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• Despite vision problems in real robots, the approach worked successfully.
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a b s t r a c t

This paper describes a novel approach in formation control for mobile robots in the active target
tracking problem. A nonlinear model predictive formation controller (NMPFC) for target perception was
implemented to converge a group of mobile robots toward a desired target. The teammust also maintain
a desired formation following a target while it is moving, or follow a leader in the case of target’s absence.
The structure details of the controller, as well as a mathematical analysis of the formation model used,
are presented. Furthermore, results of simulations and experiments with real robots are presented and
discussed.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

A novel adaptive framework based in nonlinear model predic-
tive control was conceived, in this study, and applied to the for-
mation control of a group of mobile robots. A nonlinear model
predictive control (NMPC) is used to converge a group of omnidi-
rectional mobile robots (the 5dpo robots seen in Fig. 1) toward a
desired target. The formation must be such that allows the move-
ment of robots around the target, avoiding mates and minimizing
the total amount of uncertainty in the target’s perception of the
group. The mobile robots team must also use the NMPC to keep
adaptive formation with a moving target. Furthermore, the case of
target absence where a leader robot is determined and the other
robots in the group follow the leader robot using the NMPC is con-
sidered. Finally, the NMPC is implemented in a distributed fash-
ion, embedded in each robot, and exchanging informationwith the
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other robots in formation and it is called here nonlinearmodel pre-
dictive formation control (NMPFC).

This work is inserted in the active target tracking [1–4] and for-
mation control problems [5–10]. Therefore, the problem addressed
in this paper lies in the frontier between the formation control
problem and the active target tracking problem. The problem here
is to conceive a formation controller capable of controlling amulti-
robot system in a distributive fashion considering obstacles and
mates avoidance, the formation itself and the maximization of the
target’s observation by the group of robots in formation.

In formation control, the leader-following approach is one of
the most studied [11–20]. It is based on the existence of a leader
(real or virtual) that follows the precise desired trajectorywhile the
other robots members of the formation just follow it, maintaining
a preset distance and relative position. The leader robot can be a
real robot with a different controller and a path generator, or it can
be a virtual leader such as a target is in the target tracking problem.

One of the most used controllers in the leader–follower ap-
proach is themodel predictive controller (MPC). It has been the tar-
get of studies aboutmulti-robotmotion control for almost a decade
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Fig. 1. The 5dpo robot.

since the first work done by [11]. After that, various works have
improved the technique through time, such as [21]. Here, the au-
thors investigated the leader-following formation control of mo-
bile robots through the MPC. They established its control stability
by adding a terminal state penalty to the cost function and a termi-
nal state region to the optimization constraints. The authors also
designed a terminal state region based on an input–output feed-
back linearization controller for theMPC. A suboptimal stable solu-
tion is thought to reduce the computational time used in the MPC.
However, this approach has still a high computational cost.

Moreover, in 2009, [22] applied a two layer predictive controller
that controls the formation of nonholonomic mobile vehicles was
proposed. In their study, the authors considered that there are two
sub-problems to be solved to fulfill the main goal: the trajectory
control problem and the formation control problem. To solve the
first sub-problem a nonlinear controller was proposed to control
the robots’ trajectory while a linear model predictive controller
was proposed to solve the second sub-problem and control the
robots’ formation.

Considering the implementation of the approach using the
NMPFC in a group of omnidirectional mobile robots, the next sec-
tion will describe the control architecture used in this paper. In the
following section, the nonlinear model predictive formation con-
troller is presented. Furthermore, results from experiments with
real robots are presented and discussed. The paper is then con-
cluded in Section 4.

2. Nonlinear model predictive formation controller

The nonlinear model predictive control is usually implemented
in a centralized fashion. It holds full knowledge of the entire sys-
tem and computes all the control inputs. A centralized control
using a non-convex optimization scheme applied in large-scale
interconnected systems, such as water distribution systems, traf-
fic and power systems, manufacturing systems and economic sys-
tems, may be a too complex solution or not even feasible. With
the quick development of communication networks, centralized
control has been gradually replaced by distributed control such
as in multi-robot systems and applications in manufacturing and
process industries where multiple units cooperatively produce a
good. In distributed control schemes, agents share information in
order to improve closed-loop performance, robustness and fault-
tolerance [23]. In the approach described in this paper, the agents
(robots) share their local measurements (states) and receive the
other agents’ states, computing a control input using a reduced or-
der model of the formation system dynamics. The challenge in this
case is to formulate a simpler and decentralized problem which
leads to a behavior that is similar to the one obtained using a cen-
tralized approach [24].

The objective of this paper is to formulate a nonlinear model
predictive formation controller (NMPFC) for amulti-robot systems
formation control. The general structure of a coordinated multi-
robot system can be classified in three categories: distributed,
centralized, or hybrid (partially distributed). These classifications
are based on how the control signals of each robot are calculated.
In this case, the control architecture is fully distributed [23].

The NMPFC’s ability to create and maintain a formation is due
to the fact that the cost functions used by the controllers of each
robot in the team are coupled. The above mentioned coupling oc-
curs when the teammates’ states are used in the cost function of
each robot’s controller to penalize the geometry or the deviation
from the desired objective. This means that the actions of each
robot affect every other teammate. The optimization of a cost func-
tion that takes into account the target position and obstacle avoid-
ance takes out the necessity of a path planner and a control loop
that are usually separated in two different modules. Here there is
no path planner, only the NMPFC. Each robot keeps the formation
state (pose and speed of the robots in formation, and position and
speed of any target that should be followed), updating them in each
control loop. This information is received by the controller of each
robot in the formation which in turn creates the formation geom-
etry where the actions of each robot affect the other teammates.
The NMPFC can be divided into two sub-blocks:

• Optimizer—This sub-block uses an online numericminimization
method to optimize the cost function and generate the signals
of optimal control. The resilient propagation (RPROP)method is
used here, which guaranties quick convergence [25];

• Predictor—The predictor performs the state evolution of the
robot itself, the teammates and the target based on pre-defined
models. It uses a simplified dynamic model to emulate the
robot’s evolution. The velocities of the teammates and target are
assumed to be constant and equal to the last known velocities
during the entire prediction horizon. The obstacles (moving or
static) are assumed to have zero velocities during the control
loop and the evolution of the relative distance between the
obstacle and the robot is predicted. The predictor also emulates
the evolution of the target’s merged state covariance matrix.
Fig. 2 illustrates the structure of the NMPFC used in this work,

where U(k|k) = U(k) =

vref(k) vnref(k) wref(k)

T is the out-
put control signal in the first prediction step, Û(k + i|k) with i =

0 . . .Nc − 1 is the output control signal from the optimizer sent to
the predictor, and P̂(k + i|k) with i = 1 . . .Np is the response of
the predictor block to each Û(k + i|k). Here, at an instant k, robot
1 (R1) sends its pose PR1(k) =


xR1(k) yR1(k) θR1(k)

Tto the
NMPFC. Furthermore, the NMPFC also receives the other robots’
poses [PR2(k) . . . PRN (k)], the position of the target t in the world
frame wPt(k) =


wxt(k) wyt(k)

Tand the velocity of the target t

in the world frame wVt(k) =

wvxt(k)

wvyt(k)
T.

Fig. 2 also shows the block diagram of the proposed formation
control framework for robot R1 in a formation with N robots. The
subscripted Rn is used to denote the robot nwhere 1 ≤ n ≤ N and
N is the total number of robots in formation and the subscripted t
to denote the target. Each robot has an NMPFC, a cooperative tar-
get estimator (CTE) [26] and a real time data base (RTDB) com-
munication application [27]. Other functions such as localization
and the vision system are embedded in other software modules
represented here as the block Other Modules from Robot 1. At each
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Fig. 2. Controller diagram.
instant k the robot R1 sends its pose (PR1(k)) to the controller and to
the RTDB to be shared with the formation. The robot also sends its
pose (PR1(k)), the position of the target in its local frame (R1Pt(k))
and the velocity of the target in its local frame (R1Vt(k)) to the CTE.
Then, the CTE, represented as a single block in Fig. 2, receives from
the RTDB the pose, as well as the position and velocity of the target
in the local frame of each other robot in formation, and also com-
municates locally to the NMPFC the information on the fused tar-
get position (wPt(k)) and the fused target velocity (wVt(k)), both in
theworld frame. An additional layer in communication using a real
time data base (RTDB) shared memory makes it possible to convey
information. Then, each robot writes its own pose and reads the
teammates’. The NMPFC also receives the pose of each robot in for-
mation ([PR2(k) . . . PRN (k)]) from the robot’s RTDB and then sends
an output control signal U(k) to the robot (the tangential and nor-
mal components of linear velocity and angular velocity).

After receiving the states of the robot, teammates, obstacles and
target, the controller’s optimizer sub-block provides the control
input Û(k+ i|k), in a limited control horizon, to the predictor sub-
block, which then predicts the formation state evolution P̂(k+ i|k)
for Np steps (prediction horizons), and provides a cost value to the
optimizer in accordancewith Û(k+i|k). The iterativeminimization
process is repeated in cyclic fashion. Finally, the control output in
the first step U(k) is sent to the robot.

The robot’s pose and velocity estimation is performed using a
localization algorithm that uses data from the odometry, from a
digital compass and from the omnidirectional camera. Then, using
the omnidirectional camera to detect the white lines of the field
combined with a map matching algorithm the robot is localized.
During the robots’ movement, the velocity is estimated also using
the data from the odometry.

To achieve convergence in the formation, and hence cost func-
tion minimization, the NMPFC’s predictor sub-block produces the
evolution of the formation’s behavior, as well as the behavior of
the target’s merged state and covariance matrix which is used by
theNMPFC’s optimizer and predictor sub-blocks for the cyclicmin-
imization process. After processing the control calculations, the
NMPFC sends the desired control output back to the robot (con-
troller’s reference velocities).

2.1. The model

In a robot Rn (where 1 ≤ n ≤ N and N is the total num-
ber of robots in the formation) the wheels’ angular velocities data
(ωrRn(k) =


ω1(k) ω2(k) ω3(k)

T) are given by the odome-
try and, therefore, the wheels’ linear velocity is given by VrRn(k)
=

v1(k) v2(k) v3(k)

T
= r ·


ω1(k) ω2(k) ω3(k)

T. There-
fore, the robot’s velocities can easily be found using the equation
below:

vRn(k)
vnRn(k)
wRn(k)


= (B)−1

·


v1(k)
v2(k)
v3(k)


(1)
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where δ = 30◦, resulting
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The omnidirectional mobile robot model used in the Predictor
is a nonlinear simplified model that, when properly parameter-
ized [28], is advantageous in order to reduce the computational
load of each cycle of the control algorithm. This translates into the
ability to use greater prediction horizons in the predictive con-
troller, even in computers with modest specifications, keeping the
cycle time control within the required limits. The model is initial-
ized with the limitation of the motor’s velocity by detecting satu-
ration and proportionally scaling the other motors (which can be
seen as an input constraint) [29]. Furthermore, the prediction of the
wheels’ velocities of robot Rn follows a first order discrete model,
where
v1(k)
v2(k)
v3(k)


= a ·


v1(k − 1)
v2(k − 1)
v3(k − 1)


+ (1 − a) · (BT ) ·


vrefRn(k)
vnrefRn(k)
wrefRn(k)


.

Then, its result is once more inserted in Eq. (1) to be computed.
Therefore, its state (pose (PRn(k)) and velocity (VRn(k))) are defined
as

PRn(k) =

xRn(k) yRn(k) θRn(k)

T
VRn(k) =


vxRn(k) vyRn

(k) wRn(k)
T (4)
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and the simulation of the state evolution is given byxRn(k)
yRn(k)
θRn(k)


=

xRn(k − 1)
yRn(k − 1)
θRn(k − 1)


+ T ·

vxRn(k)
vyRn

(k)
wRn(k)


with T as the time step andvxRn(k)

vyRn
(k)

wRn(k)

 =

cos(θRn(k)) − sin(θRn(k)) 0
sin(θRn(k)) cos(θRn(k)) 0

0 0 1



·


vrefRn(k)
vnrefRn(k)
wrefRn(k)


.

Taking into account the elements presented, the position Pt(k)
and velocity Vt(k) of the target t (ball) in the world frame at an
instant k is defined as

Pt(k) =

xt(k) yt(k)

T Vt(k) =

vxt(k) vyt(k)

T (5)

where
xt(k) = xt(k − 1) + T · (vxt(k))
yt(k) = yt(k − 1) + T · (vyt(k))

(6)

and
vxt(k) = vxt(k − 1) · BFC
vyt(k) = vyt(k − 1) · BFC

(7)

where BFC is the ball friction coefficient.
The target’s velocity unit vector is then defined as

Ṽt(k) =

ṽx t(k) ṽy t(k)

T
=

Vt(k)
∥Vt(k)∥

. (8)

The position of the target relative to the robot Rn at an instant k
is defined as

PRn
t (k) =


xRnt (k) yRnt (k)

T
(9)

where
xRnt (k) = xt(k) − xRn(k)
yRnt (k) = yt(k) − yRn(k).

(10)

The unit vector which indicates the direction of the target with
respect to the robot is defined as

P̃Rn
t (k) =


x̃Rnt (k) ỹRnt (k)

T
=

PRn
t (k)

∥PRn
t (k)∥

. (11)

The bearing of the target with respect to robot Rn is defined as

θ
Rn
t (k) = arctan 2(yRnt (k), xRnt (k)). (12)

The poses of a robot Rn relative to its teammate Rj (where 1 ≤

j ≤ NM , and NM is the total number of mates) are defined as

P
Rj
Rn(k) =


x
Rj
Rn(k) = xRn(k) − xRj(k)
y
Rj
Rn(k) = yRn(k) − yRj(k)

(13)

and with respect to an obstacle Ol (where 1 ≤ l ≤ NO, and NO is
the total number of obstacles), it is defined as

POl
Rn(k) =


xOl
Rn(k) = xRn(k) − xOl(k)
yOl
Rn(k) = yRn(k) − yOl(k).

(14)

It is important to mention that in the obstacle’s state evolu-
tion, all obstacles (moving or static) are considered as having zero
Fig. 3. Model of observation.

velocity at that time instant in order to reduce the computation
load as the number of obstacles increases.

Finally, in order to model the evolution of the total amount of
uncertaintywith respect to the relative position between the robot
and the target, a covariance model was created based on Fig. 3.
This model depends on the type of camera used (such as omni-
directional mirror-camera, fish eye camera, normal direct cam-
eras). Nevertheless, the model can easily be changed using the
controller’s code, allowing each robot to have a different sensor.

In the omnidirectional 5dpo robot camera, the point on the
ground plane directly below the robot’s catadioptric system cen-
ter (also the robot’s geometric center) is assumed to be the origin
O of the coordinates for the model discussed in this sub-section.
The target observationMRn is represented as a 2D vector [dt, φ]. dt,
where dt ≥ 0, dt ∈ R is the distance to the target from O and φ,
where −π ≤ φ ≤ +π, φ ∈ R is the bearing of the target from the
positive X axis of the robot. The covariance model of a robot Rn in
the instant k is given by (15):

ΣRn(k) =


σ 2
dt ρσdtσφ

ρσφσdt σ 2
φ


(15)

where σdt is the variance of the target’s distance measurement dt
and σφ is the variance of the target’s bearingmeasurement. ρ is the
correlation coefficient. It is assumed that both the measurements
are uncorrelated and ρ = 0.

In the case of the 5dpo robots, an empirical observation co-
variance model (16) was created where the variance in the target
distance is directly proportional to the distance squared and the
variance in the target bearing is inversely proportional to the target
distance. This observationmodelwas validatedwith several exper-
iments in which it was also possible to find the values of Ka and Kb:

ΣRn(k) =

Kad2t 0

0 Kb
1
dt

 . (16)

Furthermore, it is necessary to represent the observation co-
variance (16) in its canonical form in the Cartesian coordinates
centered at O due to the need of ease up the covariances merging
arising from the teammates. Therefore, the canonical representa-
tion of the covariancemodel in the direction of the target and in its
perpendicular direction is given by (17):

Σ⊥

Rn(k) =


K1d2t 0
0 K2dt


=


σx

2 0
0 σy

2


(17)

where K1 = Ka and K2 = (Kb + KaKb) are constants of proportion-
ality.

The covariance merging is performed using Smith and Cheese-
man’s formulation [30]. In the formation, each robot teammate
covariance Σ⊥

Rj
(k) is also predicted. The teammate’s predicted co-

variance is also rotated in the robot’s frame and then merged as
per the method presented in [30]. Therefore, if it is given N robots
in a formation, then Rn is the robot predicting its formation co-
variances and the robots Rj are the teammate with 1 ≤ j ≤ NM
and NM = N − n are the number of teammate in formation. The
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merged covariances are given by

Σ⊥

Merged(k) = ([Σ⊥

Rn(k)]
−1

+ [Σ̂⊥

Rj=1
(k)]−1

+ · · · + [Σ̂⊥

Rj=NM
(k)]−1)−1

where Σ̂⊥

Rj
(k) are the covariance rotatedmatrices of the teammates

with respect to the robot Rn.
No noise was introduced in simulation experiments. Therefore,

the means of observation estimates from teammates are identical
while the uncertainty ellipse around each teammate’s observation
is formulated as per (17) for merging.

2.2. The cost function during the presence of a target

The cost function of a NMPC (here NMPFC) represents the cost
to be minimized by the predictive controller. It is typically associ-
ated with the dynamical change of the system (formation geome-
try) over time. Therefore, reducing the uncertainty of the target’s
localization and velocity estimates, while keeping the robots apart
and assigning costs to the motion of the robots (for instance, to
get closer to a ball). Therefore, the term (18a) of the cost function
penalizes the total amount of uncertainty given by the merged co-
variance matrix Σ⊥

Merged(k). The term (18b) penalizes the distance
between the target and the robot ∥PRn

t (k)∥. To avoid collision, the
penalization takes into account a threshold distance that the robot
must maintain between it and the target (Dval).

The function (18c) penalizes the difference between the angle
of the robot in the world frame (the orientation of the robot in
world frame) and the angle between the robot and the target,
which will allow the robot to face the ball. In the case of the 5dpo
mobile robot, it faces the target when its concave face (the kicking
mechanism) is toward the target. The function δ(·) receives two
angles as arguments and returns their difference scaled between
−π and π . The following term will influence the robot’s position
with respect to the target’s velocity vector. It penalizes if the robot
is in the wrong position during the target’s movement. Here, the
Pval will change this position and it must have a value between 1
and −1. Note that this range of values can allow the robot to be in
front of the ball, behind the ball or at its side.

The function (18e) is a potential function that penalizes the
proximity between the robot and its available mates (NM). Here,
the potential fields approach was used to create the mates avoid-
ance term of the cost function. It is a modification of the previous
version [31] and its weights change if the robot is too close to its
mates. This is a negative linear function of distance. In the func-
tion, the given value where small distances are not penalized is
DM = 1.5 m. Therefore, the robots must keep a relative distance
between them greater than DM . The function (18f) works in the
sameway as the previous function, although it is used here to avoid
obstacles. While in the last function the second sum adds until the
maximum number of available mates, this function sums all ob-
stacles in the robot’s sensor range (NO). Here, DO = 1.5 m has
the same purpose of DM but regarding obstacles. The NMPFC deals
adequately with constraints. Although it was considered avoiding
collisions using an explicit state constraint, it was not taken this
choice because it would slow down the optimization algorithm.

Finally, the term (18g) penalizes the control effort. In this last
function, the variation in the output control signal is penalized
instead of its absolute value. Penalizing the output control signal
would create a steady-state error in non-zero velocities (for
example when pursuing a moving target).

The final cost function (18) is a composition of seven terms.
Nevertheless, it is important to remember that here | · | denotes
1-norm for vector arguments and the absolute value for scalars as
well as ∥ · ∥ represents the euclidean norm. Taking into account all
the elements previously described, the weights given to each one
of them, and a penalization term to the variation of control effort,
the cost function that represents all this, embedded in all robots, is
as follows:

J(N1,Np,Nc) =

Np
i=N1

λa × | det(Σ⊥

Merged(k + i))| (18a)

+

Np
i=N1

λ0 × |(Dval − ∥PRn
t (k + i)∥)| (18b)

+

Np
i=N1

λ1 × |δ(θRn(k), θ
Rn
t (k + i))| (18c)

+

Np
i=N1

λ2 × |Pval + (P̃Rn
t (k + i) · Ṽt(k + i))| (18d)

+

Np
i=N1

NM
j=1

λ3 × max

1 −
∥P

Rj
Rn(k + i)∥

DM

 , 0


(18e)

+

Np
i=N1

NO
l=1

λ4 × max

1 −
∥POl

Rn(k + i)∥

DO

 , 0


(18f)

+

Nc
i=1

λ5 × |1U(k + i − 1)| (18g)

whereN1,Np are the predicted horizon limits in discrete time, such
that N1 > 0 and N2 ≤ 7. Nc = 2 is the control horizon. λa, λ0,
λ1, λ2, λ3, λ4 and λ5 are the weights for each component of the
cost function. Σ⊥

Merged is the formation team’s merged target ob-
servation covariancematrix.Dval is the threshold distance between
the robot and the ball. Pval is the position coefficient which puts the
robot around the ball in a determined position.1U(k+ i−1) is the
variation of the control signals, where U(k) is the velocity vector of
the robot’s frame.

Several differences improve this work when compared to our
previous one presented in [31]. They are as follows:

• There is a penalization function of the total amount of uncer-
tainty of the target’s perception, which allows the robots to be
in the better position while converging or following a target.

• In the control effort penalization term, the 1-norm is used,
which gives the controller more efficiency [32]. However, the
disadvantage of 1-norm is its high nonlinearity. Given that it
was adopted RPROP [25] and that it is a heuristic optimizer, it
can handle the nonlinearities introduced by the use of the 1-
norm.

• Therewas amodification on the obstacle avoidance function us-
ing a potential field approach.

• In this work, only one cost functionworks as a substitute for the
two cost functions presented in [31], independent of the posi-
tion it may assume in formation.

• Here the absence of target case was also considered.
• The results from this work proved to have an improved final

convergence of the formation.

2.3. The cost function during the target’s absence

The case of the target’s absence is an important special case to
be considered. To address this issue, another cost function similar
to the previous one was created. This cost function is used only in
case of the absence of a target in which each robot has to follow a
robot leader which in turn performs a search in a preset area using
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Fig. 4. Formation following a leader.

a normal reactive controller [33] with the path planner presented
in [34]. Note that this cost function is used only by the follower
robots.

The formation geometry, in this case, selects a fixed robot as the
leader, while the other two robots become the followers. All the
assumptions made for the last cost functions with respect to the
target shall be made in this case with respect to the robot leader.
An exception is the function (18a) due to the fact that the leader’s
pose is passed to the other robots (not estimated). Therefore, this
cost function is a composition of six functions. The function (19a)
penalizes the distance between a leader robot RL and the follower
robot ∥PRL

Rn (k)∥. To avoid collision, the penalization also does not
take into account a fixed distance that the robot must maintain
between it and the leader robot (Dval).

The function (19b) penalizes the difference between the angle
of the robot (a follower) in the world frame and the angle between
the follower robot and the leader robot. This will make the robot
face the leader while it is in movement. The last modification is in
the function that will influence the robot’s position with respect to
the leader’s velocity vector (19c) as can be seen in Fig. 4. It penalizes
if the robot is in the wrong position. Here, the Pval will change this
position and it must have a value between 1 and −1.

The terms (19d)–(19f) of this cost function are similar to the
(18e)–(18g) terms of the cost function (18). Therefore, taking into
account all the elements previously described, the weights given
to each one of them, and a penalization term to the variation of
control effort, the cost function that represents all this, embedded
in both robots, is as follows:

J(N1,Np,Nc) =

Np
i=N1

λ0 × |(Dval − ∥PRn
RL

(k + i)∥)| (19a)

+

Np
i=N1

λ1 × |δ(θRn(k), θ
Rn
RL

(k + i))| (19b)

+

Np
i=N1

λ2 × |Pval + (P̃Rn
RL

(k + i) · ṼRL(k + i))| (19c)

+

Np
i=N1

NM
j=1

λ3 × max

1 −
∥P

Rj
Rn(k + i)∥

DM

 , 0


(19d)

+

Np
i=N1

NO
l=1

λ4 × max

1 −
∥POl

Rn(k + i)∥

DO

 , 0


(19e)

+

Nc
i=1

λ5 × |1U(k + i − 1)|. (19f)
Table 1
Final weights for the cost function.

λ Weights

λa 505
λ0 918
λ1 297
λ2 510
λ3 500
λ4 500
λ5 5.00

3. Results

Several simulations were made to validate the NMPFC con-
troller. Furthermore, some experiments with real robots were also
made in order to see the behavior of the group under communica-
tion, vision and localization problems. Each group has convergence
and retaining formation experiments. For all results the same pa-
rameters were used. Nevertheless, some assumptions must be
made such as follows:
• Distance between the robot and the ball or between the robot

and the leader = 1.2 m.
• Velocity of the robots in formation or following leader= 1.5m/s

in simulations and 0.7 m/s in experiments.
• Velocity of the leader = 1 m/s in simulations and 0.5 m/s in

experiments.
• The RPROP parameters were the same ones used in [31] with a

maximum of 20 interactions.
The final values founded through the exhaustive simulations

and experiments can be seen in Table 1.
Finally, the value of the weight λ2 was re-tuned compared to

our previous work [31]. Analyzing the graphs of internal product
and plot XY of the robots during the exhaustive simulations and
experiments, we reached to an optimal value for this parameter. It
is important to remember that this term is only active when the
target (ball or robot leader) has a nonzero velocity.

3.1. Simulations

Two simulations were done for formation convergence, one for
the leader following the case with the target absent and one for
keeping the formation case. In the simulations, the SimTwo simu-
lator was used [35].

3.1.1. Simulation 1: formation convergence
In the formation convergence, the target has zero velocity.

Therefore, the fourth term in the cost function is equal to zero.
Furthermore, without any obstacles the sixth term is also zero.
The first simulation puts the robots initially as demonstrated in
Fig. 5. The objective here is to make the robots converge to-
ward the ball. The robots 1, 2 and 3, and the target’s coordinates
are (3.5, −1.8), (−3.5, −1.8), (0, 3.5) and (0, 0), respectively. In
Fig. 5 plot XY of the robot’s movement can be seen. Note here that
the robot always stops facing the ball (with the carved part toward
the ball). A graph with the distance between the robot and the ball
as well as the minimization of the merged covariance’s determi-
nant can be seen in Fig. 6.

3.1.2. Simulation 2: formation convergence
The second simulation places the robots initially as demon-

strated in Fig. 7. The objective here is to push the robots to con-
verge toward the ball departing from the coordinates (−5.5, 0),
(−4.5, 0), (−3.5, 0) and (0, 0) for the robots 1, 2, 3 and the tar-
get, respectively. This environment was created aiming to observe
if the robots can avoid collisions between them. In Fig. 7, plot XY of
the robot’s movement can also be seen. A graph with the distance
between the robot as well as the minimization of the merged co-
variance’s determinant can be seen in Fig. 8.
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Fig. 5. Simulation 1: formation convergence—plot XY .

3.1.3. Simulation 3: the leader following
The last simulation of formation convergence positions the

robots initially as demonstrated in Fig. 9. The objective here is to
make the robots converge to the leader robot departing from the
coordinates (4.3, −3.1), (4.3, 0), (4.3, 5.1) for the robots 2, 1 and
3, respectively, and keep a formation while following the leader
robot. In this case, the target is not seen in the field, so robot 2 (as
the leader robot) has an A* path planner seen in [34]with a reactive
controller [33] while the follower robots (robots 1 and 3) possess
the second cost function presented in this study.

In Fig. 9, plot XY of the robot’s movement and a graph with the
distance between the robot and the robot leader are also presented.
It also shows the graphs of the internal product between the leader
and the other robots as well as the angle between them. The given
Pval for robot 1 was Pval = 1 and for robot 3 was Pval = 0. The in-
ternal product’s graph shows here the convergence for these val-
ues. The abrupt changes in the internal product of the robots is
explained by the re-orientation of the robot leader during the
search. Note in Fig. 9 that the robot leader performs three big turns,
or re-orientations, in its path (in coordinates (−4.3, −3), (−4.5,
3) and (4.5, 3), respectively). When the leader robot turns, the fol-
lowers became oriented in 90 (°) with respect to the leader’s ori-
entation until they converge again, also explaining the ‘‘jumps’’ in
these graphs.
Fig. 7. Simulation 2: formation convergence—plot XY .

3.1.4. Simulation 4: keeping formation
In this single simulation, the fourth term in the cost function is

taken into account with the movement of the target. Nevertheless,
without any obstacles the sixth term is zero. This simulation places
the robots initially as demonstrated in Fig. 10. The objective here is
for robots to keep following the ball in a straight trajectory. Robots
1, 2, 3 and the target’s coordinates are (0, −1.5), (0, 1.5), (1.5, 0)
and (0, 0), respectively. Then, a small impulse (kick) was given to
the ball forcing it to possess a nonzero velocity. In Fig. 10 plot XY
of the robot’s movement can be seen. A graph with the distance
between the robot and the ball and theminimization of themerged
covariance’s determinant can be seen in Fig. 11.

Fig. 11 also shows the graphs of the internal product between
the robots and the ball as well as the angle between the robots and
the ball’s velocity vector. The given Pval for robots 1, 2 and 3 were
Pval = 0, Pval = 0 and Pval = 1, respectively.

3.2. Results of the experiments with real robots

A setup, to perform experiments with real robots, was created
in order to analyze the behavior of three omnidirectional mobile
robots with the NMPFC. An external computer connected to a
router by a cable was needed in order to serve as a bridge of shared
information through RTDB to all the robots, where the log could
be collected from the robots. Therefore, to run the experiments
Fig. 6. Simulation 1: formation convergence—the distance between the robot and the determinant of Σ⊥

Merged .
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Fig. 8. Simulation 2: formation convergence—the distance between the robot and the determinant of Σ⊥

Merged .
Fig. 9. Simulation 3: the leader following—plot XY and distance between the leader robot and the followers (top), the internal product between leader and followers and
the error angle of the followers orientation facing the leader (bottom).
a workstation (Intel Core i7 3 GHz/Core with 8 Gb RAM) with
Ubuntu 9.04 that runs said bridge was used. Each robot had a
computer, a Notebook (Intel Dual Core 2 GHz/Core with 2 Gb
RAM) with Ubuntu 9.04, running its own NMPFC, CTE and RTDB
applications previously seen in Fig. 2. Finally, the experimentswith
real robots were executed in order to repeat the environment
created in the simulations with two experiments in formation
convergence, one for the leader following the case with the target
absent and one for keeping the formation case. Videos from all
experiments are attached to this paper which is available in
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Fig. 10. Simulation 4: keeping formation—plot XY .

http://dx.doi.org/10.1016/j.robot.2013.07.005 to aid in the analysis
of the robots’ behavior during the tests.

3.2.1. Real experiment 1: formation convergence
The real experiments were conducted with robots number 1,

2 and 3. The first experiment placed the robots initially as demon-
strated in Fig. 12. In this figure, plotXY of the robot’smovement can
also be seen. As itwas in the first simulation, there is no obstacles in
this experiment and the objective is to see the convergence toward
a target placed in the center of the field. Robots 1, 2 and 3 are placed
far from each other and their positions are (−3, 1.7), (0, −2) and
(3, 1.7), respectively. All robots were 270° oriented in the world
frame. The target’s coordinates are (0, 0). In Fig. 13 the graph of
the distance between the robot and the ball as well as the graph of
the total amount of uncertainty (merged covariances) minimiza-
tion can be seen. Video 1 shows robots’ movement as presented in
plot XY .

Note here that no collisions between the robots occur and that
the robot always stops while facing the ball (with the carved part
toward the ball) as shown in the simulations. As it can be seen,
the ball ‘‘jumps’’ from one coordinate to another because the for-
mation chooses the ‘‘best’’ ball amongst the balls’ measurement
which come from all three robots. Nevertheless, the robotsmove in
a perfect circle around the ball while trying tominimize the covari-
ance. That is explained by the fact that even if the best ball changes,
or ‘‘jumps’’ from one coordinate to another, the total cost of these
terms (covariance and distance) are kept very similar as it can be
seen in Fig. 13. However, the formation converges successfully.

3.2.2. Real experiment 2: formation convergence
The second experiment places the robots initially at the coordi-

nates (2, 0), (3, 0), (4, 0) and (0, 0) for robots 1, 2, 3 and the target
respectively, as demonstrated in Fig. 14. The objective here is to
observe the robots converging to the ball avoiding collisions be-
tween them. Similarly to the second pair of simulations, the robots
Fig. 11. Simulation 4: keeping formation—distance between the robot and the ball and the determinant of Σ⊥

Merged (top), the internal product between the robots and the
ball and the error angle of the robots orientation facing the target (bottom).

http://dx.doi.org/10.1016/j.robot.2013.07.005
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Fig. 12. Real experiment 1: formation convergence.
Fig. 13. Real experiment 1: formation convergence—the distance between the robot and the ball and the determinant of Σ⊥

Merged .
Fig. 14. Real experiment 2: formation convergence.
are placed in a horizontal line to increase the difficulty in the con-
vergence forcing the robots to avoid each other. Video 2 shows the
robots’ movement successfully converging toward the targetwhile
avoiding collision between them.

In Fig. 15, a graph with the distance between the robot and the
ball aswell as the graph of the total amount of uncertainty (merged
covariances) minimization can also be seen. Note that this time,
there is no ‘‘jump’’ on the ‘‘best’’ ball.

3.2.3. Real experiment 3: the leader following
This experiment, like the leader following simulation, placed

the robots initially as demonstrated in Fig. 16. The objective here
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Fig. 15. Real experiment 2: formation convergence—the distance between the robot and the ball and the determinant of Σ⊥

Merged .
Fig. 16. Real experiment 3: the leader following.

is to converge the two follower robots toward the leader robot
departing from the coordinates (3, −2), (3, 0), (3, 2) for robots
1, 2 and 3, respectively. The follower robots must also keep a
formation while following the leader.

Therefore, robot 1 (as the leader robot) has an A* path planner
with a reactive controllerwhile the follower robots (robots 2 and 3)
have the second cost functionpresented in this paper. In Fig. 17 plot
XY of the robot’s movement as well as a graph with the distance
between the follower robots and the robot leader can be seen.
Video 3 shows the robots’ movement as presented in plot XY .

Fig. 18 shows the graphs of the internal product between the
leader and the other robots as well as the angle between them.
Finally, the given value for Pval for robots 2 and 3 were Pval = −1
and Pval = 0, respectively. Similarly to the simulations and despite
the correct orientation toward the leader robot, the followers have
trouble in converging the internal product due to the reasons
previously explained. The abrupt changes in the robots’ internal
product are also explained by the same reasons demonstrated in
the simulation of this experiment.

3.2.4. Real experiment 4: keeping the formation
A last experiment was executed to perform formation mainte-

nancewith real robots. As the ball has a nonzero velocity, the fourth
term in the cost function is taken into account. The real experiment
consisted of pushing the ball in a straight line with the help of a
stick to emulate a small kick. The robots 1, 2, 3 and the target’s
initial coordinates are (0, 1.5), (0, −1.5), (−1.5, 0) and (0, 0), re-
spectively, as demonstrated in plot XY of the robot’s movement in
Fig. 19. Video 4 shows the robots’ movement as presented in plot
XY .

In the formation, each robot has, with a small amount of er-
rors in the observation, its own measurement of the target in the
world’s frame. During the formation, this information is exchanged
and a ‘‘best ball’’ is chosen from all the measurements that come
Fig. 17. Real experiment 3: the leader following—plot XY and the distance between the leader robot and the followers.
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Fig. 18. Real experiment 3: the leader following—the internal product between the leader and followers and the error angle of the followers orientation facing the leader.
Fig. 19. Real experiment 4: keeping the formation.
Fig. 20. Real experiment 4: keeping the formation—plot XY and the determinant of Σ⊥

Merged .
from the robots. As a ‘‘best ball’’ is chosen between the measured
balls, the position of this final ball can create, along with small er-
rors in the localization, differences in the distances between the
robots and the ball as it can be seen in plot XY and in Fig. 20 that
shows the distance between the robots and the ball and the graph
of the total amount of uncertainty (merged covariances)minimiza-
tion.

Finally, in Fig. 21 the graphs of the internal product between the
robots and the ball as well as the angle between the robots and the
ball’s velocity vector can be seen. The same values of Pval for robots
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Fig. 21. Real experiment 4: keeping the formation—the internal product between the robots and the ball and the error angle of the robots orientation facing the target.
1, 2 and 3 used in the corresponding simulation were used in this
experiment.

4. Conclusion

This paper had the main objective to present a new nonlinear
model predictive controller used in formation control of multi-
robot systems, here called a nonlinear model predictive formation
controller (NMPFC). The NMPFCwas implemented in order to con-
verge a group of mobile robots toward a desired target and also
to maintain the formation during the target’s movement. Further-
more, a methodology to empirically find the initial values for the
weights of the NMPFC cost function was presented. Finally, the
case of the absence of a target was considered too, choosing a fixed
leader robot in this case and using a second cost function to follow
the leader robot. The details of the controller structure as well as a
mathematical analysis of the formation model were presented.

This paper presented several novel contributions introduced by
this work in formation control using a nonlinear model predictive
controller, such as the distributive architecture to control robots in
formation; a generic cost function for penalization of nondesirable
behaviors of the formation when following an observed and non-
controlled target; the minimization of a merged covariances of
the target perception in the cost function; and the controller’s
robustness despite vision and localization problems present in real
robots environments.

The results also showed the influence of the vision system in the
controllers efficiency during the formation keeping experiments.
Small errors in the ball detection and localization are reflected in
the calculation of the distance between the robot and the target
and in the covariance minimization. Nevertheless, the controller
was successful in converging the robots to the desired pose, mini-
mizing the total amount of uncertainty while avoiding mates and
setting the correct pose for all robots. Both convergence and keep-
ing the formationwere such that the total amount of uncertainty in
the target’s perceptionwasminimized. Regarding the experiments
without a target, the follower robots were successful in converg-
ing toward the leader and keeping the formation while the leader
robot was moving.

It can be concluded that the NMPFC controller demonstrated a
good performance in formation control of multi-robot systems. It
could be implemented in different types of robots andpenalize sev-
eral non-desirable behavior of the formationwith the same generic
structure. Nonlinearities could be included in the predictionmodel
such as the total amount of uncertainty in the target’s percep-
tion which in turn gave relevance to the requirements imposed
by target localization and/or tracking. Furthermore, energy costs,
avoidance of obstacles, uncertainties and formation characteristics
were considered in a single optimization problem. Nevertheless,
among the disadvantages, the NMPFC still possesses reasonable
computational costs in the system’s processing. Finally, there is no
guarantee of global minimization of the cost function during the
optimization process. The stability analysis was not considered in
this study as well. Nevertheless, the system is BIBO stable, for the
robot’s velocity was limited on 0.7 m/s where it could achieve up
to 2 m/s for safety reasons.
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