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Abstract
In isotropic media, we use the scalar acoustic wave equation to perform reverse time migration
(RTM) of the recorded pressure wavefield data. In anisotropic media, P- and SV-waves are
coupled, and the elastic wave equation should be used for RTM. For computational efficiency,
a pseudo-acoustic wave equation is often used. This may be solved using a coupled system of
second-order partial differential equations. We solve these using a pseudo spectral method and
the rapid expansion method (REM) for the explicit time marching. This method generates a
degenerate SV-wave in addition to the P-wave arrivals of interest. To avoid this problem, the
elastic wave equation for vertical transversely isotropic (VTI) media can be split into separate
wave equations for P- and SV-waves. These separate wave equations are stable, and they can
be effectively used to model and migrate seismic data in VTI media where |ε − δ| is small.
The artifact for the SV-wave has also been removed. The independent pseudo-differential wave
equations can be solved one for each mode using the pseudo spectral method for the spatial
derivatives and the REM for the explicit time advance of the wavefield. We show numerically
stable and high-resolution modeling and RTM results for the pure P-wave mode in VTI media.

Keywords: seismic waves, anisotropy, dispersion relation, vertical transversely isotropic,
reverse time migration, rapid expansion method, pseudo spectral method

(Some figures may appear in colour only in the online journal)

Introduction

Seismic anisotropy is observed in many exploration areas.
Conventional isotropic migration methods are insufficient in
these areas. Thus, where required by the analysis of the data,
migration methods may be isotropic or vertical transversely
isotropic (VTI) or tilted transversely isotropic (TTI).

Reverse time migration (RTM) is becoming the standard
tool for imaging areas where large velocity contrast and/or
steep dips pose imaging challenges, e.g. around and below
salt bodies. RTM propagates the source wavefield forward in
time and the receiver wavefield backward in time to image
the subsurface reflectors. By using the two-way acoustic wave
equation, it naturally takes into account both down-going and

up-going waves and thus enables imaging of the turning waves
and prismatic waves that are able to enhance the image of
steep salt flanks and other steeply dipping events associated
with complex structures. In recent years, RTM has gained
popularity as computer power has increased, enabling its
routine application to prestack seismic data.

Ignoring anisotropy may result in serious imaging
problems for dipping reflectors beneath or inside anisotropic
structures. To model anisotropic media, we should use the
elastic wave equations where the P-wave and S-wave modes
are intrinsically coupled. However, for imaging anisotropic
media, particularly for marine data, the separation of P- and
S-waves is often preferred. Thus, both the implementation
of separation methods and the fully elastic solutions with
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appropriate corresponding imaging conditions remain a
subject of ongoing research (Yan and Sava 2009, Lu 2010,
Yan and Xie 2010).

For P-wave imaging purposes, the preferred approach has
been to derive pseudo-acoustic wave equations that can be
used in an efficient way for modeling and migration of seismic
data acquired over anisotropic media. Alkhalifah (1998, 2000)
derived an approximate dispersion relation for VTI media,
simply by setting the shear wave velocity equal to zero along
the vertical axis. But the implementation of the resulting
equations in the space-time domain leads to complicated
fourth-order partial differential equations. Other authors derive
various second-order coupled systems (Zhou et al 2006, Du
et al 2008) based on Alkhalifah’s dispersion relations. Now
the original fourth-order differential equation is represented
as a coupled system of equations of second order in time
that are much easier to implement. Using Hooke’s law and
the equations of wave motion, Duveneck et al (2008) derived
coupled first-order and second-order VTI equations, but again
they set the vertical shear wave velocity as zero.

Many researchers have implemented computationally
efficient algorithms for these two-way wave equations for
modeling and RTM in anisotropic media with the pseudo-
acoustic approximation (Zhou et al 2006, Du et al 2008,
Fowler et al 2010a, Song et al 2011) using second-order
finite differences in time and higher order finite differences
to compute the spatial derivatives.

Although this approach to defining a dispersion relation
for a scalar wavefield has kinematics close to those of the
P-arrivals in the real elastic vector wavefield, it can generate
unwanted wave events. These events were initially categorized
as numerical artifacts (Alkhalifah 2000). But later, Grechka
et al (2004) identified them as the SV-component, because
simply setting vs = 0 does not result in the vanishing of
the shear wave phase velocity everywhere in an acoustic VTI
medium (Liu et al 2009). Methods have been proposed to
suppress this artifact. For example, when the source point is
located in an isotropic medium above the anisotropic medium,
the artifact disappears.

To avoid this undesired SV-wave energy, different
approaches have recently been proposed to model the pure P-
wave mode (Etgen and Brandsberg-Dahl 2009, Liu et al 2009).
Recently, Liu et al (2009) factored the dispersion relation
presented by Alkhalifah (2000) and obtained two pseudo-
partial differential equations. The P-wave equation is well-
posed for any value of the anisotropic parameters, but the
SV-wave becomes well-posed only when ε > δ is satisfied.

The idea of obtaining a separate P-wave equation is
not new. Fowler (2003) presents a systematic framework for
deriving a variety of VTI approximations and he developed
a sequence of well-defined approximations to the exact P-
wave and SV-wave phase velocities. For example, the P-wave
approximation present in Liu et al (2009) is equivalent to
approximation P2 in table 2 of Fowler (2003). It is equivalent to
the Muir–Dellinger approximation (Dellinger and Muir 1985,
Dellinger et al 1993) which was later derived again by Stopin
(2001). More recently, a P-wave dispersion relation for VTI
media was presented by Etgen and Brandsberg-Dahl (2009)

where they implemented the time stepping using the pseudo-
analytical method. In fact, this approximation is the same
one labeled P4 in table 2 of Fowler (2003) and it also has
a long history and is originally credited to Harlan (1995). So
the mode-separated dispersion relations for P- and SV-waves
which we review below are not new and were developed and
discussed in the references cited above.

For homogeneous media, all the above P or SV dispersion
relations can be evaluated in the wavenumber domain and then
used in an exponential or cosine time extrapolation operator.
But, for heterogeneous VTI media, exact or approximated
phase velocity functions cannot be easily implemented
because they do not separate in the space and wavenumber
domain. Recently, Etgen and Brandsberg-Dahl (2009), using
an approximate dispersion relation for VTI media, solved
the VTI time-wavenumber domain wave equation using the
pseudo-analytical method as a time extrapolation procedure.
Later, the pure P-wave equation, as derived using the
Harlan (1995) approximation, which is indeed separable, was
extended from VTI to TTI media using a matrix rotation, and
then implemented again using the pseudo-analytical method
(Crawley et al 2010) for the time advance of the wavefield.

To solve the pure P-wave equation, for heterogeneous
media, we need to use a mixed-domain method. Various mixed-
domain methods for isotropic P-wave RTM have recently
been presented by Soubaras and Zhang (2008), Zhang and
Zhang (2009), Pestana and Stoffa (2010), Fowler et al (2010b),
only to cite a few. All these methods can be extended
to VTI and TTI media. In this paper, we use the rapid
expansion method (REM) that is based on a Chebyshev series
expansion for the time extrapolation. By coupling the REM
with a pseduo spectral method for the spatial derivatives,
we can accurately solve mixed-domain space-wave number
equations. The implementation of the REM is straightforward
for modeling problems (Kosloff et al 1989), but for RTM it
has to be implemented in a recursive procedure as presented
by Pestana and Stoffa (2010). Here we follow this approach
to solve both the coupled system (Du et al 2008) and the
separated pseudo-differential P-wave equation. We begin by
reviewing the developments of the coupled and separated
P-wave equations.

Pseudo-acoustic wave equations

The scalar acoustic wave equation is commonly used in
isotropic media to describe the propagation of P-waves through
structures. However, anisotropic media are only correctly
described by the elastic wave equation with intrinsically
coupled P- and S-waves. Rather than solving the anisotropic
elastic wave equation, several researchers have derived two-
way pseudo-acoustic wave equations in anisotropic media
(Alkhalifah 2000, Zhou et al 2006, Du et al 2008, Fowler
et al 2010a, 2010b).

Acoustic anisotropy was introduced by setting the vertical
shear wave velocity equal to zero (vso = 0). The dispersion
relation for waves in 3D acoustic VTI media (Alkhalifah 2000)
is then given by

ω4 − [
v2

h k2
r + v2

pok2
z

]
ω2 − v2

po

(
v2

n − v2
h

)
k2

r k2
z = 0, (1)
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where vpo is the vertical P-wave velocity (along the symmetry
axis), vh is the horizontal P-wave velocity and vn is the P-wave
NMO-velocity. They are given by

v2
h = v2

po(1 + 2ε)

v2
n = v2

po(1 + 2δ),
(2)

with ε and δ being the Thomsen (1986) parameters. The square
of the vertical wavenumber is k2

z , the square of the horizontal
wavenumber is k2

r = k2
x + k2

y and ω is the angular frequency.
Introducing the following auxiliary function,

q(ω, kx, ky, kz) = ω2 + (
v2

n − v2
h

)
k2

r

ω2
p(ω, kx, ky, kz), (3)

equation (1) can be written (Du et al 2008) as

ω2 p(ω, kx, ky, kz) = v2
h k2

r p(ω, kx, ky, kz)

+ v2
po k2

z q(ω, kx, ky, kz). (4)

Applying an inverse Fourier transform to both sides of
the previous two equations, using the correspondent relations
iω ↔ ∂/∂t, −ikx ↔ ∂/∂x, −iky ↔ ∂/∂y, −ikz ↔ ∂/∂z,
we obtain the following pseudo-acoustic VTI system of
equations,

∂2 p

∂t2
= v2

h

(
∂2 p

∂x2
+ ∂2 p

∂y2

)
+ v2

po

∂2q

∂z2

∂2q

∂t2
= v2

n

(
∂2 p

∂x2
+ ∂2 p

∂y2

)
+ v2

po

∂2q

∂z2
,

(5)

or using the following matrix formulation (2D case), we
have

∂2

∂t2

(
p
q

)
=

⎛
⎜⎜⎝

v2
h

∂2

∂x2
v2

po

∂2

∂z2

v2
n

∂2

∂x2
v2

po

∂2

∂z2

⎞
⎟⎟⎠

(
p
q

)
(6)

which can also be rewritten as
∂2U

∂t2
= −A2U, (7)

where U = (p, q) and

−A2 =

⎛
⎜⎜⎝

v2
h

∂2

∂x2
v2

po

∂2

∂z2

v2
n

∂2

∂x2
v2

po

∂2

∂z2

⎞
⎟⎟⎠ . (8)

Introducing this auxiliary function results in a coupled
system of two wave equations which is more convenient and
computationally efficient to solve. In both equations (1) and
(6), there appears a spurious SV-wave (Grechka et al 2004)
which introduces noise when modeling or migrating P-waves.

The REM—two coupled wave equations

Considering now the system of equations derived by Du et al
(2008) (equation (6)), it has a formal solution for the updated
wavefield U (t + �t) that is given by

U (t + �t) = −U (t − �t) + 2 cos(A�t)U (t). (9)

Now we need to compute the cosine of a matrix acting
on a vector. However, there is no closed form expression for

the cosine of the matrix operator. We could use the Taylor
expansion, but it requires many terms for large values of the
argument of the cosine (Pestana and Stoffa 2010).

The numerical procedure for solving equation (9) in
second temporal order can be expressed as

U (t + �t) = 2U (t) − U (t − �t) − �t2A2 U (t) (10)

or

U (t + �t) = 2U (t) − U (t − �t)

−�t2A2 U (t) + �t4A4

12
U (t), (11)

which is the standard fourth-order finite difference scheme
(Etgen 1986).

A more efficient orthogonal polynomial series expansion
for the cosine was presented by Tal-Ezer et al (1987) and
applied for seismic modeling by Kosloff et al (1989). The
method is called REM and was proposed by Pestana and Stoffa
(2010) for RTM problems for the isotropic case.

For the REM, which is based on the Chebyshev
polynomial expansion (Tal-Ezer et al 1987), the cosine
function can be expressed as

cos(A�t) =
∞∑

k=0

C2k J2k(R�t) Q2k

(
iA

R

)
, (12)

where C2k = 1 for k = 0 and C2k = 2 for k > 0. R is
chosen as the largest eigenvalue of A2. J2k is the Bessel function
of the first kind order and Q2k are the modified Chebyschev
polynomials that satisfy the following recurrence relations:

Q0

(
iA

R

)
= I (the identity operator)

Q2

(
iA

R

)
= I − A2

R2
(13)

Q2k+2

(
iA

R

)
=

(
−4A2

R2
+ 2I

)
Q2k − Q2k−2.

For 3D wave propagation and considering the constant
velocity case, the value of R is given by R =
πv

√
1/�x2 + 1/�y2 + 1/�z2. In general, for VTI media, v

should be replaced by max{vh, vn}, the highest velocity in
the grid. The sum in expression (12) is known to converge
exponentially for k > R�t; therefore, the summation can be
safely truncated using a value of k slightly greater than R�t.

In conventional RTM or seismic modeling, the spatial
derivatives are usually calculated by finite-difference schemes.
For the coupled VTI equations (5) or (6), finite-difference
methods are readily employed. The spatial operators can be of
low order (e.g. fourth) or higher order (e.g. eighth or more).
But the time integration would usually be of low order (e.g.
second). To maintain stability, small time steps are required
to satisfy the stability condition. But, to avoid numerical
dispersion, even smaller time steps are needed (Kosloff
et al 1989). This leads to increases in the computation time over
that required to satisfy the stability condition alone (Pestana
and Stoffa 2010).

Several seismic modeling algorithms have been proposed
with the goal of obtaining more accurate results with less
numerical dispersion due to the spatial and time discretizations
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(Etgen and Brandsberg-Dahl 2009, Soubaras and Zhang 2008,
Fowler et al 2010b). For example, Soubaras and Zhang (2008)
proposed a polynomial expansion for the time integration
where the coefficients are estimated by some optimization
procedure.

In our numerical implementations, we use a pseudo
spectral method for the spatial derivatives to avoid all
numerical dispersion problems (Carcione et al 2002). We
also use the REM as described above for both stable and
accurate time extrapolations (Carcione et al 2002, Kosloff et al
1989). Since the REM uses a series of orthogonal Chebyshev
polynomials, this is more efficient than using Taylor series
expansions when large time steps are used (Pestana and Stoffa
2010).

Separate P- and SV-wave equations

To avoid the undesired SV-wave energy, different approaches
have been proposed to model the pure P-wave mode (Dellinger
and Muir 1985, Dellinger et al 1993, Harlan 1995, Stopin
2001, Fowler 2003, Etgen and Brandsberg-Dahl 2009, Liu
et al 2009).

Recently, Liu et al (2009) factored the dispersion relation
(1) and obtained two separate P- and SV-wave dispersion
relations:

ω2 = 1

2

[
v2

h k2
r + v2

pok2
z

] ± 1

2

[
v2

h k2
r + v2

pok2
z

]

×
[

1 + 4v2
po

(
v2

n − v2
h

)
k2

r k2
z[

v2
h k2

r + v2
po k2

z

]2

]1/2

. (14)

Expanding the square root to first order (
√

1 + X =
1 + 1

2 X), we obtain

ω2 ≈ v2
pok2

z + v2
h k2

r +
(
v2

n − v2
h

)
k2

r k2
z

k2
z + F k2

r

(for P-wave)

(15)

and

ω2 ≈ −
(
v2

n − v2
h

)
k2

r k2
z

k2
z + F k2

r

(for SV-wave), (16)

where F = v2
h

v2
po

= 1 + 2ε

For the SV-wave equation to be stable, it is required that
v2

h − v2
n � 0 or ε � δ. This requirement does not, however,

represent realistic SV-wave propagation.
The P-wave equation (15) can also be derived using

approximation P2 in table 2 of Fowler (2003) which is
equivalent to the Muir–Dellinger approximation (Dellinger
and Muir 1985, Dellinger et al 1993).

We start with the exact dispersion relation for VTI media
as derived by Tsvankin (1996):

v2(θ )

v2
po

= 1 + ε sin2 θ − f

2
± f

2

[
1 + 2ε sin2 θ

f

]

×
⎡
⎣1 − 2(ε − δ) sin2 2θ

f (1 + 2ε sin2 θ
f )2

⎤
⎦

1/2

, (17)

where θ is the phase angle measured from the symmetry axis.
The plus sign corresponds to the P-wave and the minus sign
corresponds to the SV-wave.

Here

f = 1 −
(

vso

vpo

)2

. (18)

One again expands the square root to first order
(
√

1 − X = 1 − 1
2 X) obtaining the approximations

v2(θ )

v2
po

≈ 1 + 2ε sin2 θ − (ε − δ) sin2 2θ

2
(
1 + 2ε sin2 θ

f

) P-wave (19)

and
v2(θ )

v2
po

≈ v2
so

v2
po

+ (ε − δ) sin2 2θ

2
(
1 + 2ε sin2 θ

f

) SV-wave. (20)

We have sin(θ ) = v(θ )kr

ω
and cos(θ ) = v(θ )kz

ω
so that

v2(θ ) = ω2

k2
r + k2

z

. (21)

The results are the dispersion relations

ω2 = v2
pok2

z + v2
h k2

r − 2v2
po(ε − δ) k2

r k2
z

k2
z + F k2

r

(22)

for P-waves and

ω2 = v2
so

(
k2

r + k2
z

) + 2v2
po(ε − δ)k2

r k2
z

k2
z + F k2

r

(23)

for SV-waves. Here

F = 1 + 2ε

f
= v2

h − v2
so

v2
po − v2

so

. (24)

The equations (22) and (23) are good approximations for
the P- and SV-wave dispersion relations if∣∣∣∣ 2 (ε − δ) sin2 2θ

f
(
1 + 2 ε sin2 θ

f

)2

∣∣∣∣ � 1. (25)

They are exact for an elliptic medium where ε = δ (see
equation (17)).

We note that the separated equations are equivalent to
equations P8 and VS8 in table 2 of Fowler (2003). In Fowler
(2003), a common derivation and comparison of these TI
approximations are given; see also Dellinger and Muir (1985),
Dellinger et al (1993) and Stopin (2001). We note that both
equations are better suited for the computationally more
expensive pseudo spectral method rather than finite-difference
methods of solution.

For implementation, we multiply both sides of
equations (22) and (23) by the wavefield P(kr, kz, ω) followed
by an inverse Fourier transform and then using the relation
iω ↔ ∂/∂t, we obtain the following P and SV wave equations
in the time-wavenumber domain for VTI media:

∂2P

∂t2
= −

{
v2

pok2
z + v2

h k2
r − 2v2

po(ε − δ) k2
r k2

z

k2
z + F k2

r

}
P (26)

for P-waves and

∂2PSV

∂t2
= −

{
v2

so

(
k2

r + k2
z

) + 2v2
po(ε − δ) k2

r k2
z

k2
z + F k2

r

}
PSV (27)

for SV-waves.
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(a) (b)

(c) (d)

Figure 1. Impulse response: (a) p-wavefield and (b) q-wavefield, of the Du et al (2008) equations solved by the REM. They clearly show the
spurious SV-wave artifacts. (c) P and S wavefields (d) from the decoupled P- and SV-wave equations proposed by Liu et al (2009) also
solved by the REM.

In the appendix, using a high-order approximation for the
square root, we derive from (17) separate wave equations for
P- and SV-waves. However, due to computation issues, the F1

and F2 terms in the denominators of these equations have to be
constant, as we explain later. Moreover, equations (A.9) and
(A.10) reduce to equations (22) and (23), respectively.

When we set vso = 0 (or f = 1), equations (22) and
(23) reduce to (19) and (20). If instead we set ε = 0 in
this expression, then F = 1, and equation (22) reduces to
the dispersion relation used by Etgen and Brandsberg-Dahl
(2009). This one is labeled P4 in Fowler (2003) and is more
properly credited to Harlan (1995). It is also equivalent to
the ‘weak-anisotropy-squared’ approximation used by Stopin
(2001).

The REM—separate equations for P- and SV-waves

Based on the work of Zhang and Zhang (2009), the two-way
wave equation can be transformed to a first-order equation in
time given by (

∂

∂t
+ i	

)
P(x, y, z, t) = 0, (28)

where P is the complex pressure wavefield and 	 is a pseudo-
differential operator in the space domain. In isotropic media,
the operator is defined by 	 = v

√−∇2 or by its symbol
ϕ = v(x, y, z)

√
k2

x + k2
y + k2

z where v is the velocity in the
space domain.

To produce anisotropic wave propagation, without adding
spurious waves, considering F equal to a constant, we can use
expression (22), and in this case we have

ϕ =
√

v2
pok2

z + v2
h k2

r −
(
v2

h − v2
n

)
k2

r k2
z

k2
z + F k2

r

. (29)

The solution of equation (29) is given by

P(t + �t) = e−i	�t P(t). (30)

Adding P(t−�t) = ei	�t P(t) to equation (30), we obtain

p(t + �t) + p(t − �t) = 2 cos(	�t)p(t). (31)

Now we can revert to p since the imaginary part is decoupled
(cosine is real). Since cosine is an even function, its expansion
contains only powers of 	2.

In order to have an efficient numerical scheme, we require
that

	2 =
∑

j

f j(x) g j(k) (32)
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(a) (b)

(c)

Figure 2. Impulse response: (a) pure P-wavefield and (b) SV-wavefield using the method presented here. The REM was used to solve
equations (22) and (23). (c) P-wavefield solved by the REM of the dispersion relation given by equation (22) with F = 1).

so that, approximately,

	2 p =
∑

j

f j(x)F−1{g j(k)F(p)}, (33)

where F and F−1 denote forward and inverse spatial Fourier
transforms, respectively. Such a separation is possible in
equation (29) only if the factor F is a constant, independent
of x.

The cosine function can now be evaluated by the REM.
We note that equations (26) and (27) are easily solved using
a pseudo spectral method and their solution using a finite-
difference implementation would be challenging due to the
presence of the wave numbers in the denominators. To evaluate
these would require further approximations. Using the REM
combined with a pseudo spectral method for the spatial
derivatives provides a highly accurate, numerically stable
algorithm.

Additionally, using parallel computers for evaluation
of the Fourier transforms makes our pseudo spectral
implementation computationally feasible. For example, in 3D
we simply have to replace k2

r by (k2
x +k2

y ) in equations (26) and
(27). The required forward 3D Fourier transform can be done
using one bank of multiple nodes (Chu 2009). We then require
two inverse 3D Fourier transforms, given sufficient nodes, both
of which can also be done in parallel using two banks of nodes.

Thus, the total FFT effort is the time required for one forward
and inverse transform performed using multiple nodes.

The pseudo spectral REM implementation of the
separated VTI equation has been extended to TTI by Zhan
et al (2012). In this case, the number of fast Fourier transforms
increases to 7 for a 2D problem and 21 for the 3D case. But
these can also all be done in parallel.

Numerical results

In our first modeling experiment, time snapshots (t = 0.4 s)
of wave propagation in a homogeneous VTI medium (vpo =
3000 m s−1, ε = 0.24 and δ = 0.1) are simulated with
the source pulse in the center of the model. Here dx = dz =
0.01 km and we used the pseudo spectral method for the spatial
derivatives in all cases.

Figures 1(a) and (b) correspond to the same time snapshots
from the simulations using the REM to the system of
equations (6) of Du et al (2008) for the p- and q-wavefields. In
these figures, a diamond-shaped spurious SV-wavefront can be
seen. Figure 1(c) shows the P-wave and figure 1(d) shows the
SV component computed from the decoupled P- and SV-wave
equations (15) and (16) proposed by Liu et al (2009) and also
solved by the REM. The system of equations introduced by Du
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(a)

(b)

(c)

Figure 3. Salt model: (a) velocity field, (b) delta and (c) epsilon.

et al (2008) produces a strong unwanted spurious SV-wave,
and it is possible that SV-wave artifacts will contaminate RTM
images. Using the decoupled P- and SV-waves, it is clear that
figure 1(c) has only a P-wave component, while figure 1(d)
has only a SV-wave component. Therefore, a pure P-wave
equation offers a better imaging alternative since it does not
have the SV-wave artifacts.

To demonstrate the applicability of the separated P-wave
equation using our numerical technique, we use the same
anisotropic model parameters. We also use the same grid and

implementation method. In figure 2(a), we have the same time
snapshot (t = 0.4 s) from simulation using the REM for the
pure P-wave (equation (26)) and in figure 2(b), we have the SV-
wave component (equation (27)). Both were computed using
F = 1+2ε−γ 2

1−γ 2 with γ 2 = v2
so

v2
po

= 1/4. In figure 2(c), we also
have the simulation of the pure P-wave, but with F = 1, which
is the dispersion relation used by Etgen and Brandsberg-Dahl
(2009). The pure-P-wave results presented in figures 2(a) and
(c) are quite close. And the SV-wave using the separated SV-
wave equation proposed here (equation (27)) is stable. In this

297



R Pestana et al

(a)

(b)

Figure 4. (a) Anisotropic RTM by the REM using the Du et al (2008) equations and the correct VTI model parameters. (b) Isotropic RTM
also solved by the REM.

SV-wave equation, the vertical shear wave velocity is not zero
which removes the SV-wavefront artifact and results in stable
wave propagation (Tsvankin 2001).

Next an anisotropic salt model is used to test the
performance of imaging quality with both the coupled and
separated equations solved by the pseudo spectral method and
the REM. The input 2D synthetic data were generated for this
model using elastic finite-difference modeling. The vertical
P-wave velocity is shown in figure 3(a). The ε and δ parameters
are shown in figures 3(b) and (c), respectively.

Figure 4(a) shows the anisotropic RTM result of the
P-wavefield, using the REM for the Du et al (2008) system of
equations (6). This result was obtained using the correct model
parameters but with vso = 0. For comparison, we show the

isotropic RTM results (figure 4(b)) which were imaged using
the vertical P-wave velocity. In figure 4(a), the anisotropic
migration improves the image of the steeply dipping reflectors
including the faulted bed and salt body. It also correctly images
the reflector in the center of the section which is caused by
variations only in the anisotropic parameters. This event nearly
disappears in the isotropic image and generates some noise
artifacts.

In figure 5(a), we show the result of prestack RTM using
our equation (26) with F computed with v2

so

v2
po

= 1/4 and ε

equal to the maximum value in the model. Figure 5(b) shows
the prestack RTM image obtained using F = 1 as proposed
by Etgen and Brandsberg-Dahl (2009). We see that these
two images are very similar to the results obtained using the
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(a)

(b)

Figure 5. Anisotropic RTM by the REM with our pure-P-wave equation (equation (22)) (a) and with the solution proposed by Etgen and
Brandsberg-Dahl (2009) (equation (22) with F = 1.0) (b).

equations from Du et al (2008). But the separated P-wave
equation and the one proposed by Etgen and Brandsberg-Dahl
(2009) are computationally more efficient.

Conclusions

The pseudo-acoustic approximation for wave propagation
in VTI media, where vso = 0, results in a reasonable
approximation for P-waves, but generates a degenerate SV-
wave. This results in SV-wave noise for P-wave propagation.
Separating the exact dispersion relation for VTI media results
in stable approximate equations for both P- and SV-waves.
These can be implemented efficiently using a pseudo spectral
method for the space derivatives and the REM for the

explicit time marching. This combination yields a practical
and computationally efficient method of solution which is
numerically stable and has minimum numerical dispersion.
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Appendix

Improved dispersion relations

We may write equation (17) as

v2(θ )

v2
po

= 1

2

[
A + 2

v2
so

v2
po

± A

(
1 − B

A2

)1/2 ]
, (A.1)

with

A = f + 2ε sin2 θ

B = 2 f (ε − δ) sin2 2θ. (A.2)

We first use the approximation (1−X )1/2 = 1− 1
2 X to obtain

equations (22) and (23).
Next we use the approximation

(1 − X )1/2 = 1 − 1

2
X − 1

8
X2 + · · · ≈ 1 −

1
2 X

1 − 1
4 X

(A.3)

to obtain

A

(
1 − B

A2

)1/2

≈ A − 2BA

4A2 − B
. (A.4)

We compute

BA

4A2 − B
=

(ε − δ) sin2 2θ (1 + 2ε
f sin2 θ )

2
[
1 + 2(ε+δ)

f sin2 θ + ( 2(ε−δ)

f + 4
(

ε
f

)2)
sin4 θ

] .

(A.5)

We neglect the second-order terms in ε and δ to obtain

BA

4A2 − B
≈ (ε − δ) sin2 2θ

2
[
1 + 2(ε+δ)

f sin2 θ + 2(ε−δ)

f sin4 θ
] . (A.6)

When equation (A.6) is used in equation (A.1), we obtain
an improved approximation for P-waves:

v2(θ )

v2
po

= 1 + 2ε sin2 θ − (ε − δ) sin2 2θ

2
[
1 + 2(ε+δ)

f sin2 θ + 2(ε−δ)

f sin4 θ
]

(A.7)

and

v2(θ )

v2
po

= v2
so

v2
po

+ (ε − δ) sin2 2θ

2
[
1 + 2(ε+δ)

f sin2 θ + 2(ε−δ)

f sin4 θ
] (A.8)

for SV-waves.
The new dispersion relation for P-waves is

ω2 = v2
pok2

z + v2
hk2

r − v2
po 2(ε − δ)k2

r k2
z

(
k2

r + k2
z

)
k4

z + 2 F1 k2
r k2

z + F2 k4
r

(A.9)

and for SV-waves

ω2 = v2
so

(
k2

r + k2
z

) + v2
po 2(ε − δ)k2

r k2
z

(
k2

r + k2
z

)
k4

z + 2 F1 k2
r k2

z + F2 k4
r

. (A.10)

Here,

F1 = 1 + ε + δ

f
and F2 = 1 + 4ε

f
. (A.11)

If se set F1 = F2 = 1 in these expressions, equations (A.9) and
(A.10) reduce to equations (22) and (23) for F = 1.
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