
K

R
a

b

c

a

A
R
R
A
A

K
S
P

1

i
2
a
m
q
w
(
i
r
t
a
c
v

(

0
d

The Journal of Systems and Software 84 (2011) 285–300

Contents lists available at ScienceDirect

The Journal of Systems and Software

journa l homepage: www.e lsev ier .com/ locate / j ss

ey activities for product derivation in software product lines

ick Rabisera,1, Pádraig O’Learyb,∗, Ita Richardsonc,2

Christian Doppler Laboratory for Automated Software Engineering, Johannes Kepler University, Altenberger Str. 69, 4040 Linz, Austria
RiSE – Reuse in Software Engineering and Computer Science Department, Federal University of Bahia, Salvador, BA, Brazil
Lero – The Irish Software Engineering Research Centre, University of Limerick, Ireland

r t i c l e i n f o

rticle history:
eceived 1 February 2010
eceived in revised form 17 June 2010
ccepted 26 September 2010
vailable online 7 October 2010

eywords:
oftware product lines
roduct derivation, Process

a b s t r a c t

More and more organizations adopt software product lines to leverage extensive reuse and deliver a
multitude of benefits such as increased quality and productivity and a decrease in cost and time-to-market
of their software development. When compared to the vast amount of research on developing product
lines, relatively little work has been dedicated to the actual use of product lines to derive individual
products, i.e., the process of product derivation. Existing approaches to product derivation have been
developed independently for different aims and purposes. While the definition of a general approach
applicable to every domain may not be possible, it would be interesting for researchers and practitioners
to know which activities are common in existing approaches, i.e., what are the key activities in product
derivation. In this paper we report on how we compared two product derivation approaches developed
by the authors in two different, independent research projects. Both approaches independently sought
to identify product derivation activities, one through a process reference model and the other through

a tool-supported derivation approach. Both approaches have been developed and validated in research
industry collaborations with different companies. Through the comparison of the approaches we identify
key product derivation activities. We illustrate the activities’ importance with examples from industry
collaborations. To further validate the activities, we analyze three existing product derivation approaches
for their support for these activities. The validation provides evidence that the identified activities are

ation
ating
relevant to product deriv
when developing or evalu

. Introduction and motivation

There is a clear trend away from single systems to product lines
n software engineering (Clements and Northrop, 2001; Pohl et al.,
005; van der Linden et al., 2007b). Software product lines (SPL)
im to leverage extensive reuse in software development to address
any of the challenges in software development such as increasing

uality requirements and competition in a global market. Soft-
are product line engineering (SPLE) involves domain engineering

building the product line) and application engineering (build-
ng products based on the product line). In domain engineering,
eusable assets (e.g., requirements, components, documentation,

est cases) are developed and their commonalities and variability
re explicitly defined, typically using variability models. A signifi-
ant body of research is available on approaches and notations for
ariability modelling and management, for example (Czarnecki and

∗ Corresponding author.
E-mail addresses: rabiser@ase.jku.at (R. Rabiser), padraig.oleary@rise.com.br

P. O’Leary), ita.richardson@lero.ie (I. Richardson).
1 Tel.: +43 0 732 2468 8873; fax: +43 0 732 2468 8878.
2 Tel.: +353 0 61233799; fax: +353 0 61213036.

164-1212/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
oi:10.1016/j.jss.2010.09.042
and we thus conclude that they should be considered (e.g., as a checklist)
a product derivation approach.

© 2010 Elsevier Inc. All rights reserved.

Kim, 2005; Gomaa, 2004; Pohl et al., 2005; Schmid and John, 2004).
In application engineering, concrete products are built based on
these reusable assets. Product derivation is a key process in appli-
cation engineering and addresses the selection and customization
of assets from the product line (utilizing the provided variability) to
satisfy customer or market requirements (Deelstra et al., 2005). It
is important to work on minimizing product-specific development
in application engineering and maximize reuse.

In practice, a number of publications have shown that prod-
uct derivation must not be underestimated. For example, (Griss,
2000) identifies the inherent complexity and the required coordi-
nation in the derivation process by stating that “. . .as a product is
defined by selecting a group of features, a carefully coordinated and
complicated mixture of parts of different components are involved”.
As (Deelstra et al., 2005) point out: the derivation of individual
products from shared software assets is still a time-consuming and
expensive activity in many organizations. Both publications base
their statements on experiences made with product derivation in

industry. Our own experiences in research industry collaborations
also confirm that product derivation is often underestimated. A
strong focus in SPLE has to be on domain engineering, i.e., building
up the product line. However, product derivation brings the return
of investment required for setting up the product line in the first

dx.doi.org/10.1016/j.jss.2010.09.042
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:rabiser@ase.jku.at
mailto:padraig.oleary@rise.com.br
mailto:ita.richardson@lero.ie
dx.doi.org/10.1016/j.jss.2010.09.042

286 R. Rabiser et al. / The Journal of Systems and Software 84 (2011) 285–300

od an

p
a

d
u
r
b
d
W
b
r
t
a

(

d
a
a

Fig. 1. Research meth

lace by allowing to derive customized products quickly and in an
utomated way.

Research in SPL has, in the past, focused more on how to scope,
efine, and develop product lines rather than on how to effectively
tilize them in product derivation. A recent systematic literature
eview (Rabiser et al., 2010) however shows an increasing num-
er of publications, conference tracks, and workshops over the last
ecade demonstrating the general interest in product derivation.
hile the requirements for product derivation tool support have

een outlined (Rabiser et al., 2010), there is still no clear picture
egarding the activities to be supported. Available product deriva-
ion approaches and tools have been developed independently to
ddress requirements in different contexts or domains.

Two such approaches are:

(i) Pro-PD (Process reference model for Product Derivation) was
developed at Lero (the Irish Software Engineering Research
Centre) with the goal of defining a process reference model for
product derivation as a foundation for situation-specific pro-
cess approaches to product derivation. Pro-PD focuses on the
activities, roles and work artefacts used to derive products from
a software product line. Pro-PD uses process patterns that cap-
ture solutions to product derivation process challenges (e.g.,
co-ordinating product-platform synchronisation) as building
blocks for creating a product derivation process instance. Pro-
PD, its development, and its validation are also described in
O’Leary (2010).

ii) DOPLERUCon (Decision-Oriented Product Line Engineering for
effective Reuse: User-centered Configuration) was developed
at the Christian Doppler Laboratory for Automated Software
Engineering (Johannes Kepler University (JKU) Linz, Austria)
driven by industry needs with the goal to define a user-centred,
tool-supported product derivation approach. DOPLERUCon is
one of two parts in a decision-oriented product line engi-
neering approach called DOPLER. The other part – DOPLERPVM

(Dhungana et al., 2010) – supports variability modelling and
management. DOPLERPUCon aims to support both domain
experts like sales staff or managers as well as engineers
in product derivation based on DOPLER variability models.
DOPLERPUCon, its development, and its validation are also
described in (Rabiser, 2009).
Both approaches independently sought to identify product
erivation activities, Pro-PD through its process reference model
nd DOPLERPUCon through its tool-supported product derivation
pproach. Neither approach was designed exclusively for a particu-
d research questions.

lar organization or domain but the development of both approaches
was driven by industry needs and experiences. The two approaches
have already been applied in different cases (cf. Section 2).

In a research collaboration between Lero and JKU we have com-
pared our approaches in detail and identified key activities for
product derivation common to both approaches. While the two
approaches have been developed in independent projects, with
different goals and for different purposes, we still found many inter-
esting parallels. In a previous publication (O’Leary et al., 2009) we
presented an overview of our first results, i.e., we described key
activities, important issues and lessons learnt for product deriva-
tion. In this paper we present details about the comparison and
focus on the identification and validation of product derivation
key activities. We illustrate the key activities with examples from
industry collaborations at both Lero and JKU, and provide evidence
for their relevance by systematically analyzing three often-cited
and well-known product derivation approaches for their support
for these activities.

2. Research method

The goal of this research is to define key activities for product
derivation through comparing two product derivation approaches
developed by the authors in two different, independent research
projects. While a general approach to product derivation might
not be possible, we envision that a list of activities that are com-
mon in existing approaches will help researchers and practitioners
when developing, adapting or evaluating a product derivation
approach.

More specifically we are investigating two research questions:

� What are the key activities for product derivation in software prod-
uct line engineering? We elicit the activities by comparing our two
approaches in detail and motivate the activities using examples
from industry collaborations.

� Are the identified activities relevant and important? We systemat-
ically analyze existing product derivation approaches regarding
their support for the activities using a validation framework.

Fig. 1 depicts an overview of our research method. We being by
comparing our two product derivation approaches to elicit com-

monalities and differences. Based on these, we developed the key
activities for product derivation which we refined based on discus-
sions (remote and at conferences) and feedback from peers. Based
on an adapted existing product line method evaluation framework,
we finally analyzed the key activities to be able to provide evidence

stems

f
p

r
w
t
m
u
a
e
d
f
d
r
o
e
p
“
a
g
w
r
f
o
d
a
i
w
c
(
f
a
O
2

D
f
d
a
a
t
e
(

2
D

d
w
p
P
i

2

l
p
d
a
a
4
(

comparison to define key product derivation activities.
Based on initial discussions and existing documentation of our
R. Rabiser et al. / The Journal of Sy

or their relevancy and importance. We present details on how we
erformed the research in the remainder of this section.

The decision to use Pro-PD and DOPLERUCon as a basis for our
esearch was influenced by a number of factors. The approaches
ere both looking at product derivation activities. Pro-PD iden-

ified activities for product derivation for its process reference
odel. DOPLERUCon was designed to provide tool-support for prod-

ct derivation activities. The approaches were developed by the
uthors, this reduced risk of misinterpreting the documentation on
ach approach. Both Pro-PD and DOPLERUCon were independently
eveloped and validated. Both approaches were developed in dif-
erent domains making use of extensive case study research in their
evelopment. A case study is especially helpful in situations where
esearchers are seeking to develop understandings of the dynamics
f a phenomenon in its natural context (Yin, 2003). It is consid-
red to be the optimal approach for researching practice-based
roblems, where the aim is to represent the case authentically
in its own terms” (Hammersley et al., 2000). Both approaches
pplied the guidelines of (Runeson and Höst, 2009), who present
uidelines for conducting and reporting case study research in soft-
are engineering. A more general set of guidelines on empirical

esearch in software engineering that both approaches aimed to
ollow is presented by Kitchenham et al. (2002). Pro-PD was devel-
ped through case study research with Bosch. DOPLERUCon was
eveloped through case study research with Siemens VAI Met-
ls Technologies. Pro-PD used sources in the literature such as an
nter-model evaluation with the SEI Product Line Practice Frame-

ork (Clements and Northrop, 2001) to prevent bias from the Bosch
ase study. Similarly for DOPLERUCon, a systematic literature review
Rabiser et al., 2010) was conducted to help generalize the findings
rom the Siemens VAI case study. Finally, the two approaches have
lready been applied in different cases, e.g. (Grünbacher et al., 2009;
’Leary, 2010; O’Leary et al., in press, 2008a; Rabiser et al., 2007,
009).

In the following sections, we first briefly discuss how Pro-PD and
OPLERUCon have been developed and validated, as this is the basis

or the research presented in this paper (cf. Section 2.1). We then
iscuss how we performed the comparison and identified the key
ctivities (Section 2.2). We present the evaluation framework we
dapted from (Matinlassi, 2004) and describe how we performed
he analysis of existing product derivation approaches to provide
vidence for the relevancy and importance of the key activities
Section 2.3).

.1. Starting point: development and validation of Pro-PD and
OPLERUCon

The goal of this research is to define key activities for product
erivation through comparing two product derivation approaches
hich have been developed by the authors in two different, inde-
endent research projects. The development and validation of
ro-PD and DOPLERUCon thus is the basis for the research presented
n this paper.

.1.1. Development and validation of Pro-PD
The preparatory stage of developing Pro-PD was an extensive
iterature review that revealed a lack of methodological sup-
ort for product derivation. A preliminary version of Pro-PD was
eveloped based on this review. This preliminary version was iter-
tively developed and assessed through a series of workshops with
cademic and industry product line experts. The output of this
-month iterative development stage was version one of Pro-PD
O’Leary et al., 2007). This version was extended through case
and Software 84 (2011) 285–300 287

study research with Robert Bosch GmbH.3 The case study inves-
tigated product derivation practices within an automotive systems
sub-unit. The systems produced comprise both hardware (such as
processors, sensors, connectors, and housing) and software. Data
collection involved studying internal company documentation, an
onsite visit to their headquarters and a 2-day workshop with key
employees. By generalizing and discussing the case study obser-
vations version one of Pro-PD was revised and version two was
developed (O’Leary et al., 2008b). Pro-PD was further developed
through a 6-month visit to LASSY lab;4 where Pro-PD and FIDJI
(Perrouin et al., 2008) were mapped. We performed further vali-
dation of Pro-PD through an inter-model evaluation with the SEI
Product Line Practice Framework (Clements and Northrop, 2001).

2.1.2. Development and validation of DOPLERUCon

In research-industry collaboration with Siemens VAI Metals
Technologies,5 the world leader in engineering and building steel
plants, the DOPLER product line approach has been developed. The
goal of the collaboration was to support modelling and utilizing
the variability of Siemens VAI’s software system for the automa-
tion of continuous casting in steel plants. The concepts of existing
decision-oriented approaches, i.e., by Schmid and John (2004), were
preferred by Siemens VAI staff. The decision-oriented DOPLER SPL
approach and supporting tools were developed iteratively over a
period of 4 years based on existing work and constant feedback
and close collaboration with Siemens VAI. Workshops with project
managers, software architects, and developers were frequently
conducted. DOPLERUCon – the product derivation part of DOPLER
– was developed as an integrated, tool-supported approach. At
Siemens VAI it is used in pilot projects for software product lines in
the metals domain, i.e., product lines for automating process opti-
mization and tracking of particular machines or lines of machines
in steel plants such as continuous casters. DOPLERUCon also has
been applied in other domains, e.g., in the enterprise resource plan-
ning domain (Rabiser et al., 2009) or for Eclipse-based software
engineering tools (Grünbacher et al., 2009). Approach, tools, and
concepts of DOPLER and DOPLERUCon have frequently been pre-
sented at scientific workshops and conferences (Dhungana et al.,
2010; Rabiser and Dhungana, 2007; Rabiser et al., 2007, 2009).
A systematic literature review (Rabiser et al., 2010) helped to
define requirements for the DOPLERUCon approach and tools that
go beyond the industry partner’s requirements.

2.2. Comparison of our approaches and development of key
activities

The idea of comparing Pro-PD with DOPLERPUCon emerged dur-
ing a meeting of JKU and Lero researchers in February 2008. While
Pro-PD was mainly influenced by Deelstra et al. (2005) and a case
study with Robert Bosch GmbH, DOPLERPUCon was mainly influ-
enced by the research-industry collaboration with Siemens VAI.
While the first approach was developed as a process reference
model, the latter was developed focused on adaptable tool support
usable in practical settings. These differences motivated our efforts
to compare the two approaches. The main motivation at first was
to learn from each other and try to improve both approaches. How-
ever, we quickly realized that we could also use the results of the
two approaches, we created a first high-level mapping in a dis-
tributed manner using spreadsheets to visualize commonalities

3 http://www.bosch.com.
4 Laboratory of Advanced Software Systems, University of Luxembourg.
5 http://www.industry.siemens.com/metals/en/.

http://www.bosch.com/
http://www.industry.siemens.com/metals/en/

288 R. Rabiser et al. / The Journal of Systems and Software 84 (2011) 285–300

Table 1
Evaluation framework for analyzing product derivation approaches regarding their support for key activities (adapted from (Matinlassi, 2004)).

Category Elements Questions

Context

Specific goal What is the specific goal of the approach regarding product derivation?
Product derivation aspect(s) What aspects of product derivation does the approach cover?
Application domain(s) What is/are the application domain(s) the approach is focused on?
Inputs What is the starting point for the approach?
Outputs What are the (desired) results of the approach?

User Target group Which stakeholders are addressed by the approach and how?

Contents

Activities What activities/steps/sub-processes does the approach define to accomplish product derivation?
Artefacts What artefacts are created and managed by the approach?
Support for key activity 1 To which extent does the approach support key activity 1 (fully: all sub-activities of key activity 1 are supported;

partly: some sub-activities of key activity 1 are supported; not supported)?
.
Support for key activity N To which extent does the approach support key activity N (fully: all sub-activities of key activity N are supported;

partly: some sub-activities of key activity N are supported; not supported)?
oes th

d in p

a
t
t
p
D
t
D

m
2
i
c
o

i
b
t

2

(
i
a
s
c
s
1
v
w
t
d
f
e
w
e

a
a
s
t
i
a
t
(
e

Not covered by key activities What activities/sub-activities d
activities/sub-activities?

Validation Maturity Has the approach been validate

nd differences between the two approaches. More specifically,
he spreadsheet contained columns listing each Pro-PD activity,
he activity’s purpose, a statement whether DOPLERUCon sup-
orts the Pro-PD activity fully/partly/not at all, the involved
OPLERUCon activities and an explanation of the mapping, i.e., how

he Pro-PD activity is supported/partly supported/not supported by
OPLERUCon.

Using such a high-level mapping, the authors of this paper
et at the International Software Product Line Conference (SPLC)

008 (http://www.splc.net) to analyse the first results, discuss open
ssues, and detail the comparison. After this meeting we regularly
onducted telephone conferences over a 6-month period to work
n the details.

During this period, we were able to define key activities for and
mportant issues of product derivation (O’Leary et al., 2009). Feed-
ack from reviewers and discussions during and after SPLC 2009
hen allowed us to further develop our ideas.

.3. Validation of key activities

We refined the initial activities defined in our earlier paper
O’Leary et al., 2009) and collected illustrative examples from our
ndustry projects (cf. Section 4). To validate the activities (with the
im to provide evidence for their relevancy and importance) we
ystematically analyzed the support for these activities in often
ited and well-known existing approaches (cf. Section 5.1). We
elected COVAMOF (Sinnema et al., 2006a), FAST (Weiss and Lai,
999), and PuLSE-I (Bayer et al., 2000) because in our literature sur-
eys we both independently identified that these three approaches
ere influential through their frequent citations. Furthermore, due

o the multitude of publications on each approach, clearly defined
escriptions existed. This does not necessarily mean they are ideal
or our validation but a good starting point is to look at prominent
xisting approaches for parallel findings. Also, the three approaches
ere developed independently for different purposes and in differ-

nt contexts.
Analyzing existing approaches for their support for the key

ctivities allows finding out whether the key activities we defined
re not only relevant for Pro-PD and DOPLERUCon but are in fact also
upported/implemented by other approaches. This contributes to
he validation of our research as it provides evidence that the activ-

ties we defined are relevant and important; especially as the three
pproaches analyzed also are (or have been) used in practical set-
ings. With regard to generalization and external validity, five cases
our two approaches and the three others we analyzed) are not
nough to prove that the key activities will be relevant and impor-
e approach include that are not covered by the defined key

ractical industrial settings?

tant for every context, domain, or organization. However, they are
evidence that it makes sense to consider the defined activities when
developing or evaluating a product derivation approach.

To enable systematic analysis, we needed a suitable evaluation
framework. While a framework specifically for evaluating prod-
uct derivation approaches does not exist, we found a framework
developed for the purpose of evaluating software product line
architecture design methods (Matinlassi, 2004) which we adapted
for our purpose. We used this framework as a basis for our valida-
tion for two reasons. Firstly, it provided a simple tabular evaluation
structure. Secondly, it had previously been published at the ICSE
Conference which ensures it has been peer-reviewed sufficiently.
As our goal was to validate the key activities we defined by study-
ing how they are supported by often cited and well-known existing
approaches, we found a simple, tabular framework sufficient. It
allows us to compare the approaches systematically but on a level
high enough to also enable the presentation of our results.

We adapted the questions regarding the category context
proposed by Matinlassi from “product line architecture design
method” to “product derivation approach” (cf. Table 1). We adopted
only one element for the category user (target group) as our focus
is on evaluating the contents (support for key activities) and not
the user support. For the category contents, we adopted the first
two elements activities and artefacts. Instead of focussing on prod-
uct line architecture (elements defined by Matinlassi: architectural
viewpoints, language, variability, tool support), we defined one
element for each key activity to evaluate (cf. Section 4). For the
validation category, we adopted the element maturity and not qual-
ity because we are not interested in the approaches’ procedures to
validate the results of product derivation but more in whether the
approaches themselves have been validated. Table 1 depicts the
adapted evaluation framework. We present and discuss the results
of the analysis we conducted based on the framework in Section 5.

3. Comparison of two product derivation approaches

We provide a brief overview of Pro-PD and DOPLERUCon (for
more details on the two approaches refer to (O’Leary, 2010;
Rabiser, 2009)) and summarize the results of comparing our two
approaches. In Tables 2–4 we list all the activities contained within

Pro-PD and compare them with the activities in DOPLERUCon, i.e., for
each Pro-PD activity, we analyzed whether DOPLERUCon supports
the activity fully, partly or not at all and how it provides this sup-
port (cf. Section 2.2). We discuss interesting parallels and important
differences we found.

http://www.splc.net/

R. Rabiser et al. / The Journal of Systems and Software 84 (2011) 285–300 289

Table 2
Overview of mapping Pro-PD pre-derivation activity to DOPLERUCon.

Pro-PD Pre-derivation
activity

Purpose Supported by DOPLERUCon? DOPLERUCon

(sub-)activities involved

Translate customer
requirements

“Translate” customer requirements to domain
language

Not Supported (customer requirements are
assumed to be available in domain language)

–

Coverage analysis Determine requirements satisfied through
base configuration and document
mapped/unmapped requirements

Supported (possible to start with an existing
configuration which contains requirements for
the required configuration. Mapping to new
requirements and documentation therefore
can be achieved)

Review variability model;
elicit and capture
requirements

Customer negotiation Negotiate unmapped customer requirements
and check their feasibility

Supported (by relating new requirements with
variability. Based on this information, effort
and risk level for realization can be defined -
Requirements are negotiated with the
customer)

Relate product-specific
requirements to the
available variability;
negotiate product-specific
requirements

Create the product-specific
requirements

Involves merging mapped and negotiated
requirements

Supported (negotiations lead to changes in
captured requirements)

Capture product-specific
requirements; negotiate
product-specific
requirements

Scope requirements
implementation

The functional and non-functional
requirements for the system are specified and
scoped. Requirements are designated for
platform implementation or product-specific

Partly supported (Captured requirements can
be assigned arbitrary types. This can also be
used to define whether they are
platform-specific or product-specific)

Capture product-specific
requirements

Create the product-specific
test cases

Create test-cases using the product-specific
requirements

Partly supported (assumed to happen in
additional development phase but not defined
how)

Additional development

Allocate requirements Allocate requirements to relevant disciplines,
e.g., hardware discipline, algorithms. Prioritise
implementation iteration of particular product
requirements

Partly supported (related decisions grouped in
tasks can represent disciplines. Requirements
related with decisions in a task are then also
allocated to a discipline. Prioritization of
iterations is not supported.)

Define roles and tasks

3

a
F

d

T
O

Create guidance for
decision makers

Guidance is linked into the product-specific
requirements. Remaining variability must be
explained to deal with complexity issues in
representing product line variability

.1. Overview of Pro-PD
From a high-level point of view Pro-PD comprises the following
ctivities which need to be conducted in an iterative manner (see
ig. 2).

In Pre-Derivation the preparatory steps required before actual
erivation can begin are performed. Pre-Derivation is aimed at

able 3
verview of mapping Pro-PD product configuration activity to DOPLERUCon.

Pro-PD product configuration activity Purpose Su

Derive new configuration Derive a new product configuration
from the platform architecture

Su
m
w
li
D

Select closest matching configuration Select a base configuration from
existing/previous configurations

Su
ex
d
“i
co

Select platform components Components are selected from the
collection of platform components for
addition to or replacement of
components in the base configuration

Su
d
li
se
m
co

Integrate and create product build The base product configuration and the
selected platform components are
integrated and integration testing is
performed

Pa
co
d
co
d
n
co
m

Integration testing Validates the platform assets for this
particular configuration. The
integration tests should reuse platform
test artefacts

Pa
ad
d

Supported (arbitrary guidance (e.g.,
multimedia) can be created for open decisions.
These can be related with requirements)

Create/manage guidance

forming the product-specific requirements based on customer
requirements and negotiation with the platform team. Require-

ments are prioritized and assigned to development iterations.
Sub-activities can be seen in Table 2.

In Product Configuration the goal is to build the product by
reusing as much as possible the platform artefacts and minimizing
the amount of product-specific development effort. Requirements

pported by DOPLERUCon? DOPLERUCon (sub-)activities involved

pported (deriving a new product by
aking decisions goes hand in hand
ith selecting assets due to the explicit
nkage of assets with decisions in
OPLER)

Make decisions and customize assets

pported (possible to start with an
isting configuration, i.e., an existing

erivation model. Also possible to
mport” decisions from earlier
nfigurations)

Adapt variability model

pported (goes hand in hand with
eriving a new configuration. Explicit
nkage of assets with decisions allows
lecting platform components by
aking decisions in the base
nfiguration (derivation model)

Make decisions and customize assets

rtly Supported (the selected base
nfiguration is represented by a

erivation model. Platform
mponents are selected by making

ecisions. No manual integration is
ecessary. Integration testing relies on
rrectness and completeness of the
odel

Make decisions and customize assets;
generate configurations

rtly Supported (assumed to happen in
ditional development phase but not

efined how)

Additional development

290 R. Rabiser et al. / The Journal of Systems and Software 84 (2011) 285–300

Table 4
Overview of mapping Pro-PD product development and testing activity to DOPLERUCon.

Pro-PD product development and
testing activity

Purpose Supported by DOPLERUCon? DOPLERUCon (sub-)activities involved

Identify required product development Satisfy requirements which could not
be satisfied through reuse of platform
assets

Supported (in application requirements
engineering additionally required
development is identified through
mapping with the available variability
and negotiation with the customer)

Relate product-specific requirements
to the available variability; negotiate
product-specific requirements

Develop/adapt components The source code to implement new
functionality or to adapt an existing
platform component at product level is
developed

Supported (main purpose of additional
development phase)

Additional development

Component unit testing When a component is built or adapted,
initial or tailored versions of a
component will need to be tested
rigorously through unit testing

Partly Supported (can happen in
additional development phase but not
defined how to do this)

Additional development

Integrate and create product build The developed or adapted components
are integrated into the integrated
product configuration

Supported (main purpose of the
product integration and deployment
phase)

Product integration and deployment

Run system tests The product has to be checked for
compliance with the product-specific
requirements (Deelstra et al., 2005).
Tests used at platform level can be
reused

Partly Supported (assumed to happen
during product integration and
deployment but not defined how to do
this)

Product integration and deployment

Assess results The success or failure of the product
delivery process is determined.
Improvements that can be made to the
delivery process are discussed

Partly Supported (assumed to happen
during product line evolution after or
in parallel to product derivation)

Product line evolution (analyze new
assets; analyze new requirements)

Provide feedback to platform team Feedback is provided to the platform
team on core asset usage during the
project. Also, the product team

s

Supported (main purpose of product
line evolution phase in DOPLERUCon)

Product line evolution (analyze new
assets; analyze new requirements)

a
o
b

o
t
c

i
a
P
u
p

3

l
(

D
c
l
d
d
v
T
r
a
i
p
c

u

identifies product-specific component
that the platform could potentially
benefit from through adoption

re developed iteratively based on their priority given in the previ-
us step, iterations continue until all customer requirements have
een fulfilled. Sub-activities can be seen in Table 3.

During Product Development and Testing, product-specific devel-
pment is undertaken. Both the changes and the final product are
ested to ensure it satisfies customer expectations. Sub-activities
an be seen in Table 4.

Pro-PD is defined at a high level, but in order to create a work-
ng company-specific model these processes need to be specialized
nd a lower level of model abstraction needs to be constructed.
ro-PD provides a link to automated approaches by providing prod-
ct derivation context and facilitating tool support for the overall
rocess.

.2. Overview of DOPLERUCon

From a high-level point of view DOPLERPUCon comprises the fol-
owing activities which need to be conducted in an iterative manner
see Fig. 3 and cf. (Rabiser, 2009)).

In Configuration Preparation (1) project managers prepare
OPLER variability models for a concrete project/customer. They
apture customer and project information and, based on high-
evel requirements known early on, resolve variability. They further
efine the roles and tasks of the people involved in product
erivation. Additionally, domain experts model guidance to pro-
ide additional rationale or recommendations for decision-making.
he sub-activities of configuration preparation are: define project,
eview variability model, create and manage guidance, adapt vari-
bility model, and define roles and tasks. Configuration preparation

s supported by the tool ProjectKing (Rabiser et al., 2007). The out-
ut is a project-specific version of the original variability model
alled the derivation model.

Product Configuration (2) starts with presenting decisions to
sers according to their roles and tasks defined in the deriva-
tion model. Typically, sales people communicate with customers
to elicit their detailed requirements and make decisions accord-
ingly. Engineers typically perform more technical configuration
based on sales decisions. Sub-activities of product configuration
are: review available variability, communicate variability, make
decisions and customize assets, and generate configurations. Prod-
uct configuration is supported by the ConfigurationWizard (Rabiser
and Dhungana, 2007) tool. The outputs are selected and customized
assets.

Application Requirements Engineering (3) aims at capturing,
negotiating, and managing the requirements that cannot be
fulfilled by the product line. The sub-activities are elicit and
capture product-specific requirements, relate product-specific
requirements to the available variability, and negotiate product-
specific requirements. ConfigurationWizard supports capturing
such requirements and relating them to existing assets and deci-
sions (Rabiser et al., 2007).

During Additional Development (4) product-specific require-
ments are addressed. Developers have to take into account the
already existing assets and their relationships. New develop-
ments need to be tested. DOPLERUCon does not define concrete
sub-activities because it assumes this activity to be too domain-
specific.

Product Integration and Deployment (5) means integrating
derived assets with new developments and preparing them for
deployment. Again, the concrete steps involved differ from com-
pany to company. Configuration Wizard can however be extended
with domain-specific tools, e.g., to enable generating build files or
settings files.
In Product Line Evolution (6) domain and application engi-
neers collaborate to find out which of the additionally developed
and/or changed assets should become part of the product line.
Sub-activities are: analyze new assets and analyze new require-
ments.

R. Rabiser et al. / The Journal of Systems and Software 84 (2011) 285–300 291

Fig. 2. Pro-PD (O’Leary, 2010).

3

p
a
t
S
b
n
o
s
p

a
b
m
c
t
b
d

.3. Comparison of Pro-PD Pre-Derivation with DOPLERUCon

Pre-derivation in Pro-PD is an activity where derivation is pre-
ared. In DOPLERUCon the activity configuration preparation has
similar purpose. This is a problematic area of product deriva-

ion because all further activities depend on these early steps.
ome of the Pro-PD pre-derivation sub-activities are supported
y DOPLERUCon as part of its application requirements engi-
eering activity. In Table 2, we summarize which sub-activities
f the pre-derivation activity in Pro-PD (cf. Section 3.1) are
upported by DOPLERPUCon (cf. Section 3.2) and how they are sup-
orted.

From the eight sub-activities defined within the pre-derivation
ctivity of Pro-PD, seven sub-activities are fully or partly supported
y DOPLERPUCon. Only one activity i.e. “translate customer require-

UCon
ents” is not supported. This missing activity in DOPLERP
an be explained with the differences in approaches to cus-
omer management. In a collaborative environment, as assumed
y DOPLERPUCon, customer requirements are typically delivered in
omain language.
3.4. Comparison of Pro-PD product configuration with
DOPLERUCon

Product configuration is focused on the derivation of a prod-
uct configuration from the product line, i.e., selecting, customizing,
and integrating reusable assets. In both approaches this activity is
called product configuration. In Table 3, we summarize which sub-
activities of the product configuration activity in Pro-PD (cf. Section
3.1) are supported by DOPLERPUCon (cf. Section 3.2) and how they
are supported.

From the five sub-activities identified within the product con-
figuration activity of Pro-PD, we can see that all five sub-activities
are fully or partly supported by DOPLERPUCon. DOPLERUCon assumes
domain-specific plug-ins to be developed for the partly supported
activities. One major difference between the two approaches is

UCon
the assumption of DOPLER that testing will be performed in
the additional development phase and that the approach does not
define how because it assumes this to be too domain-specific. Fur-
thermore, due to the model-based approach the base configuration
is represented by a dedicated model in DOPLERUCon, the derivation

292 R. Rabiser et al. / The Journal of Systems and Software 84 (2011) 285–300

UCon (

m
a
t
m
c
t
o
p
a

3
D

c
b
a

Fig. 3. DOPLER

odel. In this model a base configuration can be selected or man-
ged by making decisions. Making these decisions directly lead to
he inclusion and/or adaptation of (platform) components which

akes integration of the base configuration and selected platform
omponents unnecessary. However, the correct “integration” in
his case depends on the correctness and completeness of the model
n which it is based. Currently, DOPLER provides only basic sup-
ort for validating models in this regard (syntactical correctness
nd consistency with the architecture (Vierhauser et al., 2010)).

.5. Comparison of Pro-PD product development and testing with
OPLERUCon
The Pro-PD product development and testing phase is where
ustomer requirements are addressed which could not be fulfilled
y the product line and the provided variability. In DOPLERUCon the
ctivities of the product development and testing phase occur in
Rabiser, 2009).

the application requirements engineering, the additional develop-
ment, the product integration and deployment, and the product line
evolution phases. In Table 4, we summarize which sub-activities of
the product development and testing activity in Pro-PD (cf. Section
3.1) are supported by DOPLERPUCon (cf. Section 3.2) and how they
are supported.

From the seven sub-activities identified within the product
development and testing activity of Pro-PD, all seven are fully or
partly supported by DOPLERPUCon. DOPLERUCon assumes domain-
specific plug-ins to be developed for the partly supported activities.

3.6. Conclusions
Even though the two approaches were developed separately
and with different aims and purposes in mind, we discovered
many interesting parallels (cf. Tables 2–4) and found comparably
few differences. Both approaches independently sought to identify

stems

p
e
d

D
t
a
v
p
i
c
t
p
s

d
a
t
w
p
o
a

a
p
m
a
p
s

l
G
o
t
r

f
v
i
s

p
i
(
s

4

a
r
p
t
w
a
w
u
i
t

4

t
f
m

R. Rabiser et al. / The Journal of Sy

roduct derivation activities, Pro-PD through its process refer-
nce model and DOPLERPUCon through its tool-supported product
erivation approach.

Requirements management is one area where Pro-PD and
OPLERPUCon have different approaches. In DOPLERPUCon cus-

omer requirements that cannot be satisfied by the product line
re captured and documented together with relations to existing
ariability. Pro-PD takes unsatisfied customer requirements and
erforms customer negotiation where the feasibility of implement-

ng customer requirements is investigated and discussed with the
ustomer extensively. DOPLERPUCon does not clearly define how
o handle/negotiate unsatisfied customer requirements, it is “only”
ossible to capture these requirements and mark them as product-
pecific implementations.

The definition of iterative development cycles for additional
evelopment is only partly supported in DOPLERPUCon. Additional
ttributes can be defined for requirements and these can be used
o allocate requirements to specific iterations. Pro-PD is designed
ith iterative development cycles in mind. The specification of
roduct-specific requirements goes hand in hand with allocation
f these requirements to specific iterations based on prioritization
nd customer negotiation.

Customer involvement in product derivation is often portrayed
s a combative relationship involving negotiation between separate
arties with contrasting motivations. This is how customer involve-
ent is portrayed in Pro-PD. By comparison, the DOPLERUCon

pproach is a more collaborative approach that assumes both the
roduct team and the customer are making decisions which will
erve both their interests.

Pro-PD is applicable to organizations seeking to achieve regu-
atory compliance such as Auto-SPICE (Automotive Special Interest
roup, 2008) due to specific practices dedicated to the formation
f requirements specifications. DOPLERPUCon would require addi-
ional requirements specification practices to make it applicable in
egulated environments.

DOPLERPUCon is focused on providing user-centred tool support
or product derivation. For example, different views on existing
ariability are provided for different users to allow them mak-
ng decisions. Pro-PD does not define which activities should be
upported by tools and how they can be supported.

Product derivation user management is also not directly sup-
orted in Pro-PD. While DOPLERPUCon requires defining the people

nvolved in product derivation and their roles and responsibilities
who decides what and when), Pro-PD does not explicitly enforce
uch a user management.

. Key activities for product derivation

Based on the mapping of our two approaches we defined key
ctivities (cf. Fig. 4) for product derivation to address our first
esearch question (cf. Section 1): What are the key activities for
roduct derivation in software product line engineering? We illus-
rate the activity descriptions with examples from case studies
e conducted with Robert Bosch GmbH (Pro-PD) (O’Leary, 2010)

nd Siemens VAI (DOPLERUCon) (Rabiser, 2009). The case studies
ere conducted in two different domains, one considered prod-
ct derivation practices within automotive systems while the other

nvestigated product line engineering support for a software sys-
em for the automation of continuous casting in steel plants.

.1. Key activity 1: preparing for derivation
In both our approaches as well as in existing work it is noted
hat derivation does not start “from scratch”, i.e., by just selecting
eatures or making decisions, for example, as defined in a variability

odel.
and Software 84 (2011) 285–300 293

When developing Pro-PD, the need for a more sophisticated
requirements management process when dealing with large dis-
tributed teams was observed. For instance, when communicating
information across large distributed teams, such organizations tend
to be overly reliant on documentation. An organization’s documen-
tation often becomes bloated as teams attempt to capture too much.
Such overly detailed documentation decreases traceability of rele-
vant information and results in failure to correctly identify artefacts
for reuse especially in team sizes where the transfer of tacit knowl-
edge is prohibitive. In Pro-PD these case study observations were
captured. During the early phases (preparing for derivation), the
customer requirements were translated into a set of internal com-
pany documents. These documents were processed and augmented
through various tasks where requirements are analyzed for reuse
potential and then assigned to responsible disciplines.

During the development of DOPLERUCon, the industry partner
Siemens VAI’s typical projects motivated the need for preparing
derivation (Rabiser et al., 2007). Customers often wish to upgrade
existing steel plants in order to improve steel quality by deploy-
ing Siemens VAI’s most recent casting technologies. In this case
the software needs to interoperate with diverse legacy software
and hardware systems of the customer. Requirements regarding
existing hardware and software have to be captured and mapped
with the existing variability of the product line. Other customers
require a complete plant solution. In such cases, it is often possible
to reuse a base configuration from past projects as a starting point.
The duration of typical customer projects is between a few months
up to more than a year and involves numerous meetings between
sales people and customers as well as sales staff and engineers. The
roles and tasks of the involved people therefore have to be defined
to address these stakeholders’ needs and responsibilities in deriva-
tion. Also, guidance is essential, especially for domain experts, who
are confronted with many – often technical – decisions.

From both research projects, we thus observed that before actual
derivation can start several preparatory activities need to be con-
ducted as listed:

• Specify and translate customer requirements.
• Define base configuration.
• Map customer requirements.
• Define role and task structures.
• Create derivation guidance.

4.1.1. Specify and translate customer requirements
Customer requirements need to be clearly specified as a starting

point for product derivation. If necessary, they need to be translated
into the internal organizational language. The goal is to prevent
terminology confusion and customer-specific description of assets.
This has to be done in close collaboration with the customer.

4.1.2. Define base configuration
A “base configuration” may be chosen as a starting point for

derivation, i.e., from a set of existing platform configurations.
Experiences made in past projects are of great use as similar cus-
tomers often have comparable requirements. If no (at least partly)
matching base configuration can be found, a new one has to be
created.

4.1.3. Map customer requirements
Customer requirements are mapped to the base configura-

tion. Requirements which cannot be satisfied by existing assets

have to be negotiated with the customer. Effort estimation issues
(the estimation of effort required to satisfy unmapped customer
requirements through the adaptation of platform assets or addi-
tional development) can make customer negotiation difficult. The
trade-off here is to meet as many of the customer’s needs as pos-

294 R. Rabiser et al. / The Journal of Systems and Software 84 (2011) 285–300

s for p

s
w

4

h
f
d
i
t
e
d
s
b
w

4

d
e
w
v
r
p
W
v
p
o
r

4

a
a

m
s
n
b
p
d
p

Fig. 4. Key activitie

ible while retaining the profitability of the platform assets for the
hole product line.

.1.4. Define role and task structures
The role and task structures for the product derivation project

ave to be defined. For example, discipline mapping can be per-
ormed where product requirements are allocated to relevant
isciplines. The goal is to define who is responsible for resolv-

ng what remaining variability in product derivation to fulfil
he product requirements. This is very helpful to provide differ-
nt views on variability for different people involved in product
erivation and helps to lower the complexity of large decision
paces. Also, as the duration of product derivation projects can
e quite long, it is important to know who decided what and
hen.

.1.5. Create derivation guidance
Preparing for derivation also means to create guidance for

ecision-makers. Guidance is essential, especially for domain
xperts like customers and sales people, who are confronted
ith many – often technical – decisions or features. Remaining

ariability must be explained to deal with complexity issues in
epresenting product line variability. Furthermore, different peo-
le need to understand different aspects of the provided variability.
hile sales people interacting with customers need to understand

ariability from a rather high level, engineers need more details to
erform technical configuration. Depending on the roles and tasks
f the people involved, different representations of variability are
equired.

.2. Key activity 2: product derivation/configuration

The goal of product derivation is to build the product by reusing
s much as possible the platform artefacts and minimizing the
mount of product-specific development required.

When developing Pro-PD, it was observed how the platform
anager informs the platform integrator what configurations

hould be build. The product architect identifies product compo-

ents required by the customer and identifies extensions required
y the platform architecture to facilitate new requirements. The
latform manager will either accept or reject these requests
epending on whether they fall under the scope of the platform. The
roduct team identifies the partial configuration to use, a selection
roduct derivation.

of the platform components to reuse, and the setting of parameters
for each selected component.

During the development of DOPLERUCon, product derivation has
been perceived as a project that can run over a comparably long
period (up to more than a year). Based on the defined role and task
structures, derivation stakeholders are presented with the variabil-
ity they are responsible for and have the rights to resolve. Sales
people or project managers are assumed to communicate high-
level decisions to customers and elicit their requirements. A first
high-level customization is performed based on these decisions
early in the project. Engineers perform technical configuration
afterwards. Simulation based on partial configurations was impor-
tant in the project. Existing simulator applications of Siemens VAI
were used (Rabiser and Dhungana, 2007).

In both research projects we saw that product deriva-
tion/configuration has to be an iterative process starting with
selecting/customizing a set of assets from the product line, deter-
mining possible additionally required developments and testing.
Iterations are required until all customer requirements have been
fulfilled. The activities that need to be conducted are listed below:

• Select assets.
• Create partial product configuration.

Select assets: based on the role and task structures defined
before, assets have to be selected (and customized) from the prod-
uct line, e.g., by making decisions or selecting features. Tool support
is inevitable for this activity. Dependencies and constraints in the
variability description and among assets have to be evaluated by
this tool support during the decision-making process to ensure the
correctness of the selected and customized set of assets.

Create partial product configuration: a partial configuration is
created step-by-step in an iterative manner. A partial configura-
tion partially implements a software product in the sense that not
all variability has been resolved (Deelstra et al., 2005). Theoreti-
cally, at this stage a partial configuration could satisfy customer
requirements. However, this is the ideal case and assumes all
the customer requirements are covered by the platform. In most

industrial projects some additional development will be required.
Required development activities have to be defined and priori-
tized based on customer requirements. Simulation based on partial
configurations might be used to support further negotiations (on
requirements) with customers.

stems

4

i

a
w
i
t
a
t
n
i
c
p

m
h
o
t
d
p
l

i

•
•
•
•
•

f
u
t
f
c
o
a

o
e
c
s

d
t
s
i
d

w
w
c

f
a
s
r

4

s
i

R. Rabiser et al. / The Journal of Sy

.3. Key activity 3: additional development/testing

It is the responsibility of the product development team to
mplement the required changes at the product level.

In the development of Pro-PD, component development and
daptation typically occurred at product level. First, requirements
hich cannot be satisfied through the reuse of existing assets are

dentified. Then, a strategy for component development or adapta-
ion is decided to satisfy these requirements. Any platform changes
re applied retrospectively when considered against the scope of
he product line. Required architectural changes for new compo-
ents are negotiated with the platform team. The product team

ntegrates the developed/adapted components with the partial
onfiguration through writing ‘glue’ code to interface with com-
onents. At this stage, product testing can begin.

During the development of DOPLERUCon, additional develop-
ent and testing also mainly occurred at product level. Changes

owever also can occur at product line level. Newly developed
r adapted components are tested, integrated, and then deployed
o the customer. After the end of the product derivation project,
omain and application engineers collaboratively decide whether
roduct-specific developments are to be integrated in the product

ine.
From both research projects we learned that the following activ-

ties need to be conducted in additional development/testing:

Component development.
Component testing.
Component integration with partial product configuration.
Integration testing.
System testing.

Component development: the source code to implement new
unctionality or to adapt an existing platform component at prod-
ct level is developed. New components should be developed with
he possibility in mind that they might later be promoted to a plat-
orm asset. If a platform component is considerably adapted and
onsidered to have reuse value, it should be termed a new version
f the same platform component and added to the platform with
n associated definition of its parent (Ahmed et al., 2009).

Component testing: When a component is built or adapted, initial
r tailored versions of a component need to be tested rigorously, for
xample through unit testing. As confirmed by Kauppinen (2003),
onventional unit test methods must be utilized as no product line
pecific methods have been developed so far.

Component integration with partial product configuration: newly
eveloped and adapted assets need to be integrated with the par-
ial product configuration. This can for example require writing
ufficient “glue” code to interfaces (Chastek et al., 2002) or even
mplementing architectural changes to facilitate integration of the
eveloped and adapted assets.

Integration testing: integration testing is essential to find out
hether the newly developed and adapted assets interact correctly
ith the existing architecture: the product has to be checked for

onsistency and correctness.
System testing: in system testing the product has to be checked

or compliance with the product-specific requirements (Deelstra et
l., 2005). If the customer requirements for this iteration have been
atisfied, the product is delivered. Otherwise, further iterations are
equired.
.4. Adaptability

The defined activities require a degree of variability to enable
triking the right balance for a particular situation; this variability
nvolves the selection, tailoring and or removal of activities from a
and Software 84 (2011) 285–300 295

process. Activities can be adapted and customized for a particular
context, domain or organization. This has the potential for making
the defined activities as applicable to a small software development
team working on a mobile application as for a large aerospace and
defence contractor building a system of systems.

For example, in Bosch it was observed that the embedded soft-
ware development was a cross-discipline activity. In this context,
when defining role and task structures (sub-activity of key activity
preparing for derivation), “discipline mapping”, where requirements
are allocated to software, hardware or mechanical disciplines, is a
relevant task. However this may not be necessary when developing
a product line in another domain with only one type of discipline.
For example, in the case study with Siemens VAI, where a soft-
ware product line for the automation of continuous casting was
the focus, discipline mapping was not necessary as the focus of the
study was on the software level only. Another sub-activity that is
domain-specific is “specify and translate customer requirements”.
While in case of Bosch, translating requirements was considered
necessary; in case of Siemens VAI it was assumed that the customer
requirements are already available and represented in the internal
organizational language when product derivation starts.

These examples demonstrate that for each domain, context or
organization the key activities have to be analyzed and a decision
has to be made as to which sub-activities make sense. We con-
sider all sub-activities as optional, except for “select assets” and
“create (partial) product configuration”, i.e., the product deriva-
tion/configuration key activity. An organization might just decide
not to prepare for derivation (and just start with deriving and
configuring right away) and not to test derived products at all,
whatever the consequences may be. Especially, when a high degree
of automation is possible, this might make sense. Additional devel-
opment is optional in the sense that if all customer requirements
can be fulfilled by reusing the product line assets, no additional
development is required. However, this will seldom be the case in
practice.

5. Validation: analyzing existing approaches regarding
their support for the key activities

Existing product derivation approaches have been developed
with different goals, for different purposes, and in different
domains. Some are focused on the early phases of derivation, some
are intended to provide a (process) framework for product deriva-
tion, and others mainly focus on tool-support. To validate the key
activities for product derivation that we defined, we systematically
analyzed prominent existing approaches for their support for the
defined activities. This addresses our second research question (cf.
Section 2): Are the identified activities relevant and important? We
first provide a brief overview of these approaches and then show
the results of our analysis based on the adapted evaluation frame-
work introduced in Section 2.3. Finally, we discuss the results.

5.1. Selected existing approaches

5.1.1. COVAMOF
The product derivation approach for COVAMOF (COnfiguration

in Industrial Product Families VAriability MOdeling Framework)
(Deelstra et al., 2005) consists of two phases: an initial and an iter-
ation phase. During the initial phase, a first product configuration
is derived from a product line’s assets. This initial configuration is

modified in a number of subsequent iterations during the iteration
phase until the product sufficiently implements the requirements
imposed. Requirements that cannot be accommodated by existing
assets are handled by product-specific adaptation or reactive evo-
lution. Parts of COVAMOF have been implemented in the research

2 stems

t
a
d
a
(
e
b
i
S

5

S
(
I
o
t
a
P
a
u
a
a
a
s

5

T
s
r
a
a
m
b
p
f
l
s
g
a
p
q

5

a
k
i

5

F
s
w
p
f
a
u
o
m
g
a

96 R. Rabiser et al. / The Journal of Sy

ool COVAMOF-VS (Sinnema et al., 2006b). The work by Deelstra et
l. provides a framework of terminology and concepts for product
erivation. The framework focuses on product configuration and is
high-level attempt at providing the methodological support that

Deelstra et al., 2005) and others (Halmans and Pohl, 2003; Kang
t al., 1990; McGregor, 2005; Sinnema et al., 2006b) described to
e required for product derivation. COVAMOF has been validated

n several industrial case studies including (Deelstra et al., 2005;
innema and Deelstra, 2008).

.1.2. PuLSE-I
The application engineering part of the PuLSE (Product Line

oftware Engineering) method developed at the Fraunhofer IESE
Institute for experimental software engineering) is called PuLSE-
(I stands for instantiation) (Bayer et al., 2000). PuLSE-I focuses
n the instantiation of the product line infrastructure created in
he domain engineering part of PuLSE. It describes in detail the
ctivities, products and roles involved in application engineering.
uLSE-I activities cover planning product derivation, instantiating
product architecture from the product line reference architecture
sing decision models, and additional designing, implementation,
nd testing activities. Delivery and maintenance processes are also
ddressed. Several process steps are defined based on other PuLSE
rtefacts, e.g., reference architecture, domain decision model and
cope definition.

.1.3. FAST
FAST (Family-oriented Abstraction, Specification, and

ranslation) (Weiss and Lai, 1999) is an approach that con-
iders most of the facets of product line development. It defines
oles for diverse team members of a product line organization
nd links these roles to product line artefacts and corresponding
ctivities. The FAST approach is very practice-focused which
ay be accounted for by its industry origin. The FAST process

egins by identifying variabilities and commonalities among
otential product line members and then creating a language
or specifying the individual products within that domain. This
anguage is then used as the basis for building a generator to
upport semi-automatic product derivation. Product derivation is
reatly simplified through describing the products in the language
nd generating the products. If the product line requirements are
roperly identified, FAST can develop individual products very
uickly.

.2. Analysis

We summarize the results of our analysis of COVAMOF, PuLSE-I,
nd FAST regarding their support for the defined product derivation
ey activities (cf. Section 4) using the evaluation framework first
ntroduced in Section 2.4 (Table 5).

.3. Discussion of results

The analysis of the three approaches (COVAMOF, PuLSE-I and
AST) shows that the key activities we defined are at least partly
upported by existing approaches. There is no activity we defined
hich has no support. Of course, how the activities are sup-
orted differs from approach to approach and depends on both the
ocus and the scope of the approach. For example, the COVAMOF
pproach is tool-supported and concentrates primarily on prod-

ct configuration. FAST has a larger scope but mainly concentrates
n automated derivation, i.e., describing products in an application
odelling language and then using generators based on that lan-

uage to create products. PuLSE-I has the largest scope of the three
pproaches but does not focus on tool support.
and Software 84 (2011) 285–300

The preparing for derivation key activity is only partly sup-
ported by all three approaches. Our research has demonstrated that
preparing for derivation is an important activity and has to be at least
closely related to product derivation. We have experienced that a
lack of support for preparing derivation is one of the main reasons
that product derivation often fails in practice (O’Leary et al., 2009;
Rabiser et al., 2007). A special focus has to be the definition of roles
and tasks for product derivation stakeholders as well as the creation
of guidance for domain experts.

The product derivation/configuration key activity is fully sup-
ported by all three approaches in different ways. The focus is clearly
on automating the derivation of products as far as possible to ensure
return on investment for adopting a product line approach and to
make efficient and effective product derivation possible.

All three approaches perceive derivation as an iterative process.
COVAMOF and FAST include explicit activities (product testing,
verify integrated application) for deciding whether to deliver or
perform additional iterations. The key activities we defined also
strongly focus on testing and on the iterative nature of product deriva-
tion.

PuLSE-I is not an isolated description of product derivation but
has many dependencies to other parts of the overall PuLSE product
line methodology. It would also make sense to relate our key activ-
ities to domain engineering activities and ensure there is a “fast
feedback loop” (Heider and Rabiser, 2010).

We have seen that, in addition to our product derivation
approaches (Pro-PD and DOPLERUCon), three others support most
of the sub-activities of the key activities we defined. We therefore
claim that the key activities should be considered when develop-
ing or evaluating a product derivation approach. However, how
the activities are implemented in an approach strongly depends
on the domain and context. In some cases it might be best to define
a domain-specific derivation approach. Some sub-activities may
simply not make sense in particular contexts (cf. Section 4.4). The
activities we defined can be used as a checklist when defining,
adapting, or evaluating a product derivation approach for a certain
domain, context, or problem.

6. Related work

Every existing product derivation approach describing prod-
uct derivation activities can be considered related work. We have
analyzed three such approaches in detail in Section 5. Pro-PD
and DOPLERUCon have been developed based on different existing
approaches. These are discussed in detail in the authors’ earlier
publications. Here, we focus our discussion of related work on two
frameworks, i.e., the SEI Product Line Practice Framework (PLPF)
(Clements and Northrop, 2001) and the Family Evaluation Frame-
work (FEF) (van der Linden et al., 2007a). We decided to discuss
these frameworks as they also define key activities (i.e., as part
of practices and patterns and as part of evaluating product lines)
in SPLE which can be compared with our work on defining key
activities for product derivation.

6.1. PLPF

The PLPF is built around what its authors term the “three
essential activities” of SPLE, namely Core Asset Development, Prod-
uct Development, and Management. The PLPF is the result of an
investigation performed by the SEI at “leading-edge” software

development organizations and based on years of experiences with
industry and academia co-operation projects. The development of
our key activities was also driven by our experiences with indus-
try and academia co-operation projects, i.e., at Siemens VAI and
Bosch. The PLPF identifies foundational concepts underlying soft-

R. Rabiser et al. / The Journal of Systems and Software 84 (2011) 285–300 297

Table 5
Analysis of COVAMOF, PuLSE-I, and FAST regarding their support for the defined product derivation key activities.

Context Questions

What is the specific goal of the approach regarding product derivation?
COVAMOF To support the construction of a software product by selecting and configuring product family artefacts in an iterative process
PuLSE-I To support using a product line to create and maintain one member of the product line
FAST To support rapidly generating products from the product line using generation tools

What aspects of product derivation does the approach cover?
COVAMOF Main focus is on product configuration; only partly covers preparing for derivation and additional development and testing
PuLSE-I Covers preparing for derivation, product configuration, as well as additional development and testing
FAST Covers requirements elicitation and analysis, product configuration, and additional development and testing

What is/are the application domain(s) the approach is focused on?
COVAMOF Generic enough to be usable in arbitrary domains. However, adaptations to the tool support (COVAMOF-VS) will be required depending

on the usage context
PuLSE-I Generic and not focused on a specific application domain
FAST Sufficient flexibility to allow its use with different methods in different domains

What is the starting point for the approach?
COVAMOF Creating a “product entity” based on customer requirements
PuLSE-I Customer or management has a product request that falls under the scope of the product line
FAST Final product requirements are established by contract or informal discussion of customer requirements. An application engineer then

tries to understand and validate customer requirements and their relation to product line models
What are the (desired) results of the approach?

COVAMOF A product derived from the product line that meets the customer requirements
PuLSE-I A product instantiated from the product line comprising specification, architecture, and code − partly reused from the product line and

partly developed during instantiation (in an iterative manner)
FAST An application that satisfies customer expectations, created from generated code and also by using traditional development methods

User
Which stakeholders are addressed by the approach and how?

COVAMOF Engineers are the target group of the approach. They are (tool) supported to enable iterative derivation of a product based on customer
requirements

PuLSE-I Customers and management are explicitly considered as providing input in form of product requests. Project management is also addressed
with a project plan artefact. Derivation activities are performed by dedicated application engineers

FAST Customers are involved in defining the requirements and in validating the derived product. Application engineers and so-called “producers”
define models from which the application is then generated

Contents
What activities/steps/sub-processes does the approach define to accomplish product derivation?

COVAMOF Product definition: Defining customer and product name
Product configuration: Binding of variation points based on customer requirements
Product realization: Tool-based translation of the configuration of the variability model to a configuration of an executable product, e.g., by
setting compiler flags or creating make files
Product testing: Determining whether the product meets the customer requirements and deciding whether an additional iteration
(product configuration/realization/testing) is required

PuLSE-I Plan for the product line instance (the product): Determine whether all characteristics of the required product are covered by the product
line
Create project plan: Define what is product-specific and what can be fulfilled by the product line
Instantiate and validate product line model: Incrementally resolve decisions defined in the product line model (representing variation
points)
Instantiate and validate reference architecture: Instantiate variability to derive an “intermediate architecture” from the product line,
validate, and then modify if necessary
Product construction: Lower level design, implementation, and testing based on reusable assets

FAST Determine requirements: The customer identifies or refines the requirements
Create application model: The application engineer represents the product requirements as an “application model”
Analyse model: The application model is analyzed to determine whether it satisfies the product requirements
Generate application: Generation tool(s) are created and used to generate code and documentation based on the application model
Develop product: Engineers develop any custom parts that cannot be generated manually and integrate them with the application
Verify integrated application: The customer either accepts the application or the process returns to start

What artefacts are created and managed by the approach?
COVAMOF Product entity: Created in product definition with selected variants
PuLSE-I Detailed project plan: Output of “plan for product line instance” activity

Requirements specification: Output of “instantiate and validate product line model”
Product architecture: Output of “instantiate and validate reference architecture”
Product ready for delivery: Output of “product construction”; comprising specification, architecture, and code
Product configuration: Output of all aforementioned activities; comprising domain decision model instance, architecture decision model
instance, and low level configuration

FAST Application model: Created by application engineers based on product requirements
Product: Deliverable code for the application which is typically generated from the application model using generation tools
Customer documentation: Might be generated from the application model

How is Preparing for Derivation supported by the approach?
COVAMOF Partly supported: customer requirements are assumed to be available and phrased so that engineers can perform product configuration

and testing based on these requirements (no explicit specification and translation of customer requirements). Mapping of customer
requirements to the base configuration is not part of preparing for derivation but rather assumed to be done manually by engineers
during product configuration. COVAMOF provides partial support for creating the product-specific requirements: a list of characteristics
that the final system will have is created or reused if the requested product is fully within the scope of the product line. COVAMOF
assumes engineers to do the work supported by COVAMOF-VS. It does not consider defining role and task structures. Creating derivation
guidance is not considered part of product derivation but may be done in variability modelling by creating variability views

298 R. Rabiser et al. / The Journal of Systems and Software 84 (2011) 285–300

Table 5 (Continued)

Context Questions

PuLSE-I Partly supported: During the “plan for product line instance” activity a detailed project plan is created as preparation for derivation.
Customer requirements (product request) are assumed to be available and phrased so that they can be used to determine whether the
requested product is inside the scope of the product line. Overlaps are evaluated and required system-specific developments are defined
The output in PuLSE-I is “a set of characteristics upon which the customer (or the marketing) and the developers have agreed”. Defining a
base configuration is also supported: during “plan for product line instance”, a “list of characteristics that the final system will have” is
created or reused if the requested product is fully within the scope of the product line. PuLSE-I as such defines the involved stakeholders
and their roles and tasks, however, on a rather high-level. Creating derivation guidance is assumed to be provided by the product line
decision model and no explicit creation of additional guidance is part of the approach

FAST Partly supported: During activity “determine requirements” the customer identifies the product requirements. The product requirements
are the basis for the created application model. The application model is then analyzed to determine whether it satisfies the product
requirements. This supports the activities specify (and translate) customer requirements, define base configuration, and map customer
requirements. FAST provides no explicit support for activities define role and task structures and create derivation guidance

How is product derivation/configuration supported by the approach?
COVAMOF Fully supported: In the task “Derive new configuration”, a new product entity is created in the COVAMOF variability model. Engineers

select variants by specifying values at variation points. COVAMOF-VS supports this with it’s configure mode where additional
configuration information about the product at hand is shown in variability views. An inference and a validation engine automate this
process. A partial product configuration is iteratively created, by selecting more and more variants for the product entity. Each selected
variant can have “effectuation actions” that can be executed to realize the product (product realization activity of COVAMOF), e.g., by
creating make files or settings files

PuLSE-I Fully supported: PulSE-I supports selecting a subset of existing components as part of the PuLSE-I activity instantiate and validate product
line model where decisions are resolved through the customer. Creating a partial product configuration is part of PuLSE-I activities
instantiate and validate reference architecture (instantiate variabilities to create an “intermediate architecture” from the product line)
and product construction (low-level configuration based on reusable product line assets)

FAST Fully supported: In the “generate application” activity, generation tools are used to generate application code and documentation based on
the application model. This is defined support for the select assets and create partial product configuration activities
How is additional development/testing supported by the approach?

COVAMOF Partly supported: System testing is fully supported through the COVAMOF product testing activity. This determines whether the product
meets both the functional and the non-functional requirements. COVAMOF however defines no explicit support for component
development, component testing, component integration with partial product configurations, or integration testing but assumes this to
happen, just like DOPLERUCon does

PuLSE-I Fully supported: Part of the PuLSE-I activity product construction is the implementation of non-existing product line assets and of
product-specifics. This includes testing (unit testing, integration testing, and acceptance testing). All this is conducted in several iterations
under consideration of existing reusable product line assets. This supports component development and component testing, component
integration and integration testing, as well as system testing

FAST Fully supported: FAST provides full support for additional development and testing. In the “develop product” activity, any custom parts of
the application that cannot be generated are developed and integrated with the generated product. In the “verify integrated application”
activity, the customer either accepts the application or the process returns to start
What activities/sub-activities does the approach include that are not covered by the defined key activities/sub-activities?

COVAMOF Our key activities include all activities defined by COVAMOF
PuLSE-I Apart from activities that are considered as application engineering and not product derivation (i.e., system delivery and maintenance),

PuLSE-I also includes several feedback loops to other PuLSE phases (e.g., PuLSE-Eco with its scoping activities) belonging to domain
engineering. Such feedback loops are currently not considered by our key activities

FAST Apart from activities that are considered as application engineering activities and not product derivation activities (i.e., product delivery
and support), our key activities include all activities defined by FAST

Validation
Has the approach been validated in practical industrial case studies?

COVAMOF COVAMOF has been validated in three industrial product lines (Sinnema et al., 2004); two of them are reported in more detail in (Deelstra
et al., 2005). (Sinnema and Deelstra, 2008) report on an industrial validation of the COVAMOF framework. They focus on showing how the
use of COVAMOF (supported by COVAMOF-VS) reduced the number of iterations required to derive products from a product line of their
industry partner. They also compare results of the use of their framework and tool by “non-experts” vs. the use by “experts”

PuLSE-I The PuLSE approach has been applied in case studies, for example (Schmid et al., 2005). (Atkinson et al., 2000) claim the approach to have

ss and

w
p
a

c
P
o
o
2
u
a
i
t
T
a

t

been used in various contexts
FAST Several application examples are presented in (Wei

systems

are product lines and activities to be considered when creating a
roduct line. We defined activities to be considered when deriving
product from a product line.

The PLPF is interesting and robust, involving important techni-
al and non-technical aspects grouped in SPL practical areas. In the
LPF, a practice area is defined as a body of work or a collection
f activities that an organization must master to successfully carry
ut the essential work of a product line (Clements and Northrop,
001). Practice patterns define practice areas to be used for partic-
lar processes in SPLE. Our research does not provide a grouping of
ctivities in practice areas or patterns. However, for each key activ-
ty, we defined several sub-activities and we also discussed how

he key activities can be tailored for different domains or contexts.
he PLPF does not provide this level of detail for product derivation
s it focuses on SPLE as a whole.

We analyzed the PLPF practice patterns to identify which prac-
ices are relevant to product derivation. There are 12 practice
Lai, 1999). The authors claim that FAST has been applied for several real-world

patterns defined by the SEI but only two patterns are concerned
with application engineering, i.e., the “Product Builder” and the
“Essentials Coverage” pattern.

The Product Builder pattern consists of practice areas that
should be used whenever any product in the product line
is being developed. The practice areas in this pattern are:
Requirements Engineering, Architecture Definition, Architecture
Evaluation, Component Development, Testing, and Software Sys-
tem Integration. The Essentials Coverage pattern assigns each
practice area to the three essential product line activities core
asset development, product development, and management. Our
key activities cover the PLPF practice areas for product derivation

except for the architecture evaluation area which we do not explic-
itly address. Requirements engineering is part of the preparing for
product derivation key activity. Architecture definition is part of
both the preparing for product derivation and the product deriva-
tion/configuration key activities. Component development, testing

stems

a
o

6

h
t
T
i
c
H
b
s
i

t
t
B
n
u
h
e
t
s
p
s

s
d
c
e
d
r
i
a
g
s
F
e
e
d
t
u
t

7

c
t
t
t
k
t
a
s
d
s
r
t

p
o
t

R. Rabiser et al. / The Journal of Sy

nd software system integration are part of the additional devel-
pment/testing key activity.

.2. Family evaluation framework

The family evaluation framework (van der Linden et al., 2007a)
as been developed as a consolidated result of the European indus-
ry and academia co-operation projects ESAPS, CAFÉ and FAMILIES.
his can again be compared to the development of our key activ-
ties which was also mainly based on the experiences made in
o-operation projects with industry, i.e., Siemens VAI and Bosch.
owever, the focus of the FEF was not on defining key activities
ut on creating the foundation of a systematic and comprehensive
trategy for software product line process evaluation. Its purpose
s to support evaluating the performance of SPLE in organizations.

The framework highlights four dimensions: business, architec-
ure, process, and organization (BAPO) as a set of four variables
o describe the maturity of the software product line process.
usiness deals with the business relationship between domain engi-
eering and application engineering. Architecture deals with the
se of architecture in domain and application engineering and
ow the architecture enables variability. Organization measures the
ffectiveness of domain and application engineering activities in
he organization. Process measures the SPL processes. These are
ubdivided into domain, application, collaboration and coordinate
rocesses. Each of these can be evaluated using a maturity model
uch as CMMI.

The result of an FEF evaluation is an evaluation profile con-
isting of four values, one for each BAPO dimension. The profile
efines various maturity scales for individual dimensions. The FEF
an be regarded as an attempt to develop a comprehensive strat-
gy for SPL process maturity assessment. The framework however
oes not assess SPLE for the occurrence of individual activities but
ather deals with their results and with process areas. For instance,
n the process dimension, application engineering is defined as an
spect “playing a role” and defined as comprising “processes that
uide the application engineering work”. For the process dimen-
ion and, more specifically, the application engineering aspect, the
EF describes the necessary amplifications for the respective level,
.g., on Level 2 (Managed) the use of common assets by application
ngineering activities needs to be measured. These amplification
escriptions can be viewed as a definition of what is key in applica-
ion engineering, just like we define what activities are key in prod-
ct derivation. Our research focuses on a different level of interest
han the FEF and does not consider process evaluation aspects.

. Conclusions

The definition of a general product derivation approach appli-
able to every domain will not be possible. However, comparing
wo product derivation approaches developed by the authors in
wo different, independent research projects (where both sought
o identify product derivation activities) allowed us to define
ey activities for product derivation. The comparison of the
wo approaches was very beneficial, exposing the researchers to
lternative viewpoints. Researchers gained a better sense of the
trengths and weaknesses of their particular approach through
iscussion and debate. We validated the identified activities by
ystematically analyzing existing product derivation approaches
egarding their support for the activities. This provides evidence

hat the identified activities are relevant and important.

We observed how preparing for derivation is only partly sup-
orted by existing approaches. Our research confirms that this is
ne of the main reasons that product derivation often fails in prac-
ice. It is important to put a special focus on the definition of roles
and Software 84 (2011) 285–300 299

and tasks for product derivation stakeholders as well as the cre-
ation of guidance for domain experts. All three approaches we
analyzed perceive product derivation as an iterative process. In
our key activities, we also strongly focus on the iterative nature
of product derivation. Overall, we observed how the key activities
we defined are at least partly supported by existing approaches.
We therefore claim that these activities are important and should
be considered by both researchers and industry practitioners when
developing or evaluating a product derivation approach.

Despite the growing adoption of software product line
approaches, according to our research product derivation remains
an expensive and error-prone activity which is still hard to
automate and support by tools. The goal should be to avoid product-
specific development in application engineering as far as possible.
However, in practice this is often not possible. We see the contri-
bution of the identification of key activities to the automation of
product derivation as twofold: (i) it allows us to put automated
approaches, which tackle one particular task, into a bigger context
and (ii) it lays the foundation for tools which support the overall
process.

We do not claim that the key activities we present are complete.
In some situations domain-specific activities are required. Some
sub-activities may simply not make sense in some contexts as we
have described based on our industry experiences. Further work
is required with regard to defining when and how to tailor the key
activities to specific contexts, domains or organization. Also, valida-
tion is necessary with regard to the usefulness of the key activities
in practice.

Nevertheless, we hope that other researchers can use our work
as a starting point for presenting their experiences with product
derivation or as a basis for defining, adapting or evaluating their
product derivation approaches.

Acknowledgements

This work is supported by IRCSET under grant number
RS/06/167 and by Science Foundation Ireland through Lero–the
Irish Software Engineering Research Centre under grant number
03/CE2/I303 1. This work has also been supported by the Christian
Doppler Forschungsgesellschaft, Austria and Siemens VAI Metals
Technologies.

References

Automotive Special Interest Group, 2008. Automotive SPICETM Process Reference
Model (PRM), available: http://www.automotivespice.com.

Ahmed, F., Capretz, L.F., Campbell, P., 2009. Software Product Lines: A Process
Assessment Methodology. A Practitioner’s Approach, 1st ed. VDM-Verlag, Berlin,
Germany.

Atkinson, C., Bayer, J., Muthig, D., 2000. Component-based product line develop-
ment: the KobrA approach. In: Proceedings of the First Conference on Software
Product Lines: Experience and Research Directions, Kluwer Academic Publish-
ers, Denver, Colorado, United States.

Bayer, J., Gacek, C., Muthig, D., Widen, T., 2000. PuLSE-I: deriving instances from a
product line infrastructure. In: 7th IEEE International Conference and Workshop
on the Engineering of Computer Based Systems, Edinburgh, UK, pp. 237–245.

Chastek, G., Donohoe, P., McGregor, J.D., 2002. Product Line Production Planning for the
Home Integration System Example. In Technical Report CMU/SEI-2002-TN-029.
Carnegie Mellon Software Engineering Institute, Pittsburgh.

Clements, P., Northrop, L., 2001. Software Product Lines: Practices and Patterns.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Czarnecki, K., Kim, C.H.P., 2005. Cardinality-based feature modeling and constraints:
a progress report. In: Proceedings of the International Workshop on Software
Factories at OOPSLA’05, ACM Press, San Diego, USA, pp. 1–9.

Deelstra, S., Sinnema, M., Bosch, J., 2005. Product derivation in software product
families: a case study. J. Syst. Software 74 (2), 173–194.
Dhungana, D., Grünbacher, P., Rabiser, R., Neumayer, T., 2010. Structuring the mod-
eling space and supporting evolution in software product line engineering. J.
Syst. Software 83 (7), 1108–1122.

Gomaa, H., 2004. Designing Software Product Lines with UML: From Use Cases to
Pattern-Based Software Architectures. Addison Wesley Longman Publishing Co.,
Inc.

http://www.automotivespice.com/

3 stems

G

G

H

H

H

K

K

K

M

M

O

O

O

O

O

O

P

P

R

R

R

neering Research Centre. Dr Richardson’s main research interests are in software
quality and software process improvement, focusing particularly on Global Soft-
ware Development and regulated industry such as Medical and Health Systems. She
00 R. Rabiser et al. / The Journal of Sy

riss, M.L., 2000. Implementing Product-Line Features with Component Reuse.
Springer-Verlag, London, UK.

rünbacher, P., Rabiser, R., Dhungana, D., Lehofer, M., 2009. Model-based customiza-
tion and deployment of eclipse-based tools: industrial experiences. In: 24th
IEEE/ACM International Conference on Automated Software Engineering (ASE
2009), IEEE/ACM, Auckland, New Zealand, pp. 247–256.

almans, G., Pohl, K., 2003. Communicating the variability of a software-product
family to customers. Informatik - Forschung und Entwicklung 18 (3–4), 113–131.

ammersley, M., Gomm, R., Foster, P., 2000. Case Study Method: Key Issues. Key
Texts. Sage Publications, London.

eider, W., Rabiser, R., 2010. Supporting evolution of product lines through rapid
feedback from application engineering. In: Proc. 4th International Workshop
on Variability Modelling of Software-intensive Systems (VaMoS 2010). ICB-
Research Report No. 37, University of Duisburg Essen, Linz, Austria, pp. 167–170.

ang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S., 1990. Feature-Oriented
Domain Analysis (FODA) feasibility study. CMU/SEI-90TR-21. USA Carnegie Mel-
lon Software Engineering Institute, Pittsburgh, PA.

auppinen, R., 2003. Testing Framework-Based Software Product Lines. Technical
Report C-2003-20. University of Helsinki, Department of Computer Science.

itchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D., El Emam, K., Rosenberg,
J., 2002. Preliminary guidelines for empirical research in software engineering.
IEEE Transactions on Software Engineering 28 (8), 721–734.

atinlassi, M., 2004. Comparison of software product line architecture design meth-
ods: COPA, FAST, FORM, KobrA and QADA, software engineering, ICSE 2004. In:
Proceedings. 26th International Conference on, EICC, Scotland, UK, pp. 127–136.

cGregor, J.D., 2005. Preparing for Automated Derivation of Products in a Software
Product Line, CMU/SEI-2005-TR-017. Carnegie Mellon Software Engineering
Institute.

’Leary, P., 2010. Towards a Product Derivation Process Reference Model for
Software Product Line Organisations. Department of Computer Science and
Information Systems. University of Limerick, Limerick, p. 277.

’Leary, P., Ali Babar, M., Thiel, S., Richardson, I., 2007. Product derivation process
and agile approaches: exploring the integration potential. In: Proceedings of 2nd
IFIP Central and East European Conference on Software Engineering Techniques,
Wydawnictwo NAKOM, Poznań, Poland, pp. 166–171.

’Leary, P., McCaffery, F., Thiel, S., Richardson, I., in press. An agile process model
for product derivation in software product line engineering. J. Software Maint.
Evol.: Research and Practice, doi:10.1002/smr.498.

’Leary, P., Rabiser, R., Richardson, I., Thiel, S., 2009. Important issues and key activi-
ties in product derivation: experiences from two independent research projects.
In: Software Engineering Institute, C. (Ed.), Software Product Line Conference.
Proc. of the 13th International Software Product Line Conference (SPLC 2009).
San Francisco, CA, USA, pp. 121–130.

’Leary, P., Richardson, I., Thiel, S., 2008a. Developing a Product Derivation Pro-
cess Framework for Software Product Line Organisations, EuroSPI 2008 Doctoral
Symposium. Dublin, Ireland.

’Leary, P., Thiel, S., Botterweck, G., Richardson, I., 2008b. Towards a product deriva-
tion process framework. In: 3rd IFIP TC2 Central and East European Conference
on Software Engineering Techniques CEE-SET 2008, Brno (Czech Republic), pp.
189–202.

errouin, G., Klein, J., Guelfi, N., Jezequel, J.M., 2008. Reconciling automation and
flexibility in product derivation. In: 12th International Software Product Line
Conference (SPLC), pp. 339–348.

ohl, K., Böckle, G.v.d., Linden, F., 2005. Software Product Line Engineering: Founda-
tions, Principles, and Techniques. Springer, Heidelberg.

abiser, R., 2009. A User-Centered Approach to Product Configuration in Software
Product Line Engineering, Christian Doppler Laboratory for Automated Software
Engineering. Institute for Systems Engineering and Automation, Johannes Kepler
University, Linz.
abiser, R., Dhungana, D., 2007. Integrated support for product configuration and
requirements engineering in product derivation. In: 33rd EUROMICRO Confer-
ence on Software Engineering and Advanced Applications, pp. 219–228.

abiser, R., Grünbacher, P., Dhungana, D., 2007. Supporting product derivation by
adapting and augmenting variability models. In: 11th International Software
Product Line Conference, Kyoto, Japan.
and Software 84 (2011) 285–300

Rabiser, R., Grünbacher, P., Dhungana, D., 2010. Requirements for product deriva-
tion support: results from a systematic literature review and an expert survey.
Information and Software Technology 52 (3), 324–346.

Rabiser, R., Wolfinger, R., Grünbacher, P., 2009. Three-level customization of soft-
ware products using a product line approach. In: Proc. of the 42nd Hawai’i
International Conference on System Sciences. IEEE CS, Waikoloa, Big Island, HI,
USA.

Runeson, P., Höst, M., 2009. Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Eng. 14 (2), 131–161.

Schmid, K., John, I., 2004. A customizable approach to full lifecycle variability man-
agement. Sci. Comput. Program. 53 (3), 259–284.

Schmid, K., John, I., Kolb, R., Meier, G., 2005. Introducing the PuLSE approach to an
embedded system population at Testo AG. In: Proceedings of the 27th Inter-
national Conference on Software Engineering, ACM, St. Louis, MO, USA, pp.
544–552.

Sinnema, M., Deelstra, S., 2008. Industrial validation of COVAMOF. J. Syst. Software
81 (4), 584–600.

Sinnema, M., Deelstra, S., Hoekstra, P., 2006a. The COVAMOF derivation process. In:
Proceedings of the 9th International Conference on Software Reuse (ICSR 2006),
Springer Berlin Heidelberg, Turin, Italy, pp. 101–114.

Sinnema, M., Deelstra, S., Nijhuis, J., Bosch, J., 2004. COVAMOF: a framework for mod-
eling variability in software product families. In: Proc. 3rd Int’l Conf. Software
Product Lines (SPLC 04), San Diego, CA, pp. 197–213.

Sinnema, M., Deelstra, S., Nijhuis, J., Bosch, J., 2006b. Modeling dependencies in
product families with COVAMOF. In: 13th Annual IEEE International Conference
and Workshop on the Engineering of Computer Based Systems (ECBS 2006),
Potsdam, Germany.

van der Linden, F., Schmid, K., Rommes, E., 2007a. The Family Evaluation Framework,
Software Product Lines in Action. Springer-Verlag, New York, USA, pp. 79–108.

van der Linden, F., Schmid, K., Rommes, E., 2007b. Software Product Lines in Action:
The Best Industrial Practice in Product Line Engineering. Springer-Verlag, New
York, Inc.

Vierhauser, M., Dhungana, D., Heider, W., Rabiser, R., Egyed, A., 2010. Tool sup-
port for incremental consistency checking on variability models. In: Proc.
4th International Workshop on Variability Modelling of Software-intensive
Systems (VaMoS 2010). ICB-Research Report No. 37, Linz, Austria, pp. 171–
174.

Weiss, D.M., Lai, C.T.R., 1999. Software Product Line Engineering: A Family-based
Software Development Process, 1st ed. Addison-Wesley Professional.

Yin, R., 2003. Case Study Research: Design and Methods. SAGE Publications, Beverly
Hills, CA.

Rick Rabiser is a postdoctoral researcher at the Christian Doppler Laboratory for
Automated Software Engineering at Johannes Kepler University, Linz, Austria. He
received his PhD in Business Informatics in 2009 from Johannes Kepler University.
Contact him at rabiser@ase.jku.at.

Pádraig O’Leary is a Post-doctoral researcher with the Reuse in Software Engineer-
ing (RiSE) group based in the Federal University of Bahia (UFBA). He received his PhD
in 2010 from the University of Limerick. He was a member of Lero - the Irish Soft-
ware Engineering Research Centre from 2006 until 2010. Previously, he also worked
as a software developer in the insurance and financial services industry. Contact him
at padraig.oleary@rise.com.br.

Dr Ita Richardson is a Senior Lecturer in the Department of Computer Science
and Information Systems at the University of Limerick, Ireland, and a Research
Area Leader for Process, Practice and Methods within Lero–the Irish Software Engi-
publishes internationally and supervises full-time and part-time PhD students. She
has received funding from sources such as Science Foundation Ireland, Enterprise
Ireland and the European Community.

http://dx.doi.org/10.1002/smr.498
mailto:rabiser@ase.jku.at
mailto:padraig.oleary@rise.com.br

	Key activities for product derivation in software product lines
	Introduction and motivation
	Research method
	Starting point: development and validation of Pro-PD and DOPLERUCon
	Development and validation of Pro-PD
	Development and validation of DOPLERUCon

	Comparison of our approaches and development of key activities
	Validation of key activities

	Comparison of two product derivation approaches
	Overview of Pro-PD
	Overview of DOPLERUCon
	Comparison of Pro-PD Pre-Derivation with DOPLERUCon
	Comparison of Pro-PD product configuration with DOPLERUCon
	Comparison of Pro-PD product development and testing with DOPLERUCon
	Conclusions

	Key activities for product derivation
	Key activity 1: preparing for derivation
	Specify and translate customer requirements
	Define base configuration
	Map customer requirements
	Define role and task structures
	Create derivation guidance

	Key activity 2: product derivation/configuration
	Key activity 3: additional development/testing
	Adaptability

	Validation: analyzing existing approaches regarding their support for the key activities
	Selected existing approaches
	COVAMOF
	PuLSE-I
	FAST

	Analysis
	Discussion of results

	Related work
	PLPF
	Family evaluation framework

	Conclusions
	Acknowledgements
	References

