
bandwidth. The simulation results of the proposed UDPA with

embedded drivers show complete compensation of the maximum

output power reduction of the conventional UDPA. The efficiency

with the optimized linearity of the proposed UDPA is better than

the highest efficiency with similar linearity of the conventional

UDPA. At 7.3 dB OPBO for 49.3 dBm output power, the

proposed amplifier improved 5.7% power added efficiency (PAE)

with comparison of the conventional UDPA efficiency.

Figure 6 shows the measured PAE and IMD for the proposed

two-stage amplifier. An efficiency of 40% and an IMD of 243

dBc for the entire circuit were obtained at the output power of

15 W. With efficiency optimization, an efficiency of 43.3% is

achieved with an IMD of 237 dBc. The measured results in

Figure 6 show that the maximum output power reduction is not

completely compensated due to the limitation of the fine tuning

of the bias control and the output impedance during the

measurement.

Figure 7 shows the measured PAE and adjacent channel

leakage ratio (ACLR) of the amplifier for the LTE test. A PAE

of 43% and IMD of 237 dBc at the 10 MHz offset frequency

were obtained, respectively.

Table 1 shows the performance comparison between the pro-

posed two-stage UDPA and the published Doherty PA at 7.3 dB

OPBO. The proposed two-stage UDPA achieved more improved

efficiency and linearity compared with the previous works even

though the proposed amplifier has a simpler structure.

4. CONCLUSION

A highly efficient UDPA using an embedded drive amplifier

was designed and fabricated for LTE test signal. The proposed

amplifier can extend the turn on point by the peak to average

ratio of the input signal and achieve maximum output power by

optimizing two gate biases in the two-stage peaking amplifier.
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1. INTRODUCTION

Photonic crystal fibers (PCFs) also known as microstructured opti-

cal fibers, are currently under exhaustive study because several

devices for optical processing of light can be designed and also

due to their flexibility and the feasibility for tailoring their main

properties (chromatic dispersion, modal area, single-mode opera-

tion, etc.,) by adjusting their optical and geometrical parameters in

a judicious way [1–7]. They are classified in two categories

according to their guiding mechanism: The holey fiber and the

TABLE 1 Comparison of Doherty Amplifier Characteristics

References OPBO (dB) Spec. PAE (%) Linearity (dBc)

[5] 7.3 3GPP 30 225.0

[6] 7.3 3GPP 34 237.0

[7] 7.3 3GPP2 38.5 233.0

This work 7.3 3GPP 43.2 237.2

OPBO, output power back-off; PAE, power added efficiency.

Figure 6 Measured power added efficiency (PAE) and adjacent chan-

nel leakage ratio (ACLR) of the proposed amplifier for the LTE test sig-

nal. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com]
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index-guiding fiber, where the guiding mechanism is the photonic

band gap and the total internal reflection, for the former and the

later, respectively. In this work, the index-guiding fiber has been

considered to be analyzed and their chromatic dispersion has been

chosen as the parameter to be predicted by multilayer perceptron

(MLPs) artificial neural networks (ANNs). See Figure 1.

The chromatic dispersion is one of the most important

parameters of optical fibers, and it is directly related with the

pulse broadening when the same propagates along the fiber, lim-

iting in most of the cases the maximum distance of an optical

link according withLmax 5 4BjDjDkð Þ21
, where B is the trans-

mission bit rate, D the chromatic dispersion, and Dk the line-

width of the optical source.

There are approximate empirical relations to obtain the chro-

matic dispersion of PCFs [4]. However, numerical techniques,

such as the finite element method, are the most appropriated

approaches for this analysis. They are in general the most used

for the modeling of such structures, although the same requires a

deep knowledge of advanced electromagnetic theory and also

great computational efforts and resources. In order to obtain the

chromatic dispersion by using numerical techniques, first, the

geometry of the optical fiber under analysis should be discretized

and all the information about the same is used to assemble an

eigenvalues matrix system, then the effective refractive index,

neff, must be obtained with a high accuracy at several wave-

lengths since a second derivative of neff is needed for the chro-

matic dispersion computation, given by D 5 2 k=cð Þ @2neff =@k
2

� �
,

where k and c are the operating wavelength and the speed of

light in the free space, respectively. In such approach, the mate-

rial dispersion is already included. Consequently, numerical meth-

ods are in general time consuming.

On the other hand, ANNs have been used in photonics for

the modeling of planar waveguides based couplers and optical

fiber based couplers [8] and also for the analysis of PCFs [9,10]

and patch antennas [11]. The main advantages of an ANN based

models are their simplicity, the reduced time, and computational

effort and also its application for synthesis problems. In this

work, several neural networks architectures have been imple-

mented for the modeling and the prediction of the chromatic

dispersion of several geometrical configurations of PCFs as

shown in Figure 1. For this purpose, previously published data

have been used in order to train the ANN [4]. The best ANN

configuration has been used to compare our results with the pre-

viously ones published [4] and finally maps of chromatic disper-

sion have been generated by using the ANN model.

In order to show the validity and usefulness of the applica-

tion of neural networks, the prediction of the chromatic disper-

sion of a PCF is presented.

2. THE NEURAL NETWORK

The neural network used here was the MLP with two hidden

layers because they are simple, exhibit a quick convergence and

a high efficiency during the ANN training process. Several con-

figurations have been tested in this research and the best config-

uration was obtained by using 7 and 23 neurons in the hidden

layers. The activating functions in all cases were the tangent

hyperbolic for the hidden layers and the linear one at the output

layer, respectively. The training process was carried out with the

Levenberg-Maquardt algorithm. The input variables considered

Figure 1 Schematic of the index-guiding microstructured optical fiber.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com]

Figure 2 Input and output parameters of the ANN model used to pre-

dict the chromatic dispersion of microstructured optical fibers

Figure 3 Chromatic dispersion obtained by the ANN for the training

and validating data set for several pitch hole (a) K 5 2 lm, (b) K 52.5

lm, and (c) K 53 lm. The continuous line is related to data from [4].

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com]
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in this work are the operating wavelength, the pitch hole, and

the hole diameter. The output or predicted variable was the

chromatic dispersion, see Figure 2. The training data set has

been obtained from [4].

3. NUMERICAL RESULTS

In order to validate the proposed neural network approach, the

microstructured index-guiding fiber, shown in Figure 1, has

been considered for analysis and its chromatic dispersion has

been computed for several parameter values. The PCF is com-

posed by fused silica (SiO2) with several concentrically dis-

posed rings of air holes in a hexagonal lattice. The chromatic

dispersion necessary for training the neural network has been

obtained from [4], where the material dispersion has been

already taken into account in the calculations by using the Sell-

meier equations at room temperature (T 5 300 K). The training

data used for each variable shown in Figure 1(a) are restricted

to the intervals: k [1.2 lm, 1.8 lm] (in order to cover the entire

communication window); K [2 lm, 3 lm]; d [0.4 lm, 2.4 lm].

As a result, the chromatic dispersion lies in the interval CD

[238, 140 ps nm21 km21]. A set of 147 samples have been

used for neural network training. An additional set of 126 sam-

ples were separated in order to test the neural network architec-

ture with the best behavior.

The neural networks were configured to run 10,000 epoch,

the learning rate was 0.005 and for the best ANN, the results

have converged after 6432 epoch taking 210 sec. The quadratic

error at the end of the training was 8 3 1025. The neural

network results are plot together to the data obtained from [4]

in Figure 3. The red squares and blue dots correspond to the

training and validating data, respectively, and the solid lines cor-

respond to the data available in [4]. It can be seen an excellent

agreement between ANN data and the ones previously published

in [4]. It can be observed a nonlinear behavior of the chromatic

dispersion and the PCF parameters. The error between the val-

ues given in [4] and the ANN based model obtained here, are

less than 1 ps nm21 km21.

Once the ANN has been validated, it has been used to gener-

ate a map of the chromatic dispersion by scanning the parame-

ters values in the entire interval. The results can be seen in

Figures 4(a)–4(c) where the training and validated data, repre-

sented by red cubes and blue spheres, respectively, have been

also put together. It can be observed a nonlinear relation of the

chromatic dispersion and the optical/geometrical parameters. It

makes the ANN a suitable tool for this problem. The error

between the published results [4] and the ANN ones are less

than 2 ps nm21.km21 in the entire interval.

A Laptop with Intel Pentium Processor T3400, 2.16 GHz of

clock and 2 Gb of RAM running on Windows Vista Starter has

been used in all simulations.

4. CONCLUSION

In conclusion, the chromatic dispersion of an index guiding

microstructured fiber has been efficiently computed by using a

relatively effortless neural network algorithm. The model

obtained is very simple, accurate and it is less time consuming as

well it requires less computational effort than classical numerical

techniques used for the analysis of this kind of problems.
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Figure 4 Chromatic dispersion maps for pitch hole values of (a)

K 5 2 lm, (b) K 5 2.5 lm, and (c) K 5 3 lm. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com]
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