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Abstract
Logics with quantifiers that range over a model-theoretic universe of propositions are interesting for several applications.
For example, in the context of epistemic logic the knowledge axioms can be expressed by the single sentences ∀x.(Kix→x),
and in a truth-theoretical context an analogue to Tarski’s T-scheme can be expressed by the single axiom ∀x.(x : true↔x).
In this article, we consider a first-order non-Fregean logic, originally developed by Sträter, which has a total truth predicate
and is able to model propositional self-reference. We extend this logic by a connective ‘<’ for propositional reference and
study semantic aspects. ϕ<ψ expresses that the proposition denoted by formula ψ says something about (refers to) the
proposition denoted by ϕ. This connective is related to a syntactical reference relation on formulas and to a semantical
reference relation on the propositional universe of a given model. Our goal is to construct a canonical model, i.e. a model that
establishes an order-isomorphism from the set of sentences (modulo alpha-congruence) to the universe of propositions, where
syntactical and semantical reference are the respective orderings. The construction is not trivial because of the impredicativity
of quantifiers: the bound variable in ∃x.ϕ ranges over all propositions, in particular over the proposition denoted by ∃x.ϕ
itself. Our construction combines ideas coming from Sträter’s dissertation with the algebraic concept of a canonical domain,
which is introduced and studied in this article.

Keywords: non-Fregean logic, propositional quantifiers, impredicativity, propositional (self-) reference, truth theory

1 Introduction

∈T -Logic was originally designed by Werner Sträter [7] as a theory of propositional self-reference
and truth. The object language contains the classical propositional connectives, which are comple-
mented by a connective for propositional identity ≡, operators (: true and : false) for a truth predicate
of the object language, and a first-order quantifier for existence that ranges over a model-theoretic
universe of propositions. An essential feature is the term character of the language — there is no
distinction between terms and formulas. A model consists of a propositional universe M , which
is divided into two disjoint subsets TRUE and FALSE (the true and the false propositions, respec-
tively), and a semantic function Γ (called Gamma-function) which for any given assignment γ of
propositions to variables maps a formula ϕ to its denotation Γ (ϕ,γ )∈M . In this way, a proposition
is not the equivalence class of a formula modulo logical equivalence, but is explicitly given as the
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denotation of a formula. Formulas having the same truth value, or even logically equivalent formu-
las, may denote different propositions in the ambient model.1 Propositional self-reference can be
managed by means of the identity connective ≡.2 Let us look at an example. An equation ϕ≡ψ
is true iff ϕ and ψ denote the same proposition. The formula c : true denotes the proposition ‘c is
true’. Thus, if the equation c≡ (c : true) is satisfied, then c denotes the proposition ‘This proposition
is true’. That is, the equation defines a truth-teller. Although the formulas c and c : true are logically
equivalent, there are models which satisfy the above equation and others which do not. Paradoxical
self-referential statements, such as the liar, can also be asserted by equations, e.g. c≡ (c : false).
However, the (classical) truth conditions of a model ensure that such assertions are always false,
i.e. the respective equations are unsatisfiable and therefore contradictory formulas in ∈T -Logic.
Propositions that correspond to semantic antinomies, such as the liar, cannot exist (as elements of
a model-theoretic universe). Note that propositions, not sentences, are the primary bearers of truth
values. A sentence is said to be true (false) in a given model if it denotes a true (a false) proposition.
Since every proposition is either true or false, the operators : true and : false of the object language
represent a total truth predicate: in every model, and for every formula ϕ, either ϕ : true or ϕ : false
is true. Moreover, the truth conditions imply that ϕ : true is true iff ϕ is true, i.e. ϕ : true↔ϕ is valid
for any formula ϕ. That is, an analogue of the Tarski-biconditionals (Tarski’s T-scheme) holds and
can be expressed in the object language.3

The Gamma-function of an ∈T -model is required to satisfy certain structural conditions. For
instance, it must be ensured that Γ (ϕ[x :=ψ],γ )=Γ (ϕ[x :=χ ],γ ), whenever Γ (ψ,γ )=Γ (χ,γ ),
where ϕ[x :=ψ] is the result of substituting all occurrences of the free variable x with ψ . We call
this the Substitution Principle. One also expects that equations between alpha-congruent formulas
are valid (i.e. are true in all models under all assignments), where formulas ϕ and ψ are said to
be alpha-congruent, notation: ϕ=α ψ , if they differ at most on their bound variables. Moreover,
the Gamma-function should satisfy truth conditions, which reflect the intended meaning of the
connectives and operators and of the quantifier. The existence of models is not obvious and must be
proved. A main result of Sträter’s dissertation [7] is the construction of a so-called intensional model
where any two sentences, which are not alpha-congruent, denote distinct propositions. That is, an
equation ϕ≡ψ is true iff ϕ and ψ are alpha-congruent. Although the existence of such a model
seems to be evident, its construction is far from being trivial as we will see below. Sträter also
presents an extensional model containing only two propositions: the true proposition and the false
proposition. Essential technical improvements and simplifications of Sträter’s original definition of
∈T -Logic were introduced by Philip Zeitz who studied the framework as an extension of a given
underlying (classical) logic in abstract form (see [10]).

In the present article, we consider semantic aspects of ∈T -Logic and concentrate on the construc-
tion of a canonical model. We also improve some aspects of preceding versions of ∈T -Logic. Our
presentation is self-contained and does not require any previous knowledge on ∈T -Logic. We extend
the language by a new connective for reference: ϕ<ψ can be read as ‘the proposition denoted by

1The proposition denoted by a formula ϕ in an ambient model (M,γ ) (γ is an assignment of propositions to variables)
can be represented by the equivalence class {ψ | (M,γ )�ψ≡ϕ}. The underlying equivalence relation is, in general, neither
finer nor coarser than logically equivalence.

2ϕ≡ψ expresses that ϕ and ψ have the same Bedeutung (denotation). Each formula of the form (ϕ≡ψ)→ (ϕ↔ψ)
is valid (true in all models), but the so-called Fregean Axiom (ϕ↔ψ)→ (ϕ≡ψ) is not. Logics having this feature are
called non-Fregean. Non-Fregean logics were introduced by Roman Suszko (see, e.g. [1, 8, 9]). ∈T -Logic can be seen as an
extension of Suszko’s basic non-Fregean logic SCI (the Sentential Calculus with Identity) by operators for the truth predicate
and propositional quantifiers. In fact, the axioms of SCI (see [1]) derive from the axiomatization of ∈T -Logic given by
Zeitz [10]. They also derive from the set of axioms of the epistemic, quantifier-free ∈T -style logic presented in [5].

3This analogue of the Tarski-biconditionals can also be expressed by the single, valid sentence ∀x.(x : true↔x).
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ψ says something about (refers to) the proposition denoted by ϕ’.4 In a model M with universe M ,
the connective < is interpreted by a semantical reference, i.e. a transitive relation <M on M . The
reference connective was introduced in [3] and has also been studied in a quantifier-free context [4–
6]. The semantics of < depends on a suitable syntactical reference relation ≺ defined on the set
of formulas. We require that ϕ≺ψ implies the validity (i.e. truth in all models) of formula ϕ<ψ .
The syntactical reference ϕ≺ψ stands for the intuitition that ‘ψ says something about (refers to)
ϕ’. For example, x : true says that x is true, and χ1 →χ2 says about χ1 that it implies χ2. So the
definition of ≺ must ensure that x≺ (x : true) and χ1 ≺ (χ1 →χ2). At a first glance, ϕ≺ψ seems to
coincide with the relation ‘ϕ is a proper subformula of ψ’. However, we will see that ≺ strictly
refines that subformula relation. For instance, the variable x is a proper subformula of ∃x.(x : true).
But ∃x.(x : true) does not say anything about x. In order to capture this intuition, the definition of ≺
must also ensure that x⊀∃x.(x : true). Our definition of ≺ can be informally described as follows:
ϕ≺ψ holds iff there is ϕ′ such that ϕ′ =α ϕ and ϕ′ is a proper subformula of ψ (in particular, ϕ′ �=ψ)
and every occurrence of a free variable in ϕ′ remains free in ψ . Of course, ϕ≺ϕ is impossible since
ϕ cannot be alpha-congruent to a proper subformula of itself. Self-reference must be shifted to the
semantic level. The existence of a self-referential proposition can be forced by an equation of the
form ϕ≡ψ with ϕ≺ψ . For instance, there is a model M where c≡ (c : true) is true, i.e. the sen-
tences c and (c : true) have the same denotation. Since c≺ (c : true), the formula c< (c : true) is true,
too. By the Substitution Principle, we can replace (c : true) by a formula with the same denotation,
in particular by c. Thus, c<c is true in M. By the semantics of the reference connective, we get
m<M m, where m∈M is the propostion denoted by c, and <M is the semantical reference relation
on the universe M of M. That is, c denotes the self-referential proposition m, which in this specific
example is a truth-teller. Notice that the class of all well-founded models, i.e. models with no self-
referential propositions, can be axiomatized by a single sentence, namely ¬∃x.(x<x). This would
be impossible without reference connective5.

We saw that syntactical reference implies semantical reference: ϕ≺ψ implies the validity of
formula ϕ<ψ , i.e. (M,γ )�ϕ<ψ , for all models M and all assignments γ . Should every semantical
reference be based on a certain syntactical reference? We could easily impose the following semantic
constraint on every model M: For any two formulas ϕ,ψ and any assignment γ , if (M,γ )�ϕ<ψ ,
then there are formulas ϕ′ and ψ ′ such that (M,γ )� (ϕ′ ≡ϕ)∧(ψ ′ ≡ψ) and ϕ′ ≺ψ ′. A model M
satisfying this additional condition is called <-intensional (see also [5] for a similar definition).
If M is the universe of an <-intensional model M, and <M is the reference relation on M , then
m<M m′ implies the existence of an appropriate assignment γ and formulas ϕ and ψ such that ϕ≺ψ
and Γ (ϕ,γ )=m and Γ (ψ,γ )=m′. That is, (M,γ )�ϕ<ψ . Thus, the syntatical reference relation
is mirrored by its semantical counterpart in the interpretation (M,γ ), and vice versa; that is, the
reference connective is interpreted in accordance with its intended meaning. From an intended model,
we require additionally that every proposition is denoted by a sentence, i.e. there are no non-standard
elements.6 Then the <-intensional models without non-standard elements are precisely the intended

4The noun ‘reference’ is often used in the literature as a translation of Frege’s ‘Bedeutung’. We do not adopt this
translation here because of its ambiguity. For instance, ‘reference’ is also used in the sense of ‘self-reference’ (in german:
Selbstreferenz) where it has clearly a different meaning. We prefer to translate ‘Bedeutung’ as ‘denotation’ (in some other
contexts also as ‘meaning’), and we will apply the term ‘reference’ in contexts where also the term ‘self-reference’ is
meaningful (e.g. reference between sentences, reference between propositions).

5One may argue that a formula of the form ∀x.ϕ involves a kind of implicit propositional (self-) reference: the formula
asserts that all propositions — including the proposition denoted by ∀x.ϕ itself — have property ϕ. However, we do not
consider such implicit references here. Our reference connective expresses explicit propositional reference in the sense
explained above.

6A non-standard element is an element of the universe which is not denoted by any sentence.
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models. For these intended models we suggest the term standard model (see also [5]). Nearly all
models of any interest are standard models. For instance, a canonical model as well as a two-element
extensional model are standard models. So why we do not require the condition of <-intensionality
as an additional constraint in the definition of semantics? The reason is a pragmatic one: the condition
seems to be too strong for the existence of a complete calculus. We refer the reader to the deductive
systems and respective completeness theorems given in [5] and [6], where quantifier-free ∈T -style
logics with a reference connective are studied. The reference connective is characterized by the
following two (schemes of) axioms: ϕ<ψ whenever ϕ≺ψ ; and (ϕ<ψ)→ ((ψ<χ )→ (ϕ<χ )).7

Note that we cannot add the axiom ‘¬(ϕ<ψ) whenever ϕ⊀ψ’ as the counter-example c<c shows
(recall that the formula c<c is satisfiable, but c⊀c). In fact, we have no axiom at hand that negates
the existence of models which are not <-intensional. In other words, the existence of such non-
standard models is the price that we have to pay for the existence of a complete calculus.8 However,
this limitation can be avoided by imposing another semantic constraint. If we require that all models
satisfy exactly the same set of equations �, then we get a more restrictive logic where an equation
is satisfiable iff it is valid (i.e. true in all models under all assignments).9 In such a logic, we may
consider the equivalence classes ϕ={ϕ′ |ϕ≡ϕ′ ∈�} of formulas and define ϕ≺ψ :⇔ there are ϕ′ ∈ϕ
and ψ ′ ∈ψ such that ϕ′ ≺ψ ′. Then the following are axioms: ϕ≡ψ whenever ϕ=ψ ; and ¬(ϕ≡ψ)
whenever ϕ �=ψ . The two axioms above concerning reference can now be complemented by the
following axiom: ¬(ϕ<ψ) whenever ϕ⊀ψ . This corresponds to the following stronger semantic
condition: ϕ≺ψ iff ϕ<ψ is true in a given model (iff ϕ<ψ is valid). It is obvious that in such a
logic all models are <-intensional.10

The main goal of the present article is to construct a canonical model for the ∈T -language extended
by our reference connective.11 The new connective not only enriches the expressive power of the
language but is also an essential tool for the model construction. We call a model M canonical if it
does not contain non-standard elements, and M�ϕ<ψ⇔ϕ≺ψ for all sentences ϕ,ψ . It follows
that a model is canonical iff its Gamma-function establishes an order-isomorphism from the set of
sentences modulo alpha-congruence to the propositional universe, where syntactical and semantical
reference are the respective orderings. It turns out that a canonical model is in particular intensional
in Sträter’s sense, i.e. M�ϕ≡ψ⇔ϕ=α ψ , for all sentences ϕ,ψ . The intensional models con-
structed by Sträter [7] and Zeitz [10], however, contain non-standard elements and are therefore not
canonical.12

Why is the construction of a canonical model of interest? In a canonical model, the
Gamma-function is a bijection from the set of equivalence classes of sentences modulo
alpha-congruence (or equivalently, from the set of normalized sentences13) onto the universe

7The second axiom, expressing transitivity, is invalid if transitivity of the semantic reference relation of a model is not
explicitly required. One can show that in a standard model the transitivity of the semantic reference relation follows from the
transitivity of ≺ (see the proof of Lemma 3.11 in [5]). In this article as well as in [5] we require transitivity of the semantical
reference relation in all models.

8A complete calculus for our logic will not be given in the present article. A complete sequent calculus and a Hilbert-style
calculus for original ∈T -Logic are presented in [7] and [10], respectively.

9The logic developed in [6] has this property.
10These additional constraints concerning reference are applicable to the logic developed in [6].
11The term ‘canonical model’ in logics with Kripke semantics usually refers to a specific model employed for a com-

pleteness proof of an underlying deductive system. Note that this is not the intended meaning of that notion in the present
article.

12Sträter sketches out ideas how to extend his original construction in order to get a model without non-standard elements.
The suggested extension, however, is not trivial and turns the construction even more complex.

13We will see that in each equivalence class of sentences modulo alpha-congruence there is exactly one sentence having
a certain normal form. We call such a sentence normalized.
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of propositions. That is, each proposition can be identified with — up to alpha-congruence —
exactly one sentence; the semantic content of a proposition is given by the syntactical form (inten-
sion, sense) of the corresponding sentence together with a truth value. A canonical model gives rise
to a universe of sentences which is closed under the truth condition of the quantifier: the truth of a
quantified sentence ∃x.ϕ can be witnessed by a sentence ψ of the universe such that ϕ[x :=ψ] is
true. This sentential universe can be seen as a term model which satisfies only the trivial equations
(given by alpha-congruence) and is uniquely determined by the truth values of the constant sym-
bols.14 Such a term model may serve as the starting point for the construction of further standard
models that satisfy specific non-trivial equations.15

As already pointed out and discussed in [7, 10], the essential difficulty of the construction of
intensional models is the impredicativity of quantifiers. In a first attempt, the following strategy
for a ‘construction’ seems to be appealing. For the propositional universe M , we choose the set
of normalized sentences which are partially ordered by the semantical reference relation <M :=≺.
The Gamma-function is now given by the map that sends each sentence to its normal form — this
establishes the desired order-isomorphism. Now, in the second step of the ‘construction’, we aim
to determine the truth values of the elements of M , i.e. of the (normalized) sentences. We try to do
this stepwise by induction over a suitable defined rank, which gives rise to a well-founded ordering
on formulas. There are several possibilities to define such a rank. A major problem, however, is
to apply it to the following truth condition of the quantifier: ‘∃x.ϕ is true iff there is a sentence
ψ ∈M such that ϕ[x :=ψ] is true’. That is, in order to determine the truth value of ∃x.ϕ∈M we
already have to know the truth values of all ψ ∈M and of ϕ[x :=ψ]. Note that the ranks of ψ and
of ϕ[x :=ψ] are possibly equal to or greater than the rank of ∃x.ϕ. Because of this impredicativity
of the quantifier, the above truth condition cannot be applied to determine the truth value of ∃x.ϕ.
One might ask whether it is sufficient to check the condition ‘ϕ[x :=ψ] is true’ only for those
sentences ψ having the property that the ranks of ψ and of ϕ[x :=ψ] are smaller than the rank of
∃x.ϕ. More generally, one might ask for the existence of a well-founded ordering on formulas that
leads to a suitable notion of ‘small sentence’ and to a proof of the following kind of assertion: there
is some ψ ∈M such that ϕ[x :=ψ] is true iff there is some small ψ ∈M such that ϕ[x :=ψ] is true.
Unfortunately, until now all attempts to find such an ordering have failed. Therefore, two different
approaches are proposed in [7, 10], each of them leading to the construction of an intensional model.
Although both constructions differ essentially from each other they follow the same strategy: the two
steps of the above outlined ‘construction’ are carried out in inverse order. That is, the propositional
universe and the truth values of its elements are fixed before the Gamma-function is defined. This
strategy avoids the problem of the impredicativity of quantifiers. On the other hand, it requires much
more sophisticated ideas and machinery to define the Gamma-function. In our construction, which
is partially based on ideas developed in [7], we adopt this general strategy as well. For this we
introduce the new concept of a canonical domain as a partially ordered structure of abstract objects,
which have a truth value (either true or false). If we choose a canonical domain as the propositional
universe of the model wanted, then the truth values of propositions and the semantical reference
relation are already given. The definition of the Gamma-function as an order-isomorphism from the
set of normalized sentences (ordered by syntactical reference) to the canonical domain (ordered by
semantical reference) then derives from the algebraic properties of the canonical domain and the
truth conditions of the connectives, operators and the quantifier.

14See the construction of a canonical term model outlined below, after Theorem 5.35.
15It would be interesting to study a category of standard models in which the term model would be the initial object.
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2 Syntax

The alphabet consists of a (possibly empty) set C of constant symbols, a countable infinite set of
variables V ={v0,v1,v2,...} which is well-ordered by the given enumeration, connectives for classical
negation and disjunction ¬, ∨, the existential quantifier ∃, predicates for truth and falsity : true,
: false, respectively (we use postfix notation), the identity conective ≡, the reference connective <,
and auxiliary symbols:), (and dot. The set C of constant symbols is viewed as a set of parameters,
i.e. for each set C we can define a set of formulas and a respective logic over C.

For our purposes it is desirable that a string ∃z.ϕ is a formula iff the variable z occurs free in
the formula ϕ. For example, ∃x.c and ∃x.∃y.(y∨y) should not be formulas. This is ensured by the
following definitions.

DEFINITION 2.1
Let C be a set of constant symbols. The set Expr(C)0 is the smallest set X that contains V ∪C and
is closed under the following condition (a):
(a) If ϕ, ψ ∈X , then (ϕ : true), (ϕ : false), (¬ϕ), (ϕ∨ψ), (ϕ≡ψ), (ϕ<ψ)∈X .
We denote the set of variables occurring in χ ∈Expr(C)0 by fvar(χ ).
The set Expr(C)1 is the smallest set X that contains Expr(C)0 and is closed under condition (a) and
under the following condition (b), where n=0:
(b) If ϕ∈Expr(C)n and x∈ fvar(ϕ), then (∃x.ϕ)∈X .

Now we suppose that for some n≥1 the set Expr(C)n is already defined.

DEFINITION 2.2
The set fvar(ψ) of free variables of an expression χ ∈Expr(C)n is inductively defined as follows:

fvar(x)={x}, for x∈V

fvar(c)=∅, for c∈C

fvar(ϕ∨ψ)= fvar(ϕ≡ψ)= fvar(ϕ<ψ)= fvar(ϕ)∪fvar(ψ)

fvar(¬ϕ)= fvar(ϕ : true)= fvar(ϕ : false)= fvar(ϕ)

fvar(∃x.ϕ)= fvar(ϕ)�{x}

DEFINITION 2.3
The set Expr(C)n+1 is the smallest set X that contains Expr(C)n and is closed under the conditions (a)
and (b) of Definition 2.1. Finally, the set of all expressions is defined as Expr(C)=⋃

n<ωExpr(C)n.

The set of variables (constant symbols) occurring in χ ∈Expr(C) is denoted by var(χ ) (by con(χ )).
We put fcon(χ ) := fvar(χ )∪con(χ ). The notion of subexpression (or subformula) is defined as usual.
We write ϕ∈subex(ψ) in order to express that ϕ is a subexpression ofψ . ϕ is a proper subexpression
of ψ if ϕ∈subex(ψ)�{ψ}. Usually, we omit outermost parentheses. We may also omit parentheses
respecting the following descending priority of the connectives and the quantifier: ¬, : true, : false,
∨, ≡, <, ∃. For instance, (∃x.x)∨y and ∃x.x∨y are different expressions. We may introduce further
connectives and the quantifier ‘for all’ by means of the following usual abbreviations: ϕ∧ψ :=
¬(¬ϕ∨¬ψ), ∀x.ϕ :=¬∃x.¬ϕ, ϕ→ψ :=¬ϕ∨ψ , ϕ↔ψ := (ϕ→ψ)∧(ψ→ϕ).

DEFINITION 2.4
The quantifier rank Rq(ϕ) of a formula ϕ∈Expr(C) is the smallest number n such that ϕ∈Expr(C)n.
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DEFINITION 2.5
Let U ⊂V ={v0,v1,...} be a finite subset of the well-ordered set of variables. We define lub(U ) (the
least upper bound of U ) as the smallest variable of the set of all variables which are greater than all
elements of U .

Note that lub(U ) /∈U and lub(∅)=v0.

2.1 Substitutions
DEFINITION 2.6
A substitution is a function σ :V ∪C →Expr(C). If A⊆V ∪C and σ (u)=u for all u∈ (V ∪C)�A,
then we write σ :A→Expr(C). If σ is a substitution, u0,...,un ∈V ∪C and ϕ0,...,ϕn ∈Expr(C), then
the substitution σ [u0 :=ϕ0,...,un :=ϕn] is defined by:

σ [u0 :=ϕ0,...,un :=ϕn](v)=
{
ϕi if v=ui,for some i≤n

σ (v) else

The identity substitution u �→u is denoted by ε. Instead of ε[u0 :=ϕ0,...,un :=ϕn] we also write
[u0 :=ϕ0,...,un :=ϕn]. A substitution σ extends in the following way to a function [σ ] :Expr(C)→
Expr(C) (we use postfix notation for [σ ]):

u[σ ] :=σ (u), for u∈V ∪C

(ϕ : true)[σ ] :=ϕ[σ ] : true

(ϕ : false)[σ ] :=ϕ[σ ] : false

(¬ϕ)[σ ] :=¬ϕ[σ ]
(ϕ∨ψ)[σ ] :=ϕ[σ ]∨ψ[σ ]
(ϕ≡ψ)[σ ] :=ϕ[σ ]≡ψ[σ ]
(ϕ<ψ)[σ ] :=ϕ[σ ]<ψ[σ ]
(∃x.ϕ)[σ ] :=∃y.ϕ[σ [x :=y]],

where y is the variable y := lub(
⋃{fvar(σ (u)) |u∈ fcon(∃x.ϕ)}). We say that y is forced by σ w.r.t.

∃x.ϕ. For two substitutions σ and τ the composition is the substitution σ ◦τ defined by (σ ◦τ )(u)=
σ (u)[τ ], for u∈V ∪C.

The following properties of substitutions are useful and not hard to show. We omit the proofs.

LEMMA 2.7
Let ϕ∈Expr(C) and let σ,τ be substitutions. Then

(i) fcon(ϕ[σ ])=⋃{fcon(σ (y)) |y∈ fcon(ϕ)}.
(ii) If σ (u)=τ (u) for all u∈ fcon(ϕ), then ϕ[σ ]=ϕ[τ ].
LEMMA 2.8
If ∃x.ψ is an expression and σ is a substitution, then the variable y forced by σ w.r.t. ∃x.ψ is
y= lub(fvar((∃x.ψ)[σ ])).
LEMMA 2.9
Suppose σ,δ are substitutions and x,y,z∈V such that for all u∈C∪V �{x}, y /∈ fvar(σ (u)). Then
σ [x :=y]◦δ[y :=z]= (σ ◦δ)[x :=z].
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COROLLARY 2.10
Let ϕ∈Expr(C), x,y,z∈V and let σ,δ be substitutions with y /∈ fvar(σ (u)), for all u∈ fcon(ϕ)�{x}.
Then ϕ[σ [x :=y]◦δ[y :=z]]=ϕ[(σ ◦δ)[x :=z]].
LEMMA 2.11
Let ϕ∈Expr(C) and let σ,τ be substitutions. Then ϕ[σ ◦τ ]=ϕ[σ ][τ ].
COROLLARY 2.12
σ ◦(τ ◦δ)= (σ ◦τ )◦δ, for all substitutions σ,τ,δ.

2.2 The alpha-congruence
DEFINITION 2.13
The relation =α (α-congruence or alpha-congruence) is the smallest equivalence relation on Expr(C)
satisfying the following conditions:

• If ϕ=α ψ , then ¬ϕ=α¬ψ , ϕ : true=α ψ : true, ϕ : false=α ψ : false
• If ϕ1 =α ψ1 and ϕ2 =α ψ2, then (ϕ1 ∨ϕ2)=α (ψ1 ∨ψ2), (ϕ1 ≡ϕ2)=α (ψ1 ≡ψ2), (ϕ1<ϕ2)=α (ψ1<

ψ2)
• If ∃x.ϕ and ∃y.ψ are expressions such that ϕ=α ψ[y :=x], and x �=y implies x /∈ fvar(ψ), then

∃x.ϕ=α ∃y.ψ .

For ϕ∈Expr(C) we denote the equivalence class of ϕ modulo alpha-congruence by ϕ.

Two expressions are alpha-congruent iff they differ at most on their bound variables. For instance,
(∃x.z≡x)=α (∃y.z≡y).

LEMMA 2.14
If ϕ=α ψ , then fcon(ϕ)= fcon(ψ), Rq(ϕ)=Rq(ψ) and ϕ[σ ]=ψ[σ ], for any substitution σ .

Note that applying the identity substitution ε to a formula with quantifiers generally results in a
different formula because of renaming of bound variables. However, we may show the following.

LEMMA 2.15
For any expression ϕ and any substitution σ , ϕ[ε][σ ]=ϕ[σ ]. In particular, ϕ[ε][ε]=ϕ[ε].
PROOF. For all u∈ fcon(ϕ) we have u[ε][σ ]=u[ε◦σ ]=ε(u)[σ ]=u[σ ]. Now the assertion follows
from Lemma 2.7.

DEFINITION 2.16
We say that an expression ϕ is normalized if ϕ[ε]=ϕ. The function norm :Expr(C)→Expr(C) is
defined by ϕ �→ϕ[ε].

By Lemma 2.15, norm(ϕ)=ϕ[ε] is normalized, for any expression ϕ.

LEMMA 2.17
ϕ∈Expr(C) is normalized iff for all ψ ∈subex(ϕ) of the form ψ=∃x.ψ ′ it holds that x=
lub(fvar(∃x.ψ ′)).

PROOF. The direction from left to right can be shown by induction on Rq(ϕ). The direction from
right to left can be shown by induction on ϕ.

COROLLARY 2.18
An expression is normalized iff all its subexpressions are normalized. Two normalized
alpha-congruent expressions are equal.
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LEMMA 2.19
If ϕ∈Expr(C) and σ is a substitution such that σ (u) is normalized for all u∈ fcon(ϕ), then ϕ[σ ] is
normalized.

PROOF. By hypothesis, (σ ◦ε)(u)=σ (u)[ε]=σ (u), for any u∈ fcon(ϕ). By Lemma 2.7, ϕ[σ ][ε]=
ϕ[σ ◦ε]=ϕ[σ ]. Thus, ϕ[σ ] is normalized.

LEMMA 2.20
For any expression ϕ, ϕ[ε]=α ϕ.

COROLLARY 2.21
Let ϕ∈Expr(C). Then norm(ϕ) is the unique formula which is normalized and alpha-congruent
with ϕ.

PROOF. The assertion concerning existence follows from Lemma 2.15 and Lemma 2.20. Uniqueness
follows from Corollary 2.18.

LEMMA 2.22
For all ϕ,ψ ∈Expr(C): norm(ϕ)=norm(ψ)⇔ϕ=α ψ .

PROOF. The implication from right to left follows from Lemma 2.14. The implication from left to
right is a consequence of the equations ϕ=α norm(ϕ)=norm(ψ)=α ψ.

LEMMA 2.23
Suppose ϕ=α ψ and let σ,τ be substitutions such that σ (u)=α τ (u), for all u∈ fcon(ϕ). Then:

(i) ϕ[σ ]=α ϕ[τ ] and ψ[σ ]=α ψ[τ ].
(ii) ϕ[σ ]=α ψ[τ ].

2.3 The syntactical reference

We define a binary relation ≺ on the set of expressions which refines the subexpression relation.
ϕ≺ψ will capture the intuitive notion of ‘expression ψ says something about expression ϕ’ or
‘expression ψ refers to expression ϕ’.

DEFINITION 2.24
For ϕ,ψ ∈Expr(C) we define ϕ≺ψ :⇔ there are x∈V and ψ ′ ∈Expr(C)�{x} such that x∈ fvar(ψ ′)
and ψ ′[x :=ϕ]=α ψ . The relation ≺ is called syntactical reference.

REMARK 2.25
Note that in the above definition ψ ′ and x are not unique. If y �=x is a variable not occurring in ψ ′,
thenψ ′′ :=ψ ′[x :=y] is an expression containing the free variable y andψ ′′[y :=ϕ]=ψ ′[x :=ϕ]=α ψ .
Thus, y and ψ ′′ witness ϕ≺ψ , too.

EXAMPLE 2.26
χ≺ (χ : true). x∈subex(∃x.x), but x⊀∃x.x. Let ψ=∀y.(y→ (y≡x)) and ϕ=∃x.(x∧ψ). Then ψ ∈
subex(ϕ), but ψ⊀ϕ since x∈ fvar(ψ). Let χ := (x∧c)∨∃x.x. The variable x occures free and
bound in χ . Observe that the free occurrence of x in χ remains free in ((∀x.x≡x)∧χ ). Thus,
χ≺ ((∀x.x≡x)∧χ ).

The syntactical reference can be characterized by the following Lemma (choose σ :=ε and con-
sider a proper subexpression ϕ′ of ψ) which is shown by induction on formulas.
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LEMMA 2.27
Suppose that ϕ and ψ are expressions. The following two conditions are equivalent:

(i) There is some expression ψ ′, a variable x∈ fvar(ψ ′) and a substitution σ such that
ψ ′[σ [x :=ϕ]]=α ψ .

(ii) ϕ is alpha-congruent to a subexpression ϕ′ of ψ , and every free occurrence of a variable in ϕ′

remains free in ψ .

Recall that ϕ denotes the equivalence class of ϕ modulo alpha-congruence.

DEFINITION 2.28
Let ϕ,ψ be expressions. We define: ϕ≺ψ :⇔ϕ≺ψ .

REMARK 2.29
Let us show that ϕ≺ψ is well-defined. Suppose ϕ≺ψ , and let ϕ1 =α ϕ and ψ1 =α ψ . Since ϕ≺ψ ,
there is a variable x and an expression ψ ′ �=x such that x∈ fvar(ψ ′) and ψ ′[x :=ϕ]=α ψ . Then
ψ1 =α ψ=α ψ

′[x :=ϕ]=α ψ
′[x :=ϕ1], by Lemma 2.23. Hence, ψ ′ and ϕ1 witness ϕ1 ≺ψ1.

The proofs of the next two results are not difficult but technically complex, so we will omit them.

LEMMA 2.30
If ϕ≺ψ and σ is a substitution, then ϕ[σ ]≺ψ[σ ].
LEMMA 2.31
The syntactical reference ≺ is a transitive relation on Expr(C).

3 Semantics
DEFINITION 3.1
A model M= (M ,TRUE,FALSE,<M,Γ ) is given by the following ingredients:

• a set M of propositions (which are generally given as abstract entities without any inner
structure)

• a set TRUE ⊆M of true propositions and a set FALSE ⊆M of false propositions such that
M =TRUE∪FALSE and TRUE∩FALSE =∅

• a transitive relation <M⊆M ×M for semantical reference
• a semantic function, called Gamma-function, Γ :Expr(C)×M V →M that maps an expression ϕ

to its denotationΓ (ϕ,γ )∈M .Γ depends on assignments γ :V →M of propositions to variables.
If γ ∈M V is an assignment and σ is a substitution, then γ σ ∈M V denotes the assignment defined
by x �→Γ (σ (x),γ ). If x∈V ,m∈M , then γ m

x is the assignment defined by

γ m
x (y) :=

{
m, if x=y

γ (y), else.

The Gamma-function satisfies the following structure conditions:

(EP) For all x∈V and all assignments γ ∈M V , Γ (x,γ )=γ (x). (Extension Property)
(CP) If ϕ∈Expr(C), γ,γ ′ ∈M V , and γ (x)=γ ′(x) for all x∈ fvar(ϕ), then Γ (ϕ,γ )=Γ (ϕ,γ ′).

(Coincidence Property)16

(SP) If ϕ∈Expr(C), γ ∈M V and σ :V →Expr(C) is a substitution, then Γ (ϕ[σ ],γ )=Γ (ϕ,γ σ ).
(Substitution Property)

16If fvar(ϕ)=∅, then (CP) justifies to write Γ (ϕ) instead of Γ (ϕ,γ ).
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(RP) If ϕ≺ψ , then Γ (ϕ,γ )<MΓ (ψ,γ ), for all ϕ,ψ ∈Expr(C) and all assignments γ .
(Reference Property)

The Gamma-function satisfies the following truth conditions. For all ϕ,ψ ∈Expr(C) and all assign-
ments γ ∈M V :

(i) Γ (ϕ : true,γ )∈TRUE ⇔Γ (ϕ,γ )∈TRUE
(ii) Γ (ϕ : false,γ )∈TRUE ⇔Γ (ϕ,γ )∈FALSE
(iii) Γ (ϕ∨ψ,γ )∈TRUE ⇔Γ (ϕ,γ )∈TRUE or Γ (ψ,β)∈TRUE
(iv) Γ (¬ϕ,γ )∈TRUE ⇔Γ (ϕ,γ ) /∈TRUE
(v) Γ (ϕ≡ψ,γ )∈TRUE ⇔Γ (ϕ,γ )=Γ (ψ,γ )
(vi) Γ (ϕ<ψ,γ )∈TRUE ⇔Γ (ϕ,γ )<MΓ (ψ,γ )
(vii) Γ (∃x.ϕ,γ )∈TRUE ⇔ there is some m∈M such that Γ (ϕ,γ m

x )∈TRUE

DEFINITION 3.2
Let M= (M ,TRUE,FALSE,<M,Γ ) be a model, γ ∈M V and ϕ∈Expr(C). The satisfaction relation
� is defined by:

(M,γ )�ϕ :⇔Γ (ϕ,γ )∈TRUE.

The tupel (M,γ ) is called an interpretation. If (M,γ )�ϕ, then we say that (M,γ ) is a model of
ϕ. If ϕ is a sentence, then we may omit assignments writing M�ϕ. Analogously for sets � of
expressions. The consequence relation � is given in the usual model-theoretical way:

��ϕ :⇔ every model of � is a model of ϕ.

The Substitution Property (SP) implies the following Substitution Principle.

LEMMA 3.3 (Substitution Principle)
For all formulas ϕ,ψ,χ ∈Expr(C) and x∈V ,

�ψ≡χ→ϕ[x :=ψ]≡ϕ[x :=χ ]

PROOF. Let σ1 =[x :=ψ] and σ2 =[x :=χ ]. Suppose Γ (ψ,γ )=Γ (χ,γ ). Then γ σ1 =γ σ2. (SP)
implies: Γ (ϕ[σ1],γ )=Γ (ϕ,γ σ1)=Γ (ϕ,γ σ2)=Γ (ϕ[σ2],γ ).

Substitution Lemmata in various forms have been proved in [7, 10]. The proof of the following
Lemma can be adopted from [4] (Lemma 3.14). It is a simplified version of a proof due to Zeitz
[10].

LEMMA 3.4 (Substitution Lemma)
Let M= (M ,TRUE,FALSE,<M,Γ ) be a model and ϕ∈Expr(C).

(i) If σ,σ ′ are substitutions and γ,γ ′ ∈M V are assignments with Γ (σ (u),γ )=�(σ ′(u),γ ′) for all
u∈ fcon(ϕ), then Γ (ϕ[σ ],γ )=Γ (ϕ[σ ′],γ ′).

(ii) If γ ∈M V is an assignment and σ is a substitution such that Γ (u)=Γ (σ (u),γ ) for every
u∈con(ϕ), then Γ (ϕ[σ ],γ )=Γ (ϕ,γ σ ).

Item (ii) of the Substitution Lemma says that the SP holds essentially for all substitutions σ :
V ∪C →Expr(C) and not only for those of the form σ :V →Expr(C). A further consequence of
SP is the Alpha Property which says that alpha-congruent formulas have the same denotations.
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This property must be required as an additional semantic condition in [7] where substitutions are
defined less restrictively. Sträter’s original notion of substitutions also implies the Alpha Property.
His notion, however, which is based on a ternary relation and a further function, is very complex.

COROLLARY 3.5 (Alpha Property (αP))
Let M be a model. For all expressions ϕ,ψ and all assignments γ :V →M , if ϕ=α ψ , then
Γ (ϕ,γ )=Γ (ψ,γ ).

PROOF. Suppose ϕ=α ψ . By Lemma 2.22, this is equivalent with the condition ϕ[ε]=ψ[ε]. Note
that γ =γ ε, for any assignment γ :V →M . By item (ii) of the Substitution Lemma we get the
following: Γ (ϕ,γ )=Γ (ϕ,γ ε)=Γ (ϕ[ε],γ )=�(ψ[ε],γ )=Γ (ψ,γ ε)=Γ (ψ,γ ).

4 An extensional model

A model is extensional if any two formulas with the same truth value have the same denotation.
In such two-element models, the sentences ∀x.∀y.((x↔y)↔ (x≡y)) and ∀x.∀y.((x↔y)≡ (x≡y))
are true. We call such models also Fregean.17 We will see that also ∀x.(x<x) is necessarily satis-
fied. Extensional ∈T -models (without reference connective) were already constructed in [2, 7, 10].
We adopt the construction given in [2].

THEOREM 4.1 (Existence of models)
For any set C of constant symbols there exists an extensional model with respect to the language
Expr(C).

PROOF. Let TRUE ={�}, FALSE ={⊥}, M =TRUE∪FALSE. Notice that in a two-element model
the reference connective must be interpreted necessarily by the universal relation M ×M . This
follows from the condition RP: (x∨¬x)≺ ((x∨¬x)∨y) shows �<M �, (x∨¬x)≺¬(x∨¬x) shows
�<M ⊥, etc. So we put <M:=M ×M . We assume that there is a partition C =Ct ∪Cf on the set
of constant symbols. For any given γ :V →M , the Γ -function is defined as follows: Γ (x,γ )=γ (x)
for x∈V , Γ (c)=� if c∈Ct , and Γ (c)=⊥ if c∈Cf . For any formulas ϕ,ψ , Γ (ϕ≡ψ,γ )=� if
Γ (ϕ,γ )=Γ (ψ,γ ), andΓ (ϕ≡ψ,γ )=⊥ otherwise. For all ϕ,ψ ,Γ (ϕ<ψ,γ )=�. For the remaining
cases, the definition proceeds in the obvious way inductively over the construction of formulas, in
accordance with the respective truth conditions. It follows immediately from the definition that the
Gamma-function satisfies the truth conditions. It is also clear that EP and RP are satisfied. CP and SP
follow by induction on the expressions. Let us look at the quantifier case of SP. Suppose ϕ=∃x.ψ ,
and let σ :V →Expr(C) be a substitution. First, one shows that for all m∈M and all y∈ fvar(ψ) the
following holds: (γ σ )m

x (y)= (γ m
z σ [x :=z])(y), where z is the variable forced by σ w.r.t. ∃x.ψ . That

is, z := lub(fvar((∃x.ψ)[σ ])) and ϕ[σ ]= (∃x.ψ)[σ ]=∃z.ψ[σ [x :=z]]. Using this and the induction
hypothesis, one shows the equivalence Γ (ϕ,γ σ )=�⇔Γ (ϕ[σ ],γ )=�. Since the universe contains
only two elements, it follows that Γ (ϕ,γ σ )=Γ (ϕ[σ ],γ ). Thus, M= (M ,TRUE,FALSE,<M,Γ )
is an extensional model.

5 A canonical model

The essential tool for our model construction is the notion of a canonical domain, which we introduce
and study in the following. Such an algebraic structure is given by an infinite set M , a transitive

17If there were only Fregean models, then the logic would be Fregean, i.e. (ϕ↔ψ)→ (ϕ≡ψ) would be valid.
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well-founded relation <M and two unary predicates T ,F on M . If C is a given set of constant sym-
bols, then we may find a canonical domain (M ,T ,F,<M ) such that C ⊆M is a set of <M -minimal
elements in M . Then we consider the whole set M as a set of constant symbols and construct a
model M= (M ,TRUE,FALSE,<M ,Γ ) with respect to the language Expr(M ) such that the Gamma-
function is a certain homomorphism between canonical domains. We will show that M is a canonical
model with respect to the reduced language Expr(C)⊆Expr(M ) in the sense of the following defi-
nition.

DEFINITION 5.1
Let C be a set of constant symbols. A model M is said to be canonical (with respect to the language
Expr(C)) if there are no non-standard elements (i.e., every proposition m∈M is denoted by some
sentence χ ∈Sent(C), Γ (χ )=m), and for all sentences ϕ,ψ ∈Sent(C) the following holds:

M�ϕ<ψ⇔ϕ≺ψ.
LEMMA 5.2
If M is canonical, then for all sentences ϕ,ψ ∈Sent(C):

M�ϕ≡ψ⇔ϕ=α ψ.

PROOF. Let M be canonical and let ϕ �=α ψ , for two sentences ϕ,ψ . Suppose M�ϕ≡ψ . By (RP),
M�ϕ< (ϕ : true). The Substitution Principle yields M�ψ< (ϕ : true). Since the model is canonical,
ψ≺ϕ : true. Then ψ≺ϕ, since ψ �=α ϕ. Thus, M�ψ<ϕ. Again by the Substitution Principle, M�
ϕ<ϕ. It follows that ϕ≺ϕ, a contradiction. Thus, M�ϕ≡ψ .

Note that the above proof does not need the condition that there are no non-standard elements.

THEOREM 5.3
A model M is canonical w.r.t. Expr(C) iff its Gamma-function induces an order-isomorphism
Γ : (Sent(C)�=α

,≺)→ (M ,<M ).

PROOF. Suppose M is a canonical model. By the Alpha Property (Corollary 3.5), alpha-congruent
sentences denote the same proposition. So we may factorize Sent(C) modulo alpha-congruence.
From Lemma 5.2 it follows that Γ is injective on Sent(C)�=α

. Since for every proposition there
is a sentence that denote it, the Gamma-function is also surjective. It follows that Γ preserves
the respective orderings. Thus, Γ induces the desired order-isomorphism. Now suppose that the
Gamma-function of a model M induces an order-isomorphism such as given in the Theorem. Then
it is easy to see that the conditions of Definition 5.1 are satisfied. Thus, M is canonical.

Sträter calls a model M intensional if M�ϕ≡ψ⇔ϕ=α ψ , for all sentences ϕ,ψ . We saw that
canonical models are in particular intensional in Sträter’s sense. Is it possible to formulate conditions
such that the converse is true, too? Recall that a model M is said to be <-intensional if for any
formulas ϕ,ψ , and any assignment γ :V →M , (M,γ )�ϕ<ψ implies the existence of formulas
ϕ′,ψ ′ such that (M,γ )� (ϕ≡ϕ′)∧(ψ≡ψ ′) and ϕ′ ≺ψ ′ (see the introductory part of this article).
Also recall that M is said to be a standard model if it is <-intensional and does not contain non-
standard elements. Standard models are the intended ones. Let us say that a model is intensional if it
satisfies Sträter’s condition of intensionality above and additionally the condition of<-intensionality.
Suppose now that M is an intensional standard model and M�ϕ<ψ , for two sentences ϕ andψ . By
definition, there are formulas ϕ′ and ψ ′ such that (M,γ )� (ϕ≡ϕ′)∧(ψ≡ψ ′) and ϕ′ ≺ψ ′, where γ
is any fixed assignment. For every x∈ fvar(ϕ′)∪fvar(ψ ′) let χx be a sentence such that Γ (χx)=γ (x).
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Such sentences exist, since there are no non-standard elements. Let σ be the substitution defined by
x �→χx, for x∈ fvar(ϕ′)∪fvar(ψ ′), and let ϕ′′ :=ϕ′[σ ], ψ ′′ :=ψ ′[σ ]. By Lemma 2.30, ϕ′′ ≺ψ ′′. By
the Substitution Principle, Γ (ϕ′′)=Γ (ϕ′,γ ) and Γ (ψ ′′)=Γ (ψ ′,γ ). Since the model is intensional
in Sträter’s sense, it follows that ϕ′′ =α ϕ and ψ ′′ =α ψ . Thus, ϕ≺ψ , and M is canonical. This,
together with Lemma 5.2, yields the following characterization of canonical models.

COROLLARY 5.4
M is canonical iff M is an intensional standard model (i.e. M is intensional in Sträter’s sense,
<-intensional and without non-standard elements).

5.1 Canonical domains

In this section, we define canonical domains by a set of axioms which characterize them up to
isomorphisms. Let us first study a useful tool, namely a rank that assigns to every element of a set
M an ordinal (or ∞) in accordance with a given binary relation on M .18

DEFINITION 5.5
Let M be a set and let E be a binary relation on M . We define a rank RM

E :M →On∪{∞} in the
following way (On denotes the class of all ordinals):

• RM
E (b)≥0, if b∈M

• RM
E (b)≥α+1, if there is some b′ ∈M such that b′Eb and RM

E (b′)≥α
• RM

E (b)≥λ, if RM
E (b)≥β for all β<λ, where λ is a limit ordinal

• RM
E (b)=α, if RM

E (b)≥α and RM
E (b) �≥α+1

• RM
E (b)=∞, if RM

E (b)≥α for all α<On

If the context is clear, then we may omit the superscript M and write RE(b) instead of RM
E (b). Let α

be an ordinal. An E-chain of length α is a sequence (bi | i<α) of (not necessarily pairwise distinct)
elements of A such that bβ+1Ebβ whenever β<β+1<α.

For example, an infinite E-chain starts as follows: ...b3Eb2Eb1Eb0. In this sense, E-chains are
always descending chains. The proof of the following facts relies on well-known set-theoretic stan-
dard arguments, so we will omit it.

PROPOSITION 5.6
Let M be any set and E ⊆M ×M .

(i) If RM
E (b)=α and b′Eb, then RM

E (b′)<α.
(ii) If RM

E (b)=α+1, then there exists some b′Eb such that RA
E(b′)=α.

(iii) Suppose |M |≥ω. The following conditions are equivalent for b∈M :
(a) RM

E (b)≥|M |+.19

(b) There exists some a∈M such that aEb and RM
E (a)≥|M |+.

(c) There is an E-chain of length ω in M starting with b.
(d) RM

E (b)=∞.
(iv) For n<ω and b∈M the following two conditions are equivalent:

(a) RM
E (b)≥n.

(b) There is an E-chain of length n+1 starting with b.

18Our definition of rank is inspired by a well-known concept from classical model theory (namely rank of a type, where
a type is, roughly speaking, a consistent set �(x) of formulas having all their free variables among the sequence x).

19|M |+ is the successor cardinal of |M |.
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Note that RM
E (b)≥ω implies the existence of E-chains in M of arbitrary finite length. But in

general it does not imply the existence of an infinite E-chain.

DEFINITION 5.7
Let M be a set and let E be a binary relation on M . We say that E is well-founded on M if RM

E (b)
is ordinal valued for every b∈M .

As expected, and as we have seen in Proposition 5.6, E is well-founded on M if and only if there
is no infinite E-chain in M .

The idea behind the following definition is that M represents the set of (normalized) sentences
together with a truth predicate, and <M stands for the syntactic reference on the set of (normalized)
sentences. Then the axioms of a canonical domain reflect the relevant properties of the reference
relation.

DEFINITION 5.8
Let M= (M ,T ,F,<M ) be a structure with an infinite set M , unary predicates T and F on M , and a
transitive relation <M⊆M ×M . A subset A⊆M is said to be closed if b∈A and a<M b imply a∈A.
For b∈M we call the set ext(b) :={a∈M |a<M b} the extension of b. For a closed A⊆M we define
the set of successors of A by succ(A) :={b∈M |A=ext(b)}, and we put

succ(A)T :={b∈M |b∈succ(A) and T (b)},
succ(A)F :={b∈M |b∈succ(A) and F(b)}.

M is called a (classical) canonical domain if the following axioms are satisfied.

(i) Every element has finite extension.
(ii) For every non-empty finite and closed A⊆M , the sets succ(A)T , succ(A)F have cardinality ω,

and the sets succ(∅)T , succ(∅)F have cardinality |M |.
(iii) For all a∈M , either T (a) or F(a).
(iv) <M is well-founded on M .

REMARK 5.9
Let M= (M ,T ,F,<M ) be a canonical domain. By axiom (iv), a �<M a for all a∈M , hence <M is a
partial order on M . succ(∅) is the infinite set of all <M -minimal elements of M , i.e. the set of all
elements of RM

<M -rank 0. If A �=B are closed subsets of M , then succ(A)∩succ(B)=∅. Every finite
and closed set A is the extension of some element a∈M : A=ext(a). On the other hand, for every
a∈M the set ext(a) is finite and closed. That is, the finite and closed sets are precisely the sets
ext(a), a∈M . ext(a)=∅ iff a has rank 0. If ext(a) �=∅, then this set has an element with maximal
rank, say α. It follows that a has rank α+1. Finite closed sets are closed under the operations
of union and intersection. Furthermore, b∈succ(ext(a)) iff ext(a)=ext(b). Since succ(ext(a)) is an
infinite set, ext(a)=ext(b) does not imply a=b. In this sense, the principle of extensionality, which
is fundamental in classical set theory, is here violated.

In the previous section, we proved the existence of (extensional) models. This is needed in the
next result which states the existence of canonical domains. The proof of the theorem may also serve
to improve the intuition behind the notion of canonical domain.

THEOREM 5.10 (Existence of canonical domains)
Let C be a set of constant symbols and let M be any model w.r.t. Expr(C). If |C|=κ≥ω, then we
assume that κ many constant symbols denote true propositions and κ many constant symbols denote
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false propositions. We define two predicates T ,F on the set of sentences Sent(C) by

T (ϕ) :⇔M�ϕ : true

F(ϕ) :⇔M�ϕ : false

Then A= (Sent(C)�α,T ,F,≺) is a canonical domain, where Sent(C)�α is the set of equivalence
classes of sentences modulo alpha-congruence.20

PROOF. In order to show the assertion, it is sufficient to work with normalized sentences instead
of equivalence classes ϕ modulo alpha-congruence. So let us assume that all sentences considered
in this proof are normalized. By Lemma 2.31, we know that ≺ is transitive. ϕ≺ψ implies that
ϕ is alpha-congruent to a proper subformula of ψ . The number of subformulas is finite. Since
alpha-congruent normalized sentences are equal, axiom (i) of a canonical domain follows. Let
A={ϕ1,...,ϕn}⊆Sent(C) be a finite and closed set of normalized sentences, i.e. ϕ∈A and χ≺ϕ
imply χ ∈A. We suppose that n=0 iff A=∅. A successor of this set is a sentence ψ such that
A={ϕ |ϕ≺ψ}. If A is non-empty, then it is clear that at most ω many such sentences ψ can
be constructed. If A is empty, then all constant symbols are among the successors of A. Thus,
|succ(A)|=|C|+ω=|Sent(C)�α|. For example, the following ω many normalized sentences are
among the successors of A:

∃x.(((x≡ϕ1)∨ ...∨(x≡ϕn))∧(x≡x) : true),

∃x.(((x≡ϕ1)∨ ...∨(x≡ϕn))∧(x≡x) : true : true),

...

These sentences are valid and are therefore satisfied by M. Moreover, for each sentence ψ of the
list it holds that ϕ≺ψ iff ϕ∈A. Hence, each ψ of the list is a successor of A with truth value T (ψ),
i.e. ψ ∈succ(A)T . Similarly, one can find such a list of sentences which are elements of succ(A)F .
This shows that axiom (ii) of a canonical domain is satisfied. Since every sentence is either true or
false w.r.t. M, axiom (iii) holds. Of course, there is no infinite descending ≺-chain of sentences.
Thus, ≺ is well-founded in the sense of Definition 5.7 and axiom (iv) is satisfied.

PROPOSITION 5.11
Let M= (M ,T ,F,<M ) be a canonical domain. Then every a∈M has finite RM

<M -rank.

PROOF. Towards a contradiction, we assume that RM
<M (a)≥ω for some a∈M . Then by definition,

RM
<M (a)≥α+1 for all α<ω. Hence, for all α<ω there is some a′ ∈M such that a′<M a and RM

<M (a′)≥
α. Since the extension of a is finite, there are only finitely many elements a′ such that a′<M a. This
implies the existence of some a′ ∈M with a′<M a and RM

<M (a′)≥ω. Repeating the argument ω
times we obtain an infinite chain ...a′′′<M a′′<M a′<M a, thus <M cannot be well-founded — a
contradiction. Hence, RM

<M (a)<ω.

THEOREM 5.12
Canonical domains of the same cardinality are isomorphic. That is, if M= (M ,T ,F,<M ) and M′ =
(M ′,T ′,F ′,<M ′

) are canonical domains of cardinality κ≥ω, then there exists a bijection f :M →M ′

such that a<M b⇔ f (a)<M ′
f (b), T (a)⇔T ′(f (a)) and F(a)⇔F ′(f (a)), for all a,b∈M .

20Recall that we have defined ϕ≺ψ :⇔ϕ≺ψ . Because of the Alpha-Property, we may also define T (ϕ) :⇔T (ϕ) and
F(ϕ) :⇔F(ϕ).
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PROOF. Let M= (M ,T ,F,<M ) and M′ = (M ′,T ′,F ′,<M ′
) be canonical domains of cardinality κ≥

ω. For n<ω let Mn ={a∈M |RM
<M (a)=n} and M ′

n ={a∈M ′ |RM ′
<M ′ (a)=n}. By Proposition 5.11, each

element has finite rank. Thus, M =⋃
n<ωMn and M ′ =⋃

n<ωM ′
n. For all n<ω, we define inductively

isomorphisms fn :⋃i≤nMi →⋃
i≤nM ′

i between substructures of M and M′ (where ‘substructure’
means that all relations are restricted to the respective subset) such that f :=⋃

i<ω fi eventually will
be an isomorphism from M onto M′. By axiom (ii) of a canonical domain, there are κ many
elements a∈M0 with T (a) and κ many elements b∈M0 with F(b). Similarly for M ′

0. So we may find
a bijection f0 :M0 →M ′

0 with the property: T (a) iff T ′(f0(a)), and F(a) iff F ′(f0(a)), for all a∈M0.
This is an isomorphism between the substructures with universes M0 and M ′

0, respectively. Now
suppose that fn :⋃i≤nMi →⋃

i≤nM ′
i is already defined for some n<ω. Put Bn :={B⊆⋃

i≤nMi |B
is finite and closed and contains an element of RM

< -rank n}. Since fn is an isomorphism, we get
fn(Bn)={B′ ⊆⋃

i≤nM ′
i |B′ is finite and closed and contains an element of RM ′

<′ -rank n}. B,B′ ∈Bn

and B �=B′ implies succ(B)T ∩succ(B′)T =∅ and succ(B)F ∩succ(B′)F =∅. The elements of these
successor sets are all of rank n+1. We show the following:

⋃
B∈Bn

(succ(B)T ∪succ(B)F )=Mn+1. (5.1)

Suppose a∈Mn+1 and let B=ext(a). Then B∈Bn and a∈succ(B)T ∪succ(B)F . Now it is clear that
the Equation (5.1) holds. For every B∈Bn, let gB :succ(B)T →succ(fn(B))T ′

and hB :succ(B)F →
succ(fn(B))F ′

be bijections. We define:

fn+1 := fn ∪
⋃

B∈Bn

(gB ∪hB).

From Equation (5.1) and from the fact that fn is an isomorphism it follows that
⋃

B∈Bn
(gB ∪hB) is a

bijection from Mn+1 onto M ′
n+1. Now one verifies that fn+1 is an isomorphism between substructures

given by the universes
⋃

i≤n+1Mi and
⋃

i≤n+1M ′
i , respectively. Finally, we put f :=⋃

n<ω fn. Then f

is an isomorphism from M onto M′.

5.2 The model construction

Let C be a set of constant symbols, and let (M ,T ,F,<M ) be a canonical domain of cardinality
κ=|C|+ω. Then the set M0 =succ(∅)=succ(∅)T ∪succ(∅)F of elements with R<M -rank 0 has
cardinality κ , by axiom (ii) of a canonical domain. One can find an embedding h :C →M0 such that
the sets succ(∅)T �h(C) and succ(∅)F �h(C) have cardinality ω, respectively. We will identify C
with the subset h(C)⊆M0 ⊆M and will consider the whole set M ⊇C as a set of constant symbols.
In the following, we will work with the language Expr(M ). We put K :=M �C. From Equation (5.1)
in the proof of Theorem 5.12 and axiom (ii) of a canonical domain it follows that each set Mn of
elements of rank n<ω has cardinality κ . Thus, |K |=κ . All c∈C have R<M -rank 0 in the canonical
domain M . Besides the elements c∈C there are further sentences ϕ∈Sent(M ) with R≺-rank 0, e.g.
∃x.∃y.¬(x≡y). For these sentences, we have reserved the elements of the set M0 �C as images.
Recall that we have ensured that |M0 �C|=ω. Sentences of R≺-rank n>0 then will be mapped to
elements of M of R<M -rank n. As the universe of our model we choose the canonical domain M .
Then the sets TRUE :={m∈M |T (m)} and FALSE :={m∈M |F(m)} as well as the reference relation
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<M on M are already given. The rest of this section is dedicated to the construction of the Gamma-
function. For this we will define predicates t and f on Sent(M ), and a function red :Sent(M )→M
such that red(m)=m and

• red : (Sent(M ),t,f ,≺)→ (M ,T ,F,<M ) is a strong homomorphism (i.e. red is an homomor-
phism and red(ϕ)<M red(ψ) implies the existence of sentences ϕ′ and ψ ′ such that ϕ′ ≺ψ ′ and
red(ϕ′)=red(ϕ) and red(ψ ′)=red(ψ)) which gives rise to

• an isomorphism from the factor structure (Sent(M )�Ker,t′,f ′,≺′) to the canonical domain
(M ,T ,F,<M ) (where Ker is the kernel of red), and finally gives rise to

• an isomorphism between the canonical domains (Sent(C)�=α
,t,f ,≺) and (M ,T ,F,<M ), if we

consider the reduced language Expr(C).

The Gamma-function then is defined by means of the function red. If we reduce the language to
Expr(C)⊆Expr(M ), then the Gamma-function coincides on Sent(C)�=α

with the above-mentioned
isomorphism between canonical domains. From this it will follow that the model is canonical with
respect to the reduced language Expr(C)⊆Expr(M ).

The following definitions are inspired by similar concepts developed by Sträter in [7]. In particular,
we adopt the function red from [7] and extend it to our richer language (which contains a reference
connective).

DEFINITION 5.13
An expression ϕ∈Expr(M ) is said to be reduced if ψ≺ϕ implies ψ ∈M or fvar(ψ) �=∅.

An expression ϕ is reduced if and only if all ψ with ψ≺ϕ are reduced.

EXAMPLE 5.14
The sentence ϕ=∃x.((x<x)∧(∀y.(y : true)→ (y≡x))) is reduced since there is noψ withψ≺ϕ. The
sentence χ=∃x.((x<x)∨(x<∃y.y)) is not reduced since ∃y.y≺χ . Variables and constant symbols
are reduced.

DEFINITION 5.15
We define the following sets. (Recall that Rq(ϕ) is the quantifier-rank of ϕ, see Definition 2.4.)

• A0 :={¬m,m : true,m : false,m≡m′,m∨m′,m<m′ |m,m′ ∈M }
• An :={∃x.ϕ∈Sent(M ) |∃x.ϕ is normalized, reduced and Rq(∃x.ϕ)=n}, for n≥1

DEFINITION 5.16
Suppose that for each n<ω, gn :An →K is an injective function. The function red :Expr(M )→
Expr(M ) is defined as follows:

red(x) :=x,for x∈V

red(m) :=m,for m∈M =C∪K

red(¬ϕ) :=
{

g0(¬red(ϕ)), if red(ϕ)∈M

¬(red(ϕ)), else

red(ϕ : true) :=
{

g0(red(ϕ) : true), if red(ϕ)∈M

red(ϕ) : true, else
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red(ϕ : false) :=
{

g0(red(ϕ) : false), if red(ϕ)∈M

red(ϕ) : false, else

red(ϕ�ψ) :=
{

g0(red(ϕ)�red(ψ)), if red(ϕ)∈M and red(ψ)∈M

red(ϕ)�red(ψ), else

whenever �∈{∨,≡,<},

red(∃x.ϕ) :=
{

gn(norm(∃x.red(ϕ))), if norm(∃x.red(ϕ))∈An

∃x.red(ϕ), else

redn is the restriction of the function red on the set of expressions of quantifier-rank at most n<ω
(we will need the fact that redn already can be defined so far the functions g0,...,gn are defined):

redn(ϕ) :=
{

red(ϕ), if Rq(ϕ)≤n

not defined, else

The following results can be shown by induction on the construction of expressions. We will omit
the proofs. Item (i) of the next result shows that for any expression ∃x.ϕ we have x∈ fvar(red(ϕ)).
Thus, ∃x.red(ϕ) is in fact an expression, and the last item of the definition of red is well defined.

LEMMA 5.17
Let ϕ∈Expr(M ). Then:

(i) fvar(ϕ)= fvar(red(ϕ)).
(ii) fvar(ϕ)=∅�⇒red(ϕ)∈M .
(iii) If ψ ∈subex(red(ϕ)), then ψ ∈M or fvar(ψ) �=∅. Thus, red(ϕ) is reduced.
(iv) If ϕ is normalized, then red(ϕ) is normalized.
(v) If ϕ is reduced and fvar(ϕ) �=∅, then red(ϕ)=ϕ.

LEMMA 5.18
Let ϕ∈Expr(M ) and let σ :V →V be a substitution. Then red(ϕ[σ ])=red(ϕ)[σ ].
LEMMA 5.19
For all ϕ∈Expr(M ), red(ϕ)=red(red(ϕ)).

LEMMA 5.20
Let ϕ,ψ ∈Expr(M ). Then ϕ=α ψ implies red(ϕ)=α red(ψ).

LEMMA 5.21
Let ϕ∈Expr(M ) and let σ , τ , � be substitutions such that for all u∈ fcon(ϕ), �(u)=red((σ ◦τ )(u)).
Then red(ϕ[σ ◦τ ])=red(ϕ[�]).
COROLLARY 5.22
Let ϕ,ψ ∈Expr(M ) and v∈V ∪M . Then red(ϕ[v :=ψ])=red(ϕ[v :=red(ψ)]).

 at FundaÃ
§Ã

£o C
oordenaÃ

§Ã
£o de A

perfeiÃ
§oam

ento de Pessoal de N
Ã

vel Superior on A
pril 29, 2014

http://jigpal.oxfordjournals.org/
D

ow
nloaded from

 

http://jigpal.oxfordjournals.org/


[07:34 10/11/2012 jzr050.tex] Paper Size: a4 paper Job: JIGPAL Page: 1102 1083–1109

1102 First-order non-Fregean logic

PROOF. Choose σ =ε and τ=[v :=ψ]. Let � be the substitution defined by �(u)=red(τ (u)), u∈
V ∪M . Then the Corollary is an instance of Lemma 5.21.

LEMMA 5.23
If ϕ∈Expr(M ) and σ :V →Expr(M ), then red(red(ϕ)[σ ])=red(ϕ[σ ]).

We define two predicates t,f on Sent(M ). First, we put t(m) :⇔T (m) and f (m) :⇔F(m), for all m∈
M . Now we define t and f on A0 in accordance with the truth conditions of a model: t(m : true) :⇔ t(m),
f (m : true) :⇔ f (m), t(m : false) :⇔ f (m), f (m : false) :⇔ t(m), t(m∨m′) :⇔ t(m) or t(m′), f (m∨m′) :⇔
f (m) and f (m′), t(¬m) :⇔ f (m), f (¬m) :⇔ t(m), t(m<m′) :⇔m<M m′, f (m<m′) :⇔ not m<M m′,
t(m≡m′) :⇔m=m′, f (m≡m′) :⇔m �=m′, for all m,m′ ∈M .

In the next step, we define the functions gn :An →K using the algebraic properties of a canonical
domain. For each finite and closed B⊆M we choose partitions

(succ(B)T �C)=
⋃

0<i<ω

succ(B)T
i ⊆K,

(succ(B)F �C)=
⋃

0<i<ω

succ(B)F
i ⊆K

consisting of sets succ(B)T
i and succ(B)F

i of cardinality ω, respectively. Note that the set C in
the above equations is relevant only in the case B=∅, since c∈C has rank 0 and cannot be the
successor of a non-empty set B. Also recall that succ(∅)T has cardinality κ , whereas succ(∅)T �C
has cardinality ω. Similarly for succ(∅)F . We suppose that the sets succ(B)T

i and succ(B)F
i are

well ordered. The idea is the following. Every ϕ∈A0 will be mapped by g0 to an element of
succ(B)T

1 ∪succ(B)F
1 , where B is the finite closed set generated by the constant symbols contained in

ϕ.21 Similarly, every ϕ∈An, where n≥1, will be mapped by gn to an element of succ(B)T
n ∪succ(B)F

n ,
where B is generated by the constant symbols of ϕ. Recall that for ϕ∈An, ψ≺ϕ imlies ψ ∈M . The
construction will ensure that for a given finite closed set B, the ω many sentences of An whose
constant symbols generate B are in one-to-one correspondence with ω many elements of succ(B)T

n

or of succ(B)F
n . The proof of Theorem 5.10 illustrates that infinitely many sentences with the same

quantifier rank n≥1 can be constructed over the same finite set of constant symbols. On the other
hand, if ϕ∈A0, then there are only finitely many other sentences in A0 with the same set of constant
symbols as ϕ. Therefore, we map sentences of A0 and A1, which generate the same set B, both to
elements of the infinite set succ(B)T

1 ∪succ(B)F
1 . But now let us define g0.

Let (ϕt
j )j<κ , (ϕf

j )j<κ be enumerations of the sets of true, false formulas of A0, respectively. Let

j<κ and suppose that for all l< j, g0(ϕt
l ) and g0(ϕ

f
l ) are already defined. According to the definition

of A0, the formula ϕt
j ∈A0 contains only one or two constant symbols m,m′ ∈M (possibly m=m′).

Similarly, the formula ϕf
j ∈A0 contains only one or two constant symbols p,p′ ∈M (possibly p=p′).

Then for the finite and closed sets B=ext(m)∪ext(m′)∪{m,m′} and B′ =ext(p)∪ext(p′)∪{p,p′}
we define

g0(ϕ
t
j ) :=min(succ(B)T

1 �{g0(ϕ
t
l ) | l< j}),

g0(ϕ
f
j ) :=min(succ(B′)F

1 �{g0(ϕ
f
l ) | l< j}).

where we consider the given well-orderings on succ(B)T
1 and succ(B′)F

1 . It is clear that g0 is injective.
Also note that g0 maps only finitely many sentences to each succ(B)T

1 because there are only finitely

21By ‘B is generated by the constant symbols of ϕ’ we mean that b∈B iff there is a constant symbol m of ϕ such that
b=m or b<M m. In other words, B⊆M is the smallest down-set containing con(ϕ). Note that it is enough to consider the
<M -maximal constant symbols of ϕ as the set of generating elements.
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many sentences in A0 with constant symbols that generate precisely the set B. Similarly for succ(B)F
1 .

If g0,...,gn are already defined, and the predicates t,f are extended to An, then also redn is defined
and we are able to define gn+1. First, we extend the definition of our predicates t,f to the set An+1:

t(∃x.ϕ) :⇔ there is some m∈M such that redn(ϕ[x :=m])∈TRUE

f (∃x.ϕ) :⇔ there is no m∈M such that redn(ϕ[x :=m])∈TRUE.

Notice that Lemma 5.17 guarantees that redn(ϕ[x :=m]) in the above definition is in fact an element
of M . Let (ϕt

j )j<κ , (ϕf
j )j<κ be enumerations of the true, false sentences of An+1, respectively. Let j<κ

and suppose that for all l< j, gn+1(ϕt
l ) and gn+1(ϕ

f
l ) are already defined. Since the sentence ϕt

j ∈An+1

is reduced, ψ≺ϕt
j implies ψ ∈M . If {m1,...,mr}⊆M is the (possibly empty) set of all ψ≺ϕt

j , then
let B :=ext(m1)∪ ...∪ext(mr)∪{m1,...,mr}. Similarly, we define B′ ⊆M as the finite and closed set
that corresponds to the sentence ϕf

j . Then:

gn+1(ϕ
t
j ) :=min(succ(B)T

n+1 �(im(g0)∪{gn+1(ϕ
t
l ) | l< j})),

gn+1(ϕ
f
j ) :=min(succ(B′)F

n+1 �(im(g0)∪{gn+1(ϕ
f
l ) | l< j})),

where im(g0) denotes the image of function g0. Since we have embedded the image of g0 into
the sets succ(B)T

1 ∪succ(B)F
1 , im(g0) is relevant only in the definitions of g0 and g1. Also recall

that im(g0)∩(succ(B)T
1 ∪succ(B)F

1 ) is finite (see the definition above). gn+1 is obviously an injective
function.

LEMMA 5.24⋃
n<ωgn(An)=K .

PROOF. By definition,
⋃

n<ωgn(An)⊆K . Let k ∈K and suppose T (k). Let {m1,...,mr} be the set of
maximal elements of ext(k). Consider the closed set B=ext(k)=ext(m1)∪ ...∪ext(mr)∪{m1,...,mr}.
Then k ∈succ(B)T . By the above defined partition, k ∈succ(B)T

n , for some n>0. By the construction,
k ∈ im(gn)∪im(g0). Note that k ∈ im(g0) is possible only if r =1 or r =2. If F(k), then we argue
similarly.

The predicates t,f are now completely defined on
⋃

n<ωAn ∪M . For every n<ω and every ϕ∈An,
t(ϕ)⇔gn(ϕ)∈TRUE and f (ϕ)⇔gn(ϕ)∈FALSE. Finally, we extend the predicates t,f to the whole
set of sentences Sent(M ):

DEFINITION 5.25
For ϕ∈Sent(M )�(

⋃
n<ωAn ∪M ) we define

t(ϕ) :⇔red(ϕ)∈TRUE

f (ϕ) :⇔red(ϕ)∈FALSE.

THEOREM 5.26
The function red : (Sent(M ),t,f ,≺)→ (M ,T ,F,<M ) is a strong homomorphism. More precisely,
red is surjective and the following holds for all ϕ,ψ ∈Sent(M ):

• t(ϕ)⇔T (red(ϕ)),
• f (ϕ)⇔F(red(ϕ)),
• ϕ≺ψ⇒red(ϕ)<M red(ψ),
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• If red(ϕ)<M red(ψ), then there are sentences ϕ′ and ψ ′ such that red(ϕ′)=red(ϕ) and
red(ψ ′)=red(ψ) and ϕ′ ≺ψ ′.22

PROOF. Since red(m)=m for every m∈M , red is surjective. The first two items of the Theorem
follow easily from the construction. Suppose ϕ≺ψ . There is a chain ϕ=ϕ0 ≺ϕ1 ≺ ...≺ϕk =ψ of
maximal length. Then R≺(ϕi+1)=R≺(ϕi)+1 for i<k . We show red(ϕi)<M red(ϕi+1), i<k . The
assertion then follows from the transitivity of <M . Without lost of generality, we may assume that
ψ=ϕ1, i.e. R≺(ψ)=R≺(ϕ)+1. Then ψ is alpha-congruent to ϕ : true or to ϕ : false or to ¬ϕ or to a
sentence of the formϕ�χ orχ�ϕ or ∃x.ξ , where �∈{∨,≡,<} andϕ≺ξ . In all these cases, it follows
from the definition of the functions red and gn that red maps ψ to a successor of a finite closed set
B⊆M which is given by the sentenceψ (see the construction above). Moreover, one verifies that in all
these cases red(ϕ)=m∈B. Thus, red(ϕ)<M red(ψ). Now suppose red(ϕ)=m<M m′ =red(ψ). We
must show the existence of two sentences ϕ′,ψ ′ such that ϕ′ ≺ψ ′ and red(ϕ′)=m and red(ψ ′)=m′.
Let B=ext(m′). Then m∈B and m′ ∈succ(B). In particular, m′ ∈K . Since

⋃
n<ωgn(An)=K , there is

n<ω and a sentence ψ ′ ∈An such that b∈B⇔b≺ψ ′, and red(ψ ′)=m′. Since m∈B, we get m≺ψ ′.
Moreover, red(m)=m and red(ψ ′)=m′. That is, ϕ′ =m and ψ ′ are the desired sentences.

DEFINITION 5.27
Let Ker :={(ϕ,ψ)∈Sent(M )2 |red(ϕ)=red(ψ)} and let Sent(M )�Ker be the corresponding partition.
The equivalence class of ϕ∈Sent(M ) modulo Ker is denoted by |ϕ|. We define relations t′,f ′ and
≺′ on Sent(M )�Ker by:

t′(|ϕ|) :⇔ t(ϕ)

f ′(|ϕ|) :⇔ f (ϕ)

|ϕ|≺′ |ψ | :⇔ there are ϕ′,ψ ′ such that |ϕ′|=|ϕ|,|ψ ′|=|ψ | and ϕ′ ≺ψ ′

COROLLARY 5.28
red : (Sent(M )�Ker,t′,f ′,≺′)→ (M ,T ,F,<M ), given by |ϕ| �→red(ϕ), is an isomorphism between
canonical domains.

PROOF. The relations t′,f ′,≺′ are well defined, this follows from Theorem 5.26. Then
(Sent(M )�Ker,t′,f ′,≺′) is the factor structure of (Sent(M ),t,f ,≺) modulo the congruence relation
Ker. It turns out that the assertion of the Corollary is an instance of the Homomorphism Theorem
of Universal Algebra.

By Lemma 5.20, alpha-congruence between sentences refines the congruence relation Ker. Recall
that we have defined the syntactical reference relation ≺ not only on the set of expressions, but also on
the set of equivalence classes of expressions modulo alpha-congruence. Similarly, we may extend the
predicates t and f on the set of equivalence classes of sentences modulo alpha-congruence: t(ϕ) :⇔
t(ϕ), and f (ϕ) :⇔ f (ϕ). From Lemma 5.20 and Theorem 5.26, it follows that these definitions are well
defined. We now consider the reduced language Expr(C)⊆Expr(M ), and in particular Sent(C)⊆
Sent(M ). By the previous remarks, we can work with the factor structure (Sent(C)�=α

,t,f ,≺).

THEOREM 5.29
Each class |ϕ|∈Sent(M )�Ker contains exactly one classψ ∈Sent(C)�=α

w.r.t. the reduced language.
That is, for every ϕ∈Sent(M ) there is, up to alpha-congruence, exactly one ψ ∈Sent(C)⊆Sent(M )
such that red(ψ)=red(ϕ). Moreover, if ϕ,ψ ∈Sent(M ) and ϕ≺ψ , then there are ϕ′,ψ ′ ∈Sent(C)
such that ϕ′ ≺ψ ′, red(ϕ′)=red(ϕ) and red(ψ ′)=red(ψ).

22Notice that we cannot expect that red(ϕ)<M red(ψ) implies ϕ≺ψ . Consider, e.g. ϕ=c∈C and ψ=k =red(c : true)=
g0(c : true)∈succ({c})∈K . Then c<M k . However, c⊀k . Nevertheless, red(c)=c and red(c : true)=red(k)=k and c≺c : true.
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PROOF. Let ϕ∈Sent(M ). The existence of the desired ψ ∈Sent(C) follows by induction on the rank
R≺′ w.r.t. the canonical domain (Sent(M )�Ker,t′,f ′,≺′). Now one shows that all such sentences
are alpha-congruent. This follows from the following more general result which can be proved by
induction on ψ : If ψ,ψ ′ ∈Expr(C), then red(ψ)=α red(ψ ′) implies ψ=α ψ

′.

COROLLARY 5.30
The function red : (Sent(C)�=α

,t,f ,≺)→ (M ,T ,F,<M ), given by ϕ �→red(ϕ), is an isomorphism
between canonical domains.

PROOF. This follows from Corollary 5.28 and Theorem 5.29.

Now we reduce the language Expr(M ) to Expr(C) and define our model with respect to the
reduced language.

DEFINITION 5.31
For an assignment γ :V →M and ϕ∈Expr(C) we define

Γ (ϕ,γ ) :=red(ϕ[γ ]),
where the assignment γ is at the same time a substitution. Then our model with respect to the
language Expr(C) is M := (M ,TRUE,FALSE,<M ,Γ ).

It remains to show that M is actually a model, i.e. M must satisfy the structural properties EP, CP,
SP, RP, and the truth conditions. Since Γ (x,γ )=red(x[γ ])=red(γ (x))=m if and only if γ (x)=m,
EP holds. CP follows from Lemma 2.7(ii).

COROLLARY 5.32
M satisfies SP.

PROOF. Let ϕ∈Expr(C), σ :V →Expr(C), γ :V →M . We must show Γ (ϕ[σ ],γ )=Γ (ϕ,γ σ ). Let
γ ′ :V →M be the assignment x �→red((σ ◦γ )(x)). By Lemma 5.21, Γ (ϕ[σ ],γ )=red(ϕ[σ ][γ ])=
red(ϕ[σ ◦γ ])=red(ϕ[γ ′])=Γ (ϕ,γ ′), where γ ′(x)=red((σ ◦γ )(x))=red(σ (x)[γ ])=Γ (σ (x),γ )=
γ σ (x). Thus, Γ (ϕ[σ ],γ )=Γ (ϕ,γ ′)=Γ (ϕ,γ σ ). �
LEMMA 5.33
M satisfies RP.

PROOF. This follows from Lemma 2.30 and Theorem 5.26.

LEMMA 5.34
M satisfies the truth conditions.

PROOF. We show only the quantifier case.

Γ (∃x.ϕ,γ )∈TRUE

⇔red((∃x.ϕ)[γ ])∈TRUE
(i)⇔red(∃z.(ϕ[γ [x :=z]]))∈TRUE
(ii)⇔gn(∃z.red(ϕ[γ [x :=z]]))∈TRUE

⇔red(red(ϕ[γ [x :=z]])[z :=m])∈TRUE, for some m∈M
(iii)⇔red(ϕ[γ [x :=z]][z :=m])∈TRUE, for some m∈M

⇔red(ϕ[γ [x :=m]])∈TRUE, for some m∈M

⇔Γ (ϕ,γ m
x )∈TRUE, for some m∈M
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(i): z= lub(fvar((∃x.ϕ)[γ ]))= lub(∅)=v0 =min(V ) is the variable forced by γ w.r.t. ∃x.ϕ.
(ii): ϕ[γ [x :=z]] is normalized, by Lemma 2.19. Then red(ϕ[γ [x :=z]]) is normalized,
by Lemma 5.17. Also by Lemma 5.17, fvar(red(ϕ[γ [x :=z]]))= fvar(ϕ[γ [x :=z]]). By
Lemma 2.17 and Corollary 2.18, ∃z.red(ϕ[γ [x :=z]]) is normalized. Thus, red(∃z.ϕ[γ [x :=z]])=
gn(∃z.red(ϕ[γ [x :=z]])), by definition of red.
(iii): by Lemma 5.23.

THEOREM 5.35
The model M= (M ,TRUE,FALSE,<M ,Γ ) is canonical with respect to the sublanguage Expr(C)⊆
Expr(M ).

PROOF. This follows readily from Corollary 5.30 and Theorem 5.3.

As already pointed out in the introductory part of the article, a canonical model gives rise to
a unique ‘term model’ whose universe is given by the set of equivalence classes of sentences
modulo alpha-congruence or, equivalently, by the set of all normalized sentences. In the follow-
ing, we present the term model M∗ which originates from the above constructed canonical model
M. Of course, M∗ will be canonical, too. The universe M ∗ of the term model is the set of all
normalized sentences, TRUE∗ ={ϕ∈M ∗ |Γ (ϕ)∈TRUE} and FALSE∗ ={ϕ∈M ∗ |Γ (ϕ)∈FALSE}.
<∗:=≺� (M ∗×M ∗) is the semantic reference on M ∗. Finally, the Gamma-function is defined by
Γ ∗(ϕ,γ ) :=ϕ[γ ], for any expression ϕ and any assignment γ :V →M ∗. Note that in this special
case an assignment can be seen as a substitution. By Lemma 2.19, ϕ[γ ] is normalized. Hence, the
Gamma-function is well defined. We must show that the structural and the truth conditions of a model
are satisfied. It is clear that EP holds. CP follows from Lemma 2.7, RP follows from Lemma 2.30. We
prove SP. Let σ :V →Expr(C) be a substitution and let γ :V →M ∗ be an assignment. Then for any
x∈V , γ σ (x)=Γ (σ (x),γ )=σ (x)[γ ]= (σ ◦γ )(x). That is, γ σ =σ ◦γ . Using Lemma 2.7 and Lemma
2.11 it follows that Γ ∗(ϕ,γ σ )=ϕ[γ σ ]=ϕ[σ ◦γ ]=ϕ[σ ][γ ]=Γ ∗(ϕ[σ ],γ ), for all expressions ϕ.
Thus, SP is satisfied. It remains to show that the truth conditions are satisfied. Let us look at the
quantifier case. We must show: Γ ∗(∃x.ϕ,γ )∈TRUE∗ iff there is a normalized sentence ψ such that
Γ ∗(ϕ,γ ψx )∈TRUE∗. In the following equivalences, we suppose that m∈M and ψ is the normalized
sentence satisfying Γ (ψ)=m, and z is the forced variable w.r.t. the substitution (assignment) γ
applied to ∃x.ϕ. If β :V →M is an assignment w.r.t. the model M and σ is the substitution [z :=ψ],
then one checks that βm

z =βσ . SP yields Γ (ϕ[γ [x :=z]],βm
z )=Γ (ϕ[γ [x :=ψ]],β). Consequently,

if β is any assignment in model M, then we get the following:

Γ ∗(∃x.ϕ,γ )=∃z.(ϕ[γ [x :=z]])∈TRUE∗

⇔Γ (∃z.(ϕ[γ [x :=z]]),β)∈TRUE

⇔Γ (ϕ[γ [x :=z]],βm
z )∈TRUE for some m∈M

⇔Γ (ϕ[γ [x :=ψ]],β)∈TRUE for some normalized sentence ψ

⇔Γ ∗(ϕ,γ ψx )∈TRUE∗ for some normalized sentence ψ.

We now consider the case of an equation. Γ ∗(ϕ≡ψ,γ )= (ϕ[γ ]≡ψ[γ ])∈TRUE∗ ⇔ϕ[γ ]=ψ[γ ]⇔
Γ ∗(ϕ,γ )=Γ ∗(ψ,γ ) (recall that alpha-congruent normalized sentences are equal). The remaining
cases follow similarly. Of course, the canonical term model M∗ = (M ∗,TRUE∗,FALSE∗,<∗,Γ ∗)
satisfies precisely the same set of sentences as M.

Zeitz [10] presents a completely different construction of a model M′ (for the language without
reference connective) such that M′ �ϕ≡ψ⇔ϕ=α ψ , for all sentences ϕ,ψ . His construction is
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shorter and simpler than Sträter’s original construction, but the resulting model has some counter-
intuitive properties, in particular it contains non-standard elements. In the following, we sketch out
the construction with respect to the extended language which contains the reference connective. In
order to avoid the problem of the impredicativity of quantifiers, Zeitz follows the same strategy as
in the construction above: first, fix the universe of the model and the truth values of its elements;
only after that define the Gamma-funcion. We know that every sentence will denote either a true
proposition or a false proposition. The idea of Zeitz is to assign to each sentence two objects
which serve as possible denotations — one being true, the other one being false. This determines
the subsets TRUE′ and FALSE′ of the propositional universe. The Gamma-function now can be
defined inductively. Let us give the details. For every sentence ϕ we provide two representations:
norm(ϕ : true) and norm(ϕ : false).23 Then we put TRUE′ :={norm(ϕ : true) |ϕ∈Sent(C)}, FALSE′ :=
{norm(ϕ : false) |ϕ∈Sent(C)}, and M ′ :=TRUE′ ∪FALSE′. We define ||ϕ : true|| :=||ϕ : false|| :=ϕ,
for ϕ∈Sent(C). The semantical reference is given by m<M ′

m′ :⇔||m||≺||m′||. For every assignment
γ :V →M ′ let τγ :V →Sent(C) be defined by τγ (x)=||γ (x)||. Note that τγ is a substitution. By
Lemma 2.19, ϕ[τγ ] is normalized, i.e. norm(ϕ[τγ ])=ϕ[τγ ]. We assume a partition C =Ct ∪Cf on
the set of constant symbols. The Gamma-function is defined over the inductive construction of
formulas, simultaneously for all assignments γ :V →M ′: Γ ′(x,γ ) :=γ (x), for x∈V , and

Γ ′(c,γ ) :=
{

c : true, if c∈Ct

c : false, if c∈Cf

Γ ′(ϕ<ψ,γ ) :=
{

(ϕ<ψ)[τγ ] : true, if Γ ′(ϕ,γ )<M ′
Γ ′(ψ,γ )

(ϕ<ψ)[τγ ] : false, else

Γ ′(∃x.ϕ,γ ) :=

⎧⎪⎨
⎪⎩

(∃x.ϕ)[τγ ] : true, if there is some m∈M ′

such that Γ ′(ϕ,γ m
x )∈TRUE′

(∃x.ϕ)[τγ ] : false, else

and so on ... .
That is, if ϕ is a complex formula, then Γ ′(ϕ,γ ) either equals ϕ[τγ ] : true or it equals ϕ[τγ ] :

false, according to the respective truth condition given by ϕ. It follows that ||Γ ′(ϕ,γ )||=ϕ[τγ ],
for every ϕ∈Expr(C). By Lemma 2.30, the structure M′ = (M ′,TRUE′,FALSE′,Γ ′,<M ′

) satisfies
the reference property RP. It is not hard to show that also EP, CP and SP do hold. Finally, the
truth conditions follow directly from the definition of the Gamma-function. One easily checks that
for all sentences ϕ,ψ , M′ �ϕ≡ψ⇔ϕ=α ψ and M′ �ϕ<ψ⇔ϕ≺ψ . Thus, the model would be
canonical if there were no non-standard elements in the universe. Such non-standard elements can
easily be identified. For instance, if c∈Ct , then Γ ′(c)=c : true, and there is no sentence denoting the
‘false proposition’ c : false∈FALSE′. For c∈Ct one verifies that the sentence ψ :=∃x.((c<x)∧(x<
(c : true : true))∧¬(x≡ (c : true))) is true in model M′ — consider an assignment that maps x to
c : true : false. The truth of ψ depends on the existence of a non-standard element. ψ turns out to be
false in a canonical model since in such a model there is only one proposition witnessing the truth of

23Zeitz works with equivalence classes of sentences modulo alpha-congruence instead of our function norm.
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∃x.((c<x)∧(x< (c : true : true)), namely the denotation of the sentence c : true. The example of the
sentenceψ shows that we cannot simply remove the non-standard elements from the universe in order
to get a canonical model: the Gamma-function w.r.t. the reduced universe would violate the truth
condition concerning the existential quantifier.24 It is not clear if there is any (more sophisticated)
way to eliminate the non-standard elements and to transform M′ into a canonical model.

The first construction method, which extends Sträter’s approach and relies on our concept of a
canonical domain, leads directly to a canonical model. The concept of a canonical domain also
seems to be rather flexible with respect to further extensions of the language. The term model M∗,
originated from the canonical model M, could be the starting point for the construction of further
standard models that satisfy specific non-trivial equations. An example of such a standard model
that contains precisely two self-referential propositions (a true truth-teller and a false truth-teller)
was constructed for a quantifier-free language in [4]. Such a model satisfies precisely the equations
of a set E∗ which is generated by a set E of given equations and a certain congruence property (see
the construction and the discussion on the properties of E∗ in section 4.4 of [4]). In [5] (Section
5.2) a general and rather weak condition for a given set E of equations was found which implies the
existence of a (infinite) standard model that satisfies precisely the equations of the generated set E∗.
In many cases (see the examples given in [5]), the condition which E is required to satisfy can be
reduced to the existence of a finite or even an extensional (two-element) model of E. Such models
can easily be constructed. It would be interesting to further investigate such conditions and to extend
the results to the first-order language of ∈T with reference connective. Such future investigations
could lead to the development of a general model theory that provides an overview of all standard
models.

Acknowledgements

I would like to thank the anonymous referees for many helpful comments.

References
[1] S. L. Bloom and R. Suszko. Investigation into the sentential calculus with identity. Notre Dame

Journal of Formal Logic, 13, 289–308, 1972.
[2] S. Lewitzka. ∈T (�)-Logik: Eine Erweiterung der Prädikatenlogik erster Stufe mit
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