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Abstract This paper presents a set of novel modifications
that can be applied to any grid-based path planning algorithm
from the A* family used in mobile robotics. Five modifica-
tions are presented regarding the way the robot sees an obsta-
cle and its target to plan the robot’s path. The modifications
make it possible for the robot to get to the target faster than
traditional algorithms, as well as to avoid obstacles that move
as fast as (or even faster than) the robot. Some simulations
were made using a crowded and highly dynamic environ-
ment with twelve randomly moving obstacles. In these first
simulations, a middle sized 5DPO robot was used. Also, real
experiments were made with a small-sized version of a 5DPO
robot to validate the algorithm’s effectiveness. In all simula-
tions and real robot experiments the objects are considered to
be moving at a constant speed. Finally, we present an overall
discussion and conclusion of this paper.

Keywords Path planning · Mobile robot ·
Obstacle avoidance · Dynamic environment

T. P. do Nascimento (B) · P. Costa · P. G. Costa · A. P. Moreira
INESC TEC, Faculty of Engineering, University of Porto,
Rua Dr. Roberto Frias, s/n 4200-465 Porto, Portugal
e-mail: tpnascimento@gmail.com; tiagopn@ieee.org

P. Costa
e-mail: pedrogc@fe.up.pt

P. G. Costa
e-mail: paco@fe.up.pt

A. P. Moreira
e-mail: amoreira@fe.up.pt

A. G. S. Conceição
Department of Electrical Engineering,
Federal University of Bahia, Salvador, BA, Brazil
e-mail: andre.gustavo@ufba.br

1 Introduction

Path-planning algorithms constitute a well-known area of
research in mobile robotics. Studies in this area may involve
single robot movement, or a group of mobile robots moving
in a specific formation. Issues like static obstacle avoidance
or mobile obstacle avoidance, known or unknown worlds,
structured or unstructured environments and single or multi-
ple robot motion are the main study cases in path planning. In
this paper, a set of novel modifications conceived to improve
grid-based algorithms from the A* family applied in mobile
robotics is presented. For instance, a simple target for the
robot to reach was considered.

Motion-planning algorithms are currently widely used.
Path-planning algorithms can be the solution for many
motion-planning issues, such as UAV path planning [1], in
mobile robot outdoor navigation [19], in mobile robot indoor
navigation [9] and even in video games [17]. In this work, an
indoor environment for mobile robot path planning is used.
With a preset target, the robot is supposed to avoid obstacles
moving at high velocities. The robots used are the omnidirec-
tional robots used in the Middle Size and Small Size Leagues
(see Fig. 1) from the 5DPO Team of robot soccer champi-
onships (RoboCup). A good modeling and control for these
platforms can be found in [8] and [23], respectively.

Many path planning techniques have emerged over the
years. One of the most famous is the artificial potential field
approach. This methodology has been widely used, and it
states that the collision-free trajectory is generated along
the negative gradient of the defined attractive and repul-
sive potential-field functions. The subsequent studies can be
found in [18,25,36]. Nonetheless, the potential-field method
is not straightforwardly applicable to mobile vehicles with
kinematic constraints since, in the potential-field design, the
robot is usually treated as a simple particle. Another major
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Fig. 1 The 5DPO middle size robot

problem has to do with the fact that it is essentially a fastest-
descent optimization method, and thus can get trapped into
local minima of the potential function rather than reach the
goal state [20].

Over the years, solutions for motion planning problems
were also found in artificial intelligence algorithms, such
as neural networks and fuzzy logic. In early years, the
use of fuzzy logic was an option for easy-to-control sys-
tems [29,32]. Recently, new neural network approaches
appeared, showing considerable results. In [21], the authors
propose a neural- network-based path planner used in mul-
tiple nonholonomic mobile robots with moving obstacles.
Other authors have used the neural network approach for
non-moving obstacle avoidance [28].

As in artificial intelligence, researchers became aware of
some new approaches throughout the years, such as time-
optimal approaches [2] and the Dynamic Window Approach
[24], which perform well in situations where there are no
moving obstacles, despite the computational cost at high
velocities. The works of [16] and [35] also applied an opti-
mization method. The first approach is only applied for static
obstacles.

Approaches like the Distance-Propagating Dynamic Sys-
tem (DPDS) [34] and the Bug algorithm [15] are recent
solutions for the problem of moving-obstacle avoidance.
Nevertheless, in [34] the solution causes the robots to move
very slowly, while in [15] only a few obstacles are taken
into account. In [3] a reactive approach is introduced, while
in [4] the reactive method presented is only applied for a
straight line. Sonar-based methods can also be seen as reac-
tive methods. In [30], a sonar- based method is well applied,
even though it only takes static obstacles into consideration.
Completing the set of new approaches that appeared over the
last decade, the boundary-following method was introduced
by [14] and applied to static obstacles.

Also among the most famous is the Roadmap method.
This method can be seen in [5]. Here, a computational geom-
etry data structure was proposed to solve the problem of
an optimal path generation between a source and a desti-
nation, in the presence of simple disjoint polygonal obsta-
cles. In [27], the Roadmap method is applied successfully

using multiple mobile robots in a common environment.
Underground mining and the warehouse management prob-
lem are considered, even though no randomly moving obsta-
cles are considered. The Roadmap method is successfully
applied in low-dimension configuration spaces and some-
times, depending on the approach, it is not easy to imple-
ment [20].

Finally, the last method among the most traditional algo-
rithms for path planning is the cell decomposition method
[20]. In this category, algorithms such as A*, D*, ARA* and
AD* are well known and efficient. The A* algorithm is the
oldest, and it has been successfully applied with static [37]
and dynamic obstacles [9]. Currently, the main advantage of
the Cell Decomposition methods is that, with current tech-
nology, they are no longer apply only to indoor environments
or small spaces. They can be also applied in UAV obstacle
avoidance [1] and in unknown environments [19]. In [7], an
approximate cell-decomposition method was developed in
which obstacles, targets, sensor platforms and FOV (Field
of View) are represented as closed and bounded subsets of
a Euclidean workspace. A good overview of the advantages
and disadvantages of using these algorithms can be seen in
[6,11].

One of the methods that has evolved in recent years is the
Velocity Obstacles method, first used in [13]. This method
defines the set of all the velocities of a robot that will result
in a collision at some point in time, assuming that the obsta-
cle maintains the current speed. Therefore, its movement
planning aims at finding the speeds that fall outside these
groups to ensure that there will not be collisions. This method
is widely used in simulations of crowds, having however a
minor problem when dealing with static obstacles: the robot
circumvents the edges of the obstacles, making the robot
slower, as noted in [33].

Therefore, an approach based on algorithms from the A*
family for highly dynamic and crowded environments, as
well as the modifications for the grid-based path planning
algorithm, are presented in the next section. The problem is
formulated and results are presented with experiments and
simulations in Sect. 3. Finally, conclusions are presented in
Sect. 4.

2 Path planning algorithms

In robotics, the path-planning task consists of finding a
sequence of actions that cause an agent to move from an ini-
tial state (position and orientation) to a final state (position
and orientation). In path planning, each transition between
states represents actions the agent can make, each associ-
ated with a cost. A path is said to be optimal if the sum of
its transition costs is minimal across all possible paths from
an initial state qinit to a goal (final) state qgoal. A planning
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algorithm is said to be complete if it always finds a path in
a finite amount of time when such a path exists. It can be
said that a planning algorithm is optimal if it always finds an
optimal path. The proposed modifications can be applied to
any of these algorithms (A*, D* and its evolutions, such as
D*-Lite and E*, ARA* and AD*) to achieve a faster solu-
tion. This affirmation is based on the fact that the differences
between these algorithms are in the optimization process,
always aiming at a shorter processing time and lower use of
resources, such as computational memory. Therefore, in the
following subtopics, an overview of grid-based algorithms
will be presented.

Furthermore, the cell decomposition algorithms such as
D* (and its evolutions such as D*-Lite and E*), ARA* and
AD* are based in the A* and were developed to solve prob-
lems of computational cost, processing time, or memory
expenditure. The modifications proposed here are in the con-
figuration space and not in the algorithm core itself. There-
fore, in the matter of configuration space, all the previous
algorithms from the A* family should give an equal or simi-
lar solution to the A* algorithm. When applying our modifi-
cation to any algorithm from the A* family, the final solution
would be better, as it will be demonstrated with A* in this
paper.

Finally, in our approach we base the modifications on the
method of cell decomposition, where the modifications are
not in the A* algorithm, but in the configuration space to
later run an A* algorithm to find the best path. The advantage
comes with the fact that, regarding the configuration space,
in the cell decomposition there are no local minima, such as
in potential functions, while in the VFH or in other similar
approaches the local minima can become a problem when
avoiding narrow areas. The only exception is when another
robot that is trying to block the robot’s path is faster than the
robot. However, this case would create local minima in any
approach.

2.1 Grid-based algorithms

2.1.1 A* algorithm

A* is a traditional graph search algorithm that has been devel-
oped to calculate least-cost paths on a weighted graph. This
algorithm uses a heuristic function,

F(n) = g(n) + h(n) (1)

which estimates the lowest cost of going from the initial state
to the goal state, while going through node n. This sets the
order in which nodes are sought in order to find the best path
as soon as possible. This function is the sum of two other
functions:

Fig. 2 Resulting graph from the cell division

1. g(n) = Cost from the initial node to node n;
2. h(n) = A heuristic function to estimate the cost of the

path from node n to the target node.

There are two lists in this algorithm: the O-list and the
C-list. The open list, known as the O-list, contains the nodes
that are candidates for exploration. The closed list, known as
the C-list, contains the nodes that have already been explored.
The nodes from the C-list were previously on the O-list, but
as they are explored they are moved to the C-list. The nodes
on these lists store the father node, which is the node used
to optimally reach them. This is the node that lies in the
shortest path from the original to the current node. If the
heuristic function is admissible, then the path cost of qgoal is
guaranteed to be optimal.

To use the A* algorithm in the calculation of the robot’s
path, it is necessary to divide the environment map into cells,
as stated in the approximate cell decomposition method. To
increase the set of applications of this algorithm, this divi-
sion could be achieved with a GPS, omnidirectional cam-
eras, global cameras (for outdoor applications when the grid
moves with the robot) or previous measurements of the envi-
ronment, allowing the robotic system to apply this algorithm
to almost any kind of situation. Here, each cell represents a
node. Each node can be connected to other nodes, and mov-
ing from one node to the other has an associated cost (Fig. 2).
In this case, the cost is the metric distance between the cell
centers. The A* algorithm can calculate the path that mini-
mizes the cost from moving from the initial cell to the target
cell. In Fig. 3, the black cells represent the obstacles, the yel-
low cell represents the initial position (node) and the blue
cell represents the destination point (node).

Finally, the robot is represented by the initial node, and it
occupies only a single node. This last node is the geometric
center of the objects. The destination node is the goal state
qgoal. All other moving objects are considered to be obstacles.
As the robot is represented by a single cell, the obstacles
have to be bigger, so as to represent both the obstacle and the
robot’s body. These obstacles are represented by circles with
their radius equal to the sum of the obstacle’s radius and the
robot’s radius. This representation is depicted in the Fig. 4.
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Fig. 3 Map cell decomposition

Fig. 4 Obstacle’s total radius

In robotics, it is often important for the agent to keep plan-
ning new paths when new information on the environment is
received by the sensors. The A* algorithm continuously plans
the path from scratch after new information is received. How-
ever, it is very computationally expensive to keep planning
a path from scratch every time the graph changes. Instead, it
may be far more efficient to take the previous solution and
repair it.

2.1.2 D* algorithm

The Focused Dynamic A* (also called D*) and D*-Lite have
been used for path planning in a large number of robotic
systems, including indoor and outdoor platforms. D* and
D*-Lite are extensions of A*. Nevertheless, D*-Lite is much
simpler and slightly more efficient than D* in some naviga-
tion tasks. The D*-Lite proceeds initially similarly to A*,
creating an optimal solution path from the initial state to the
goal state, in exactly the same manner as A*. The differ-
ence is that when the replanning is necessary, the previously
planned path is used instead of planning a path from scratch.
This saves computational time and can be up to two orders of
magnitude more efficient than planning a path from scratch
using A* [11].

Generally, D* is very effective for replanning in the
context of mobile-robot navigation. In such scenarios, the
changes to the graph occur closely to the robot, which means
that the effects are usually limited. However, if the areas of

the graph being changed are not close to the position of the
robot, it is possible that D* is less efficient than A*. This
is due to the fact that D* processes every state in the envi-
ronment twice. The worst-case scenario is when changes are
made to the graph in the vicinity of the goal, which happens
frequently in a highly complex environment. If the planning
problem has changed sufficiently upon the generation of the
previous result (a common characteristic of a highly dynamic
environment, as in this study case), this result may be a bur-
den rather than a useful starting point. In this case, which
is mostly common in real experiments containing uncertain-
ties, A* is much more efficient than D* [11]. Finally, there
are some variations of the D* algorithm, such as E*, which
makes the path smoother but still suffers the drawbacks of
D*, similar to what happens when highly dynamic and com-
plex environments [6] are considered.

2.1.3 ARA* algorithm

In some cases, the reaction of the agent must be quick, and
therefore the replanning problem is complex, even in sta-
tic environments. In such cases, computing optimal paths as
described above can be infeasible due to the sheer number
of states that need to be processed in order to obtain such
paths. Algorithms often construct an initial highly subop-
timal solution very quickly, thus improving the quality of
the solution afterwards while time permits. One of the most
common algorithms is the Anytime Repairing A* (ARA*),
which limits the processing performed during each search
by considering only those states whose costs at the previous
search may not be valid given a new k value (current heuris-
tic parameter of optimality). This improves the efficiency of
each state in two ways: by expanding each state at least once
when a solution is reached, and by only reconsidering states
from the previous search that were inconsistent [11].

However, because ARA* is an anytime algorithm, it is
only applicable in static planning domains. If too many
changes are being made to the planning graph (which is the
biggest characteristic of a highly dynamic environment with
moving uncertainties), ARA* is unable to reuse its previous
search results and therefore must plan the path from scratch
again, which makes A* far more applicable. As a result, it is
not appropriate for dynamic planning problems [11]. There-
fore, another class of algorithms were created to fix this prob-
lem, the Anytime Dynamic A* (also called AD*).

2.1.4 AD* algorithms

Algorithms that plan the path iteratively (A* and D*) have
concentrated on finding a single and usually optimal solution,
and anytime algorithms (ARA*) have concentrated on sta-
tic environments. However, some of the most interesting
real-world problems are those that are both highly dynamic
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(requiring replanning) and highly complex (requiring any-
time approaches). The authors in [22] developed the Any-
time Dynamic A* (AD*), an algorithm that combines the
continuously planning capability of D* Lite with the anytime
performance of ARA*. Unfortunately, as the authors put it
in [11], this AD* algorithm suffers from the drawbacks of
both anytime and replanning algorithms. As with replanning
algorithms, AD* can be much more computationally expen-
sive than planning from scratch. The larger the change in the
environment, the more time consuming it is to redo planning
a path with AD*. This becomes a problem in an environment
with many movable uncertainties (moving obstacles). In such
cases, A* will also be less time consuming than AD*.

Note here that the following experiments and simulations
are highly complex (which becomes an issue for replanning
algorithms), highly dynamic (which becomes an issue for
anytime repairing algorithms), and full of moving uncertain-
ties, sometimes faster than the robot itself, which makes the
AD* computationally expensive. Note also that all these new
algorithms only give specific solutions, always with draw-
backs, when all problems are considered at the same time,
something that is often seen in real-world situations such
as in airport daily patrols. To solve these problems, a set of
novel modifications based on the A* family algorithms was
proposed.

2.2 The modifications

As mentioned before, it is known that most environments are
highly dynamic, highly complex and contain obstacles mov-
ing randomly. The situation studied is often common in the
real world considering the dynamic constrains of the robot,
which is to find the fastest solution between the initial state
qinit and the goal state qtarget, avoiding as many collisions as
possible. Therefore, one of the concepts that it is necessary
to highlight is that the best solution, in most cases, is given
not by the shortest path (optimal path) and can lead to unde-
sired collisions. In another words, the best solution is not the
shortest path (the optimal one), but the fastest path (usually
the suboptimal one). That is because the velocity of the robot
is not constant (the robot has limited acceleration) and the
robot controller has difficulty in following trajectories with
abrupt changes in direction.

The first thing to take into consideration when analyzing
the proposed modifications is that all contributions should
be disregarded and a different angle of analysis should be
pursued. The first point of analysis is that the built cell map
must have the location of the obstacles in the workspace, in a
fixed position. This should be known at the instant the infor-
mation is captured. This information ignores the velocities
of the obstacles. In dynamic environments this can be a big
mistake, for it does not allow the robot to avoid obstacles
sooner than expected, thus leading to an unwanted collision.

Fig. 5 Normal collision points

One way to avoid this situation in a cell-based map is
to calculate the possible point of collision given the current
velocity of the robot and the current velocities of the moving
obstacles. In each trajectory calculation the modified algo-
rithm makes the robot assume that the obstacles have constant
velocities in the time t of data acquisition, and that the robot
has a maximum speed and a maximum acceleration. Using
this information, the position of new obstacles for path plan-
ning calculations is no longer the current position, but the
possible collision point, as seen in Fig. 5.

In this case, while the trajectory must be fully planned,
only the first steps are taken into account before new infor-
mation arrives and a new calculation is performed. There are
some proposed techniques presented in this paper that can be
applied to any A* family algorithm and that are useful when
trying to approximate the inherent environment dynamics in
a static map. They are called:

1. Obstacle Distance
2. Obstacle Slack
3. Obstacle Direction
4. Processing Time
5. Target Orientation

Finally, it is important to remember that A* family algo-
rithms either find a solution or not. Although the A* and the
A* with k can give a sub-optimal solution, there is no math-
ematical guarantee that there will be no local minima due to
the high nonlinearity of the system. Our guarantee is given
by the hundreds of hours of using this modified algorithm in
the Small Size Robot Soccer League of RoboCup since 2005
with the 5DPO team from University of Porto.

2.2.1 Obstacle distance

This change causes the obstacle to lose relative importance
as the distance from the robot increases and the possible
collision point is further away from the robot. This can be
seen in Figs. 6 and 7. A distant obstacle mostly does not
affect the immediate trajectory points. That can speed up the
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Fig. 6 Collision points by obstacles awareness

Fig. 7 Obstacle size versus distance

Fig. 8 Importance modification result

calculation because fewer obstacles will lead to less visited
cells and a lower amount of time to find a solution.

Note that in Fig. 7:

1. min = Starting distance for decreasing the obstacle’s
importance

2. max = Distance for total loss of obstacle’s importance
3. radius = here, as the obstacle goes far from the robot,

the obstacle’s importance decreases and this is measured
by the obstacle’s radius.

The improvement made by this change is visible in the
comparison shown by Fig. 8 in an environment with a sta-
tic obstacle. The image on the top is the trajectory with-
out the modification, while the image below includes the
modification.

2.2.2 Obstacle representation (slack)

This modification changes the way an obstacle is represented
in the cells. A security area is created around the obstacle.
This area is built by setting the cost for those cells above the
free ones, but still allowing the robot to choose a path through
those cells if the algorithm finds it optimal (Fig. 9).

This does not make the obstacle bigger (nor does it
expand) but creates a security zone that should be avoided if
doing so does not cause any impact on the optimal solution.
There are cases where an optimal solution can be found using
that zone instead of choosing a longer path. The equation for
calculating the can be seen below.

C(n1, nc) = C(n1, n2).Cs (2)

where

1. C(n1, nc) = Cost for going from node 1 to node c;
2. C(n1, n2) = Cost for going from node 1 to node 2;
3. Cs = Cost inside the slack zone.

The Cs can be set by the graph in Fig. 10.
The improvement caused by this change is visible in the

comparison shown by Fig. 11 in an environment with a sta-
tic obstacle. The image on the left is the trajectory without

Fig. 9 Obstacle with a slack zone. The black intensity means a higher
cost

Fig. 10 Slack zone cost

Fig. 11 Slack modification result
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Fig. 12 Obstacle shape change
due to its motion

Fig. 13 Determination of the size and trail cost graphs respectively

the modification, while the image on the right includes the
modification.

2.2.3 Obstacle direction

A moving obstacle can obstruct the robot for a longer
period of time if the path to avoid the obstacle ends, moving
the robot parallel to the obstacle movement. This change
creates a certain dynamic awareness of an otherwise sta-
tic map. It creates an additional zone for which the cost
to travel there is increased. This zone is created around
the projected direction of the moving obstacle. The size of
this zone depends on the magnitude of the obstacle’s speed
(Figs. 12, 13).
where:

1. a = Magnitude of the direction zone;
2. Ce = Cost inside the direction zone.

The improvement caused by this change is visible in the
comparison shown by Fig. 14 in an environment with a static
obstacle. The image on the top is the trajectory without the
modification, while the image below includes the modifica-
tion.

Finally, it is important to mention that, despite the fact that
in real applications the obstacles usually have a non-constant
velocity, our algorithm was optimized to be executed in a fast
fashion. In each control loop the algorithm is recalculated and
the unpredictability of the obstacle detection is smoothened.
Usually, the errors in the obstacle’s position and velocity
estimations decrease abruptly when the obstacle approaches
the robot, and therefore for the important obstacles (the ones
near the robot) the uncertainty is not high.

2.2.4 Processing time

This change addresses a modified heuristic for the A* search
algorithm that reduces the computing time and finds the opti-
mal search effort level, considering the computing time and

Fig. 14 Direction modification result

the optimal path costs. This is the only modification that is
not new, as it is well known as weighted A* and is usually
used in the anytime algorithms. Also, it was first mentioned
by [26]. To do this adjustment, it is necessary to set the cor-
rect heuristic parameter k. Using Eq. 3 with k = 1 there is
a guarantee that the final solution is optimal. Using a higher
value for k, the search space is reduced and the solution found
can be suboptimal. When performing path planning with the
original A* method with different k values, it is noted that
as k increases, the region of possible paths decreases. As a
result, it is possible to observe that the computing time can
be controlled, possibly paying the price of having a subop-
timal path where the length of the path found is extended.
In fact, k affects processing time and path length. While the
first increases, the second decreases. Assuming the cost as a
weighted sum of both variables, an optimized k can be found.
However, it will depend on the path type and obstacles.

h(x, y) = k
√

(x − xt )2 + (y − yt )2 (3)

Therefore, it is desirable to find a compromise between
cost of computing time and the quality of the result (set by
the heuristic parameter k). As a result of simulations, the
average total cost in computing time can be seen in Fig. 15.
It is possible to obtain the minimum cost for a k = 1.2, thus
resulting in an acceptable and a much faster suboptimal path.
Finally, it is important to notice that this modification can be
made in any A*-family algorithm if a suboptimal value is
found when studying its time processing.

2.2.5 Target orientation

This change tries to set the required orientation used by
the robot as it approaches the target. Without it, the robot
will hit the target destination from any direction. There are
cases when the approach direction is mandatory. For these
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Fig. 15 Average total cost

Fig. 16 Target point with mandatory (left) and non-mandatory (right)
approach direction

Fig. 17 Goal approach direction cost

cases, a restriction like the one depicted in Fig. 16 (left) is
used.

Sometimes there is a preferred direction, but that restric-
tion is not strict. It can be violated if the gain in the arrival
time is significant. To achieve this, a softer version of the
extra obstacle is used, as depicted in Fig. 16 (right).

To calculate the approach cost, the image above (Fig. 17)
can be used. Where:

1. Cd = Approach direction cost;
2. amp = Amplitude of the approach direction;
3. dc = Center of the amplitude;
4. dg = Distance of cost decrement in approaching the

amplitude of the goal direction.

Table 1 Simulation and experiment parameters

Middle size Small size

Distance

max 4 m 2 m

min 2 m 1 m

Slack

Slack 0.25 m 0.06 m

Cs 5 5

Direction

Ce 5 1.35

a 0.65 m 0.6

Heuristic parameter

k 1.2 1.2

Target orientation

amp 60 28.6

Cd 5 1.3

3 Results

The robots from FEUP’s robot soccer competition (5DPO—
Small and Middle Size leagues) were used as a test bed to
evaluate the produced algorithm. Both the middle size and
small size league robots can run up to 2.5 m s−1 in a straight
line. Two types of evaluation were made. Firstly, a simula-
tion was made using the software called SimTwo, developed
by Professor Paulo Costa, PhD, from FEUP, using the mid-
dle size league robot. In this simulation, the used field is
8×10 m. Also, the grid cell used in both A* and its modified
version was 0.05 m. Secondly, experiments with real Small
Size League robots from FEUP were performed as well. In
this case, the grid cell size was 0.03 m. All path-planning
algorithms were implemented in a software written in free
Pascal Lazarus compiler which communicates with SimTwo
or the real robots by UDP protocol. The values used in the
constants for each change characterizing the modified algo-
rithm can be seen in Table 1.

The results were divided in two scenarios: simple sce-
narios demonstrating experimental results with real robots
where the modifications are easy to be acknowledged sep-
arately and a more complex scenario using twelve random
spheres representing mobile obstacles presenting the simu-
lation results. In the complex scenario with high dynamics,
the simulations demonstrate the final time of execution and
the number of collisions, where in the real robot scenario,
each modification can be seen acting in the three performed
experiments.

3.1 Simulation results

All simulations were made with the SimTwo software. This
software uses an Open Dynamic Engine library [10], [31]
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Fig. 18 The SimTwo simulation environment

which guarantees a perfectly realistic simulation from the
dynamics of rigid object, resulting in a realistic object
behavior. The robots, nevertheless, were highly and rig-
orously previously parameterized in SimTwo [12], which
makes this platform a realistic and ideal simulation envi-
ronment for tests with path-planning algorithms. Below is a
screenshot of the program (Fig. 18).

It is important to mention that in 2005, before the appear-
ing of simulators such as Gazebo, ROS and so on, the author
in [10] had already developed the SimTwo simulator based
on the same ODE with similar characteristics (same realism
in the dynamics and physical impacts), but with a much sim-
pler installation and use, and the code of which has been
mastered by the authors of this paper.

The aim with this set of simulations is to observe the dif-
ferences between A* and A* with the proposed modifications
in a highly dynamic environment with mobile obstacles that
move “randomly” at speeds that, for some of the obstacles,
can be higher than the speed of the robot itself. Finally, it is
important to mention that all simulations were made with all
objects (robot and obstacles) in the same position.

The A* algorithm builds a path from the robot’s initial
state to the goal state that goes around the obstacles; the
modified algorithm builds a path and only changes it when
the importance of the obstacle increases according to the
proximity to the robot.

In the simulations, the movement of the obstacles is set to
be half- random. This happens because those movements are

Fig. 19 A* dynamic simulation results with discrete instants
t = 1, 2, 3, 4, 5, 6, 7 and 8

set by a simple algorithmic procedure in SimTwo. As can be
seen in the previous algorithm, the values from each sphere
are uploaded and a force is set upon each one, making the
movements. With a constant velocity for all the spheres, the
movements of each is practically always the same, except
when the robot hits one or more spheres. In Figs. 19 and 20,
the discrete evolution in the A* and the Modified A* path
planners can be seen until the target is reached. An important
observation in the last sub-pictures of both figures is that the
track became static and the robot chose not to use the A* or
its modified version, due to the fact that there were no more
obstacles around or near it. Therefore, SimTwo shows the
last track calculated by the path planner in case.

It is possible to see now that A* has to go back many times
because it was not able to foresee collision points. However,
the modified A* algorithm builds a different path, and chang-
ing it by predicting the collision points using the calculated
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Fig. 20 Modified A* dynamic simulation results with discrete instants
t = 1, 2, 3, 4, 5, 6, 7 and 8

spheres’ velocity and applying all the mentioned changes.
As can also be observed in Table 2, the improvement gained
by the modification is much more considerable, not only in
terms of getting to the target point sooner, but also when
it comes to avoiding more collisions in a crowded environ-
ment where obstacles can sometimes be unavoidable, even
for humans.

Collisions occur when the robot is blocked by the mov-
ing obstacles. Therefore, the collisions cannot be avoided
because the obstacles go towards the robot.

3.2 Experiment results

Two 5DPO robots from FEUP’s Small Size League were used
for these experiments. These 5DPO can run up to 1.2 m s−1.
Therefore, by applying them in real experiments, the same
mathematical constrains that were imposed in the simulation

Fig. 21 Static obstacle representation

Table 2 Dynamic obstacles result

Measurements in 30 sim. A* Mod. A*

Average time to target 29.72 s 26.77 s

Number of collisions 3.4 1.6

problems occur. Thus, the experiments can be divided into
three cases.

The first case presents a static obstacle located in the
robot’s path. Then, the robot has to reach the goal state on
the other side of the obstacle, avoiding it. In a second case, the
obstacle is moving towards the robot. In this case, the robot
must also avoid the obstacle to reach the target point. Finally,
in the third case, it is stated that the robot, starting from an
initial state qinit , must reach the goal state qgoal avoiding a
moving obstacle.

3.2.1 Case 1: static obstacle

For the first set of tests, the robot departs from the initial state
qinit with an initial velocity equal to zero. The accelerations of
the robot should be limited to prevent the robot from slipping.
Due to the robot’s dynamic constrains, it does not succeed
in following the planned path, especially if the path is full of
abrupt turns.

Figure 21 represents the first experiment with real robots.
In Fig. 22 it can be seen that the path resulted from both
algorithms, the normal A* algorithm in red and its modified
version in blue. The trajectory in Fig. 22 is not the planned
path, but the trajectory made by the robot. Note that the mod-
ified algorithm in a static environment makes the robot turn
sooner than when the normal A* algorithm is used.

On the other hand, the A* algorithm makes the robot turn
much closer to the obstacles. In a dynamic environment this
could cause an unwanted collision. In this experiment, the
robot starts farther away from the obstacle. Therefore, when it
reaches the obstacle, the robot is moving at a higher velocity.
Here, the effects in the controller made by A* due to the
robot’s dynamics and constrains are clearly visible. Due to
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Fig. 22 Static obstacle avoidance result

Table 3 Close static obstacle avoidance results

Duration(s) Gain APT (ms)

Normal 3.08 0.09

Modified 2.64 14.3 % 0.12

the high velocity and the abrupt turn too near the obstacle
the robot controller was not successful in following the path
when using the A* algorithm. Therefore, there was a large
trajectory tracking error, and A* had to replan the path so
that the robot could correct its orientation. This happened
because, since A* choose the shortest path, the robot turned
closer to the obstacle. At high velocities, this causes the robot
controller make bigger efforts so that the robot can follow
the desired trajectory. This makes the robot go farther and
lose speed. Meanwhile, the modified algorithm chooses a
suboptimal solution in a shorter amount of time to reach the
target and, along with the cost of abrupt maneuvers, makes
the robot run through a much smoother trajectory in a shorter
amount of time, allowing the controller to follow the path that
was planned. The total time to reach the target can be seen in
Table 3, where the modified A* algorithm makes the robot
reach the goal sooner than the normal A*, as well as the gain
and the average processing time (APT) of both algorithms.

Finally, the modification of slack, direction and orienta-
tion increase the processing time, while the modifications of
distance and processing time decrease the average process-
ing time of the algorithm. In general there is a small increase
in the APT, although it is not large enough to jeopardize the
use of this algorithm in real environments and in each control
loop.

3.2.2 Case 2: moving obstacle towards the robot

In the second experiment, the robot starts far from the tar-
get. In the middle of the trajectory there is an obstacle that
is moving towards the robot at 0.4 m s−1. The Fig. 23 shows

Fig. 23 Moving obstacle representation—case 2

Fig. 24 Avoidance of the moving obstacle towards the robot

Table 4 Avoidance of the moving obstacle towards the robot results

Duration (s) Gain APT (ms)

Normal 3.284 0.10

Modified 2.763 15.8 % 0.13

the representation of the experiment. It can be verified here
also that the robot succeeds in avoiding the obstacle sooner
using the modified version of the A* algorithm. Similarly to
what happened in the first case, the path built by the modified
algorithm caused the robot to turn earlier. This results in a
softer path, which does not happen in the normal A* algo-
rithm, as confirmed by Fig. 24. Experiments showed that the
robot can avoid obstacles in this situation that move only up
to 0.9 m s−1.

In this last case, the robot starts at the initial position (far
left) at time t = 0, and the aim is for the robot to reach the goal
position (far right) with an average velocity of 0.69 m s−1.
Meanwhile, there is an obstacle with constant velocity of
0.8 m s−1 crossing the robot’s path, starting at the top of
the figure. The total time to reach the target can be seen in
Table 4, where the modified A* algorithm makes the robot
reach the goal sooner than the normal A*.
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Fig. 25 Moving obstacle representation—case 3

Fig. 26 Avoidance of the moving obstacle intersecting the robot

Table 5 Avoidance of the moving obstacle intersecting the robot results

Duration (s) Gain APT (ms)

Normal 2.963 0.12

Modified 2.205 25.6 % 0.21

3.2.3 Case 3: moving obstacle crossing the robot’s path

The representation of the experimental result can be seen in
Fig. 25. In this experiment, it is possible to observe that when
A* is used, the robot tries to avoid the obstacle and therefore
is taken in the direction of the obstacles’ movement as is is
shown in Fig. 26. This happens because the optimal path gen-
erated by A* makes the robot pass in front of the obstacle.
However, when using the modified version of A*, the robot
uses the obstacle’s velocity and therefore predicts the colli-
sion point at a time t. Using the direction of the obstacle, the
modified algorithm builds an suboptimal solution, making
the robot pass behind the obstacle to avoid it. Table 5 shows
an even bigger difference in the time it takes for the robot to
reach the target. The improvement made by the modified A*
is much clearer here.

4 Conclusion and future work

This paper presented a set of novel modifications that can
be applied to any grid-based path-planning algorithm from
the A* family used in mobile robotics. It used five modifi-
cations on A* to plan the robot’s path: the obstacle distance,
slack, direction, processing time and target orientation. Some
simulations were made using a crowded and highly dynamic
environment with twelve randomly moving obstacles. While
the normal A* algorithm built an entire path around the obsta-
cle, the modified A* built a path making changes only when
the robot was approaching the obstacle. Here, the normal A*
algorithm had to go back many times to succeed in reach-
ing the goal point. The modified algorithm built a differ-
ent path, changing it by predicting the collision points using
the calculated spheres’ velocity and applying all the men-
tioned changes. The improvement achieved by the modified
A* algorithm was much more considerable, not only in terms
of getting to the goal point sooner, but also in terms of avoid-
ing much more collisions in a crowded environment.

Real experiments were also made. The experiments were
divided into three cases: static obstacle, moving obstacle
towards the robot, and moving obstacle intersecting the
robot’s path. For the first set of tests, the modified A* algo-
rithm reached the goal sooner than the normal A*. In the
second case, the modifications made much more difference
with a moving obstacle. This resulted in a softer path in the
both first and second cases. In A* the robot had to make a
second turn so that it would not collide with the obstacle.
This made the robot go farther and lose speed. In the last
case, the robot had to reach the target avoiding a moving
obstacle that intersected the robot’s path. Here, the experi-
ment showed that when using A*, the robot was taken in the
obstacles’ movement direction and, while using the modified
A*, the robot predicted the collision point and built a subop-
timal solution, making the robot pass behind the obstacle to
avoid it. This last case showed an even bigger difference in
the time it takes for the robot to reach the target.

It is important to mention that the modifications proposed
are in the configuration space (Cspace ) and not in the algo-
rithm core itself. Therefore, in the matter of configuration
space, all the previous algorithms from the A* family should
give an equal or similar solution to the A* algorithm. When
applying our modification in any algorithm from the A* fam-
ily, the final solution would be better, as will be demonstrated
with A* in this paper. These modifications aimed to improve
the trajectory with respect to the time of execution, and espe-
cially in avoiding collisions when used in mobile robotics in
highly dynamic environments.

Future works will consider experiments with the uncer-
tainty treatment in the obstacle’s velocity measurement, and
a model for this uncertainty will be created. This uncertainty
estimation will be used to readjust some parameters of the
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modified algorithm. The modified algorithm presented in this
paper was not configured to all cases (simulation with small
size robots, real small size robots, simulation with meddle
size robots, or crowded environment) and this future work
would bring more robustness to our approach.
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