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Abstract

Coral reefs across the world are under threat from a range of stressors, and while there has been considerable focus on the
impacts of these stressors on corals, far less is known about their effect on other reef organisms. The 1997–8 El-Niño
Southern Oscillation (ENSO) had notable and severe impacts on coral reefs worldwide, but not all reef organisms were
negatively impacted by this large-scale event. Here we describe how the sponge fauna at Bahia, Brazil was influenced by the
1997–8 ENSO event. Sponge assemblages from three contrasting reef habitats (reef tops, walls and shallow banks) at four
sites were assessed annually from 1995 to 2011. The within-habitat sponge diversity did not vary significantly across the
study period; however, there was a significant increase in density in all habitats. Multivariate analyses revealed no significant
difference in sponge assemblage composition (ANOSIM) between pre- and post-ENSO years for any of the habitats,
suggesting that neither the 1997–8 nor any subsequent smaller ENSO events have had any measurable impact on the reef
sponge assemblage. Importantly, this is in marked contrast to the results previously reported for a suite of other taxa
(including corals, echinoderms, bryozoans, and ascidians), which all suffered mass mortalities as a result of the ENSO event.
Our results suggest that of all reef taxa, sponges have the potential to be resilient to large-scale thermal stress events and
we hypothesize that sponges might be less affected by projected increases in sea surface temperature compared to other
major groups of reef organisms.
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Introduction

Coral reefs around the world are under threat from a range of

local- and global-scale threats [1,2,3]. At local scales, these include

habitat destruction, overfishing, pollution, sedimentation and

invasive species. While these threats can have devastating impacts

on reefs, in most cases management intervention and mitigation is

possible at the scale of the impact. However, for global scale

threats, particularly those related to climate change, ocean

acidification and climatic variation (e.g. El-Niño events), mitigat-

ing and managing these impacts is much more challenging. While

the consequences of these larger scale impacts on corals have

received considerable attention, far less is known about their likely

impacts on other non-calcifying reefs organisms (see [4]). For

example, while the effects of large-scale El-Niño Southern

Oscillation (hereafter ENSO) events on coral communities have

been well described, particularly as a result of the 1997–8 event

that had devastating impacts of many coral reefs ([5,6] many

others), the influences of ENSO events on other dominant reef

organisms are much less well known.

Sponges are a major component of coral reef communities

across the world (e.g. [7,8,9]), with a range of important functional

roles, from efficiently processing vast quantities of water and

stripping food particles, to acting as a major eroders of the

carbonate reef structure [10,11]). Sponges also form important

relationships with a range of microorganisms [12], which can

facilitate high levels of benthic primary production and nutrient

cycling. Despite the fact that sponges are such important

components of reefs, we still understand comparatively little about

their ecology and stress responses compared to corals (highlighted

by [4,13]).

Declines in coral abundance have been well-documented world-

wide (e.g. [14,15]), and while there are many reports of increased

algal abundance as coral cover and herbivorous fish abundance

decline, through so-called ‘phase-shifts’, there is increasing

recognition that other non-coral states are possible (see [13,16,]).

Interestingly, in contrast to the reports of long-term declines in

coral abundance, increases in sponge abundance have also been

documented (e.g. [17]) and there have been further reports of

small-scale (km2) changes from coral-dominated to sponge

dominated states within the Caribbean (e.g. [18,19,20]) and

Pacific Oceans [21,22]. Some declines in tropical sponge

abundance have also been reported (e.g. [23]). In most of the

cases where sponges have increased in abundance, they appear to
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have been either resistant to the same stress causing the coral

declines or taken advantage of newly available space (see [13]).

While there have been extensive studies into the factors

influencing the spatial distribution patterns of sponges, such as

sedimentation [7,24,25], water flow and wave action [26,27], light

[28], substrate type [29], food availability [30], competition [31],

and predation [32,33,34], far less is known about the factors

driving patterns of temporal variation in tropical sponge assem-

blages (but see [35]). In particular, there is a paucity of information

concerning the impacts of large-scale climate events on sponges

(but see [36]) or how future climate change is likely to influence

sponge assemblages despite suggestions that this group may be

potential ‘winners’ under future climate change scenarios

[13,37,38].

The 1997–8 ENSO event had a major impact on coral reefs

across the world [5,39,40], and the northern Bahia coral reefs

where no exception. Most invertebrate taxa were severely

impacted and experienced mass mortalities: this included corals

and other cnidarians [41]; echinoderms [42,43]; bryozoans [44];

and ascidians [45], attributed to increased Sea Surface Temper-

ature (SST). In Brazil, our understanding of sponge biodiversity

has increased significantly over the last two decades, although the

majority of the sponge studies in this region are of a taxonomic

nature, and so little is known about sponge ecology in this region

(see [46,47,48,49,50] for example) and how these organisms

respond to major environmental perturbations. In this paper we

address this lack of information by presenting the results of a 17-

year study examining changes in sponge assemblages from three

different reef habitat types at four different locations spanning the

1997–8 ENSO event (and later smaller ENSO events) in order to

assess assemblage-level impact and recovery patterns.

Materials and Methods

Study Area
This study focused on four reefs in Bahia, Brazil [Abaı́

(12u4090499S/38u0494799W), Guarajuba (12u3992299S/

38u0391899W), Itacimirim (12u3792099S/38u0194099W) and Praia

do Forte (12u3494299S/37u5895999W)]. The reefs are on the

narrowest part of the Eastern Brazilian Continental Shelf (average

width 15 km between the São Francisco and Doce Rivers) and

extend 20 km between the beaches of Abai and Praia do Forte

(Fig. 1). The studied reefs are all complex elongated structures

varying from 500 to 1,800 m in length, 400 to 500 m in width and

occur in water depths between 10 and 40 m. The reefs have

developed either on rocky outcrops of various ages or on lines of

Holocene beachrock [51]. They have an irregular lateral contour,

sometimes presenting well-developed, spur-and-groove systems on

the fore-reef side, while the back-reef is usually more regular. All

four reefs are very similar in terms of morphology and overall

species composition (see [52]). Each reef system has three distinct

habitats: emergent reef tops, coastal reef walls and offshore shallow

bank reefs, all of which were sampled in this study. The emergent

reef tops (hereafter ERT) have been eroded due to sea-level

fluctuations and have irregular thin columnar structures, cavities,

meandering channels, and small caves. Their subtidal edge ranges

from 5 to 14 m in depth and represents the coastal reef wall

(hereafter CRW) habitat, which ranges in form from near vertical

drops to shallower rocky steps. Offshore from each coastal system

are a series of shallow bank reefs (hereafter SBR), which are

elongated structures that are physically separated from the coastal

reef systems and located within a depth range of 10 to 40 m. Leão

et al. [53] provide a full description of the geological history and

morphology of the reefs.

The coastal belt of the State of Bahia has a tropical humid

climate. Annual average rainfall ranges between 1,300 mm in the

north of the study area to 1,900 mm around Salvador City to the

south, with no marked seasonal rainfall pattern. Average daily air

temperatures range from 23uC (winter) to 28uC (summer), with

mean daily sea-surface temperatures ranging from 25uC (winter) to

28uC (summer); the maximum SST occurs between December

and February each year. Annual average salinity varies little (35–

36), although within reef-top shallow pools, salinity can range from

35 to 39 (see [52]). The pH of seawater varies only between 8.1

and 8.2, with no clear seasonal patterns (see [54,55]). The coast is

influenced by winds arising from the NE and E during the spring-

summer, and winds coming from the SE and E during the

autumn-winter season. Moreover, during the autumn-winter

period, the winds arising from the SSE, associated with the

periodic advance of the Atlantic Polar Front, reinforce the trade

winds from the SE [56]. This pattern of wind circulation is

disrupted by the quasi-cyclic environmental phenomenon known

as the El Niño/La Niña, combined as the El Niño Southern

Oscillation, with several major climatic perturbations recorded

[57,58].

Sampling and Identification
Sponge abundance was quantified annually (between April and

May each year) in the three contrasting reef environments (ERT,

CRW and SBR) on each of four different reefs in northern Bahia

from 1995 to 2011: (i) ERTs were sampled during low tide; and (ii)

CRWs and SBRs were sampled by snorkeling or scuba diving.

Quantitative samples were taken from 3561 m2 positioned

haphazardly quadrats, along a transect line parallel to the

coastline, on each reef, totaling 140 quadrats per habitat, 420

quadrats per year, and 7140 quadrats over the survey period.

Permanent License to collect zoological material (Nu 37409-1) was

dispatched on the basis of the Normative Instruction Nu 154/2007

by the Ministry of the Environment, Chico Mendes Institute of

Biodiversity Conservation, Authorisation System and Information

on Biodiversity. Through the authentication code Nu 78456982,

any citizen can check the authenticity or legality of this document,

by means of the page the Sisbio/ICMBio on the Internet (www.

icmbio.gov.br/sisbio). No other specific permissions were required

due to the fact that this was an entirely field based study with all

data being recorded on site through the in-situ identification and

counting of sponges. The location is not privately-owned or

protected in any way, as the beaches surveyed are public spaces.

We did not remove or damage any of the studied organisms

beyond taking small tissue samples from each species during early

years to confirm species identity. Otherwise, sponges were just

counted (taking only small samples for confirming field identifi-

cation of any new or uncertain individuals), so our methods

represent no threat to the species we assessed and none is, as yet,

endangered.

Because accurate quantification of sponge biomass can be a

destructive process that potentially interferes with subsequent

sampling, and because of the logistical constraints associated with

this large sampling effort, we counted all sponges colonies in situ as

our measure of abundance resulting in density values per m2. We

were primarily interested in any loss or additions of sponge species

within the reefs, so counting discrete colonies provided the most

suitable measure to document disappearance or resettlement. Data

were collected on sponge color, shape and size in the field and

photographs were taken of each species. The identity of each

species was originally confirmed through histological examination,

based on authoritative keys and texts (e.g. [47,48,50] and

references therein). Spicule preparations were made by dissocia-
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tion of small tissue fragments in boiling nitric acid. Thick sections

of specimens were observed under a light microscope to observe

the skeletal architecture. Where necessary, microscleres were

observed using a scanning electronic microscope (SEM) Zeiss

(DSM 940A).

Environmental Data
Large-scale environmental parameters for the survey area (sea

surface temperature, solar irradiance, air temperature, rainfall,

and cloud cover) were obtained from the Brazilian Meteorological

Institute [INMET (http://www.inmet.gov.br)]. INMET data are

collected three times a day and the values presented in this paper

represent the annual average of these data. Local physicochemical

data (seawater temperature, salinity, pH, and turbidity) were

recorded at all four reefs (10 replicates/reef giving 40 measure-

ments spread over the sampling period). Temperature, salinity,

and pH were recorded using a YSI63 (Yellow Spring Industries)

electronic field meter. Turbidity was assessed using a Secchi disk

that was deployed from a boat for CRW and SBR environments.

From 2001, we recorded turbidity and other local data using a

Multiparameter Water Quality Meter (U5210); however, based on

the similarity in the results obtained from the different methods we

present the same type of measurement throughout the years to

ensure consistency.

Data Analysis
The sponge density data are expressed as mean 6 standard

error (SE). We performed, for each contrasting reef environment

(ERT, CRW and SBR), a non-metric multidimensional scaling

(nMDS) using a Bray-Curtis [59] dissimilarity matrix, which was

calculated from log (x+1) transformed density data standardized by

sample totals and used several random starts in order to achieve

the optimum configuration. The results were visualized by an

ordination diagram with 95% confidence ellipses around multi-

variate centroid of samples from each habitat type. We further

used permutational multivariate analysis of variance (PERMA-

NOVA) to test the hypothesis of no significant differences in

sponge density and richness between reefs (Praia do Forte,

Itacimirim, Guarajuba and Abai) and years (before, during and

after 1997–8 ENSO event; a priori year groupings). PERMA-

NOVA allows multivariate information to be partitioned accord-

ing to the full experimental design. It makes no assumptions

Figure 1. The location of the coral reefs of northern Bahia (After Leão et al., 1997).
doi:10.1371/journal.pone.0076441.g001
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regarding the distributions of the original variables and all P-values

are obtained by permutation. All tests were carried out using the

type III sum of squares and 4999 permutations under the reduced

model [60,61]. Given the high number of permutations run,

additional Monte Carlo tests were not necessary to reinforce the

permutation P-values obtained [62]. Finally, to investigate the

relationship between the measured environmental variables

(before, during and after 1997–8 ENSO event) and sponge

assemblage data the BIOENV routine (Spearman rank correlation

method) was used with biological and environmental data

collected during each sampling year. All these analyses were

performed with the software package PRIMER (version 6.1.6;

PRIMER-E, Plymouth, U.K.) and the PERMANOVA+ module

(version 1.0.1. PRIMER-E, Plymouth, U.K.).

Results

We found that there were higher seawater temperatures, lower

sky cover and lower turbidity during the 1997–8 ENSO period

compared to non-ENSO years (Fig. 2), likely resulting in higher

levels of UV radiation reaching the reef associated invertebrates in

1998 than in non-ENSO years (or during subsequent weaker

ENSO episodes). Although our data indicated slightly lower

salinity at ERT habitats during the non-ENSO period, it varied

very little at any of the reef habitats during ENSO period. Rainfall

was significantly lower during ENSO conditions and this resulted

in reduced freshwater and sediment outflow from the local rivers

(the mean annual discharge of the São Francisco River was

reduced from 32,980 to 1,768 m3s21 and that of Doce River from

80.5 to 50.2 m3s21) and, thus, significantly clearer water. 1998 was

therefore characterized by warmer air and sea temperatures,

reduced cloud cover and rainfall, higher incoming solar radiation,

and reduced turbidity (due mainly to reduced river runoff

following decreased precipitation). Similar, but not so intense,

conditions were observed in 2007 and 2010. In contrast, 1999–

2000, and to a lesser extent, 1995–6 represented relatively strong

La Niña conditions, as indicated by high rainfall and cloud cover

(Fig. 2).

A total of 63 sponges species (all demosponges; Table S1) were

recorded from the three contrasting reefs habitats (ERT: 12,

CRW:36, SBR:63) over the sampling period. Overall sponge

richness and density increased over the years (Fig. 3). The most

abundant species were: Cinachyrella apion, C. alloclada and the Cliona

celata complex on the ERT; Tethya maza, T. rubra, C. apion and C.

alloclada on the CRW and Cliona delitrix on the SBR.

The PERMANOVA global test results indicated no significant

differences in assemblage composition between reefs for both ERT

and CRW habitats (Table S2). However, the SBR environment

became significantly different throughout the years (increased both

density and richness). In addition, we recorded a significant

increase in density over time in all three-habitat types since the

ENSO event (Fig. 3A–C). The lowest mean sponge density for the

ERT assemblages was 3.1660.2 spg m22, which was recorded in

1995. Density has progressively increased over time on ERTs

(Fig. 3A) to a maximum of 7.160.09 spg m22 in 2011; a

significant overall increase of approximately 100% (pseudo-

F = 1.9228, P(perm) = 0.01). For the CRWs (Fig. 3B), the lowest

recorded mean density was 5.8660.32 spg m22 in 1995, and

similar to the ERTs, sponge density has significantly increased

throughout the study period to a maximum of 8.0960.26 spg m22

in 2011 (pseudo-F = 2.0023, P(perm) = 0.001). The lowest recorded

mean sponge density for the SBRs (Fig. 3C) was 5.960.42 spg

m22 in 1995, which increased significantly to a maximum of

9.560.44 spg m22 by 2006 (pseudo-F = 2.8913, P(perm) = 0.0001),

but then decreased slightly to 8.1460.21 spg m22 in 2011.

However, this reduction did not affect the significance of an

overall increasing density trend across years. There were no

significant changes in sponge species diversity or abundance

associated with the 1998 ENSO incident.

Following the ENSO event, the ERT assemblages (Fig. 4A–C)

became progressively dominated by larger populations of three

genera: Cinachyrella (C. apion and C. alloclada), Cliona [C. varians and

C. celata (complex)] and Siphonodictyon (S. coralliphagum and

Siphonodictyon sp.), whose densities had all increased significantly

by 2011 compared to 1998. A similar pattern was observed for

sponge assemblages at the CRW (Fig. 4D–F) and SBR (Fig. 4G–I)

habitats, where the same species became progressively more

abundant, although the abundance of some other species

decreased including: Amphimedon viridis, Astroclera sp, Aplysina

cauliformis, Callyspongia (C. tenerrima and C. vaginalis), Chondrilla nucula,

Chondrosia sp., Desmapsamma anchorata, Dysidea spp., Ircinia strobilina,

Spirastrella cunctatrix and Tedania brasiliensis.

Of particular interest is the significant increase in the densities of

two bioeroding genera, Siphonodictyon (2 spp.) and Cliona (3 spp.). At

the beginning of the study, the mean density for both species of

Siphonodictyon on ERTs was 0.1160.02 spg m22; however, by 2011

their abundance reached 1.3760.17 spg m22 [more than ten

times their initial density, (pseudo-F = 4.6049, P(perm) = 0.003)]. A

significant increase was also recorded on CRWs with mean

densities increasing from 0.160.01 in 1995 to 1.060.08 spg m22

in 2011 (pseudo-F = 82.747, P(perm) = 0.0001). This pattern was

not observed for SBRs where the mean densities of these species

oscillated over time from 0.1360.03 in 1995 to a maximum of

0.2260.02 in 2007 and back to 0.1760.02 spg m22 in 2011, with

no significant differences between ENSO and non-ENSO years.

Cliona spp. density on ERTs increased from 0.4860.16 in 1995 to

0.760.23 spg m22 in 2000, but this value gradually declined to

0.5760.18 spg m22 in 2011. Significant increases of Cliona spp.

were recorded at the CRW habitats from 0.3560.17 in 1995 to

0.660.09 spg m22 in 2011(pseudo-F = 41.317, P(perm) = 0.0001)

and in the SBR habitats from 0.3560.09 to 0.860.17 spg m22

over the same period (pseudo-F = 14.563, P(perm) = 0.0002).

However, in contrast to the observations for the coastal reef

assemblages, the increase in Siphonodictyon density was compara-

tively much lower than for Cliona spp. and the non-bioeroding

Cinachyrella spp.

The nMDS ordinations (Fig. 5A–C) for the three contrasting

habitats did not show any differences in sponge assemblages

between pre-ENSO and ENSO years; however, there were

differences in sponge assemblage structure following the ENSO

years. For CRWs in particular (Fig. 5B), there was a distinctly

different sponge assemblage during the last five years of our study

compared to earlier years. In addition, we also found increased

richness on the SBR. There was no meaningful correlation with

any variables over the time period as sponge assemblages pattern

did not follow the main changes associated with ENSO. The

highest correlation identified using the BIOENV analysis on ERTs

was found for salinity, sunlight irradiation and seawater temper-

ature (r = 0.121), whilst a combination of temperature, sunlight

radiation and turbidity best explained the variation in the sponge

assemblages on the CRWs (r = 0.131) and SBRs (r = 0.182).

Discussion

The 1997–8 ENSO had major negative impacts on coral reefs

worldwide [63,64,65] and for corals the level of recovery from this

large-scale event appears to vary considerably between geographic

locations [55,66,67,68,69,70,71]. However, far less is known about

Tolerance of Sponges to Temperature Anomalies

PLOS ONE | www.plosone.org 4 October 2013 | Volume 8 | Issue 10 | e76441



the longer-term responses of other non-coral organisms to this

large-scale climatic event. In this study, we aimed to describe

changes in sponge abundance and assemblage composition on a

Brazilian coral reef system during this ENSO event and in the

subsequent years, and in doing so we present the longest known

study of any entire tropical sponge assemblage. We found that

sponges appeared unaffected by the increase in seawater

temperature and actually increased in abundance after the ENSO

event. This is in stark contrast to all other benthic organisms in this

study area that experienced mass mortalities, including Forami-

nifera, corals, echinoderms, bryozoans and ascidians

[54,41,42,43,44,45]. Our result suggest that tropical sponges in

this region may have increased resilience to higher sea surface

temperatures compared to other organisms, and this has

potentially important implications for reef systems elsewhere.

There are very few long-term studies of entire tropical sponge

assemblages, meaning relatively little is known about their patterns

of temporal variability (but see [23,71,72]), and even less is known

about the processes driving such patterns. In one of the longest

studies of a sponge assemblage prior to our study, Wulff [23]

reported a large decline in a localized Caribbean sponge

assemblage in Panama over a 14-year period (1984–1998) in a

16 m2 plot. This sponge assemblage lost .50% of sponge species

and .40% of biomass over this period, although the decline

appeared gradual over time. Interestingly, like the increases in our

study, these declines could not be correlated with any specific

abiotic or biotic factors, although disease was proposed as a

possible cause. This earlier study obviously contrasts with our

findings over a similar temporal scale to that of [23] (noting the

[23] ended in 1998), where we report an increase in sponge

abundance over time, including through a large-scale thermal

anomaly event. An important difference between our study and

that of Wulff [23] is the different spatial scales that were sampled.

We examined sponge assemblages over a much large spatial scale

and across a range of different habitat types, whereas the small

study area examined by Wulff [23] may have detected only very

local-scale effects. We propose the increase in sponges on northern

Bahian reefs, at least initially, was the result of increased space

availability and potentially reduced competitive interactions as a

result of the decline in other benthic groups.

Figure 2. Summary of wide-scale (A–B) and locally measured (C–F) environmental variables recorded from the studied reefs
throughout the sampling period, demonstrating changes in ambient conditions during the El Niño period (1998). (A) Annual sea
surface temperature and sunlight irradiance; (B) Annual rainfall and mean daily cloud cover; (C) Mean seawater temperature (ERT and CRW); (D) Mean
salinity (ERT and CRW); (E) Mean seawater temperature and salinity (SBR); (F) Mean water clarity (CRW and SBR). Error bars indicate SE around the
mean between replicate reef systems; Vertical bars represent the timing of the 1997–8 El Niño event.
doi:10.1371/journal.pone.0076441.g002
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Figure 3. Changes in density and species richness (Mean ± SE) of the sponge assemblage recorded over a 17-year period (1995–
2011) in Bahia, Brazil. Vertical bars represent the timing of the severe 1997–8 El Niño.
doi:10.1371/journal.pone.0076441.g003
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There is increasing evidence that sponges may be potential

‘winners’ in light of global climate change and ocean acidification

(see [13] for review). For example, [38] reported that the growth

and survival of six ecologically important Caribbean sponge

species was similar between treatments consistent with present day

conditions (28uC; pH = 8.1) and those predicted for 2100 (31uC;

pH = 7.8). However, despite these recent studies there have been

earlier reports of negative effects of temperature on sponges (e.g.

[73]) and temperature has been implicated in the decline of a

number of sponge populations (e.g. [74]). Despite these contrasting

results, our study supports the theory that sponges may be more

tolerant to climate-associated temperature effects than other

benthic groups and thus we suggest that identifying the potential

mechanisms enabling sponges to deal with heat stress should be a

focus of future investigations.

In addition to ENSO events affecting temperature and light

penetration, they also indirectly influence primary production and

generally reduce phytoplankton abundance [75]. Given that

sponges are suspension feeders, it would be reasonable to suggest

that any decline in plankton production would disrupt sponge

feeding resulting in decline of the sponge populations during

ENSO-events; however, this was not what we observed. Instead,

there was an increase in density for both coastal and shallow banks

assemblages (Fig. 3) and therefore it appears that demosponges

(unlike corals [55]) were unaffected by both the food and

temperature stress resulting from the 1997–8 ENSO, or that this

perceived feeding disruption does not occur. This might be the

result of their ability to feed on organic particle sizes not readily

collected by other organisms, particularly pico-plankton [76,77] or

because of the decline of other organisms potentially competing for

food (particularly ascidians). Interestingly, the results from a

previous study undertaken between 1993–4 at Todos os Santos

Bay (approximately 120 km south the studied reefs [78]) provides

further data to support sponge assemblages in this region being

resilient to stress, as they appeared little affected by the oil

pollution that had negative impacts on other organisms.

There have been a number of reports from the Caribbean of

increases in bioeroding clionid sponges after coral declines (e.g.

[18,19,20,79]); for example [80] reported an increase in Cliona

caribbea in uncovered coral colonies following the massive

bleaching event on the Caribbean coast of Costa Rica during

the 1982–3 ENSO event. In our study, densities of Cliona actually

declined on the SBR during the ENSO period, but they increased

significantly in the following years. It is possible that this initial

decline was because this genus, like corals, also harbor zooxan-

thellae [81] and therefore suffered bleaching. Increased abun-

dance by Cliona spp. has also been attributed to high organic

matter and bacterial loading on reefs [82,83,84]. With the

Figure 4. Changes in density of Cliona spp., Cinachyrella spp. and Siphonodictyon spp. recorded from the three contrasting reef
habitats from Bahia, Brazil. Vertical bars represent the timing of the 1997–8 El Niño event.
doi:10.1371/journal.pone.0076441.g004
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exception of Mycale sp. and Cynachirella (2 spp.), all the other genera

recorded from the ERTs were either encrusting or boring species.

Amongst them, clionids were abundant and their densities

significantly increased over the 17-year investigation (ERT:12%;

CRW:17% and SBR:23%), becoming one of the most abundant

genera in the SBRs. We believe this is of concern for the long-term

stability of this reef system given how they can have a destructive

effect on calcium carbonate reef structure.

Anthropogenic impacts have the potential to disrupt the balance

between reef erosion and accretion. Cebrian & Uriz [85] observed

positive correlations between abundance of Cliona viridis and

grazing urchin abundance, and a negative correlation with fleshy

algae abundance in western Mediterranean. These authors

suggested that increased light penetration to the reef as result of

algal grazing enhances the growth rate of this sponge species,

accounting for its greater abundance in absence of fleshy algae.

While it is likely that elevated clionid abundance at our study sites

is largely the result of increase substrate availability, urchin

numbers were also significantly higher post-ENSO [43] and

therefore may have potentially facilitated an increase in clionid

sponges. We consider that the major environmental changes

associated with the 1997–8 ENSO event provide the most

parsimonious explanation for this space liberation and subsequent

bioeroding sponge increase as we have no evidence of any other

major change in pressure within the reef region, such as fishing

intensity, nutrient loading or chemical pollution input.

Even though the overall species richness did not change

significantly over time, we identified temporal species-specific

changes in abundance, with some species increasing in abundance

while others decreased. We propose that these changes are likely

the result of biotic, rather than abiotic, interactions because: (i) the

environmental conditions during ENSO periods appeared insuf-

ficient to notably disturb the sponge assemblage directly; and (ii)

because we could not correlate changes in overall abundance with

any of the environmental parameters. In particular, we propose

that sponges benefited from reduced spatial competition with

other benthic groups and increased space availability.

In summary, we found most sponges to be highly resilient to the

temperature and UV stress associated with the 1997–8 ENSO

event, in contrast to all other benthic groups, which suffered

massive mortalities. Furthermore, since this event, sponge

abundance has increased, although species richness has remained

the same. We propose that, based on the resilience of sponges in

this study coupled with results from recent studies (e.g. [13,37,38]),

sponges may be one benthic group that might withstand the effects

of global climate change and actually benefit from the declines

expected in other benthic groups.
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