (T )

theory. We conclude that some conditions on the coordi-
nates, the energy density and pressures can generate new
classes of anisotropic and isotropic solutions. Through new
generalized conditions, there can be found a range of new
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solutions in this theory. We believe that the introduction of
new symmetries, as that of Papapetrou in gravitation [34],
and that of Lemaître–Tolman–Bondi in cosmology [35–37],
leads to a range of new interesting solutions for the f (T )

theory. We also need to check the validity of the energy
dominant condition, ρ ≥ 0, for our solutions. We propose
to present this in forthcoming work. We also hope that the
introduction of a set of non-diagonal tetrads for characteriz-
ing the line element, we will obtain a modified equation of
Lané–Emben in f (T ) gravity, for the stellar structure in an
approximation of first order.
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