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The distributed computing scenario is rapidly evolving for integrating self-organizing and dynamic
wireless networks. Unreliable failure detectors (FDs) are classical mechanisms that provide
information about process failures and can help systems to cope with the high dynamics of these
networks. A number of failure detection algorithms have been proposed so far. Nonetheless, most of
them assume a global knowledge about the membership as well as a fully communication connectivity;
additionally, they are time-based, requiring that eventually some bound on the message transmission
will permanently hold. These assumptions are no longer appropriate to the new scenario. This paper
presents a new FD protocol that implements a new class of detectors, namely ♦SM, which adapts the
properties of the ♦S class to a dynamic network with an unknown membership. It has the interesting
feature of being time-free, so that it does not rely on timers to detect failures; moreover, it tolerates

the mobility of nodes and message losses.
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1. INTRODUCTION

The distributed computing scenario is rapidly evolving for
integrating unstructured, self-organizing and dynamic systems,
like mobile wireless networks [1]. Nonetheless, the issue of
designing reliable services that can cope with the high dynamics
of these systems is a challenge. A failure detector (FD) is a
fundamental service able to help in the development of fault-
tolerant distributed systems. Unreliable FDs can informally
be seen as a per process oracle, which periodically provides
a list of processes suspected of having crashed [2]. In this
paper, we are interested in the class of eventually strong FDs,
denoted by ♦S. Those FDs can make an arbitrary number of
mistakes; yet, there is a time after which some correct process is
never suspected (eventual weak accuracy property). Moreover,
eventually, every process that crashes is permanently suspected
by every correct process (strong completeness property). Here
♦S is the weakest class allowing one to solve consensus in
an asynchronous system (with the additional assumption that
a majority of processes are correct). Consensus allows a set of
processes to agree upon a common value, among the proposed

ones, and it is in the heart of important middleware, e.g. group
communication services, transactions and replication servers.

This paper focuses on FDs for mobile and unknown networks,
such as wireless mesh networks (WMNs) [3], wireless sensor
networks (WSNs) [4]. These kinds of networks share the
following properties: (1) a node does not necessarily know all
the nodes of the network; (2) the message transmission delay
between nodes is highly unpredictable; (3) the network is not
fully connected, and thus a message sent by a node might be
routed through a set of intermediate nodes until if reaches its
destination; (4) a node can move around and thus change its
neighborhood.

The nature of wireless mobile networks creates important
challenges for the development of failure detection protocols.
The inherent dynamics of these environments prevents
processes from gathering a global knowledge of the system’s
properties. The network topology is constantly changing and
the best that a process can have is a local perception of these
changes. Global assumptions, such as the knowledge about
the whole membership, the maximum number of crashes, full
connectivity or reliable communication, are no more realistic.
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A number of failure detection algorithms have been proposed
so far. Nonetheless, most of current implementations of FDs
are based on an all-to-all communication approach where
each process periodically sends ‘I am alive’ messages to all
processes [5–7]. As they usually consider a fully connected
set of known nodes, these implementations are not appropriate
for dynamic environments. Furthermore, they are usually
time-based, assuming that eventually some bound of the
transmission will permanently hold. Such an assumption is
not suitable for dynamic environments where communication
delays between two nodes can vary due to the mobility of
nodes. In [8], Mostefaoui et al. have proposed an asynchronous
implementation of FDs which is denoted time-free. It is based
on an exchange of messages that just uses the values of f

(the maximum number of faults in the system) and n (the
total number of nodes). However, their computation model
consists of a set of fully connected initially known nodes. Some
works [9, 10] focus on the heartbeat FD for sparsely connected
networks with an unknown membership. The heartbeat FD
is a special class of FD which is time-free and is able to
implement quiescent reliable communication. But, instead of
a list of suspects, it outputs a vector of unbounded counters; if
a process crashes, its counter eventually stops increasing. It is
worth remarking that none of these works tolerate the mobility
of nodes. Few implementations of unreliable FDs focus on
wireless mobile networks [11–13]. The fundamental difference
between these works and ours is the fact that all of them are
time-based. The only exception is [14], but it does not tolerate
node mobility.

1.1. Contributions

This paper makes two contributions: (i) the proposition of a
model and the definition of the ♦SM class of FDs; (ii) a new
time-free FD algorithm that implements the class ♦SM under a
wireless mobile network.

To implement unreliable FDs in an asynchronous dynamic
system of mobile nodes, some assumptions about the underlying
system should be made. Owing to arbitrary arrivals and
departures, moves and crashes, dynamic systems can be
characterized by the succession of unstable periods followed
by stable periods. During the unstable periods, certain situations
could block the computation. For example, the rapid movement
of nodes, or numerous joins or leaves along the execution, may
prevent any useful computation.Thus, the system should present
some stability conditions that when satisfied for longtime
enough will be sufficient for the computation to progress and
terminate. In the classic model of distributed computation, these
stable conditions are related mainly to synchrony requirements
on process speed and message delays [2]. For the protocol
proposed herein, since the computation model is based on
a message exchange pattern and additionally the system
composition is unknown, the stable conditions relate to some
properties that nodes should satisfy in the network. For example,

in order to be known in the system, a mobile node should
interact at least once with some other node that never departs
from the system. Thus, the first contribution of this paper is
to propose a model and identify sufficient assumptions able
to implement the properties of a new class of FDs suitable
for mobile networks with unknown membership. The class
of eventually strong FDs with unknown membership (namely,
♦SM ) adapts the properties of the ♦S class to a dynamic system
with an unknown membership.

The second contribution is the proposition of an FD algorithm
that implements ♦SM . It is suitable for wireless mobile
networks and has the following innovative features that provide
scalability and adaptability: (i) it is conceived for a network
whose membership is unknown and whose communication
graph is not complete; (ii) it tolerates node mobility, beyond
arbitrary joins and leaves; (iii) the failure detection uses local
information (for the membership of the neighborhood), instead
of traditional global information, such as n and f ; (iv) the failure
detection is time-free, and thus the satisfaction of the properties
of the FD does not rely on traditional synchrony assumptions,
but on a message exchange pattern followed by the nodes;
(v) the message exchange pattern is based on local exchanged
information among neighbors and not on global exchanges
among nodes in the system. Initially, each node only knows
itself. Then it periodically exchanges a query–response pair of
messages with its neighbors. Then, based only on the reception
of these messages and the partial knowledge about the system
membership (i.e. its neighborhood), a node is able to suspect
other processes or revoke a suspicion. This information about
suspicions and mistakes is piggybacked in query and response

messages and eventually propagated to the whole network.
As far as we are aware of, this paper brings the first time-

free FD algorithm for networks with unknown membership that
tolerates the mobility of nodes. Correctness proofs are given
that the algorithm can implement FDs of class ♦SM when
some properties are satisfied by the underlying system. We
believe that our FD of class ♦SM may be successfully adopted
to implement coordination protocols in a dynamic set, such
as the one proposed by Greve and Tixeuil [15], who present
a solution for the fault-tolerant consensus in a network of
unknown participants with minimal synchrony assumptions.

A preliminary work with some of the contributions of this
paper appeared first in [16] as a brief announcement. Afterward,
in [17], we have provided a first version of the algorithm to
implement ♦SM , but for a slightly different model. Then, in
[18], a discussion about an appropriate model to implement
unreliable FDs in dynamic systems is presented.

The rest of the paper is organized as follows. Section 2 defines
the model and specifies the ♦SM FD class. Section 3 identifies
assumptions to implement those FDs. Sections 4 and 5 present
a time-free FD of the ♦SM class and its correctness proofs,
respectively. Section 6 presents an experimental evaluation of
the proposed FD protocol. A thorough related work is described
in Section 7. Finally, Section 8 concludes the paper.
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2. MODEL FOR FAILURE DETECTION
IN DYNAMIC NETWORKS

We are particularly interested in systems deployed over a
wireless mobile network, such as WMNs, WSNs and MANETs.
The system is a collection of nodes that communicate by sending
and receiving messages via a packet radio network.

There are no assumptions on the relative speed of processes
or on message transfer delays, and thus the system is
asynchronous. To simplify the presentation, we take the range
T of the clock’s tick to be the set of natural numbers. There
is no global clock and processes do not have access to T : it
is introduced for the convenience of the presentation, to state
properties and make proofs.

Finite arrival model [19]. The network is a dynamic system
composed of infinitely many processes; but each run consists
of a finite set � of n nodes, namely, � = {p1, . . . , pn}. This
model properly expresses dynamic networks where nodes join
and leave the system as they wish. It is suitable for long-lived
or unmanaged applications, as for example, sensor networks
deployed to support crises management or help in dealing with
natural disasters.

The membership is unknown. Processes are not aware about
� or n, because, moreover, these values can vary from run to
run [19]. There is one process per node; each process knows its
own identity, but it does not necessarily know the identities of
the others. Nonetheless, they can make use of the broadcast
facility of the wireless medium to know one another. Thus,
we consider that a process knows a subset of �, composed
of nodes with whom it previously communicated. A process
may fail by crashing, i.e. by prematurely or by deliberately
halting (switched off); a crashed process does not recover. When
a process leaves the network, it can re-enter with a new identity;
then it is considered as a new process. Until it possibly crashes,
a process behaves according to its specification. A process that
does follow its algorithm specification and never crashes is said
to be correct.

Communication graph is dynamic. Owing to arbitrary joins,
leaves and failures, the network is represented by a commu-
nication graph with a dynamic topology, and thus the rela-
tions between nodes take place over a time span T ⊆ N.
Following [20], we consider that the dynamics of the sys-
tem is represented by a time-varying graph, namely TVG,
G = (V , E, T , ρ, ζ, ψ), where: (1) V = � represents the set of
nodes; (2) E ⊆ V ×V represents the set of logical links between
nodes; (3) ρ : E × T → {0, 1} is an edge presence function,
indicating whether a given edge e ∈ E is available at a given
time t ∈ T , such that ρ(e, t) = 1 iff e is present at t , otherwise
ρ(e, t) = 0; (4) ζ : E×T → N is a latency function, indicating
the time taken to cross a given edge e if starting at a given date t ;
since the system is asynchronous, there is no bound for this time,
and thus, we consider that ζ exists but cannot be estimated and
(5) ψ : V ×T → {0, 1} is a node presence function, indicating
whether a given process pi ∈ V is up at a given time t ∈ T , such
that ψ(pi, t) = 1 iff node pi is up at t , otherwise ψ(p, t) = 0.

Let Ri be the wireless transmission range of pi in the network;
then all the nodes that are at distance at most Ri from pi

in the network are considered 1-hop neighbors, belonging to
the same neighborhood. We denote Nt

i to be the set of 1-
hop neighbors from pi at time t ∈ T . The neighborhood
relationship establishes the edge set, in such a way that pj ∈ Nt

i

iff (pi, pj ) ∈ Et
i , such that ρ((pi, pj ), t) = 1. The degree of

pi at time t is defined to be Degt
i = |Et

i |.
Given a TVG G, the graph G = (V , E) is called

the underlying graph of G. G should be considered a
sort of footprint of G which flattens the time dimension
and indicates only the pair of nodes that have relations at
some time in T . Formally, a sequence of couples J =
{(e1, t1), (e2, t2), . . . , (ek, tk)}, such that {e1, e2, . . . , ek} is a
walk in G, is a journey in G if and only if ρ(ei, ti) = 1 and
ti+1 ≥ ti + ζ(ei, ti) for all i < k. If a journey exists from pi to
pj , we say that pi reaches pj or more simply, pi � pj .

Communication is fair-lossy. Local broadcast between 1-
hop neighbors is fair-lossy. This means that messages may be
lost, but if pi broadcasts m to processes in its neighborhood
an infinite number of times, then every pj permanently in the
neighborhood receives m from pi an infinite number of times,
or pj is faulty. That is, if pi starts to send m at time t an
infinite number of times, then, if ρ((pi, pj ), t

′) = 1, ∀t ′ ∈
(t, ∞), pj receives m an infinity number of times if pj is
correct. This condition is attained if the medium access control
(MAC) layer of the underlying wireless network provides
a protocol that reliably delivers broadcast data, even in the
presence of unpredictable behaviors, such as fading, collisions
and interference; solutions in this sense have been proposed
in [21–23].

Mobility model. Nodes in � may be mobile and they can
keep continuously moving and pausing in the system. When
a node pm moves, its neighborhood may change. We consider
a passive mobility model, i.e. the node that is moving does not
know that it is moving. Hence, the mobile node pm cannot notify
its neighbors about its movement. Then, from the viewpoint of
a neighbor, it is not possible to distinguish between a moving,
a leave or a crash of pm. During the change of neighborhood,
pm keeps its state, that is, the values of its variables.

2.1. Stability and connectivity assumptions

One important aspect on the design of FDs for dynamic
networks concerns the time period and conditions in which
processes are connected to the system. During unstable
periods, certain situations, as for example, connections for
very short periods or numerous joins or leaves along the
execution (characterizing a churn) could block the application
and prevent any useful computation. Thus, to implement any
global computation, the system should present some stability
conditions that when satisfied for long enough time will be
sufficient to satisfy the requirements of the application and
terminate. To implement FDs with an unknown membership,
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processes should interact with some other process that never
departs from the system to be known. If there is some process
such that the rest of processes have no knowledge whatsoever
of its identity, there is no algorithm that implements an FD with
weak completeness [24]. Completeness characterizes the FD
capability of suspecting every faulty process permanently. In
this sense, the characterization of the actual membership of the
system, that is, the set of processes that might be considered for
the computation is of utmost importance.

We consider then that a process pi joins the network at
some point t ∈ T in time. Subsequently, pi must somehow
communicate with the others in order to be known. In a wireless
network, this can be done by simply broadcasting its identity
to the neighbors. Owing to this initial communication, every
process pj is able to gather an initial partial knowledge �j ⊆ �

about the system’s membership, which increases over the time
along pj ’s execution. Let �j(t) be the partial knowledge of pj

by time t . A process is known if, after have joined the system,
it has been identified by some stable process. A stable process
is thus a mobile process that, after having entered the system
at some point in time, never departs (due to a crash or a leave);
otherwise, it is faulty. When pi leaves the network at time t ′ > t ,
it can re-enter the system with a new identity, and thus, it is
considered a new process. Processes may join and leave the
system as they wish, but the number of re-entries is bounded,
due to the finite arrival assumption.

Let us thus define the status that a process may exhibit along
the system execution.

Definition 2.1 (Process status). A process pi may assume
the following status in the system:

joint (pi) ⇔ ∃t ∈ T , ∀s < t, ψ(pi, s)

= 0 ∧ ψ(pi, t) = 1,

stablet (pi) ⇔ ∃t ∈ T , ∀t ′ ≥ t, ψ(pi, t
′) = 1,

f aultyt (pi) ⇔ ∃s, t ∈ T , s < t, ψ(pi, s) = 1 ∧ ∀t ′

≥ t, ψ(pi, t
′) = 0,

knownt(pi) ⇔ ∃pj , ∃t ∈ T , stablet (pj ) ∧ pi ∈ �j(t).

The failure pattern of the system, namely F(t), is the set
of processes that have failed in the system by time t . That
is, F(t) = {pi : f aultyt (pi)}. Similarly, S(t) is the set of
processes that are stable in the system by time t . That is,
S(t) = {pi : stablet (pi)}.
Definition 2.2 (Membership). The membership of the sys-
tem is the Known set.

Stable
def=

⋃

t∈T
S(t),

Faulty
def=

⋃

t∈T
F(t),

Known
def= {pi : ∃t ∈ T , pi ∈ Stable ∪ Faulty

∧ knownt(pi)}.

Let VKS = Known ∩ Stable and EKS ⊆ VKS × VKS.
The graph GKS = (VKS, EKS) ⊆ G is the graph induced
from the stable known nodes in �, defining the TVG GKS =
(VKS, EKS, T , ρ, ψ) ⊆ G.

We can identify classes of TVG based on the temporal
properties established by the entities. The classes are
important because they imply necessary conditions and
impossibility results for distributed computations. Notably,
Class 3 (Connectivity over time) [20] is important for our study.
It means that the TVG is connected over time.

Assumption 1 (Network connectivity over time). In the sys-
tem, represented by the TVG GKS, ∃t ∈ T , ∀t ′ ≥ t , ∀pi, pj ∈
VKS, pi � pj (pi reaches pj ). That is, after t , there is a journey
J , ∀pi, pj ∈ Known∩Stable. For a communication purpose,
we assume that each edge ei of J remains available until a mes-
sage is delivered, and thus ρ(ei, t) = 1, ∀t ∈ [ti , ti + ζ(ei, ti)].

The connectivityAssumption 1 states that, in spite of changes
in the topology, from some point in time t , the TVG GKS is
connected over time. This is a common assumption, mandatory
to ensure reliable dissemination of messages to all stable
processes in a dynamic network [20, 25] and thus to ensure
the global properties of the FD [2, 24, 26, 27].

Recent works about radio communication advocate a ‘local’
fault model, instead of a ‘global’ fault model, as a suitable
strategy to deal with the dynamics and unreliability of wireless
channels in spite of failures [22, 23, 27–29]. They define
bounds on the maximum number of local failures in order to
reliably deliver data. The locality of failures can be interpreted
as an uniform distribution of failures across the network and
represents more accurately the reality of wireless channels.
Following these recent works, the local fault model is the
approach adopted in our work.

2.2. An FD of class ♦SM

Unreliable FDs provide information about the liveness of
processes in the system [2]. Each process has access to a local
FD that outputs a list of processes that it currently suspects
of being faulty. The FD is unreliable in the sense that it may
erroneously add to its list a process that is actually correct. But
if the detector later believes that suspecting this process is a
mistake, it then removes the process from its list.

FDs are formally characterized by two properties: (i)
Completeness characterizes its capability of suspecting every
faulty process permanently. (ii) Accuracy characterizes its
capability of not suspecting correct processes. Our work is
focused on the class of Eventually Strong detectors, also known
as ♦S.

Nonetheless, we adapt the properties of this class in order to
implement an FD in a dynamic set. Then, we define the class
of Eventually Strong FDs with Unknown Membership, namely
♦SM . This class keeps the same properties of ♦S, except that
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they are now valid to known processes that are either stable or
faulty.

Definition 2.3 (Eventually strong FD with unknown
membership (♦SM )). Let pi, pj be mobile nodes. Let suspj be
the list of processes that pj currently suspects of being faulty.
The ♦SM class contains all the FDs that satisfy

Strong completeness def= {∃t ∈ T , ∀t ′ ≥ t, ∀pi

∈ Known ∩ Faulty ⇒ pi

∈ suspj , ∀pj ∈ Known

∩ Stable};
Eventual weak accuracy def= {∃t ∈ T , ∀t ′ ≥ t, ∃pi

∈ Known ∩ Stable ⇒ pi

�∈ suspj , ∀pj ∈ Known

∩ Stable}.

3. TOWARD A TIME-FREE FD FOR THE ♦SM CLASS

None of the FD classes can be implemented in a purely
asynchronous system [2]. Indeed, while completeness can be
realized by using ‘I am alive’ messages and timeouts, accuracy
cannot be safely implemented for all system executions. Thus,
some additional assumptions on the underlying system should
be considered in order to implement them. With this aim, two
orthogonal approaches can be distinguished in the literature:
the time-based and the time-free failure detection [30]. The
time-based model is the traditional approach and supposes that
channels in the system are eventually timely; this means that,
for every execution, there are bounds on process speeds and on
message transmission delays. However, these bounds are not
known and they hold only after some unknown time [2].

An alternative approach suggested by Mostefaoui et al. [8]
and developed so far by Cao et al. [14] and Mostefaoui et al. [26]
considers that the system satisfies a message exchange pattern
on the execution of a query-based communication and is time-
free. While the time-based approach imposes a constraint on the
physical time (to satisfy message transfer delays), the time-free
approach imposes a constraint on the logical time (to satisfy a
message delivery relative order that assumes that some nodes—
not previously defined—have faster communications than the
other ones). These approaches are orthogonal and cannot be
compared, but, they can be combined at the link level in order
to implement hybrid protocols with combined assumptions [30].

3.1. Stable query–response communication mechanism

Our FD is time-free and based on a local query–response

communication mechanism [26] adapted to a network with
unknown membership. At each query–response round, a node
systematically broadcasts a query message to the nodes
in its neighborhood until it possibly crashes or leaves the

system. The time between two consecutive queries is finite
but arbitrary. Each couple of query–response messages are
uniquely identified in the system. A process pi launches the
primitive by sending a query(m) with a message m. When
a process pj delivers this query, it updates its local state
and systematically answers by sending back a response(m′)
with a message m′ to pi . Then, when pi has received at
least αi responses from different processes, the current query–
response terminates. Without loss of generality, the response
for pi itself is among the αi responses.

Formally, the query–response primitive has the following
properties:

(i) QR-Validity: If a query(m) is delivered by process pj ,
it has been sent by process pi ;

(ii) QR-Uniformity: A query(m) is delivered at most once
by a process;

(iii) QR-Termination: Let t be the time at which a process
pi terminates to send a query. If f aultyt (pi) does not
hold, then that query generates at least αi response(m′)
messages from a subset of Xi processes, |Xi | ≥ αi .

The query–response primitive has the following interface:

(i) QR-QUERY(m): A query is sent by a process pi to all
the processes in its neighborhood;

(ii) QR-DELIVER(Xi , M): The set M of response messages
sent from processes in Xi in response to a query is
delivered to pi ;

An implementation of a couple of query–response

communication over fair-lossy local channels can be done by
the repeated broadcast of the query by the sender pi until it
has received at least αi responses from its neighbors. Since
the communication pattern followed by our FD is local, αi is
defined locally as a function of the expected number of stable
known neighbors with whom pi may communicate at the time
t at which the query is issued.

Theorem 3.1. To ensure liveness of the time-free query–
response communication mechanism, a threshold αi on the
number of stable nodes in the neighborhood of pi must be
established.

Proof. Let us assume that pi issues a query–response, but it
does not know αi . Assume that fi is the maximum number of
faulty processes in pi’s neighborhood and that fi neighbors
crash at time t during the query. Since the set of responses
received by pi includes its own response, αi = |Nt

i | − fi + 1.
According to the query–response primitive pattern,pi waits for
a number of ri > 0 responses. However, on the occurrence of fi

failures, only αi responses are sent to pi . Thus, if ri > αi , pi will
wait forever, violating then the termination property. Therefore,
pi must know αi in order to define ri and progress.
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Property 1 (Stable termination property (SatP)).
Let pi be a node that issues a query. Thus, ∃pj ∈
Known ∩ Stable, pj �= pi , which receives that query

and issues a response to pi .

For the failure detection problem, the stable termination is
necessary for the reliable dissemination of the information to
the whole network and consequent satisfaction of the accuracy
and completeness properties. It is a guarantee that information
from/to pi is going to be sent/received to/from at least a stable
pj in its neighborhood. Moreover, it ensures that the first query

issued by pi , when it joins the network, will be delivered by at
least one stable process in such a way that pi may take part in
the membership of the system.

The local choice for αi changes from previous works that
consider a global value either proportional to the total number of
correct processes [8] or the total number of stable processes [26]
or the total number of faults [14] in the system. Moreover, it
follows recent works on fault-tolerant communication in radio
networks that propose a ‘local’ fault model, instead of a ‘global’
fault model, as an adequate strategy to deal with the dynamics
and unreliability of wireless channels in spite of failures [22].

Theorem 3.2. To ensure the SatP property, |Nt
i | > 2fi,

∀pi, ∀t .

Proof. αi = |Nt
i |−fi +1, which ensures the liveness of query–

response rounds. To ensure that at least one stable known node
pj (pj �= pi) receives the query and sends a response to pi ,
responses must be issued by more than fi +1 nodes. Therefore,
αi > fi + 1 and, consequently, |Nt

i | > 2fi .

3.2. Behavioral property

Instead of synchrony assumptions, to ensure the accuracy of
the detection, the time-free model establishes conditions on the
logical time the messages are delivered by processes. These
are unified in the stabilized responsiveness property, namely
SRP . Thus, SRP(pi) states that eventually, for any process
pj , which is in the neighborhood of a stable known node pi , the
set of responses received by pj to its query always includes a
response from pi , that is, the response of pi is always a winning
response [30]. Moreover, as nodes may move, the SRP(pi) also
states that neighbors of pi eventually stop moving outside pi’s
neighborhood.

Property 2 (Stabilized responsiveness property (SRP)).
Let Xt ′

j be the set of processes from which pj has received
responses to its query sent at t ′. Process pi satisfies SRP at
time t if:

SRP t (pi) ⇔ ∃t ∈ T , stablet (pi)∧
pi ∈ Xt ′

j , ∀pj ∈ Nt ′
i , ∀t ′ ≥ t ∨ f aultyt ′(pj )∧

pj ∈ Nt ′
i ⇒ pj ∈ Nt ′′

i , ∀pj , ∀t ′′ > t ′

∨ f aultyt ′′(pj ).

This property denotes the ability of a stable known node pi

to reply, among the first αj nodes, to a query sent by pj in
its neighborhood. It should hold for one stable known node
pi in the system, thus preventing pi from being permanently
suspected. As a matter of comparison, in the time-based model,
this property would approximate the following: there is a time
t after which the output channels from a stable known node pi

to every other node pj that knows pi are eventually timely.
A discussion about how the properties in this section could

be satisfied in practice is presented in Section 1.2 after the
protocol’s explanation.

4. AN FD ALGORITHM FOR THE ♦SM CLASS

4.1. Algorithm description

Algorithm 1 describes our protocol for implementing an FD of
class ♦SM for a mobile network of unknown membership that
satisfies the model and assumptions stated in Sections 2 and 3.
An implementation of the query--response primitive is given
in Algorithm 2.

Notations. We use the following notations:

(i) knownT oi : denotes the partial knowledge of pi about
the system’s membership, i.e. it denotes the current
knowledge of pi about its neighborhood.

(ii) suspi : denotes the current set of processes suspected
of being faulty by pi . Each element of this set is a
tuple of the form 〈id, ct〉, where id is the identifier of
the suspected node and ct is the tag associated to this
information.

(iii) misti : denotes the set of nodes that were previously
suspected of being faulty but such suspicions are
currently considered to be a mistake. Similar to the
suspi set, the misti is composed of tuples of the form
〈id, ct〉.

(iv) Xi : denotes the set of nodes from which pi has received
responses to its last query message.

(v) susp_f romi : a vector containing in index j the suspj

set sent from pj in response to the last query from pi .
(vi) mist_f romi : a vector containing in index j the mistj

set sent from pj in response to the last query from pi .
(vii) Add(set, 〈id, ct〉): is a function that includes 〈id, ct〉

in set . If an 〈id, −〉 already exists in set , it is replaced
by 〈id, ct〉.

Description. Algorithm 1 is composed of two tasks, T1 and
T2, and the procedure Update_State(), called by these tasks in
order to analyze the contents of a receiving message (query or
response). Note that both messages contain information about
suspected nodes and mistakes kept by the sending node pi .
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Eventually Strong FD with Unknown Membership 1513

Algorithm 1 Time-free implementation of a ♦SM FD.

1 init:
2

3 suspi ← ∅; misti ← ∅; knownT oi ← ∅

4

5

6 Task T1:
7 Repeat forever
8 qr-query(suspi, misti)
9 Upon qr-deliver(Xi, susp_f romi, mist_f romi)
10 For all pj ∈ Xi Do
11 Call upon Update_State (pj, susp_f romi[j ], mist_f romi[j ])
12 For all pj ∈ knownT oi \ Xi | 〈pj , −〉 �∈ suspi Do
13 If 〈pj , ct〉 ∈ misti Then
14 Add(suspi, 〈pj , ct + 1〉)
15 misti = misti \ {〈pj , −〉}
16 Else
17 Add(suspi, 〈pj , 0〉)
18 End repeat
19

20 Task T2: Upon reception of query (suspj, mistj) from pj

21

22 Call upon Update_State (pj, suspj, mistj)
23 send response (suspi, misti) to pj

24

25 Procedure Update_State (pj, suspj, mistj):
26 knownT oi ← knownT oi ∪ {pj }
27 For all 〈px, ctx〉 ∈ suspj Do
28 If 〈px, −〉 �∈ suspi ∪ misti or (〈px, ct〉 ∈ suspi ∪ misti and ct < ctx) Then
29 If px = pi Then
30 Add(misti , 〈pi, ctx + 1〉)
31 Else
32 Add(suspi, 〈px, ctx〉)
33 misti = misti \ {〈px, −〉}
34 For all 〈px, ctx〉 ∈ mistj Do
35 If 〈px, −〉 �∈ suspi ∪ misti or (〈px, ct〉 ∈ suspi ∪ misti and ct < ctx) Then
36 Add(misti , 〈px, ctx〉)
37 suspi = suspi \ {〈px, −〉}
38 If (px �= pj) Then
39 knownT oi ← knownT oi \ {px}

Task T 1: Generating suspicions. This task is made up of an
infinite loop. At each round, a qr-query is invoked (line 8)
and a query(suspi , misti) message is sent to all nodes of
pi’s neighborhood (line 4, Algorithm 2). On the invocation of
qr-deliver (line 9), pi waits for at least αi responses, which
includes pi’s own response (lines 6–11, Algorithm 2). For
each response(suspj , mistj ) received from pj , pi stores pj

in Xi , suspj in susp_f romi[j ] and mistj in mist_f romi[j ].
Then, based on the response messages sent by the processes

that answered to its query, pi updates its local information
about suspicions and mistakes by calling, for each of these
messages from pj , the procedure Update_State (line 11),
whose code is detailed below. Furthermore, considering its
current information about partial knowledge of the system’s
membership, pi also includes new suspicions (lines 12–17):
it starts suspecting each node pj , not previously suspected
(pj �∈ suspi), which it knows (pj ∈ knownT oi), but from
which it does not receive a response to its last query. If a
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1514 F. Greve et al.

Algorithm 2 Query--Response implementation.

1 Upon a call to qr-query (suspi, misti) do
2

3 Xi ← susp_f romi ← mist_f romi ← ∅

4 broadcast query (suspi, misti) Enddo
5

6 When receive response(suspj , mistj) from pj do
7

8 Xi = Xi ∪ pj

9 susp_f romi[j ] = suspj

10 mist_f romi[j ] = mistj
11 When (|Xi | ≥ αi) trigger qr-deliver(Xi, susp_f romi, mist_f romi)
12

previous mistake information related to this new suspected node
exists in the mistake set misti , it is removed from it (line 15)
and the suspicion information is then included in suspi with a
tag that is greater than the previous mistake tag (line 14). If pj

is not in the mist set (i.e. it is the first time pj is suspected), pi

suspected information is tagged with 0 (line 17).
Task T 2: Propagating suspicions and mistakes. This task

allows node pi to handle the reception of a query message.
Similarly to a response message, pi calls the procedure
Update_State in order to update its local information about
suspicions and mistakes with that sent by the querying node
pj (line 22). At the end of the task (line 23), pi sends to pj a
response message.

Procedure Update_State. It is responsible for analyzing
the information about suspicions and mistakes sent by a
process. However, based on the tag associated to each piece
of information, the receiving node only takes into account the
ones that are more recent than those it already knows or the
ones that it does not know at all. The two loops, respectively,
handle the information received about suspected nodes (lines
27–33) and about mistaken nodes (lines 34–39). Thus, for each
node px included in the suspected (respectively, mistake) set
of the query message, pi includes the node px in its suspi

(respectively, misti) set only if the following condition is
satisfied: pi received a more recent item of information about
the px status (failed or mistaken) than the one it has in its suspi

and misti sets. Furthermore, in the first loop, a new mistake is
detected if the receiving node pi is included in the suspected set
of the query message (line 29) with a greater tag. It is worth
pointing out that procedure Update_State is also responsible
for updating pi’s partial knowledge of the system’s membership
(line 26).

Dealing with mobility and generating mistakes. When a
node pm moves to another destination, the nodes of its old
destination will start suspecting it, since pm is in their known

set and it cannot reply to query messages from the latter

anymore. Hence, query–response messages that include pm

as a suspected node will be propagated to nodes of the network.
Eventually, when pm reaches its new neighborhood, it will
receive such suspicion messages. Upon receiving them, pm

will correct such a mistake by including itself (pm) in the
mistake set of its corresponding query–response messages
with a greater tag (lines 29–30). Such information will be
propagated over the network. On the other hand, pm will
start suspecting the nodes of its old neighborhood since
they are in its knownm set. It then will broadcast this
suspected information in its next query–response message.
Eventually, this information will be corrected by the nodes
of its old neighborhood, and the corresponding generated
mistakes will spread over the network, following the same
principle.

To avoid a ‘ping-pong’ effect between information about
failure suspicions and corrections (mistakes), lines 38–39 allow
the updating of the known sets of both the node pm and of those
nodes that belong to the original destination of pm. Then, for
each mistake 〈px, ctx〉 received from a node pj , such that node
pi keeps an old item of information about px , pi verifies whether
px is the sending node pj (line 38). If they are different, px

should belong to a remote neighborhood, because otherwise,
pi would have received the mistake by px itself since only
the process can generate a new mistake about itself (line 29).
Thus, px is removed from the local set knownT oi (line 39).
Note, however, that this condition is not sufficient to detect
the mobility because px can be a neighbor of pi but due to
an asynchronous race, the query–response sent by px with the
mistake has not yet arrived at pi . In fact, the propagated mistake
sent by pj has arrived at pi first. If that is the case, px has been
unduly removed from knownT oi . Fortunately, since the local
broadcast is fair-lossy, the query–response from px is going
to eventually arrive at pi , if pi is stable, and, as soon as the
message arrives, pi will once again add px to its knowi set
(lines 20–26).
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Eventually Strong FD with Unknown Membership 1515

4.2. Practical issues

The stable termination of the query--response primitive may
be satisfied if the time of pause, between changes in direction
and/or speed, is defined to be greater than the time to transmit
the query and receive the response messages. This condition
is attained when, for example, the most widely used Random
Waypoint Mobility Model [31] is considered.

Note that the FD algorithm does not demand fi to be known,
but αi , which is a threshold on the number of stable nodes in
the neighborhood of pi . But, how to define αi? Theoretically,
αi = |Nt

i | − fi + 1 and to ensure SatP (Theorem 3.2),
αi > fi + 1. But, in practice, αi may be defined to be the
current number of nodes in the neighborhood of pi at time t .
Since 1-hop neighbors are easily established (through MAC-
level hello packets), αi may represent all current nodes in the
neighborhood of pi . It is worth remarking that the value of
αi relates not only to the application density, but also to the
type of network considered (either WMN, WSN, etc.) and the
current topology of the network during execution. Thus, it can be
defined on the fly, based on the current behavior of the network.

WMNs, WSNs and infra-structured mobile networks [14,
32] are good examples of platforms that would satisfy the
assumptions of our model, specially the SRP . In a WMN,
the nodes move around a fixed set of nodes (the core of the
network) and each mobile node eventually connects to a fixed
node. A WSN may be composed of stationary nodes and can
be organized in clusters, so that the communication overhead
can be reduced; one node in each cluster is designated the
cluster head (CH) and the other nodes, cluster members (CMs).
Communication between clusters is always routed through the
respective CHs which act as gateway nodes and are responsible
for maintaining the connectivity among neighboring CHs.

An infra-structured mobile network is composed of mobile
hosts (MHs) and mobile support stations (MSSs). An MH is
connected to an MSS if it is located in its transmission range
and two MHs can only communicate through MSSs, but, due to
mobility, an MH can leave and enter the area covered by other
MSSs. The system is composed of N MSSs but infinitely many
MHs. However, in each run the protocol has only finitely many
MHs. There are some works that propose to implement a leader
oracle [14] or to solve consensus in this type of network [32].

For all these platforms, special nodes (the fixed node for
WMNs, CHs for WSNs or MSSs for infra-structured networks)
eventually form a strongly connected component of stable nodes
over time; additionally, they can be regarded as fast, so that
they will always answer to a query faster than the other nodes,
considered as slow nodes (mobile nodes for WMNs, CMs for
WSNs or MHs for infra-structured networks). Thus, one of these
fast nodes may satisfy the SRP property. The SRP may seem
strong, but in practice it should just hold during the time the
application needs the strong completeness and eventual weak
accuracy properties of FDs of class ♦SM , as for instance, the
time to execute a consensus algorithm.

Let us clarify that our FD protocol is coined to work in any
environment: either synchronous or asynchronous. The fact that
the network behaves synchronously contributes even more to
the satisfaction of the stability properties of the model. Indeed,
a ‘correct’ node which behaves synchronously will satisfy the
stability properties. If the network exhibits a hierarchy (e.g.
WSNs, clustering), the better candidates to satisfy the respon-
siveness are going to be the CHs. But, this is not mandatory;
our FD protocol is flexible enough to consider any other node
(either a CH or not) for satisfying the responsiveness property.

In practice, the FD protocol is going to be used by other
protocols in the dynamic network on the fly. That is, it will be
queried during specific periods, the time to help the overlying
protocol (e.g. consensus) to detect the failures and converge.
Thus, in practice, the membership that is considered is the one
that could satisfy the requirements (of the model suggested)
during that period. For each new execution of the overlying
protocol, the membership should change (to take into account
the system dynamics).

In consequence, in spite of the fact that the proposed model
does not authorize existing ‘unknown processes’ to be in the
membership, it does allow the membership to be updated
according to the system dynamics on each FD invocation.
Evidently, to ensure the global properties (strong completeness
and eventual weak accuracy), at some point in time, until the
end of the FD execution (the time for the overlying protocol to
converge), a set of stable processes should be formed.

5. CORRECTNESS PROOF

We present a proof that Algorithm 1 satisfies both the
strong completeness and eventual weak accuracy properties,
characterizing a ♦SM FD. We consider a mobile network of
unknown membership that satisfies the model, assumptions and
properties stated in Sections 2 and 3. Let us first make the
following remarks.

Observation 1. The last status about a process px

concerning failures is represented by the tuple 〈px, ct〉 which
has the greatest counter ct in the network at some point t in
time. It is stored in a suspi or misti set of some process pi .

Observation 2. If process pj ∈ suspi , then pj �∈ misti and
similarly if pj ∈ misti , then pj �∈ suspi . This follows directly
by the fact that when pi adds pj to suspi , pj is removed from
misti (lines 14–15 and 32–33) and vice versa (lines 36–37). The
only exceptions occur in lines 17 and 30, but in both cases due
to predicates of lines 13 and 29, respectively, the observation is
ensured.

Observation 3. Only pi can generate a new mistake about
itself (lines 29–30). Moreover, the counter associated with the
mistake is strictly increasing (this comes from the predicate
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1516 F. Greve et al.

of lines 28 and 30). Finally, pi never removes its own mistake
〈pi, −〉 from misti (lines 12, 15, 33) since by definition it always
belongs to the Xi set.

Observation 4. Process pi �∈ suspi is always true. This
follows from the predicate of line 12, which is never satisfied,
and the predicate of line 29, which is always satisfied for 〈pi, −〉;
thus, pi is never included in suspi in lines 14 and 32.

Observation 5. Algorithm 2 implements a query–response

primitive in conjunction with Task T2 of Algorithm 1. To
implement QR-QUERY(), a query(suspi , misti) is broadcast
in line 1, Algorithm 2. When a process receives the query

in line 20, it sends a response in line 23. When a
response(suspj , mistj ) is received from pj (line 6, Algorithm
2), then pj is stored in the Xi set, and the message parameters
are stored, respectively, in susp_f romi[j ] and mist_f romi[j ]
(lines 8–10, Algorithm 2). When |Xi | ≥ αi , the contents of
all response messages received are delivered to pi via these
three sets (line 11, Algorithm 2), which thus implements QR-
DELIVER(). The QR-Termination can be achieved over fair-lossy
local channels by the repeated broadcast of the query by the
sender pi until it has received at least αi responses from its
neighbors. The other properties QR-Validity and QR-Uniformity
are easily satisfied.

As stated in the Model (Section 2), a mobile node is either
moving (to reach a neighborhood, possibly different from its
present one) or pausing (in this case, its neighborhood does not
change). For the sake of comprehension, we first prove that the
FD properties hold for a network composed only of pausing
nodes (Theorem 5.1). Afterward, we prove that they hold for
the generic case (Theorem 5.2). Lemmas 5.3 and 5.4 are used
to prove Theorem 5.1 and Lemmas 5.7 and 5.8 are used to prove
Theorem 5.2.

5.1. Proof for the specific case of pausing nodes

Lemma 5.1. Let pi, pj ∈ Known ∩ Stable. Consider that,
at time t, pi owns the last status 〈px, ct〉 about px ∈ Known

in its suspi set (respectively, misti set). If no new information
〈px, ct

′〉, ct ′ > ct, is generated after t, then eventually ∀pj ∈
Known ∩ Stable will include 〈px, ct〉 in suspj (respectively,
mistj ).

Proof. By Assumption 1, ∃t ′ ≥ t , there is a journey J : pi =
p0, p1, . . . , pk−1, pk = pj of stable known nodes between
pi and pj . Let us prove the claim by induction on k. The
basis k = 0 is true by assumption. By the induction step,
the claim is valid for process pk−1. So, pk−1 includes 〈px, ct〉
in suspk−1 (respectively, mistk−1). Let us show that pk also
includes 〈px, ct〉 in suspk (respectively, mistk). Since pk−1 ∈
Known∩Stable, it will execute a query--response (lines 8–9)
in order to broadcast to its neighbors, after time t , a message m

which contains 〈px, ct〉 in the suspk−1 (respectively, mistk−1)
set. From Observation 5 and SatP (Property 1), the query

terminates and is received by at least pk ∈ Known ∩ Stable

in the neighborhood of pk−1 (line 20). Thus, pk will execute
lines 27–33 (respectively, lines 34–39). Since, by assumption,
ct is the greatest counter associated with px in the network, pk

executes line 32 (respectively, line 36) and adds 〈px, ct〉 to its
own suspk set (respectively, mistk set). Thus, the claim is valid
for ∀pj ∈ Known ∩ Stable and the lemma follows.

Lemma 5.2. Infinitely often,∀pi ∈ Known, ∃pj ∈ Known∩
Stable, pi ∈ knownT oj .

Proof. From Observation 5 and SatP (Property 1), there is at
least one pj ∈ Known ∩ Stable in the neighborhood of pi that
receives the last query--response message sent from pi ; thus,
pi ∈ knownT oj (lines 20 and 26). However, pi can be removed
from knownT oj in line 39 during the treatment of a last mistake
raised by pi . From Observation 3, only pi can generate a mistake
about itself. Moreover, line 39 is the only point in which pi can
be removed from knownT oj . Thus, regarding this removal, two
situations are possible.

Situation (1).Assume the last mistake raised by pi arrives first
at pj in a query (line 20) (or response (line 9)) sent by pi , that
is, 〈pi, ct〉 ∈ misti , ct is the greatest counter associated to pi .
In this case, on the execution of Update_State(), the predicate
of line 35 is satisfied, and lines 36–37 are executed, but not
lines 38–39.Afterward, if a query (or response) from a process
pk arrives at pj containing the same mistake over pi , and such
that pk �= pi , then, since this mistake has already been taken into
account and its counter is not greater than the existing one, the
predicate of line 35 will no more be satisfied and lines 38–39 are
not executed. Thus, pj will not remove pi from the knownT oj

set, pi ∈ knownT oj .
Situation (2). Assume that, due to an asynchronism, the last

mistake raised by pi arrives first at pj in a query (line 20) (or
response (line 10)) sent by pk �= pi , that is, 〈pi, ct〉 ∈ mistk ,
ct is the greatest counter associated to pi . Since this query (or
response) from pk arrives at pj before the own message from
pi , on the execution of Update_State(), the predicate of line 35
is satisfied and lines 38–39 are executed. Thus, pj removes
pi from knownT oj . Nonetheless, later on, the original query

message sent by pi in which pi ∈ misti arrives at pj at line 20.
This holds because, by assumption, pj ∈ Known ∩ Stable

is the neighbor that receives the last query message from pi .
In this case, process pj will execute line 26 including pi in
knownT oj . Moreover, since this mistake has already been taken
into account and its counter is not greater than the existing one,
the predicate of line 35 will no more be satisfied and lines 38–39
are no more executed. Thus, pj will keep pi in its knownT oj

set, pi ∈ knownT oj . This concludes the proof.

Lemma 5.3. Let pf ∈ Known ∩ Faulty. Eventually, pf ∈
suspi, ∀pi ∈ Known ∩ Stable.
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Proof. Let us consider that f aultyt (pf ) holds.

Remark 1. Since pf ∈ Known, pf has sent at least one
query message before it crashed at t and there is at least a
process pi ∈ Known ∩ Stable which has received this last
query (lines 20–26). Additionally, from Lemma 5.2, pf ∈
knownT oi . After the crash of pf at t , pi will never receive
a response message from pf in line 9, thus pf �∈ Xi and
pf ∈ knownT oi . In this case, in the next query--response

round, if pf was not already suspected by pi (line 12), it will
add 〈pf , ct ′〉 to its suspi set. From Observation 3, no new
information regarding a mistake over pf is generated after t ;
moreover, since pi receives the last query from pf , it gathers
the last mistake over pf with the greatest counter, if it exists.
Thus, if 〈pf , ct〉 ∈ misti , pi executes lines 13–15 and adds
〈pf , ct + 1〉 in suspi . Otherwise, pi executes line 17 and adds
〈pf , 0〉 in suspi . Finally, a process pj in pf ’s neighborhood can
generate a new suspicion over pf but only when pf �∈ suspj

(line 12).

Remark 2. Thus, in the network, after t , the last status
about pf will eventually be a suspicion. In this case, following
Lemma 5.1 and Observation 2, all stable known processes will
eventually include pf in their respective suspected sets. Thus,
pf ∈ suspi is always true ∀pi ∈ Known ∩ Stable.

Lemma 5.4. Let pi ∈ Known ∩ Stable. If SRP t (pi) holds
for pi at time t, then eventually pi �∈ suspj , ∀pj ∈ Known ∩
Stable.

Proof. Remark 1. A new suspicion over process pi is only
raised if its response is not received by some process pk in its
neighborhood in response to a query, that is, if pi ∈ knownT ok

and pi �∈ Xk (line 12). Note that pi ∈ knownT ok if pk has
received a query (or response) frompi in the past (lines 20, 10),
that is pk ∈ Ns

i , for some time s ≤ t . According to SRP t (pi),
after t , (i) pi ∈ Xk is always true, ∀pk ∈ Nt ′

i , t ′ ≥ t and, (ii)
∀pk, pk ∈ Nt ′

i ⇒ pk ∈ Nt ′′
i , t ′′ > t ′. Thus, after t , ∀pk ∈

Nt ′
i , ∀t ′ ≥ t never adds pi in suspk raising a new suspicion.

From Observation 4, pi �∈ suspi . From Observation 3, a mistake
regarding pi is only generated by pi itself whether it is in a
suspected set.

Remark 2. Thus, in the network, after t , the last status
about pi , represented by 〈pi, ct〉, can be (1) an old suspicion
(〈pi, ct〉 ∈ suspj ), generated before t ; (2) a mistake (〈pi, ct〉 ∈
mistj ) or (3) none of the previous cases (if pi has never been
suspected). In Case (1), following the propagation Lemma 5.1,
pi will eventually receive a query or a response message from
pj ∈ Known ∩ Stable with 〈pi, ct〉 ∈ suspj (lines 9, 20) and
call upon Update_State(), which will cause pi to generate a new
mistake with a greater tag (〈pi, ct + 1〉 ∈ misti) (line 30). The
last status about pi is now a mistake and we fall in Case (2). In
Case (2), following Lemma 5.1 and Observation 2, the mistake
will be propagated to ∀pj ∈ Known∩Stable. Then, eventually,

lines 36–37 are executed by pj and pi �∈ suspj . From Remark 1,
no new information about pi is generated and pi �∈ suspj is
always true. Case (3) follows directly from Remark 1 and the
lemma follows.

Theorem 5.1. Algorithm 1 implements the ♦SM FD,

assuming a network of Known pausing nodes.

Proof. The strong completeness follows directly from
Lemma 5.3. The eventual weak accuracy follows directly from
Lemma 5.4 and the theorem follows.

5.2. Proof for the generic case of mobile nodes

Now, let us extend our proof to the generic case of a network
composed of mobile nodes, knowing that a mobile node is either
moving or pausing.

Lemma 5.5. Lemma 5.1 holds ∀pi ∈ Known mobile nodes.

Proof. The lemma follows directly from Lemma 5.1 for all
pausing nodes. To take into account moving nodes, we should
consider two cases.

Case (1): Assume that pm ∈ Known ∩ Stable is a moving
node that has not yet the last status 〈px, ct〉 about process px .
Let us assume that, due to Lemma 5.1, every pausing node
pi ∈ Known ∩ Stable has added the last status 〈px, ct〉 in its
suspi (respectively, misti) set before or at time t ′′. As soon as
pm reaches the new neighborhood at t ′′′ ≥ t ′′, it will execute
task T1 (to implement a query--response). From Observation 5
and SatP (Property 1), the query terminates and pm receives
a response message from a pausing node pi , carrying out
〈px, ct〉, the last status about px (line 9). On the execution of
Update_State() (line 11), since, by assumption, ct is the greatest
counter associated with px , pm, executes line 32 (respectively,
line 36) and adds 〈px, ct〉 to its own suspm set (respectively,
mistm set).

Case (2): Assume that pm ∈ Known ∩ Stable is a moving
node that has the last status 〈px, ct〉 about process px . As soon
as pm reaches the new neighborhood at time t ′, it will execute
task T1 (to implement a query--response). From Observation 5
and SatP (Property 1), the query terminates and there will be
at least one node pi ∈ Known∩Stable in the neighborhood of
pm, that receives the query with the last status about px . Thus,
by executing task T2, pi calls upon Update_State() (line 22)
and adds 〈px, ct〉 in its suspi (line 32) (respectively, misti set,
line 36). Following the propagation Lemma 5.1 and knowing
that Case (1) holds, eventually every pj ∈ Known ∩ Stable

will include 〈px, ct〉 in its suspj set (respectively, mistj set)
and the lemma follows.

Lemma 5.6. Lemma 5.2 holds ∀pi ∈ Known mobile nodes.

Proof. From Observation 5 and SatP (Property 1), for every
query--response, issued by pi at task T1, there will be at least
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one pj ∈ Known ∩ Stable in the neighborhood of pi that
receives its last query, no matter if pi or pj are pausing or
moving. Then, following the same arguments of Lemma 5.2,
pi ∈ knownT oj and the lemma holds.

Lemma 5.7. Let pf ∈ Known ∩ Faulty. Eventually, pf ∈
suspi, ∀pi ∈ Known ∩ Stable mobile nodes.

Proof. Let us consider that f aultyt (pf ). The lemma follows
directly from Lemma 5.3 for all pausing nodes. To take into
account moving nodes, two cases are possible. Let us first
observe that, from Lemma 5.6 and knowing that the last query-

-response issued by pf (either moving or pausing) before t has
been received, there is pi ∈ Known ∩ Stable (either moving
or pausing) such that pf ∈ knownT oi .

Case (1): Assume that pm ∈ Known ∩ Stable is a moving
node that does not yet have the last status about process pf

after t ; and, assume that, by Lemma 5.3, every pausing node
pj ∈ Known ∩ Stable has added pf in its suspj set after t . In
this case, due to Lemma 5.5 (Case (1)), pm will add pf in its
suspm.

Case (2): Assume that pm ∈ Known ∩ Stable is a moving
node that has the last status about process pf . Possibly, pm =
pi . We should consider the following two situations. Situation
(1): Assume that the last status is a mistake, 〈pf , ct〉 ∈ mistm.
When pm reaches its new neighborhood after t , from the same
arguments of Lemma 5.3 (Remark 1), pi will add 〈pf , ct + 1〉
in suspm (i.e. suspi) and remove pf from mistm (i.e. misti).
Then, we fall in Situation (2). Situation (2): Assume that the
last status is a suspicion, 〈pf , −〉 ∈ suspm. This follows from
Lemma 5.3 (Remark 1). When pm reaches its new neighborhood
after t , due to the propagation Lemma 5.5 (Case (2)), this
information about the suspicion of pf will be propagated to
every pi ∈ Known ∩ Stable.

Finally, for every case, from the same arguments of
Lemma 5.3 (Remark 2) and considering Lemma 5.5, pf ∈
suspi is always true ∀pi ∈ Known ∩ Stable.

Lemma 5.8. Let pi ∈ Known ∩ Stable. If SRP t (pi) holds
for pi at time t, then eventually pi �∈ suspj , ∀pj ∈ Known ∩
Stable mobile nodes.

Proof. The lemma follows directly from Lemma 5.4 for all
pausing nodes. Owing to the same arguments of Lemma 5.4
(Remark 1), after t , ∀pk ∈ Nt ′

i , ∀t ′ ≥ t never adds pi in suspk ,
raising a new suspicion. Assume that pm ∈ Known ∩ Stable

is a moving node. Let us consider that pm reaches its new
neighborhood at time t ′ ≥ t . By hypothesis, if pi ∈ Nt ′

m, then
pi ∈ Nt ′′

m , pi ∈ Xt ′′
m , t ′′ ≥ t ′ is always true, thus pm never adds

pi in suspm. If pi �∈ Nt ′
m, two cases are possible:

Case (1): pm has the last status 〈pi, ct〉 about pi . The
following situations are possible. Situation (1): pm suspects
pi (〈pi, ct〉 ∈ suspm). This can be an old suspicion, generated
before t or a new one, generated after t due to pm’s move. In

this last case, pi ∈ knownT om and pi �∈ Xm because pm will
no longer receive response messages from pi , since pm moves.
Thus, pm will suspect pi (executing lines 12–17). According to
Lemma 5.4 (Remark 2, Case (1)), this suspicion is going to be
revoked by pi , by the generation of a mistake message with a
greatest counter (〈pi, ct + 1〉 ∈ misti) that, due to Lemma 5.5,
is propagated along the network. Finally, 〈pi, ct + 1〉 ∈ mistm
and 〈pi, −〉 �∈ suspm. Now, the last status about pi is not a
suspicion and we fall in Situation (2). Situation (2): pm does
not suspect pi . Following Lemma 5.4 (Remark 2, Cases (2) and
(3)) and Lemma 5.5, ∀pj ∈ Known ∩ Stable (including pm)
will permanently remove pi from its respective suspj set.

Case (2): pm has not yet the last status about pi . Owing to
Lemma 5.5, after time t ′, pm succeeds to update its state with
the last information about pi . Following Lemmas 5.4 and 5.5,
eventually pi �∈ suspm is always true. Thus, the lemma follows
for ∀pj ∈ Known ∩ Stable.

Theorem 5.2. Algorithm 1 implements the ♦SM FD,

assuming a network of Known mobile nodes.

Proof. The strong completeness property follows directly from
Lemma 5.7. The eventual weak accuracy property follows
directly from Lemma 5.8 and the theorem follows.

6. PERFORMANCE EVALUATION

In this section, we study and evaluate the behavior
of our asynchronous FD. The performance experiments
were conducted on top of the OMNeT++ discrete event
simulator [33]. We assume two two-dimensional regions: the
first one is a square of 600 × 600 m2 and the second one is
a rectangle of 200 × 1800 m2. They thus have both the same
surface and number of nodes but not the same network diameter.
Such a difference aims at studying the propagation of failure
suspicions and mistakes over the network.

We consider that every pi has at least five neighbors (|Ni | ≥
5) and that at most two neighbors may crash (fi = 2). Therefore,
αi is the same for all pi . The total number of nodes N is
fixed to 100 and it is uniformly distributed over the region.
Each simulation lasts 30 min. In the square configuration, the
minimum number of neighbors |Ni | is equal to 7, the maximum
is 16 and the average is 10. For the rectangle configuration, the
minimum, maximum and average number of neighbors are 9,
6, and 16, respectively.

We have considered that 10% of the nodes can fail, i.e. 10
faults have been uniformly injected at every 70 s starting at 10 s
(10, 80, 150 s, etc.). The one-hop network delay δ is computed
using the bandwidth (2 Mb/s) and the size of messages since the
delay of propagation within a range is negligible. Then δ is less
than 1 ms.1 In our experiments, we assume that the MAC layer
provides a local reliable broadcast.

1This value is negligible in comparison with the delay between two queries.
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Concerning the implementation of our FD, it is not feasible
that a node continuously broadcasts a query message since the
network would be overloaded with messages. To overcome this
problem, we have included a delay of � = 1 s between lines 8
and 9 of Algorithm 1. However, by adding this waiting period,
process pi may receive more than αi replies. Therefore, the extra
replies will also be included in the Xi set of this process (line
10), reducing then the number of false suspicions. It is worth
remarking that this improvement does not change the protocol
correctness.

6.1. Failure detection

To evaluate the completeness property of our FD, we have
measured the impact of the number of neighbors on the failure
detection time. To this end, the transmission range r varied from
100 to 380 m, which results in the variation of the number of
neighbors. For each number of neighbors, we have measured
the average, maximum and minimum failure detection time
considering the 90 correct nodes, as shown in Fig. 1. The
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FIGURE 1. Failure detection time vs. number of neighbors.

maximum failure detection time characterizes, for each of the
different number of neighbors, the time for all nodes to detect
a failure (strong completeness).

We observe that there is no false suspicion. The failure
detection time decreases with the number of neighbors. This
happens because failure detection information is included in
query messages, which spreads faster over the network when
the density increases.

6.2. Impact of mobility

We have evaluated the accuracy property when both 1 and 10
nodes located at one boundary of the network move at a speed
of 2 m/s. The range transmission r is set to 100 m for all pi .
When just one node moves, it starts moving at time 20 s while
when 10 nodes move, the first one starts moving at 100 s and at
every 5 s a new one starts moving. A moving node stops when
it arrives at the opposite border of the region. We consider that
while moving, a moving node pm continues to interact with the
other nodes and that at least αj nodes will reply to the query of
pj after pm moves.

For each experiment, the total number of false suspicions
has been measured. Figure 2 (respectively, Fig. 3) shows the
number of false suspicions between the moment that just one
node (respectively, 10 nodes) starts moving at 20 s (respectively,
100 s and every 5 s) for both the square and rectangle region
configurations.

We observe in both figures that false suspicions are rather
punctual: the number of false suspicions increases very fast but
decreases very fast too. This behavior can be explained because
false suspicions are generated around the moving node when
it has a change of neighborhood. These suspicions are quickly
corrected by the moving node itself as soon as it receives the
suspected information from its old neighbors, which usually
remain close to it (in most cases they are at one hop).

Figure 4a and b, respectively, shows the distribution of
mistake duration, i.e. how long on an average a node is
erroneously suspected, and the number of false suspicions for
all the 100 nodes in the rectangle configuration when 10 nodes
move. We can observe that the duration of mistakes is quite
small and stable for all of them. The average mistake duration
is smaller than 1s. However, the number of false suspicions
presents a more significant variation. In fact, for a given node,
this number depends on its position in the region. On the other
hand, the greater the number of mobile nodes that a node meets,
the greater the number of false suspicions that it generates.
Thus, we observe that the 10 moving nodes have a number
of suspicions 15% higher than the other nodes. In any case,
the mistake is always corrected very fast: in <0.01s when the
suspected node is close to the node that generates the suspicion
and in 4s at the maximum, otherwise.

Synthesis. From the results of the above experiments, we can
outline two key properties of our FD:
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FIGURE 2. Total number of false suspicions when one node moves.

(i) The average failure detection time is short thanks to the
local query–response approach: as soon as a node fails,
its neighbors start to suspect it in the next round. Then,
in networks with high density and short diameter, the
detection time converges to the inter-query delay.

(ii) Our FD is highly reactive in correcting false suspicions
when a node moves: mobility implies a relatively high
number of false suspicions around the moving nodes,
but the latter detect them very fast. Then, these nodes
immediately generate mistake messages that limit the
propagation of wrong suspected information.

7. RELATED WORK

7.1. Scalable approaches

As in the approach followed in our work, some scalable FD
implementations do not require a fully connected network.
Larrea et al. proposed in [5] an implementation of an unreliable
FD based on a logical ring configuration of processes. Thus,
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FIGURE 3. Total number of false suspicions when 10 nodes move.

the number of messages is linear, but the time for propagating
failure information is quite high. Some works base the detection
on the use of an adaptive heartbeat or follow the gossiping
style of communication, choosing only a few members or
neighbors to disseminate information [34, 35]. Practically,
the randomization makes the definition of timeout values
difficult. In [36], a scalable hierarchical failure adapted for Grid
configurations is proposed; however, the global configuration of
the network is initially known by all nodes; whereas in [37], the
authors identify important problems on the design of scalable
FDs for Grid architectures.

7.2. The heartbeat approach

Aguilera et al. [9] propose the heartbeat FD which does not
assume a network of full connectivity and tolerates message
losses. Tucci-Piergiovanni and Baldoni et al. [10] implement
a heartbeat FD for the infinite arrival model and show how
to use it to implement an FD of the 	 class. The 	 class
ensures that eventually each correct process is going to trust
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FIGURE 4. Distribution of mistakes when 10 nodes move.

the same correct process, considered as the leader. The solution
assumes fair-lossy channels, but for a synchronous environment.
Hutle [38] proposes a ♦P FD with strong completeness
(eventually, every node failure will be reported to every correct
node) and eventual strong accuracy (after some point in time
no correct node will be suspected by another correct node)
properties. The solution considers sparsely connected unknown
networks, subject to partitions; nonetheless, it assumes some
knowledge about the neighborhood, which has a bounded
number of processes, and about the jitter of the communication
between direct neighbors. It is worth remarking that none of
these previous works tolerates the mobility of nodes.

Few implementations of unreliable FDs found in the literature
focus on wireless mobile networks [11–13]. The fundamental
difference between these works and ours is the fact that all of
them are time-based. As far as we are aware of, the only work
to follow a time-free detection strategy has been proposed by
Cao et al. [14] in order to implement a leader FD of the 	 class.
Nonetheless, it does not tolerate node mobility.

7.3. Probabilistic approach for wireless ad hoc networks

Friedman and Tcharny [11] propose a simple gossiping
protocol, which exploits the natural broadcast range of wireless
networks to delimit the local membership of a node in a mobile
network. A node periodically sends heartbeat messages to its
neighbors. Upon receiving a vector, a node updates its vector to
the maximum of its local vector and the former. Thus, if a node
does not receive a new item of information about a node after
a certain time, it considers that the latter has failed. Contrarily
to our approach, this work assumes a known number of nodes
and provides probabilistic guarantees for the FD properties.

Tai et al. [12] exploit a cluster-based communication archi-
tecture to propose a hierarchical gossiping FD protocol for a
network of non-mobile nodes. The FD is implemented both
via intra-cluster heartbeat diffusion and failure report diffusion
across clusters, i.e. if a failure is detected in a local cluster, it
will be further forwarded across the clusters. Contrarily to our
approach, this work considers a cluster-based communication
architecture and implements an FD of the class ♦P , which
provides probabilistic guarantees for the accuracy and com-
pleteness properties; moreover, it does not consider mobility.

7.4. Local failure detection approach

Sridhar [13] adopts a hierarchical design to propose a
deterministic local FD. He introduces the notion of local
failure detection and restraint the scope of detection to the
neighborhood of a node and not to the whole system. The FD
is composed of two independent layers: a local one that builds
a suspected list of crashed neighbors and a second one that
detects the mobility of nodes across the network and is able
to correct possible mistakes. He advocates the use of this local
detection as an appropriate abstraction to deal with the lack
of mobility and resources in WSNs. Unlike our solution that
allows the implementation of a ♦SM FD, this work implements
an eventually perfect local FD of the class ♦P , i.e. it provides
strong completeness and eventual strong accuracy but with
regard to a node’s neighborhood.

7.5. Time-free approach for omega

Cao et al. [14] propose a time-free query-based implementation
of a deterministic leader FD. It considers an infra-structured
mobile network composed of MHs and MSSs (see Section 4.2).
An MH is considered stable if, once it has entered the system, it
does not crash or gets disconnected. Both MSSs and MHs can
crash and the maximum number of MSSs that can crash (f ) is
known a priori. Contrarily to our approach, this work considers
a hybrid network of mobile and static nodes; moreover, it imple-
ments an 	 FD. It provides an eventual accuracy property, which
ensures that eventually at least one stable MH is continuously
trusted by the MSSs. The completeness property ensures that an
MH that crashes or permanently leaves the system is eventually
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no longer trusted by an MSS. We consider that this protocol
is not very well adapted to ad hoc networks, since it makes
strong assumptions on the connectivity and global knowledge
of MSSs. It considers that all MSSs form a complete graph and,
moreover, that the maximum number of failures is known.

7.6. FD application

We believe that our ♦SM FD will be of great interest to
implement consensus algorithms, such as the one proposed
by Greve and Tixeuil [15], who present a solution for the
fault-tolerant consensus in a dynamic system of unknown
participants, with minimal synchrony assumptions (i.e. an FD
of the class ♦S).

Another very good application for our FD protocol is the
consensus proposed in [39]. It makes use of an abstraction,
called the eventual clusterer oracle (or ♦C), able to detect
failures of MHs and to elect CHs in a hierarchical net. The
♦C oracle has the same completeness and accuracy properties
of the ♦S FD. Thus, an implementation of ♦C can make use of
♦S. In the context of MANETs, our FD protocol of class ♦SM

will directly benefit ♦C.

7.7. Synthesis

Table 1 shows a panorama of the FDs for mobile and wireless
networks presented in this section considering a number of
criteria: (1) type of nodes in the network, (2) knowledge about
the number of nodes, (3) number of failures considered, (4)
the connectivity of the communication network, (5) considered
failure model, (6) strategy followed to detect failures, (7) the
use of timers to detect failures, (8) the satisfaction of the
membership property by the network, (9) the use of local
communication for detection and (10) the provided FD class.
The work presented herein exhibits the most generic features. It
implements a time-free query-based deterministic FD suitable
for any dynamic wireless network topology.

8. CONCLUSION

This paper has suggested a model able to implement unreliable
FDs in mobile wireless networks, such as WMNs or WSNs
and provides the specification of a new class of FDs for this
context: the ♦SM class (eventually strong FD with unknown
membership). It presents an algorithm able to implement a
time-free ♦SM FD, which is proved to be correct when
the underlying network satisfies some assumptions regarding
stability, connectivity and the pattern of messages exchanged
by the nodes.
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