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The Guide to the Expression of Uncertainty in Measurement (GUM) requires the use of a
first-order Taylor series expansion for propagating uncertainties. However, when the mea-
surement function is strongly non-linear the use of this linear approximation may be inad-
equate and therefore higher order terms from the Taylor series cannot be neglected. The
present paper aims to derive generalized expressions of second and third order for the
evaluation of the estimate of a measurand and its associated standard uncertainty. A case
study is given to illustrate an application of the proposed methods and the results obtained
with the GUM method are compared to the corresponding ones when applying the method
proposed in GUM Supplement 1.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The Guide to the Expression of Uncertainty in Measure-
ment (GUM) [1] is internationally recognized for the eval-
uation of measurement uncertainty. The GUM method uses
a first-order Taylor series approximation for evaluating the
estimate of a measurand and its associated standard uncer-
tainty, via the law of propagation of uncertainties (LPU). In
most practical cases that conventional LPU approach is en-
ough to characterize the measurement uncertainty even in
non-linear measurement functions. Nevertheless, its use is
inappropriate when the non-linearities of the measure-
ment function are significant. In these specific cases,
GUM recommends that the estimate of the measurand
should be calculated distinctly when the models are non-
linear ([1], clause 4.1.4), which has advantages and disad-
vantages according to Bich et al. [2]. GUM also advises
the use of some higher order terms to be added to the stan-
dard uncertainty, as will be presented later.
. All rights reserved.

m (M.A.F. Martins),
.A. Kalid).
A more general approach is adopted by GUM Supple-
ment 1 (GUM S1) [3] which treats the numerical evalua-
tion of measurement uncertainty with a Monte Carlo
method as an implementation of the propagation of prob-
ability density functions (PDFs). The GUM S1 method is ex-
pected to provide a more valid uncertainty evaluation than
that given by GUM when: the measurement function is
strongly non-linear; PDFs for the values of any quantities
are asymmetric or non-Gaussian. Nevertheless, it requires
considerable computational effort and can also accumulate
numerical errors if the computational algorithm of the ran-
dom numbers generator is not carefully developed [4,5].

As result of the preceding discussion on the GUM and
GUM S1 approaches, alternative methods can be developed
to overcome the limitations imposed by these approaches,
i.e. new methods characterizing the non-linearities of the
measurement functions with negligible computational
costs. At present, some works in the literature have taken
into account these issues. For example, Lira [6] presented
the second order expression for standard uncertainty
based on the third and fourth statistical moments for mea-
surement functions with only one input quantity; Wang
and Iyer [7] proposed a generalized expression of second
order for standard uncertainty in measurement functions
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with all input quantities to be mutually independent and
Gaussian; Mekid and Vaja [8] developed expressions of
second and third order for both the estimate and standard
uncertainty of the measurand for measurement functions
composed of one and two input quantities.

Inspired by Mekid and Vaja’s work we have developed
generalized expressions of second and third order for both
the estimate and the standard uncertainty of a measurand
based on the LPU approach. These expressions can be used
for N mutually independent input quantities which make
up the measurement function.

2. Review of GUM

A major achievement of GUM consists of an approach
for combining uncertainty from frequentist statistics (Type
A evaluation of measurement uncertainty) and Bayesian
statistics (Type B evaluation of measurement uncertainty).
In this approach, GUM considers that all the quantities are
characterized by a PDF which describes the possible values
of these quantities. PDF can usually be summarized in
terms of parameters such as mean and variance (and stan-
dard deviation) which are used in the evaluation of mea-
surement uncertainty. Such summaries are stated as

xi ¼ E½Xi�,
Z þ1

�1
nigXi
ðniÞdni ð1Þ

and

u2ðxiÞ ¼ Var½Xi� ¼ E½ðni � xiÞ2�,
Z þ1

�1
ðni � xiÞ2gXi

ðniÞdni;

ð2Þ

where ni represents the possible values of the random var-
iable Xi and gXi

represents the PDF for Xi. Eq. (1) represents
the first statistical moment which denotes the expectation
of Xi, the so-called expectation operator. Eq. (2) represents
the second central moment and, therefore, it denotes the
variance of Xi, the so-called variance operator. According
to GUM, Eqs. (1) and (2) represent the estimate (xi) of a
quantity Xi and the square of the standard uncertainty
(u2(xi)) associated with the estimate xi, respectively.

In most practical cases, the measurand Y is not mea-
sured directly but is determined from N other input quan-
tities (Xi) which are related through a known functional
relationship of the form

Y ¼ f ðX1; . . . ;Xi; . . . ;XNÞ; ð3Þ

where the function f is generally determined from phe-
nomenological or empiric modeling and may or may not
be explicit and may be solved analytically or numerically.
Furthermore, this function should include all known cor-
rections, such as systematic effects that require modeling.

From Eq. (3) we can evaluate the estimate of the output
quantity (measurand) and consequently its standard
uncertainty. Therefore, the measurement function is fun-
damental for the evaluation of measurement uncertainty
as any mistake made in its modeling will lead to quite mis-
leading results. A detailed study [9] addresses the impor-
tance of the influence quantities for the careful
development of a measurement function.
The GUM method consists of propagating the estimates,
the standard uncertainties and the covariances of the N in-
put quantities Xi through a linear approximation of the
measurement function determined from the first-order
Taylor series expansion around the estimates xi. Therefore,
the measurement function (Eq. (3)) may be rewritten as

Y � Y1ord ¼ f ðx1; . . . ; xi; . . . ; xNÞ þ
XN

i¼1

@f
@Xi

� �
ðXi � xiÞ; ð4Þ

where the partial derivatives @f
@Xi

, called sensitivity coeffi-
cients, are evaluated at estimates xi.

The estimate of the measurand (y) is obtained by eval-
uating the expectation operator on either side of Eq. (4), i.e.

y � y1ord ¼ f ðx1; . . . ; xi; . . . ; xNÞ: ð5Þ

The standard uncertainty associated with the estimate y1or-

d(u(y1ord)) is obtained by subtracting Eq. (4) from Eq. (5),
squaring both sides and taking the expectation operator
from either side

u2ðy1ordÞ ¼
XN

i¼1

@f
@Xi

� �2

u2ðxiÞ þ 2
XN�1

i¼1

�
XN

j¼iþ1

@f
@Xi

� �
@f
@Xj

� �
uðxi; xjÞ: ð6Þ

As we are assuming that the input quantities are mutually
independent in this work, i.e. the covariances are null
(u(xi,xj) = 0, "i – j), therefore Eq. (6) reduces to

u2ðy1ordÞ ¼
XN

i¼1

@f
@Xi

� �2

u2ðxiÞ: ð7Þ

Eq. (7) represents a good estimate for the standard uncer-
tainty when the measurement function is linear or weakly
non-linear. But when the non-linearities in this function
are significant, GUM ([1], note at clause 5.1.2) recommends
the use of some higher order terms in combination with
Eq. (7) for the evaluation of the standard measurement
uncertainty, namely

XN

i¼1

XN

j¼1

1
2

@2f
@Xi@Xj

 !2

þ @f
@Xi

� �
@3f

@Xi@X2
j

 !8<
:

9=
;u2ðxiÞu2ðxjÞ:

ð8Þ

However, there are restrictions on the use of these terms:
all input quantities Xi must be independent and Gaussian,
see [10] for further clarification.

3. Higher order methods

The evaluation of the standard uncertainty based on
higher order expressions (e.g. second and third) through
the LPU approach requires the second and third order
Taylor series approximation for a measurement function.
This procedure also requires higher order statistical mo-
ments, such as the third, fourth, fifth and sixth moments.
In the GUM context, the third and fourth moments may
be related to the variance (standard uncertainty squared)
through parameters such as skewness and kurtosis,
respectively.
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Skewness is a measure of the asymmetry of a PDF. It is
defined from the third central moment:

E½ðni � xiÞ3�,
Z þ1

�1
ðni � xiÞ3gXi

ðniÞdni: ð9Þ

The parameter skewness is defined in the following
equation:

c,
E½ðni � xiÞ3�

fE½ðni � xiÞ2�g3=2 : ð10Þ

Therefore, if we put the skewness c in terms of standard
uncertainty, it can be written as

E½ðni � xiÞ3� ¼ cu3ðxiÞ: ð11Þ

Kurtosis is a measure of concentration about the expecta-
tion of a PDF. It is defined from the fourth central moment:

E½ðni � xiÞ4�,
Z þ1

�1
ðni � xiÞ4gXi

ðniÞdni: ð12Þ

The parameter kurtosis is defined in the following
equation:

j,
E½ðni � xiÞ4�
fE½ðni � xiÞ2�g2 : ð13Þ

Therefore, if we put the kurtosis j in terms of the standard
uncertainty, it can be written as

E½ðni � xiÞ4� ¼ ju4ðxiÞ: ð14Þ
3.1. Second order method

To evaluate the standard uncertainty using the second
order method, first we expand the measurement function
from the second order truncation of the Taylor’s series.
Thus, the expression obtained is

Y � Y2ord ¼ f ðx1; . . . ; xi; . . . ; xNÞ þ
XN

i¼1

@f
@Xi

� �
ðXi � xiÞ

þ 1
2

XN

i¼1

@2f

@X2
i

 !
ðXi � xiÞ2 þ

1
2

XN

i¼1

XN

j¼1
j–i

@2f
@Xi@Xj

 !

� ðXi � xiÞðXj � xjÞ: ð15Þ

As previously stated we consider that all input quantities
are statistically independent, i.e. all the terms that have
E[(Xi � xi)(Xj � xj)] may be written as E[(Xi � xi)] E[(Xj � xj)].
Furthermore, all terms with E[(Xi � xi)] are equal to zero
because xi = E[Xi]. Therefore, evaluating the expectation
on both sides of Eq. (15)\

y � y2ord ¼ f ðx1; . . . ; xi; . . . ; xNÞ þ
1
2

XN

i¼1

@2f

@X2
i

 !
u2ðxiÞ: ð16Þ

Now, if we subtract Eq. (15) from Eq. (16), squaring both
sides and taking the expectation from either side we finally
obtain
u2ðyÞ � u2ðy2ordÞ

¼
XN

i¼1

@f
@Xi

� �2

u2ðxiÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
first order

þci
@f
@Xi

� �
@2f

@X2
i

 !
u3ðxiÞ

þ
XN

i¼1

ji � 1
4

� �
@2f

@X2
i

 !2

u4ðxiÞ þ
1
2

XN

i¼1

�
XN

j¼1
j–i

@2f
@Xi@Xj

 !2

u2ðxiÞu2ðxjÞ: ð17Þ

The second order method, proposed in Eqs. (16) and (17),
encompasses the expressions proposed by the GUM meth-
od (linear method). Therefore, this method may be more
suitable than the GUM method for the evaluation of stan-
dard uncertainty mainly when the non-linearities of the
measurement functions are significant.

3.2. Third order method

In order to increase the accuracy for the standard uncer-
tainty, we must expand the measurement function from
the third order truncation of the Taylor’s series. Hence,
the expression obtained is given by

Y � Y3ord ¼ f ðx1; . . . ; xi; . . . ; xNÞ þ
XN

i¼1

@f
@Xi

� �
ðXi � xiÞ þ

1
2

�
XN

i¼1

@2f

@X2
i

 !
ðXi � xiÞ2 þ

1
2

XN

i¼1

XN

j¼1
j–i

@2f
@Xi@Xj

 !

� ðXi � xiÞðXj � xjÞ þ
1
6

XN

i¼1

@3f

@X3
i

 !
ðXi � xiÞ3 þ

1
6

XN

i¼1

�
XN

j¼1
j–i

@3f

@X2
i @Xj

 !
ðXi � xiÞ2ðXj � xjÞ þ

1
6

XN

i¼1

XN

j¼1
j–i

�
XN

k¼1
k–i;j

@3f
@Xi@Xj@Xk

 !
ðXi � xiÞðXj � xjÞðXk � xkÞ: ð18Þ

Considering all suppositions and following reasoning that
led to the second order expressions, it is easy to verify that
the third order expression of the estimate of the measu-
rand turns out to be

y � y3ord

¼ f ðx1; . . . ; xi; . . . ; xNÞ

þ
XN

i¼1

1
2

@2f

@X2
i

 !
u2ðxiÞ þ

ci

6
@3f

@X3
i

 !
u3ðxiÞ

( )
; ð19Þ

whereas its standard uncertainty is given by:

u2ðyÞ � u2ðy3ordÞ ¼ u2ðy2ordÞ þ
XN

i¼1

ji

3
@f
@Xi

� �
@3f

@X3
i

 !
u4ðxiÞ

þ 1
6

XN

i¼1

@2f

@X2
i

 !
@3f

@X3
i

 !
E½ðXi � xiÞ5� � ciu

5ðxiÞ
n o



Table 1
Statistical parameters of the set of observations concerning the input
quantities.

Parameters X1 X2 X3

Estimate (unit of Xi) 0.9891 1.6153 1.2019
Standard uncertainty (unit of Xi) 0.2615 0.1091 0.3532
Skewness (dimensionless) 0.1258 0.1831 0.1024
Kurtosis (dimensionless) 2.7638 2.6626 2.3149
Fifth moment (unit corresponding to

Xi)
0.0004 0.0002 0.0030

Sixth moment (unit corresponding to
Xi)

0.0031 0.0001 0.0121
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þ 1
36

XN

i¼1

@3f

@X3
i

 !2
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i u6ðxiÞ
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u2ðxiÞu2ðxjÞu2ðxkÞ: ð20Þ

The inclusion of the third order terms from the Taylor ser-
ies expansion of the measurement function results in a
more comprehensive method than the GUM and the sec-
ond order methods. Thus, the evaluation of measurement
uncertainty using this method can be considered more
appropriate and robust than the latter methods.

Additional issues in the proposed methods of second
and third order should also be addressed, for example: if
Type A input quantities are only available these expres-
sions require a large number of observations (e.g. P30)
to suitably evaluate the higher order moments; the expres-
sions of higher order derivatives can be easily imple-
mented by computer software which can handle
algebraic differentiation [7] or automatic differentiation
[11,12].
Fig. 1. Evaluation of the standard uncertainty for the measurand Y based
on the four methods: GUM, second and third order and GUM S1.
4. Results and discussion

A case study will be presented in this section to illus-
trate the proposed methods for the evaluation of the esti-
mate of the measurand and its associated standard
uncertainty. The results obtained by the GUM and the
GUM S1 approaches are also given for comparative
purposes.

The present case study emphasizes the implications of a
non-linear measurement function which is given by

Y ¼ X1 expðX2X3Þ: ð21Þ

A derivation of this type of model might occur in several
knowledge areas such as chemistry, materials and chemi-
cal engineering. Independent observations have been made
for each of the input quantities and the treatment of these
current data in terms of estimate, standard uncertainty,
skewness, kurtosis, fifth and sixth moments is given in
Table 1.

As seen earlier, the application of the methods based on
LPU approach (GUM, second and third order) requires the
partial derivatives, which were computed by algebraic dif-
ferentiation here. With respect to the GUM S1 method, for
each of the three input quantities a Gaussian distribution
was assigned with expectation equal to the given estimate
and standard deviation equal to the given standard
uncertainty.

Fig. 1 shows the resulting (empirical) PDF for the
measurand Y obtained by the GUM S1 method using
M = 2 � 107 Monte Carlo trials, which was found to be suf-
ficiently large in this case study. This method was imple-
mented using the computational platform �MATLAB
under the operational system LINUX (Ubuntu 9.04 distri-
bution), using a machine operating with 2.10 GHz Intel
Core 2 Duo processor and 3 GB RAM. The values for the
estimate of the measurand and its standard uncertainty
as well as the CPU time required by the four methods are
given in the inset of Fig. 1.

As can be seen for the given case study, the results of
the GUM S1 method differ slightly from those obtained
by the GUM method. These differences may be explained
by the non-linearity of the measurement function. On the
other hand, the results from the proposed methods have
approximated the GUM S1 results through much simpler
programming and lower computational cost than the lat-
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ter. Although the CPU time of the GUM S1 method is neg-
ligible in this example, the runtime for this method can be
very long when the models are complex, such as those
with several input quantities.

The proposed methods of second and third order can be
used as a reliable tool for evaluating the estimate of a
measurand and its associated standard uncertainty in situ-
ations where the conditions for the applicability of the
GUM method are not fulfilled and, therefore, these could
be a useful companion to the GUM S1 method for this task.

5. Conclusions

As seen in this paper, the methods of second and third
order can be useful for the evaluation of measurement
uncertainty when the measurement functions present sig-
nificant non-linearities. Nevertheless, the GUM method is
useful only for linear or linearized measurement functions.

The results of the second and third order methods pre-
sented here approximate the results of the GUM S1 meth-
od and when the measurement functions are polynomials
of second and third order the results of these higher order
methods are closer to the GUM S1 method. The computa-
tional cost of the latter, however, increases with increasing
complexity and non-linearity of the measurement func-
tion. It can be therefore concluded that these proposed
methods can be easily used and implemented to evaluate
the measurement uncertainty in non-linear measurement
functions in order to give the GUM method wider
applicability.

When the need to express measurement uncertainty as
an interval (coverage interval) arises, the proposed meth-
ods are limited with respect to the GUM and GUM S1
methods. However, the standard uncertainty is universally
used to express the measurement uncertainty of a quan-
tity, see ([1], clause 6.1.2) [6,13]. A way to overcome this
limitation consists of developing expressions of second
and third order of the Welch–Satterthwaite formula to
estimate the effective degrees of freedom, so that the
coverage factor and interval could be evaluated. This is
currently being investigated by the authors.
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