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Abstract This paper presents a novel channel schedul-
ing policy for optical burst switching networks called least
reusable channel (LRC). LRC decides to which interval of the
output channel (void) an incoming burst should be allocated
on the basis of reuse of the remaining voids. LRC dynami-
cally uses information available to make allocation decisions.
It is shown here that LRC produces lower blocking probabil-
ity and distributes losses more uniformly among routes than
do other existing scheduling policies.

Keywords OBS networks · Channel scheduling ·
Channel reusability

1 Introduction

In optical burst switching (OBS) networks, packets are aggre-
gated at edge nodes to create transmission units called bursts.
A control packet is transmitted out-of-band, ahead of the
burst, so that sufficient bandwidth can be reserved for the
associated data burst. The control packet carries information
about the burst, such as its size and the offset time, i.e., the
time interval between the arrival of the control packet and
the arrival of the data burst. One commonly used protocol
for resource reservation in OBS networks is the just-enough-
time (JET) [1]. JET reserves the channel for the duration of
the transmission of a burst, starting at the expected arrival
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time (given by the offset time minus the burst processing
time). If the request for bandwidth reservation is granted, a
new offset time is calculated, and this information is inserted
into the control packet being forwarded to the next hop along
the route.

Since nodes at the network border do not wait for the con-
firmation of bandwidth reservation to transmit a burst, an
incoming burst will be discarded at a core node if bandwidth
has not been reserved for it. Schedulers at core nodes reserve
bandwidth for incoming bursts, and this assignment should
minimize the number of bursts lost. One way of minimizing
the chance of the loss of a burst is to allocate bandwidth to
maximize the chances of allocation. For this, scheduling poli-
cies need to have information about both channel occupancy
and the quality of service requirements of users.

The occupancy of the output channel alternates between
periods of occupancy and periods of idleness, called voids.
These void intervals can be used to accommodate the trans-
mission of new bursts. Indeed, a void interval, I j , defined by
its initial time, s j , and that of termination, e j , can be allo-
cated to a burst with arrival time, rs , and departure time, r f ,
if and only if s j ≤ rs and r f ≤ e j . Figure 1 illustrates the
two voids created by the allocation of a burst: the preceding
void (p) from s j to rs and the succeeding (s) void from r f

to e j . However, since bursts have different offset times, they
may arrive in a different order than that of their control pack-
ets. This can lead to fragmentation of the occupancy of the
output channels.

When schedulers do not make appropriate decisions,
bursts can be lost unnecessarily. Figure 2 provides an exam-
ple of a situation in which poor scheduling decisions lead to
the loss of bursts: Let A, B and C be control packets arriving
in this order, and let their corresponding bursts arrive in the
same order. If channel 1 were used for burst A and channel 2
for burst B, there would be no possibility of accommodating
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Fig. 1 Creation of voids by the allocation of a burst

(a)

(b)

Fig. 2 Example of how batch scheduling can avoid losses of bursts. a
Example of poor application of greedy strategies. b Batch scheduling
of channels leading to no losses

burst C. However, if channel 1 were used for burst B and
channel 2 for bursts A and C, no loss would occur. In this
example, loss occurs because scheduling decisions did not
consider the arrival of incoming requests.

The efficiency of a channel scheduling algorithm is deter-
mined by its capacity to minimize the blocking probability
of requests (loss of data bursts). Although scheduling algo-
rithms [2–5] proposed so far base their decisions on the
chances of a remaining void being used by incoming requests,
these algorithms fail to consider information dynamically
available for making their decision.

This paper introduces a scheduling mechanism called least
reusable channel (LRC) that first allocates voids that have a
small chance of being allocated by future requests; such an
allocation increases the probability of the utilization of the
remaining voids by future requests. The proposed mechanism
takes into account the traffic load as well as the probability
of preceding and succeeding voids being able to accommo-
date incoming bursts. Numerical examples show that this
approach produces lower burst losses than do previously pro-
posed policies.

This paper is organized as follows. The next section
reviews previous work. Section 3 explains issues in burst
scheduling, which are addressed by the proposed discipline.
Section 4 introduces the LRC discipline and its performance
is analyzed in Sect. 5. Section 6 draws some conclusions.

2 Previous work

Several burst scheduling policies have been proposed in the
past few years [2–13]. Turner [3] introduced the latest avail-
able unused channel (LAUC [14]) discipline also known as
Horizon since it keeps track of the time on horizon to make
the reservation. In this policy, a burst is scheduled on the
channel with the lowest horizon value. This policy is simple
and can be implemented in O(logW ) steps, where W is the
number of channels. However, it can lead to high burst loss
rates and low utilization. In Xiong et al. [14], variants of this
policy were proposed, but all of them have the same draw-
back of the original policy, since such limited information is
used in the decision process. Figure 3 illustrates an alloca-
tion scenario in which the channel chosen by LAUC would
be channel 0.

Variations of LAUC all leading to similar low network
utilization and high blocking probabilities have also been
proposed. The simplest version of LAUC is the first fit algo-
rithm, which searches for available channels in a fixed and
preestablished order (like round-robin) and picks the first
available one.

To increase network utilization while decreasing blocking
probability, Xiong et al. [2] proposed an algorithm entitled
latest available unused channel with void filling (LAUC–VF)
that uses information about existing voids. It schedules bursts
in voids which have the latest starting time prior to the time of
this arrival. It out performs LAUC, but at the cost of increased
computational complexity, which is O(W logM), where M
is the number of reservation requests and W the number of
channels [15]. A simple adaptation of LAUC–VF is the RAN-
DOM algorithm that randomly chooses a void among all fea-
sible voids previously selected. In the scenario in Figure 3,
the channel chosen by LAUC–VF would be channel 2. The
RANDOM algorithm randomly chooses one among the 5
channels.

Xu et al. [16,17] introduced the MIN–SV, MIN–EV and
Best fit policies. MIN–SV tries to minimize the interval
between the beginning of a void and the starting time of the
request being processed. Although similar to LAUC–VF, it
searches for voids using a binary decision tree which results
in a computational complexity of (O(log(M))), where M is
the number of reservation requests. MIN–EV, on the other
hand, tries to minimize the size of the void created by the
new request and already existing reservations, and the Best
fit policy tries to minimize the total void size. Results derived
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Fig. 3 Channel scenario for application of different policies

via simulation show that MIN–SV produces the best perfor-
mance of the three policies. In Fig. 3, the channels chosen
by the algorithms MIN–EV, MIN–SV and Best fit would be
3, 2 and 3, respectively.

The priority-based wavelength assignment (PWA) pol-
icy [18] assigns priority to output channels based on the accu-
mulated loss of bursts on each channel. It assigns an incom-
ing burst to the channel with lowest accumulated loss and
consequently highest priority. Although efficient, this policy
implies a high overhead for recording the accumulated loss
of each channel.

The burst overlapping reduction algorithm (BORA) [19]
avoids simultaneous arrivals of bursts (overlapping degree) at
the output channel. BORA is implemented at the edge nodes
to capitalize on the ability to electronically store burst by
introducing delays to avoid burst losses. Several variations
were proposed in Li and Qiao [19]. Both BORA and PWA
are implemented at the network edge, which is in contrast
with what has been described for other policies.

Detti et al. [20] proposed a burst scheduling algorithm with
contention resolution called optical composite burst switch-
ing (OCBS) that minimizes the portion of the burst that will
be discarded in the case of contention. In Vokkarane and
Jue [21], the authors proposed a similar algorithm using more
sophisticated strategies involving a combination of different
actions, such as scheduling in alternative channels and seg-
mentation of burst to allow partial transmission.

In Chang and Park [22], an algorithm is proposed that
selects bursts considering the order of their arrival, rather
than the order of the arrival of their control packets. In Kumar
and Kumar [6], the authors propose a channel scheduling
algorithm called burst delay feedback algorithm (BDFA) that
combines the use of FDLs, random increase in offset time
and window-based channel. In the window-based scheme,
bursts are delayed so that the number of channels necessary
to accommodate all bursts is decreased.

Ichikawa and Kamakura [7] proposed a forward resource
reservation (FRR) scheme and a control packet scheduler to
minimize the occurrence of buffer overflow of control packet
and its associated blocking probability. However, differently

from the above-mentioned schemes, the scheme proposed in
Ichikawa and Kamakura [7] is designed to be employed at
edge nodes.

Netak et al. [8] proposed a channel scheduling policy
called reverse scheduling. In reverse scheduling, feasible
voids are searched first, and if there are no such voids, the
void associated with the horizon is chosen. In spite of this
change, reported results show that the proposed scheme has
burst loss ratio as low as that of void filling algorithms.

In Wu et al. [9], the authors proposed an index-based par-
allel scheduler based on the LAUC–VF that was built over
an index vector of voids for each data channel. That index
vector is used to and search for the feasible voids. The whole
searching process was shown to run in O(1) time which can
make the scheduling process achieve high processing speed
and high channel utilization at the same time.

Rogiest et al. [10] proposed a channel and delay selec-
tion algorithm to solve contention problem. The algorithm
considers a set of voids and FDLs and tries to make the best
decision about on which channel or FDL should the burst be
scheduled. Results show that the algorithm produces better
results than similar algorithms. Its main drawback is the fact
that it only works on networks with FDLs.

In Figueiredo and da Fonseca [11], an linear time algo-
rithm was proposed to schedule requests. Differently than
the previously mentioned algorithm, the GreedyOPT algo-
rithm considers a batch of request collected over a period of
time. Since requests have to wait for processing, it is possible
that an increase in the end-to-end delay occurs.

None of these previously scheduling policies, however,
evaluate the potentiality of a void for utilization on the basis
of dynamic conditions as is done by the proposed LRC mech-
anism.

3 Reuse of channels in the scheduling of bursts

Two concepts to the understanding of the LRC algorithm are
explained in this section: the useful lifetime of a void and
the probability of inversion of control packets and bursts.
The LRC policy evaluates the potential use of a void for
the scheduling of incoming bursts and selects the void with
the lowest chance of being reused. Moreover, the algorithm
must know the potentiality that newly generated voids have
for the accommodation of incoming requests, as well as the
probability that these requests will fit into each void.

3.1 Useful lifetime of voids

To evaluate the capacity of a void to accommodate incoming
bursts, a metric called useful lifetime is used. This metric
should be taken into consideration by the scheduling algo-
rithm, since the capacity of voids to accommodate bursts
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Fig. 4 Useful lifetime of a void

diminishes with time, as illustrated in Fig. 4. The useful life-
time of a void is defined as the duration of the void created by
a scheduled burst minus the mean burst transmission duration
(β), which can be obtained by keeping track of the reserva-
tions passing through the node. The mean burst duration is
decremented from the duration of the void since any void
shorter than the average burst size of an incoming flow has a
low chance of accommodating incoming bursts.

Let s j , e j , rs and r f be the starting and ending time of a
void of the rth request, the burst arrival time and departure
time, respectively, and β the burst mean duration. The pre-
ceding void a j , generated by the allocation of the rth request
(see Fig. 1), can only accommodate a burst with transmission
duration β until the instant rs − β; after that, the remaining
void will be shorter than β. Thus, the useful lifetime of the
preceding void a j is given by:

υ(a j ) = rs − β − s j = rs − (s j + β). (1)

Similarly, the useful lifetime of the succeeding void p j is
given by:

υ(p j ) = e j − (
r f + β

)
(2)

3.2 Arrival inversion

To identify the potentiality for the reuse of each new void cre-
ated by the allocation of a request (see Fig. 1), it is necessary
to estimate the chances that incoming bursts will fit into the
preceding void. It is necessary, thus, to evaluate the chances
that a data burst arrives prior to another burst whose control
packet has already arrived. Such an event, in this paper, is
called arrival inversion.

Fig. 5 Inversion in the arrival order of requests

Figure 5 illustrates a scenario in which arrival inversion
can potentially occur. Suppose node x is an intermediate node
common to several source–destination paths (Sy, Dy) y =
1 . . . 4. Moreover, suppose that the control packets of bursts
sent to destinations D1 and D2 arrive simultaneously at node
x at time t . The burst destined to D1 arrives at node x at
time t ′ = t + T 1

x and the burst sent to D2 arrives at time
t ′′ = t + T 2

x = t + T 1
x − Δ12, where T y

x is the offset time
at node x of the control packet sent to destination y and
Δyz = T y

x − T z
x .

Two conditions are necessary for the occurrence of arrival
inversion. The first is that the offset time of one control packet
should be longer than that of a succeeding control packet. The
second condition is that this second control packet should
arrive no later than Δyz after the arrival of the first control
packet, where Δyz is the difference between the two offset
times. Although these conditions lead the inversion between
the instant of arrival of the two bursts associated with these
two control packets, they do not ensure that the burst asso-
ciated with the second control packet would be completely
allocated before the burst associated with the first control
packet. For that to occur, it is necessary that the second con-
trol packet arrives no later than Δyz −β after the arrival of the
first control packet, where β is the size of the second burst.

Figure 6 illustrates the idea of arrival inversion. Suppose
that the control packet cp1 destined to node y arrives at node
x at time t y

l . Consequently, its associated data burst, DB1,
will arrive at node x at time t y

l + T y
x . If the control packet

cp2 arrives at most Δyz − β after t y
l , the data burst DB2

will be entirely transmitted before the burst DB1. On the
other hand, if the control packet cp3 arrives into the period
[(t y

l + Δyz − β); (t y
l + Δyz)], the instant of arrival of bursts
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Fig. 6 Inversion: arrival of the second control packet within the interval
[t y

l ; t y
l + Δyz − β]

Fig. 7 Noninversion: arrival of the second control packet after the
interval [tl + y; t y

l + Δyz − β]

DB1 and DB2 will be inverted, but the second burst will not
be entirely transmitted before DB1.

Conversely, if the control packet destined to node z arrives
Δyz + ε time units after the control packet destined to node
y, there is no inversion, and the burst destined for node z
will arrive at node x after the burst destined for node y, as
illustrated in Fig. 7.

3.3 Probability of arrival inversion

In this subsection, the computation of probability of arrival
inversion will be derived considering a variety of burst assem-
bly policies.

Fig. 8 Burst inter-arrival time (time window-based algorithm)

3.3.1 Computation of the probability of arrival inversion
for time window-based assembly mechanisms

For time window-based assembly mechanisms, the burst
inter-arrival time of each source–destination pair is constant
and equals to Wi time units (Fig. 8). Let t y

l be the arrival time
of the last control packet belonging to the flow of source–
destination pair (Sy, Dy) traversing the target core node and
N the number of source–destination pairs. The probability of
arrival inversion can be approximated considering the subset
of source–destination pairs (Sz, Dz) whose control packets
will arrive during the interval [t y

l ; t y
l + Δyz − β] besides

having the target core node as an intermediate node. Thus,
probability of arrival inversion is given by:

PI = 1

N

N∑

z=1

Xz (3)

where

Xz =
{

1, if t y
l ≤ t z

l + W ≤ t y
l + Δyz − β;

0, otherwise

and β represents the mean burst transmission duration.

3.3.2 Computation of probability of arrival inversion
for volume-based assembly mechanisms

In volume-based assembly algorithms, a burst is assembled
(and consequently the control packet released) only after the
arrival of bi bytes, which is equivalent to the arrival of n IP
packets with mean size of B bytes; thus, n = bi/B.

Let (Sy, Dy) be the source–destination pair for which the
control packet is being processed at node x , and let t y

l be the
time at which the control packet arrived at node x . Inversion
of arrivals occurs when the second control packet in the same
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flow of pair (Sz, Dz) arrives during the interval [t y
l ; t y

l +Δyz−
β].

For that to occur, the time spent assembling the burst asso-
ciated with the second control packet should be equal to
[t z

l ; t y
l + Δyz − β]. In other words, it is necessary that n

IP packets arrive at the assembly node of the pair (Sz, Dz)

during the interval [t z
l ; t y

l +Δyz −β]. Considering a Poisson
arrival process of packets, this probability is as follows [23]:

PI =
N∑

z=1

λz
([

t y
l − (

tl + z + β
) + Δyz

])n
e−λz

([
t y
l −(

t z
l +β

)+Δyz
])

(n)!
(4)

where λz is the mean arrival rate of IP packets of the pair
(Sz, Dz).

4 The least reusable channel policy

The scheduling policies proposed so far (Sect. 2) try to mini-
mize either the preceding void (LAUC, LAUC–VF and MIN–
SV) or the succeeding void (MIN–EV). By adopting this
type of strategy for scheduling bursts, the pattern of arrival
of requests is ignored leading to under utilization and burst
loss.

The LRC policy dynamically chooses the void for the allo-
cation of a burst based on the potential reusability of existing
voids for future requests. The void chosen is the one with the
lowest chances reutilizing for future incoming bursts, which
depends not only on the lifetime of the void created but also
on the probability of arrival inversion to fill that void. The
void reutilization function gives a chance that the voids cre-
ated will be allocated to future requests. It is defined as:

ϕ(w) = PI × υ(a j ) + (1 − PI ) × υ(p j ) (5)

where PI is the probability of inversion, and υ(a j ) and υ(p j )

give the useful lifetime of the preceding and of the succeeding
voids, respectively.

The LRC is described in Algorithm 1. Let i be the node
executing the LRC algorithm. The input of the algorithm is
the set of output channels (W ) and a reservation request for
the period [rs, r f ].

Upon the arrival of a request, the algorithm determines the
set Wv of channels capable of accommodating the request
(the set of free wavelengths in the requested period) (line 1),
and for each channel w ∈ Wv , the algorithm computes the
reutilization function.

The probability of inversion is used to determine the
chances that future requests will make reservations in a period
prior to [rs, r f ]. The computation of the probability of inver-
sion considers only the set of source–destination pairs with
packets which will visit node i . Thus, for each pair, node i
have only to maintain information about the time of the arrival

of the last control packet, which reduces the computational
complexity of the algorithm.

After this, the algorithm computes the lifetime of the pre-
ceding void (aw) and the succeeding one (pw) which would
have been created if channel w was chosen to schedule the
request being processed (line 1).

The algorithm then computes the reutilization function for
channel w (line 1), according to Eq. 5. This step determines
the chances of channel w accommodating future requests.
Thus, the algorithm chooses the channel w with the lowest
probability of reutilization. If there are voids with the same
value for reutilization, the rule is to choose the void with the
smallest preceding void. Finally, the channel with the lowest
chances of future reutilization will be used to allocate the
request being processed (line 1).

The computational complexity of LRC is established by
Theorem 1.

Theorem 1 Let Np be the number of source–destination
pairs, W the set of wavelengths and S the set of resources
already allocated in each channel. The computational com-
plexity of LRC is O(|Np||W |log(|S|)).

Algorithm 1 LRC
INPUT
A set W of output channels of node i , a resource reservation request r
to the interval [rs , r f ] with destination j .
OUTPUT
Reserved wavelength in the interval [rs , r f ].
LRC
1: Determine the set of channels Wv ⊆ W capable of accommodating

request r .
2: Determine the probability of inversion (PI ) according to the corre-

spondent burst assembly algorithm.
3: for all ( w ∈ Wv) determine: do
4: The lifetime of preceding and succeeding voids in relation to allo-

cation of r in w (Eqs. 1, 2, respectively).
5: The reutilization function of w (Eq. 5).
6: Return w such that ϕ(w) is the smallest.

Proof To determine the set (Wv) of channels that can be
reserved for the request (line 1 and lines 3–5), it is neces-
sary for the algorithm to preserve the same information pre-
served by LAUC–VF. When Wv = W , the time complexity is
O(|W | log(|S|)). Furthermore, the computation of the prob-
ability of inversion of arrivals (line 2) considers a subset of
source–destination pairs, (Np), resulting in a computational
complexity of O(|Np||W | log(|S|)). ��

Some remarks on the computational complexity of LRC
are necessary. In the worst-case scenario, LRC will be highly
complex as shown below. If Nn is the number of nodes of
the network and Np the number of source–destination pairs,
|Np| = Nn(Nn−1)

2 , the computational complexity of LRC is
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O(N 2
n |W |log(|S|)). However, in operational networks, the

network connectivity degree allows the use of traffic engi-
neering techniques, such as load balancing and minimum
interference routing [24,25]. The employment of these tech-
niques can reduce the competition among source–destination
pairs leading to a smaller number of source–destination pairs
sharing the same links; this reduces the computational efforts
demanded by LRC.

Table 1 summarizes the computational complexity of the
algorithms compared in Sect. 5.

5 Performance evaluation

To evaluate the performance of the LRC policy, simulation
was carried out using the OB2S simulator [26] and com-
pared to the results of MIN–EV, RANDOM and LAUC–VF.
The RANDOM policy chooses a void at random. Results
for MIN–SV are not shown given their similarity to those
of LAUC–VF. To generate a scenario where losses are more
frequently, simulations were run at a very high load level,
varying from 10 to 200 Erlangs.

The metrics used to compare the algorithms were the
blocking probability, network utilization and the fairness
factor, defined as the ratio between the number of longest
blocked routes and the number of shortest blocked routes.
For each simulation run, 200,000 requests were generated.
Twenty replications for each scenario were generated to com-
pute the confidence interval with confidence level of 95 %.
Experiments were conducted using the topologies shown in
Fig. 9. However, due to space limitations, results will be pre-
sented only for the topology in the Fig. 9a. Each link in the
topologies has 32 wavelengths with 2.5 Gbps capacity. The
processing time for the control packet was 50µs.

Each network node is capable of full wavelength conver-
sion, i.e., the scheduling algorithm can use any output chan-
nel to accommodate requests regardless of the input channel
they arrived. Furthermore, each node can be either a source or
a destination of traffic streams. A source–destination pair is
randomly selected according to a uniform distribution when
requests are generated. The route between the source nodes
and the destination nodes follows the shortest path connect-
ing these nodes.

For the time-based assembly algorithm, edge nodes are
fed by traffic generated by a Poisson process, and the burst
assembly time is set to 1ms. When the assembly algorithm
is based on traffic volume, the burst threshold is 1,280 kb.

Table 1 Worst-case computational complexity of channel scheduling
algorithms

LRC RANDOM MIN–EV LAUC–VF

O(|Np||W |log(|S|)) O(|W |log(|S|)) O(log(|S|)) O(|W |log(|S|))

(b)

(a)

Fig. 9 Topologies used in the simulations. a Backbone NSFNet. b
Backbone abilene

Figure 10 shows the blocking probability produced by the
algorithms considering both time- and volume-based assem-
bly. In both cases, the blocking probability increased as the
network load increased as was expected. When the time-
based assembly algorithm was employed by the ingress nodes
(Fig. 10a), the highest blocking probability was produced by
MIN–EV, followed by RANDOM. The LRC algorithm pro-
duced the lowest blocking probability of all the algorithms
evaluated reducing by 13 % the blocking probability resulting
from the use of LAUC–VF (second lowest blocking proba-
bility) and by 27.6 % for that of the MIN–EV algorithm.

Moreover, the results obtained when the assembly algo-
rithm is based on traffic volume are similar. However, the
blocking probability resulting from the use of all the algo-
rithms was slightly higher when burst assembly was based
on time. Similar results were found in Figueiredo et al. [27].
The reason is that the intensity of the burstiness of the traffic
generated by the volume-based policy is greater than that pro-
duced by the time-based policy. It is the increase in resources
demand by volume-based assembly policies, which leads to
greater blocking probability values.

In comparison with MIN–EV, the difference in blocking
probability decreased to 23, 16 % and in comparison with
LAUC–VF, decreased to 9, 1 %. The difference when com-
pared to the experiments using time-based assemblers is due
to the more precise estimation of the inversion probability.
Thus, the LRC algorithm can better evaluate the use of voids
and make the best choice.

Figure 11 shows the network goodput as a function of
the network load. Besides producing slightly higher good-
put, LRC produced the lowest blocking probability of all the
policies.
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Fig. 10 Blocking probability. a Time window-based assembling. b Traffic volume-based assembling
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Fig. 11 Network goodput. a Time window-based assembly. b Traffic volume-based assembly

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

0 20 40 60 80 100 120 140 160 180 200

RANDOM
MIN-EV

LAUC-VF
LRC

Load (Erlangs)

F
ai

rn
es

s 
fa

ct
or

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 20 40 60 80 100 120 140 160 180 200

RANDOM
MIN-EV

LAUC-VF
LRC

Load (Erlangs)

F
ai

rn
es

s 
fa

ct
or

(a) (b)

Fig. 12 Fairness factor. a Time window-based assembly. b Traffic volume-based assembly

Figure 12 shows the fairness factor as a function of the net-
work load. Ideally, a scheduling algorithm should not favor
requests based on the length of the route they take. Algo-
rithms that prioritize a preceding void, however, do not con-
sider the probability of inversion and consequently penalize
short routes. On the other hand, algorithms that prioritize
succeeding voids do not consider the arrival of requests with

Table 2 Average (maximum) number of source–destination pairs per
node

Topology 30 nodes 50 nodes NSF

Network density Dense Sparse Dense Sparse –

Dijkstra 1.09 (2) 1.89 (3) 1.02 (2) 1.78 (2) 2.02 (3)

LMIR 0.33 (1) 0.75 (1) 0.27 (1) 0.68 (1) 0.82 (1)
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Table 3 Relative gain in
execution time Topology 30 nodes 50 nodes NSF

Network
density

Dense Sparse Dense Sparse –

Reference
value

3.11 × 10−3 3.19 × 10−3 3.08 × 10−3 3.15 × 10−3 3.44 × 10−3

LRC (vol-
ume) (%)

0.0 0.0 0.0 0.0 0.0

LRC
(time) (%)

0.03 0.07 0.02 0.09 0.02

RANDOM
(%)

−1.72 1.98 1.73 1.99 2.04

MIN–EV
(%)

1.41 1.30 1.25 1.42 1.54

LAUC–
VF (%)

1.33 1.26 1.26 1.34 1.55

longer offset times and as a consequence, penalize longer
routes. As can be seen in Fig. 12, the fairness factor increases
as the network load increases, which means that longer routes
will be penalized.

Since LRC adopts a dynamic strategy for choosing voids,
it schedules bursts close to their destination (those with a
small probability of inversion) on preceding voids. When
scheduling requests that involve long paths, control pack-
ets being processed have large offset times and consequently
a high probability of arrival inversion. LRC uses the suc-
ceeding void for these requests, leaving the preceding void
for future requests. The LRC algorithm produced better
results with less penalization for longer routes than other
algorithms.

To evaluate the scalability of the proposed algorithm,
the average number of connections traversing a given node
was measured. For this, network topologies were cre-
ated using Waxman’s method [28,29]. In this method, the
probability of the existence of link between u and v is
given by

P(u, v) = αe−d/(βL),

where 0 < α, β ≤ 1 are model parameters, d is the Euclidean
distance between u and v, and L is the maximum Euclidean
distance between any two nodes of the network. Topologies
were classified into dense or sparse according to the number
of edges. Dense topologies have approximately N 2 edges,
whereas sparse topologies have approximately N − 1 edges,
where N is the number of nodes.

Table 2 presents both the mean and maximum value
obtained.1 The routing schemes adopted were Dijkstra’s
algorithm and the light minimum interference algorithm
(LMIR) [24]. In a general way, it can be seen that the num-
ber of flows going through a given node is highly dependent
of the adopted routing strategy. Moreover, the higher is the

1 The maximum value is presented between parenthesis.

network average node degree, the lower is the number of
flows traversing the node, which is due the higher number of
available paths between two nodes.

Table 3 shows the execution time of the evaluated algo-
rithms. The reference value was the execution time of the
slowest algorithm, which has 0 % of gain in the execution
time. It can be seen that the slowest one was the LRC. How-
ever, two important aspects must be noticed. The first is that
the average node degree, but not the topology impacts the
performance; the larger the node degree, the higher the num-
ber of paths connecting any two nodes. As a consequence,
the number of source–destination pairs traversing the node
is smaller. The second important aspect is that LRC was out-
performed by at most 2 % in the execution time, which shows
that it has a good trade-off between blocking probability and
execution time.

6 Conclusions

Scheduling is considered to be the major control function in
OBS networks because it can significantly impact on burst
loss. Since bursts have different offset time, they may arrive in
an order other than that of their control packets, thus yielding
fragmentation of the bandwidth of the output data channels
of a core node. These void intervals can be used to accommo-
date the transmission of other incoming bursts. Scheduling
policies differ in relation to the criteria used to allocate these
voids.

In this paper, the LRC scheduling discipline has been pro-
posed. It tries to maximize the reusability of voids for future
bursts by considering route information, as well as load infor-
mation. Comparison with the existing scheduling disciplines
has shown that the LRC produced a lower blocking proba-
bility than do existing policies, and it distributed the loss of
bursts more uniformly for routes with different lengths. The
difference between the blocking probability of the LRC and
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the lowest resulting from other existing algorithms is 13 %.
For future work, the derivation of expressions for determin-
ing the probability of arrival inversion considering the mixed
time burst length algorithm and for traffic with long range
dependencies [30,31] is recommended.
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