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Receptor-dependent four-dimensional quantitative
structure–activity relationship (RD-4D-QSAR) stud-
ies were applied on a series of 21 peptides revers-
ible inhibitors of Trypanosoma cruzi trypanothione
reductase (TR) (Amino Acids, 20, 2001, 145). The
RD-4D-QSAR (J Chem Inform Comp Sci, 43, 2003,
1591) approach can evaluate multiple conforma-
tions from molecular dynamics simulation and
several superposition structure alignments inside a
box composed by unitary cubic cells. The descrip-
tors are the occupancy frequency of the atoms
types inside the grid cells. We could develop 3D-
QSAR models that were highly predictive (q2 above
0.71). The 3D-QSAR models can be visualized as a
spatial map of atom types that are important on the
comprehension of the ligand–enzyme interaction
mechanism, pointing main pharmacophoric groups
and TR subsites described in the literature. We were
able also to identify some TR subsites for further
development in the drug discovery process against
tropical diseases not yet studied.
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Since 1960s and earlier works of Hansch and Fujita (1,2), quantita-
tive relationships between structures of many classes of compounds
and their biological response have been applied in several examples
of drug–receptor problems.

The development of computer programs and understanding of the
mechanism of drug–receptor interaction allowed to correlate not
only the chemical structure–derived two-dimensional (2D) descrip-
tors with the variation of biological response of a series of com-
pounds (e.g., pharmacological activity or toxicity), but also the
chemical structure–derived three-dimensional (3D) descriptors. The
most popular applied QSAR approach using 3D descriptors, namely
3D-QSAR, was developed by Cramer et al. (3) and called Compara-
tive Molecular Field Analysis (CoMFA). Since the mechanism of
drug–receptor interaction is dependent of both, ligand and receptor
structures, the knowledge of their 3D structures and conformational
behavior in biological media is pivotal. Therefore, although the
knowledge of the 3D structure of the receptor and the conformation
profile of the ligand was increasing, most of the 3D-QSAR studies
did not consider them.

Hopfinger et al. (4) in last decades introduced the 'multiple con-
formation' concept in a new 3D-QSAR approach named 4D-QSAR
method. The 4D-QSAR method is able to construct 3D-QSAR
models as 3D pharmacophoric maps (4), precisely the type of
models one would like to have to complement CoMFA models
(3). 4D-QSAR analysis (4) generates their models as a function of
alignment for a set of analogues upon both receptor-independent
(RI) (4) and receptor-dependent (RD) geometry (5–7). The merits
of 4D-QSAR method are in its ability to (8) (i) incorporate ligand-
conformational flexibility, (ii) explore multiple alignments, (iii) eval-
uate ligand-embedded pharmacophore groups in so as part of
the QSAR models building and optimization process and (iv) pro-
pose an 'active' ligand conformation. Because the capability of
the 4D-QSAR in exploring large degrees of freedom of both con-
formational and alignment freedoms in the search for active con-
formation binding mode for each compound investigated, the 4D-
QSAR analysis has been successfully applied to a variety of
structure–activity training sets (4–9) and has proven useful and
reliable in both RI-4D-QSAR (4,8,9) and RD-4D-QSAR (5–7).
Although the RD approach takes into account the receptor topol-
ogy, the recent RD-4D-QSAR applications perform the alignment
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step using the ligand structure. In this report, we have applied
the RD-4D-QSAR formalism to construct 3D-QSAR models for a
series of inhibitors of Trypanosoma cruzi trypanothione reductase
(TR) (E.C. 1.6.4.8) using the receptor (TR enzyme) structure in the
alignment step.

Since its discovery in 1909, Chagas' disease (American trypanosomi-
asis) has been affecting people in Latin America. Nowadays, there
are 200 000 people infected by protozoa T. cruzi and 18–20 million
at risk of acquiring this disease (10). Many efforts have been devel-
oped to overcome trypanosomiasis, and selective inhibition of vital
enzymes of parasites is the most successful (10). Trypanothione
reductase (TR) is a homodimeric enzyme responsible for maintaining
milieu cellular in an oxidative state, reducing its substrate, trypano-
thione (N1,N8-bis-glutathionyl spermidine, TS2), to the active form,
dihydro-trypanothione (T(SH)2), a parasite antioxidant agent. The TR
is homologous to the human glutathione reductase (GR), but their
structural differences in the active site to recognize their specific
substrates made the development of TR selective inhibitors a possi-
ble issue (11–14). The 3D structure of TR co-crystallized to its natu-
ral substrate (trypanothione) was solved by Bond et al. (11), and it
is available at the Protein Data Bank (PDB) under the entry code
1BZL.

Some classes of compounds have been tested against TR (13,14),
and the most promising one was a series of 21 peptide mimetics,
developed by McKie et al., (12) because they can act as selective
TR inhibitors through a substrate competitive mechanism. Many
classes of compounds were tested against TR and presented broad
results, that is, values for inhibition concentration varied from milli-
to nanomolar range (11,15–24). As there are no crystallographic
data available about peptides bounded to TR, we have applied the
4D-QSAR method to the McKie et al. (12) series of peptide mimet-
ics to get same insight into their binding mode. Moreover, this work
represents the first RD-4D-QSAR application, where the alignment
step was performed based on the receptor structure. Our results
were compared with structural information derived from experimen-
tal and theoretical results (12,25).

Materials and Methods

The RD-4D-QSAR analysis was performed on the 4D-QSAR software
package, version 3.0 (26), installed on a Silicon Graphics worksta-
tion (processor IP32, 150 MHz CPU). The general steps of the RD-
4D-QSAR method was described elsewhere (5), and it will be
exposed a short explanation pointing out the major differences in
the present study.

A series of 21 peptide inhibitors of T. cruzi TR (Table 1) were
retrieved from McKie et al. (12). The assay values of I50 (12) were
converted in their negative logarithmic units, pI50, which comprises
the set of dependent variables in the 4D-QSAR analysis. The range
in activity for the peptide mimetics is about 3.5 pI50 units.

Step 1
All 3D structures of each 21 peptide mimetic sets (Table 1) were
built using the HYPERCHEM 7.0 software (27). The peptide structures

were assembled using the HyperChem amino acids' database, and
the most extended beta-sheet conformation was adopted. Each
structure was energy-minimized until the gradient reached
0.001 kcal ⁄ mol using the conjugated-gradient algorithm under the
AMBER force field (28) on HyperChem. Partial atomic charges were
computed using AM1 semi-empirical method (29) also implemented
in this program. These 21 modeled structures were used as the ini-
tial structures, which will be docked at the TR Receptor Model (see
Step 2).

Step 2
The co-ordinates of TR complexed with their natural substrate
was extracted from the Protein Data Bank (30) (PDB ID: 1BZL). As
it is computationally demanding to sample this entire structure
using molecular dynamics (MD) simulation, the receptor pruning
technique was applied (5), also intending to achieve reasonable
ensemble profile and performing practical RD-4D-QSAR analysis in
terms of time and computational resources. Therefore, receptor
prunning was performed using the WEBLAB VIEWER software (31).
All residues in a radius of 11.5 � of all atoms of trypanothione
(TS2) were included in the pruned receptor, named Receptor
Model. To retain the integrity of the local geometric environment
of the receptor, hydrogen atoms were added to complete the ter-
minal fragments of the residues in the pruned model. AMBER par-
tial atomic charges were assigned (28) to all atoms of the TR
Receptor Model. As the protein was not neutral at the assay (12)
and many charged residues are important for electrostatic interac-
tion at the active site (18,25,32), we maintained the AMBER par-
tial atomic charges at the enzyme. The largest inhibitor of our
data set, peptide 16 (Table 1), is posed into the Receptor Model
(Figure 1), revealing that all 21 peptides fit into the enzyme
pruned at 11.5 � cutoff.

Table 1: Numbering, structures, and pI50 (M) values of the 21
compounds tested against TR of Trypanosoma cruzi (12)

No. Peptide mimetics structures pI50

1 benzoyl-Arg-p-nitroanilide 3.26
2 benzyloxycarbonyl-Arg-p-nitroanilide 3.40
3 H-Arg-b-naphtylamide 2.82
4 H-Trp-b-naphtylamide 2.57
5 benzyloxycarbonyl-Lys-4-methoxy-b-naphtylamide 3.09
6 H-Trp-OH (tryptophan amino acid) 2.57
7 benzyloxycarbonyl-Arg-Arg-4-methoxy-b-naphtylamide 4.41
8 benzyloxycarbonyl-Arg-Arg-p-nitroanilide 4.22
9 H-His-Trp-His-OH 2.76

10 H-His-Trp-Lys-OH 2.41
11 H-Phe-Arg-Trp-OH 3.40
12 H-Phe-Pro-Arg-4-methoxy-b-naphtylamide 3.26
13 benzoyl-Leu-Arg-Arg-b-naphtylamide 4.93
14 terc-butyl-Leu-Arg-Arg-7-amide-methylcoumarin 3.45
15 terc-butyl-Leu-Lys-Arg-7-amide-methylcoumarin 3.38
16 benzoyl-Gly-Arg-Arg-Leu-b-naphtylamide 3.29
17 benzyloxycarbonyl-Gly-Gly-Arg-7-amide-methylcoumarin 3.53
18 benzyloxycarbonyl-Ala-Arg-Arg-4-methoxy-b-naphtylamide 4.98
19 benzoyl-Lys-Phe-Arg-p-nitroanilide 3.62
20 benzoyl-Phe-Val-Arg-7-amide-4-methylcoumarin 3.61
21 H-Phe-Met-Arg-Phe-NH2 2.56
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Step 3
All the inhibitors have significant structural differences from the
bounded substrate (TS2), and the alignment used to generate the
initial binding geometry for each peptide–TR complex followed the
orientation reported by McKie et al. (12) and our previous docking
studies (33).

After the alignment, the TS2 was removed from the Receptor Model
and the corresponding set of peptide–TR complexes was generated.
To acquire reliable structures for MD simulation, these 21 systems
were energy-minimized until a gradient reached 0.001 kcal ⁄ mol on
HYPERCHEM 7.0 software (27), using the AMBER force field (28),
applying this sequential procedure: the peptide docked into the
pruned protein was minimized, followed by the hydrogen atoms, the
backbone atoms, and finally, with a restrained potential at the C-
and N-termini of the protein, the entire complex.

Step 4
All atoms of the peptide–TR complexes were assigned according to
the atom types, named Interaction Pharmacophore Elements (IPE),
available in the 4D-QSAR software (26), which permits the classifi-
cation of enzyme–inhibitor interactions and were defined as follows
(5): any type of atom (any); nonpolar atom (np); polar atom of posi-
tive partial charge (p+); polar atom of negative partial charge (p));
hydrogen bond acceptor (hba); hydrogen bond donor (hbd); and aro-
matic atoms (ar).

Step 5
In the 4D-QSAR method, the MD simulation is used to generate the
conformational ensemble profile (CEP) of each peptide–TR complex
(5). Each low-energy complex resulting from Step 3 was used as the
initial structure for the MD simulation, which was performed in the
MOLSIM software (34) available in the 4D-QSAR package (26). Three
hundred conformations of each complex were obtained for sampling,

with a time step of 0.001 ps, at a temperature of 298 K, resembling
the biological assay (12), and a molecular dielectric of 3.0 e0.

Because the potential energy of the system was stabilized at the
last 100 steps (data not shown), these final conformations were
evaluated for constructing the CEP and the corresponding grid cell
occupancy descriptors (GCOD) of each peptide–TR complex model.
The RD-4D-QSAR method does not use a single conformation when
constructing a 4D-QSAR model, but the intrinsic conformational flex-
ibility of each complex is taken into account through its CEP (9).

Step 6
Alignments in the RD-4D-QSAR study can introduce sterically forbid-
den overlaps of parts of a ligand with parts of the binding model;
overall, flexible and ⁄ or non-equivalent atoms among ligands are not
good alignment atoms because of the high probability of introduc-
ing structural damage to the pruned receptor–ligand complex (5).
As a result of immense differences in the structures of the data-
base (Table 1), pointing out that the peptide–TR complex model
contained the same residues originated from the TR crystallographic
structure and the 21 peptides bind to the pruned enzyme in a
diverse mode, we choose the alpha-carbon atoms (Ca) from the
backbone for the alignment and tested various Ca sets. The current
4D-QSAR algorithm (26) considers 'three-ordered atom match' align-
ment rule, and seven alignments were chosen to cover the entire
topology of peptide–TR complex model, including residues previ-
ously related to interacting with the substrate and other inhibitors
(11,16,18,25,32). The corresponding alignments and residue numbers
are listed in Table 2.

Step 7
The CEPs of each peptide–TR complex model (consisting of 100
conformations recorded from each MD sampling) were placed in a
reference cell lattice, according to the seven alignments (see Step
6). The resolution of the grid cell lattice was set to 2.0 �, and the
overall size of the box is automatically fitted to enclose all peptides
of the database set. The atom occupancy of each grid cell, GCOD,
is a descriptor in the 4D-QSAR analysis (see Step 4), and it was
computed considering the seven IPE atom types. The normalized
absolute occupancy of each grid cell, classified through its IPE for a
given alignment, provides the trial pool of RD-4D-QSAR independent
variables referred to as GCOD (5).

Step 8
The 4D-QSAR method may retain a very large number of spurious
variables, which can be deleterious for the models (4,9,35,36).
Moreover, the possibility of highly correlated GCOD owing to factors
such as ligand–receptor interactions, induced-fit ligand and ⁄ or
receptor conformational changes, and ligand modulated receptor
allosteric effects can lead to a large number of QSAR models with
similar measures of significance, which further complicates both
models validation and interpretation (5).

Partial least-squares (PLS) regression analysis (37) was employed as
a data reduction tool between the observed dependent variable

Figure 1: Schematic representation of Trypanosoma cruzi trypa-
nothione reductase (TR) Receptor Model bounded with peptide 16.
The peptide mimetics are represented in thick purple licorice, FAD
(cofactor) is shown in salmon stick, and the enzyme secondary
structure presented the alpha-helices colored in red, beta-sheets in
yellow, and loop regions in green.
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(pI50, Table 1) and the corresponding GCOD values for each trial
alignment (9). Additionally, PLS identify the most highly weighted
GCOD from enormous data set of a local grid cell (5). In our study,
independent variable columns with variances over the set of pep-
tide complexes <2.0 were eliminated. The automated reduction data
by the PLS analysis provide the selection of the descriptors having
the highest individual weightings to the observed biological activity
measures (9). Then, PLS reduction was applied for each alignment
of each peptide–TR complex model (Table 2).

Step 9
The number of descriptors (GCOD) that could be part of a QSAR
equation (model) depends on the ligand-receptor system; generally,
larger and ⁄ or more flexible ligands will generate a high number
of GCOD. However, the statistics impose a limit of four to five
observation compounds per descriptor (9). If the number of GCOD
in the grid cell occupancy profile for a grid cell is <500, all those
GCOD are retained for the genetic function approximation (GFA)
analysis. Otherwise, the top 500 GCOD from the PLS (see Step 8)
are used. In the current work, the 500 most highly ranked PLS de-
scriptors, determined in the previous step for a grid cell of 2.0 �,
were chosen to form the trial descriptor basis sets for model opti-
mization by GFA analysis (38).

The GFA analysis searches which descriptor (GCOD) combination
scores well, rather than identifying good individual high-scoring de-
scriptors. Thus, it is possible that one (or more) descriptor in a good
RD-4D-QSAR model does not individually contribute significantly to
the overall quality of a model, and these low-scoring descriptors
could cause confusion when trying to interpret a model (5). To com-
pare models with different numbers of selected variables, the

cross-validated correlation coefficient (q2) and the linear correlation
coefficient (r2) were normalized (39), resulting in the adjusted q2

(q2
adj) and adjusted r2 (r 2

adj ) values, respectively.

The GFA optimizations were initiated using 500 randomly generated
4D-QSAR models. Twenty thousand to 5000 crossover operations
were applied, and the number of mutation operations over the
crossover cycle was set at 50–70%. The smoothing factor is used
to alter the number of independent variables (GCOD) into the mod-
els, to reduce the least-squares error (LSE) and impair overfitting
(9). Smoothing factor values of 0.5–2.0 were tested to fit to the
optimal number of descriptors in the 4D-QSAR models, resulting in
lower values of Friedman's lack-of-fit (LOF) factor, which is a penal-
ized LSE measure (39,40)

Aiming to build a RD-4D-QSAR model with high predictive power,
the top 10 best models (i.e., equations that have highest q2

adj with-
out data overfitting), obtained from GFA optimization, are deter-
mined and investigated. The number of top models investigated
can be varied, and the numbers of times each unique GCOD is
used on the top 10 best models could be recorded. This selection
seems to capture the GCOD with higher contributions to activity
profile. Any GCOD used more than one for each grid cells among
the top 10 best models is retained for the next model building
GFA analysis.

Diagnostics measures to analyze the resultant QSAR models are
determined as a part of GFA optimization. The diagnostic measure-
ment includes descriptor usage as a function of crossover operation,
linear cross correlation among descriptors and ⁄ or biological activity
measures, and measures of model significance, including the q2, r2,
q2

adj , r 2
adj, and Friedman's LOF value.

Table 2: Statistical values for the different alignments tested in the RD-4D-QSAR study of the 21 peptide mimetic inhibitors of TR

Alignmentsa Ca atoms Variables r 2
adj q2

adj Lack-of-fit Least-squares error

1 W22 ⁄ F396¢ ⁄ H461¢ 3 0.707 0.515 0.295 0.150
4 0.720 0.458 0.374 0.144
5 0.780 0.406 0.410 0.113

2 F396¢ ⁄ P398¢ ⁄ L399¢ 3 0.682 0.527 0.320 0.163
4 0.748 0.568 0.336 0.129
5 0.792 0.621 0.257 0.106

3 H461¢ ⁄ E467¢ ⁄ E466¢ 3 0.763 0.657 0.371 0.121
4 0.882 0.778 0.157 0.060

5 0.904 )0.029 0.046 0.802
4 W22 ⁄ Y111 ⁄ M114 3 0.730 0.190 0.138 0.643

4 0.734 0.539 0.355 0.136
5 0.802 0.210 0.101 0.560

5 W22 ⁄ E19 ⁄ L18 3 0.727 0.496 0.427 0.135
4 0.617 0.336 1.082 0.199
5 0.906 )0.034 0.046 0.834

6 E19 ⁄ R472¢ ⁄ E467¢ 3 0.811 0.700 0.096 0.188
4 0.850 0.057 0.076 0.766
5 0.948 )0.131 0.026 0.710

7 V56 ⁄ T410¢ ⁄ L27 3 0.806 0.702 0.194 0.099
4 0.820 0.675 0.239 0.092

5 0.867 0.625 0.246 0.067

aThe alignments 3 and 7 were selected for building two independent RD-4D-QSAR models.
The best results from alignments 3 and 7 are highlighted in boldface.
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Step 10
Steps 7–9 were repeated until all seven alignments were included
in the 4D-QSAR analysis.

Step 11
The final step in RD-4D-QSAR analysis is to hypothesize an 'active
conformation' of the composite ligand–receptor complex (5). The 21
single complexes were evaluated. They were extracted from 100
conformations obtained from MD and presented the best energy cri-
terion, i.e., lower potential energy of the conformation sampled.

Results

The seven trial alignments studied are shown in Table 2. Only
alignments 3 and 7 provides the best RD-4D-QSAR models,
defined by the highest q2

adj value. Moreover, these two alignments
provide 4D-QSAR models with smallest values of LSE and Fried-
man's LOF. The complete statistical measures, including the values
of q2

adj, r 2
adj, LSE, LOF, and the number of variables of the top 10

best models for each alignment, are presented in Table 2. The
remarkable differences between these two alignments compared
to the others cannot only be analyzed based on statistical param-
eters, for example higher q2

adj values, but it should take into
account the 'three-ordered atoms' used in alignments 3 and 7.
They were clearly diverse from the others, including the catalytic
residues (alignment 3) or including only residues close to the bor-
der of the pruned model (alignment 7). Thus, only these two
alignments will be analyzed.

The best 10 top 4D-QSAR models have many variables, and some
of them are not to be significant for analysis; hence, only models
with 3, 4, or 5 descriptors were considered. To determine whether
these variables, incorporated into the models, are providing common
or distinct structure–activity information, the correlation coefficient
matrix among the residuals of models with 3, 4, and 5 variables for
both alignments was computed (Table S1). The idea of determining
the residual pair correlations is that equivalent models will have
near-identical residues, while distinct models should have noncorre-
lated residuals (4,34,38).

Table S1 reveals that all the models are highly correlated with
each other. Thus, the RD-4D-QSAR model with the highest q2

adj
value was selected as the representative model for each alignment.

The best 4D-QSAR model for alignment 3 (model 1) is defined by
eqn 1:

pI50 ¼ þ3:362þ 0:962ð�10;�4; 0; anyÞ
þ1:080ð�5;�1; 6; anyÞ � 1:797ð�7; 0; 4; anyÞ

�1:414ð�2; 8; 10; anyÞ
ð1Þ

[n = 21, r2 = 0.8811, q2 = 0.8112, q2
adj= 0.791]

The best 4D-QSAR model for alignment 7 (model 2) is defined by
eqn 2:

½pI50 ¼ þ3:366þ 0:977ð5; 3; 2; anyÞ � 1:239ð1;�2;�3; anyÞ
�0:211ð�1; 3; 6; anyÞ � 8:672ð�3; 13; 3; anyÞ

ð2Þ

[n = 21, r2 = 0.8189; q2 = 0.7239, q2
adj= 0.786]

In eqns 1 (model 1) and 2 (model 2), the three sequential numbers
in the parenthess correspond to the Cartesian coordinates of each
descriptor (GCOD), and any code corresponds to the IPE of the cor-
responding GCOD (see Materials and Methods).

It is noteworthy that the two best models contain four variables,
and they are composed, in both cases, only by one type of atom
type (IPE): any atoms. Moreover, model 1 shows two cells ()7, 0, 4
and )2, 8, 10) with negative coefficients, which decrease the activ-
ity, and two cells ()10, )4, 0 and )5, )1, 6) with positive coeffi-
cients, which increase the activity, while model 2 shows simply one
cell (2,3,5) with positive coefficient.

The 'active conformation' of each peptide–TR complex was hypothe-
sized considering the models 1 and 2 from alignments 3 and 7,
respectively. The GCOD of each resulting set of low-energy confor-
mations was employed to predict the activities for each ligand
using eqns 1 and 2, and the conformer with the highest activity
was selected as the 'active conformation' of each complex. Figure 2
shows the most (18) and least (10) active compounds of this series
for each model.

Outlier compounds were defined as the compounds in which pre-
dicted activities calculated by the model were higher than twice
the standard-error deviations among the residuals, that is, the
residual differences between experimental (pI50) and predicted
activities (pI50calc). Table 3 shows the residual values considering
the RD-4D-QSAR models 1 and 2 from alignments 3 and 7, respec-
tively. In the peptide–TR complex model 1 (alignment 3), compounds
3 and 11 were considered outliers, and in the peptide–TR complex
model 2 (alignment 7), the outliers were compounds 3 and 4.

Golbraikh and Tropsha (41) stated that higher q2 (or q2
adj) values are

not a sufficient condition for model validation. Therefore, to have a
qualitative validation and access more details about the model util-
ity and limitations (42), the correlation between the GCODs of mod-
els 1 and 2 was analyzed by the calculation of the percentage of
occupancy of the grid cells (Table 4) of the most (18) and the least
(10) active compounds and the outliers of models 1 (3 and 11)
and 2 (3 and 4), which was compared with some crystallographic
structures deposited in PDB (11,43).

Discussion

Model 1
The GCODs ()5, )1, 6) and ()7, 0, 4) of model 1 (eqn 1, Fig-
ure 2A,B) revealed an opposite effect on the predicted activity
despite their geometric proximity (�3.0 �), where the occupancy of
the grid cell ()5, )1, 6) increases the activity, while the occupancy

Pita et al.
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of the grid cell ()7, 0, 4) decreases the activity, because the former
grid cell has a positive coefficient and the latter a negative one.
Analyzing the crystallographic structure of TR complexed with their
natural substrate (11), it was noted that the spatial position of
these grid cells corresponds to the catalytic cysteines C53 and C58,
respectively. To understand the reasons of this behavior, we
attended for the role of each cysteine at the mechanism of TR
catalysis proposed by Leichus et al. (44). The side chain of C53 resi-
due acts as a nucleophile attacking the substrate during the cataly-
sis, and the thiol group of C58 makes a charge transfer complex
with the FAD aromatic ring (44). It is remarkable that our model
could distinguish through these nearly residues and assigned the
contributions for each one descriptor similar to their biological role
in catalysis, that is, the substrate interaction with the enzyme resi-
dues increases (positive GCOD) the activity, while its interaction
with the cofactor (FAD) decreases (negative GCOD) the activity.

The positions of other two remaining GCODs ()10, )4, 0 and )2,
8, 10) of model 1 were not helpful in our study, because the first
was not occupied in model 1 (Table 4) and the second is located
�2.45 � away from the backbone oxygen atom of S15, which inter-
acts through H-bond with glycine-I of TS2 (11).

Interestingly, during the MD simulation, the complex of the most
activity compound (18) occupies only one positive GCOD ()5, )1,
6) and does not occupy any negative GCOD, while the complex of
compound 10 (the least-potent inhibitor) occupies the positive
GCOD, as complex 18, but both negative GCODs ()7, 0, 4 and )2,
8, 10) (Table 4). Table 3 shows that the activities of these com-
pounds were well predicted, resulting in residual values of )0.034
and 0.211, respectively, for 18 and 10.

Model 1 has two outliers (3 and 11). During the MD simulation,
the complex of outlier 3 does not occupy any GCOD (Table 4), and
because of this fact, the predicted activity of this compound is
higher than the experimental one (residual = 0.544, Table 3). It
could be explained from eqn 1, where the high constant term
(3.362) will result in an 'overpredicted' activity by no occupancy of
any GCOD.

The complex of outlier 11 occupies the same GCODs as complex
10, but while complex 10 occupies more negative GCODs, complex
11 occupies more the positive GCOD, and then the predicted activ-
ity should be high (residual = 0.565, Table 3). However, it should be
noted that the high constant term (3.362) could not justify alone

A B

C D

Figure 2: RD-4D-QSAR with most active peptide (18, A and C) and less active (10, B and D) for model 1 (A and B) and model 3 (C and
D). The representations are the same as Figure 1; the gray and cyan spheres represent the grids that decrease and increase the biological
activities, respectively.
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the calculated activity, because the 'positive' occupancy in complex
11 resulted in activity values higher than the experimental results
from McKie et al. (12). Taken these results together, it could be
concluded that the high constant term summed with the fourfold
occupancy in the positive grid cells culminate in 'overpredicted'
activity for peptide 11.

Model 2
The unique positive GCOD (2,3,5) of model 2 (eqn 2, Figure 2C,D) is
located near the residues N55 and V54 (�1.74 � away from V54-Ca).
This region is a hydrophobic site near the TR active site and contig-
uous to Z-site (11,16), a promising location that interacts with
diverse classes of known TR inhibitors (12,13,16,18). Moreover,
Bond et al. (11) reported that residue V54 has two main hydrophobic
interactions with TS2: one interaction through its backbone atoms
with cysteine and the other with the glutamate-I side chain. The
behavior of this descriptor increasing the predicted activity corrobo-
rates with these previous crystallographic data.

The negative GCOD (1, )2, )3) (eqn 2, Figure 2C,D) is �3.8 �
away from the gamma-carbon atom of P60 side chain. This result
reinforces the accuracy of this model when penalizes the grid cell
occupancy of GCODs that does not interact close to the TR active
site, because the P60 is far from the main interactions observed in
crystal structures of TR–inhibitor complexes (11,43).

The occupancy of the other negative GCOD ()3, 13, 3) decreases
the predicted activity, and the main reason was attributable to the
spatial location of this grid cell �4.3 � away from the oxygen atom
of G12 backbone. Both at the crystal structure (11,43) and in our
peptide–TR complex model, there is not any amino acid interacting
with this residue. The inspection of the TR–NADP complex crystal
structure [PDB ID: 1TYT (43)] shows that G12 is near the FAD ade-
nine ring. Therefore, the occupancy of this site decreases the pre-
dicted activity, because flavin is the TR cofactor, which donates a
hydride during the enzymatic catalysis (44).

The last negative GCOD ()1, 3, 6) also decreases the calculated
activity according to model 2, and it is located between the nitro-
gen backbone of A48 and oxygen backbone of G51, with distances
of �1.37 and �2.54 �, respectively. We noted that both residues
interacts with the polyphosphate chain of FAD, a spatial obstructed
region of the enzyme in the crystal complex (43), which corrobo-
rates with the negative signal of this descriptor decreasing the
activity.

The complex of compound 18, as revealed in Table 4, occupies the
unique positive GCOD (2,3,5) almost five times more than the nega-
tive one ()1, 3, 6), during the MD simulation, resulting in activity
values near to the experimental ones. The complex of peptide 10

occupies only two negative GCODs ()1, 3, 6 and 1, )2, )3), result-
ing in decreased activity. In model 2, as in model 1, compounds 18

and 10 were well predicted, since their residual values were –
0.148 and –0.128, respectively (Table 3).

Model 2 has two outliers (3 and 4). Again, the outlier from com-
plex 3 is also an outlier in model 2. Although distinct from model
1, where its behavior was attributable to an 'empty occupancy' of
all GCODs, in model 2, the complex 3 occupies a negative GCOD
()1, 3, 6) four times more than it occupies the positive one (2,3,5)
(Table 4), resulting in a decreased activity (residual = 0.590,
Table 3).

The outlier from complex 4 occupies only the negative grid cells
()1, 3, 6; )3, 13, 3; and 1, )2, )3) of model 2, during the MD

Table 3: Residual differences between experimental (pI50) and
predicted (pI50calc) activities of the RD-4D-QSAR models 1 and 2

No.a pI50

Model 1 Model 2

pI50calc Residual pI50calc Residual

1 3.26 3.409 0.147 3.210 )0.052
2 3.40 3.037 )0.368 3.595 0.190
3 2.82 3.362 0.544 3.408 0.590
4 2.57 2.518 )0.056 3.128 0.554
5 3.09 3.283 0.195 3.010 )0.079
6 2.57 2.540 )0.034 2.551 )0.023
7 4.41 4.269 )0.146 4.457 0.043
8 4.22 4.313 0.090 4.093 )0.130
9 2.76 2.694 )0.065 2.734 )0.025

10 2.41 2.618 0.211 2.280 )0.128
11 3.40 3.967 0.565 3.109 )0.294
12 3.26 3.362 0.098 3.339 0.074
13 4.93 4.636 )0.292 4.957 0.029
14 3.45 3.326 )0.123 3.285 )0.164
15 3.38 3.372 )0.007 3.454 0.075
16 3.29 3.370 0.077 3.312 0.019
17 3.53 3.254 )0.275 3.267 )0.262
18 4.98 4.949 )0.034 4.835 )0.148
19 3.62 3.362 )0.254 3.324 )0.292
20 3.61 3.362 )0.245 3.149 )0.458
21 2.56 2.533 )0.029 3.041 0.479

aThe outliers from models 1 (3 and 11) and 2 (3 and 4) are underlined.

Table 4: Percentage of occupancy of grid cell occupancy descriptors (GCODs) selected in the RD-4D-QSAR models 1 and 2, respectively,
during the MD simulation of the 21 peptide–TR complexes. The results are shown for the most (18) and the least (10) active compounds
and outliers of models 1 (3 and 11) and 2 (3 and 4)

GCOD

Model 1

GCOD

Model 2

3 10 11 18 3 4 10 18

+()10, )4, 0) 0 0 0 0 +(5, 3, 2) 0.330 0 0 1.560
+()5, )1, 6) 0 0.290 0.840 1.470 )()1, 3, 6) 1.330 1.130 0.092 0.260
)()7, 0, 4) 0 0.100 0.160 0 )()3, 13, 3) 0 0.470 0 0
)()2, 8, 10) 0 0.620 0.100 0 )(1, )2, )3) 0 1.240 0.720 0
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simulation, which decreases the calculated activity, where the high
constant term (3.366) 'overpredicted' its activity (residual = 0.554,
Table 3).

Conclusions

In the present work, we have constructed two 3D-QSAR models,
applying the receptor-dependent 4D-QSAR (RD-4D-QSAR) approach,
for a series of peptide mimetic inhibitors of T. cruzi trypanothione
reductase (TR, PDB ID: 1BZL) synthesized and tested by McKie et al.
(12). The models were derived from 21 peptide–TR complexes, con-
structed using a TR Receptor Model, a sphere of 11.5 � radii around
all atoms of the substrate containing some residues of the enzyme.

The best equations generated by the RD-4D-QSAR method resulted
in good models, that is, statistically meaningful: q2 > 0.72,
q2

adj > 0.78 and r2 > 0.81 (Table 2). Besides its statistical signifi-
cance, both models revealed some regions at the TR receptor of
particular interest for access in future steps of the drug discovery
process against tropical diseases, for example the disulfide bond
region between the TR catalytic cysteines (C53 and C58) closest to
the C53 that may act preventing the nucleophile attack to the sub-
strate; the Z-site and its adjacent regions showing hydrophobic
characteristic, which has been reported before (16,18,43,44); and
the FAD region whose occupancy will decrease the activity of the
compounds. It is noteworthy that the Receptor Model does not
include any atoms of the FAD ring, and despite it, in the two best
models (equations), at least one descriptor (GCOD) related to this
region was selected.

These results show that new insights can be obtained with the RD-
4D-QSAR approach, as it includes atoms from the receptor and not
only atoms of the ligand, as it was more usual, that is, the recep-
tor-independent (RI) approach (5,8,9,36,42). Possibly, including the
complete TR enzyme will result in more useful models that could
reveal other affordable regions to explore more diversely than that
reported here.
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