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Abstract
We investigate cosmological solutions of Brans–Dicke theory with both the
vacuum energy density and the gravitational constant decaying linearly with
the Hubble parameter. A particular class of them, with a constant deceleration
factor, sheds light on the cosmological constant problems, leading to a presently
small vacuum term, and to a constant ratio between the vacuum and matter
energy densities. By fixing the only free parameter of these solutions, we
obtain cosmological parameters in accordance with observations of both the
relative matter density and the universe age. In addition, we have three other
solutions, with Brans–Dicke parameter ω = −1 and negative cosmological
term, two of them with a future singularity of big-rip type. Although interesting
from the theoretical point of view, two of them are not in agreement with the
observed universe. The third one leads, in the limit of large times, to a constant
relative matter density, being also a possible solution to the cosmic coincidence
problem.

PACS number: 98.80.−k

1. Introduction

Recent observations suggest that the total energy density in the universe is greater than the
(barionic + dark) matter density. On one hand, dynamical estimations lead to a ratio between
the matter and critical densities around one third [1]. On the other hand, measurements of
anisotropies in the microwave background radiation indicate that our universe is spatially flat
[2], suggesting the existence of another, unknown form of energy, usually called dark energy.
Its presence is also corroborated by age estimations [3] and by the observed distance–redshift
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relation for supernovae Ia, which suggests that, in the present phase of universe evolution,
the deceleration parameter q is negative, and therefore the universe performs an accelerated
expansion [4].

Several models have been proposed in order to explain those observational data. There
are some candidates for dark energy, as, for example, the cosmological constant, the so-called
quintessence, or the generalized Chaplygin gas. Among them, the simplest and oldest one is
the cosmological constant, also associated with the energy density of vacuum.

We can contextualize the study of dark energy in different gravitational theories. For
instance, the theory of general relativity, where the Einstein field equations are used, and
where the gravitation constant G is a universal constant. Another one is the Brans–Dicke
theory [5, 6], a scalar–tensor theory in which the gravitational constant is a function of space-
time, and where a new parameter, ω, is introduced. More recently the interest on this kind
of theory was renewed, owing to its association with superstring theories, extra-dimensional
theories and models with inflation or accelerated expansion [7–11].

It is generally assumed that general relativity is recovered in the limit ω → +∞ (despite
the existence of Brans–Dicke solutions for which this is not true [12]). Astronomical
observations in the realm of solar system impose a very high inferior limit for ω.
Nevertheless, such a result corresponds to the weak field limit, and applies only in
the simplest case of constant ω. Therefore, it is possible that general relativity is not
adequate to describe the universe at early times, or needs corrections in the cosmological
limit.

In this paper we consider the Brans–Dicke theory and associate with dark energy the
equation of state of vacuum. We investigate models in which the vacuum energy density
decreases with the universe expansion, a hypothesis that has been considered as a possible
solution to the cosmological constant problem, that is, to the question of why the presently
observed value of � is about 120 orders of magnitude below the value predicted by quantum
field theories [13, 14].

Our goal is to find solutions of Brans–Dicke theory which satisfy a particular variation
law for G. We shall use the Eddington–Dirac relation, based on the large number coincidence,
G ≈ H

/
m3

π , where H = ȧ/a is the Hubble parameter and mπ is the pion mass [15, 16]. We
will then take G = H/8πλ, where λ has the order of m3

π . In addition, as usual, we will relate
the Brans–Dicke scalar field to the gravitational constant through φ = G0/G, where G0 is a
positive constant of the order of unity.

Together with that variation law for G, we shall consider two different ansätze. The
first one is given by ρ = 3αH 2/8πG, where ρ = ρm + ρ� is the total density, and α is an
adimensional constant of the order of unity. This ansatz is suggested by observations, which
show that ρm ≈ ρc/3, where ρc = 3H 2/8πG is the critical density. On the other hand, we
know that ρ� has, at most, the same order of magnitude as ρm, otherwise its presence would
be more evident. This ansatz was already considered in [17, 18].

The second ansatz will be given by � = βH 2, where β is a constant of the order of
unity. We are, in this case, inferring a variation law for the cosmological term, which has
already been considered in the literature on the basis of different arguments [16–23] (for other
variation laws for the cosmological term, see, for instance, [24–27]). We will show that this
ansatz leads to a set of solutions larger than the first one, containing its solutions as a particular
case.

We will look for solutions for recent times, that is, we shall consider a spatially flat (k = 0)
Friedmann–Robertson–Walker space-time, filled with a perfect fluid whose matter component
is pressureless (pm = 0). For the cosmological term, we will take the equation of state of
vacuum, p� = −ρ�.
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2. Solutions with a varying cosmological term

2.1. The first ansatz

Taking pm = 0, k = 0 and p� = −ρ�, the Brans–Dicke equations [5] can be written as

d(φ̇a3)

dt
= 8π

3 + 2ω
(ρ + 3ρ�) a3, (1)

ρ̇ = −3Hρm, (2)

H 2 = 8πρ

3φ
− φ̇

φ
H +

ω

6

φ̇2

φ2
. (3)

We then have a system of three ordinary differential equations, with four unknown
functions of time: a, ρm, ρ� and φ. The system becomes solvable if we add the Eddington–
Dirac relation, G = H/8πλ, which relates a and φ. In order to restrict our class of solutions,
we will take in addition our first ansatz, given by ρ = 3αH 2/8πG. In this way, we obtain

ρ = 3αλH, (4)

φ = 8πλG0

H
, (5)

and

φ̇ = 8πλG0(1 + q), (6)

where q = −äa/ȧ2 is the deceleration factor.
With the help of equations (4)–(6), we can rewrite (1)–(3) in the form

(3 + 2ω)λG0[q̇ + (1 + q)3H ] = 3αλH + 3ρ�, (7)

ρm = αλH(1 + q), (8)
α

G0
= 2 + q − ω

6
(1 + q)2. (9)

Equation (9) tells us that q is constant, since α,G0 and ω also are. Therefore, q̇ = 0, and
equation (7) reduces to

(3 + 2ω)λG0(1 + q)H = αλH + ρ�. (10)

By using (4) and (8), we can obtain the vacuum density,

ρ� = αλH(2 − q). (11)

Substituting λ = H/8πG, we obtain

ρ� = α(2 − q)H 2

8πG
.

Since ρ� = �/8πG, we conclude that � = α(2 − q)H 2, which suggests our second ansatz,
with β = α(2 − q), to be used later.

Leading (4) and (8) into (2), one obtains

1

H
= (1 + q)t + C,
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where C is an integration constant. Let us take C = 0, in such a way that H → ∞ for t → 0.
We then have

H = 1

1 + q

1

t
. (12)

Substituting ȧ/a for H in (12), we also have

a = At
1

1+q , (13)

where A is another integration constant.
The relative density of matter, defined with respect to the critical density, can be obtained

by using G = H/8πλ. Then, ρc = 3λH , and, using (8), one obtains

	m = ρm

ρc

= α(1 + q)

3
. (14)

Substituting ρ� from (11) into (10), we have as well

α

G0
= (3 + 2ω)(1 + q)

3 − q
. (15)

Comparing α/G0 given by equations (9) and (15), one can derive a relation between ω and q,
given by

(3 + 2ω)(1 + q) =
[
2 + q − ω

6
(1 + q)2

]
(3 − q). (16)

Eliminating ω from equations (9) and (15), we can also obtain α/G0 as a function of q only,

α

G0
= 12(2 + q) + 3(1 + q)2

(1 + q)(3 − q) + 12
. (17)

With these relations, it is easy to derive some results to compare with current observations.
For example, if q = 0, from equations (16) and (17) we obtain ω = 6/5 and α/G0 = 9/5.
From (12) we have Ht = 1. From equation (13) it follows that a = At . And, from (14), one
has 	m/α = 1/3. Since α ≈ 1, we can see that 	m ≈ 1/3, in agreement with astronomical
estimations [1]. The age parameter Ht is also in good accordance with globular clusters
observations [3].

If, on the other hand, we would take q = −1, we would obtain, instead of equation (12),
the result H = constant, that is, the de Sitter universe, with ρm = 0 and a constant ρ�. Note,
however, that q = −1 does not satisfy equation (16), that is, the de Sitter universe is not a
solution of Brans–Dicke equations for this ansatz.

2.2. The second ansatz

Taking now our second ansatz, � = βH 2 and G = H/8πλ, and recalling that ρ� = �/8πG,
we obtain

ρ� = βλH. (18)

Furthermore, as well as in the first ansatz, we have

φ = 8πλG0

H
(19)

and

φ̇ = 8πλG0(1 + q). (20)



Exact solutions of Brans–Dicke cosmology with decaying vacuum density 317

With the help of (18)–(20), we can put (1)–(3) in the form

(3 + 2ω)λG0[q̇ + 3H(1 + q)] = ρ + 3βλH, (21)

ρ̇ + 3Hρ − 3βλH 2 = 0, (22)

ρ = 3λG0H
[
2 + q − ω

6
(1 + q)2

]
. (23)

Here we have a solvable system, with three differential equations for three unknown functions,
H, ρ and q. By finding ρ one can, using (18), determine ρ� and ρm.

Leading ρ given by (23) into (21), we derive

β

G0
= (3 + 2ω)[q̇ + 3H(1 + q)] − 3H

[
2 + q − ω

6 (1 + q)2
]

3H
. (24)

In this way, since β/G0 is constant, there are two possibilities: either q̇ = 0, in which case we
have a simple relation between q and β/G0, or (24) is an evolution equation, with q̇ �= 0.

2.2.1. The case q̇ = 0. In this case, equation (24) becomes

β

G0
= (3 + 2ω)(1 + q) −

[
2 + q − ω

6
(1 + q)2

]
. (25)

Using (23) into (22), one obtains, by integration,

1

H
= 3G0

[
2 + q − ω

6 (1 + q)2
] − β

G0
[
2 + q − ω

6 (1 + q)2
] t + C.

Let us choose C = 0, such that H → ∞ for t → 0. So we have

H = n

t
, (26)

where we have defined

n = G0
[
2 + q − ω

6 (1 + q)2
]

3G0
[
2 + q − ω

6 (1 + q)2
] − β

. (27)

Substituting ȧ/a for H in equation (26), we find

a = Atn, (28)

where A is an integration constant. On the other hand, from (28) we can obtain q = (1−n)/n,
or

n = 1

1 + q
. (29)

Leading n from equation (27) into (29), one obtains

β

G0
=

[
2 + q − ω

6
(1 + q)2

]
(2 − q), (30)

and we can write

ρ� = βλH = λG0H
[
2 + q − ω

6
(1 + q)2

]
(2 − q). (31)

By using (23) and (31), we also have

ρm = ρ − ρ� = λG0H
[
2 + q − ω

6
(1 + q)2

]
(1 + q). (32)
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We can also obtain the relative density of matter from equations (30) and (32). Recalling
that ρc = 3λH , we have

	m = ρm

ρc

= β

3

(
1 + q

2 − q

)
. (33)

Eliminating ω from (25) and (30), one can obtain β/G0 as a function of q only,

β

G0
= 12(2 + q) + 3(1 + q)2

(1 + q)(3 − q) + 12
(2 − q). (34)

On the other hand, comparing β/G0 given by (25) with that given by (30), we obtain the same
relation between ω and q we have obtained with the first ansatz, equation (16).

This is not a mere coincidence. If we compare ρ given by (23) with that obtained from
equation (4) of the first ansatz, we obtain equation (9) of the first ansatz. Then, (31) can be
reduced to equation (11) of the first ansatz. Equation (32), on the other hand, is reduced to
equation (8) of the first ansatz.

Equation (30) can be put in the form

β = α(2 − q), (35)

already anticipated in the first ansatz. By using it, it is possible to verify that equations (33)
and (34) are the same as (14) and (17) of the first ansatz. Finally, one can also verify, with the
help of (29), that equations (26) and (28) are identical to equations (12) and (13) of the first
ansatz, respectively.

We thus conclude that, in the case of a constant q, the two ansätze are equivalent.

2.2.2. The case q̇ �= 0. In the differential equation (24), substituting ȧ/a for H and separating
the variables, we obtain

dq

ω
6

[(
G0(6ω+6)2+6ω(G0+β)

G0ω2

) − (
q + 6+7ω

ω

)2 ] = 3

3 + 2ω

da

a
.

We will initially analyse the case in which the quantity

κ2 = G0(6ω + 6)2 + 6ω(G0 + β)

G0ω2

is positive. Later on we shall analyse the cases in which it is negative or zero, respectively.
With κ2 > 0, let us integrate the above equation by doing

z = q +
6 + 7ω

ω
.

Then, we obtain

6

ω

∫
dz

κ2 − z2
= 3

3 + 2ω

∫
da

a
.

Its solution is given by

a = A

∣∣∣∣∣ κ + q + 6+7ω
ω

κ − q − 6+7ω
ω

∣∣∣∣∣
3+2ω
ωκ

,

where A is an integration constant.
By defining B = κ + (6 + 7ω)/ω,C = κ − (6 + 7ω)/ω and D = (3 + 2ω)/ωκ , we have

a = A

∣∣∣∣ B + q

C − q

∣∣∣∣
D

. (36)



Exact solutions of Brans–Dicke cosmology with decaying vacuum density 319

Then,

B + q

C − q
< 0 ⇒ a = A

(
B + q

q − C

)D

, (37)

while

B + q

C − q
> 0 ⇒ a = A

(
B + q

C − q

)D

. (38)

Let us solve equations (37) and (38), in order to find the functions q,H and ρ.

The solution of equation (37). Introducing x = a/A and inverting equation (37), we obtain

q = B + Cx
1
D

x
1
D − 1

. (39)

With the definition of q, it becomes

ẋ2
(
B + Cx

1
D

)
+ xẍ

(
x

1
D − 1

) = 0.

By taking y = ẋ and y ′ = dy/dx, one has

y
(
B + Cx

1
D

)
+ y ′x

(
x

1
D − 1

) = 0,

which solution is

y(x) = C1x
B(

x
1
D − 1

)D(B+C)
,

where C1 is an integration constant.
It is easy to see that H = y/x, leading to

H(x) = C1x
B−1(

x
1
D − 1

)D(B+C)
. (40)

On the other hand, we have dt = dx/y, and so

t =
∫ (

x
1
D − 1

)D(B+C)

C1xB
dx. (41)

Equations (39)–(41) are solutions of the Brans–Dicke equations (21) and (23). Let us now
verify whether they satisfy the third Brans–Dicke equation (22). Introducing ρ ′ = dρ/dx, and
using ρ given by (23), equation (22) becomes

3λG0
dH

dx

[
2 + q − ω

6
(1 + q)2

]
+ 3λG0H

dq

dx

[
3 − ω(1 + q)

3

]

+
3

x

{
3λG0H

[
2 + q − ω

6
(1 + q)2

]
− βλH

}
= 0.

By using (39) and (40), we obtain

β

G0
= − (C + 1)x

1
D + (B − 1)

x
1
D − 1

[
2 + q − ω

6
(1 + q)2

]

− (B + C)x
1
D

D
(
x

1
D − 1

)2

[
3 − ω(1 + q)

3

]
+ 3

[
2 + q − ω

6
(1 + q)2

]
.
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Figure 1. Solution (45): a/A versus C1t .

Substituting in this equation x given by (37), we then have

β

G0
= 4 − ω

3
− BC(ω − 3)

3D(B + C)
+

[
(B − C)(ω − 3) − BCω

3D(B + C)
− ω

2

]
q

+

[
ω(B − C) + ω − 3

3D(B + C)
− 1

]
q2 +

[
ω

3D(B + C)
+

ω

6

]
q3. (42)

In this equation, ω, β/G0, B,C and D are constants. Therefore, for a varying q, the
coefficients of q, q2 and q3 must be identically zero, simultaneously. This is only possible
for ω = −1 and β/G0 = −3. As G0 is positive, we conclude that β is negative, that is, the
cosmological term is negative.

We then have B = √
12 + 1, C = √

12 − 1 and D = −1/
√

12. In this way,
equations (39)–(41) may be written as

q =
√

12 + 1 + (
√

12 − 1)x−√
12

x−√
12 − 1

, (43)

H = C1x
√

12
(
x−√

12 − 1
)2

, (44)

C1t = 1√
12

(
x−√

12 − 1
) . (45)

In the last one, we have taken a second integration constant in such a way that a → 0 when
t → 0.

Solution (45) is plotted in figure 1. From it we note that equation (37) originates
two different universes. In one of them, we have a = 0 at t = 0 and, when t → +∞,

a/A → 1 asymptotically. On the other hand, q = √
12 − 1 for a = 0, tending to +∞ as

t → +∞. Since q is positive, the expansion is decelerated, with its velocity tending to zero as
a/A → 1.

In the second universe, we have the origin of time in −∞, with a expanding from its
asymptotic value a/A = 1 to +∞, when C1t → −1/

√
12. On the other hand, q is initially

−∞, when a/A → 1, and increases approaching −(
√

12 + 1) asymptotically, as a/A → +∞.
As q is negative, the expansion is always accelerated.

The solution of equation (38). By performing the same transformations and the same steps
used to solve (37), we obtain the following equations:
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Figure 2. Solution (52): a/A versus C1t .

q = Cx
1
D − B

x
1
D + 1

, (46)

H = C1x
B−1(

x
1
D + 1

)D(B+C)
, (47)

and

t =
∫ (

x
1
D + 1

)D(B+C)

C1xB
dx, (48)

with B,C and D defined as before.
Equations (46)–(48) are solutions of (21) and (23). Let us verify whether they satisfy the

third field equation (22). Once more, performing the same transformations used to solve (37),
we arrive at the same equation (42) derived before. As we have seen, only with ω = −1 and
β/G0 = −3 we have the coefficients of q, q2 and q3 identically zero, simultaneously. Then,
we have again B = √

12 + 1, C = √
12 − 1 and D = −1/

√
12.

Therefore, equations (38) and (46)–(48) can be written as

x =
( √

12 + 1 + q√
12 − 1 − q

)− 1√
12

, (49)

q = (
√

12 − 1)x−√
12 − √

12 − 1

x−√
12 + 1

, (50)

H = C1x
√

12
(
x−√

12 + 1
)2

, (51)

C1t = − 1√
12

(
x

√
12 + 1

) +
1√
12

. (52)

In the last one, we have chosen the second integration constant in such a way that a → 0 when
t → 0.

Solution (52) is plotted in figure 2. We have a = 0 at t = 0, and a → +∞ when
C1t → 1/

√
12. On the other hand, q = √

12 − 1 for a = 0 decreases with the expansion,
becomes negative, and tends to −(

√
12 + 1) when a → +∞.

With the help of (49), we can express equations (51) and (52) as functions of q:

H = − 48C1

q2 + 2q − 11
, (53)
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Figure 3. Solution (52): 	m/G0 versus a/A.

C1t =
√

12 − 1 − q

24
, (54)

with q in the interval (−√
12 − 1,

√
12 − 1].

The age parameter, on the other hand, can be obtained from (53) and (54), leading to

Ht = 2

q +
√

12 + 1
. (55)

By using (18), (23) and (53), we obtain

ρm = −24λG0C1

(
q2 + 8q + 19

q2 + 2q − 11

)
. (56)

The relative density of matter can then be obtained with the help of equations (53) and (56),
and is given by

	m

G0
= 1

6
(q2 + 8q + 19). (57)

Equations (56) and (57) can be expressed in terms of x, by using (50). We have
ρm

3λG0C1
= (4 −

√
12)x

√
12 + (4 +

√
12)x−√

12 (58)

and

	m

G0
= (4 +

√
12)x−2

√
12 + 4 − √

12(
x−√

12 + 1
)2 , (59)

which is plotted in figure 3.

The case κ2 < 0. The above solutions were derived from the differential equation (24) by
assuming κ2 > 0. Let us now suppose that it is negative. We can solve equation (24) by doing

κ2
1 = −G0(6ω + 6)2 + 6ω(G0 + β)

G0ω2

and

z = q +
6 + 7ω

ω
.
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In this way, we obtain

− 6

ω

∫
dz

κ2
1 + z2

= 3

3 + 2ω

∫
da

a
,

which solution is

a = C1 exp

(
−6 + 4ω

ωκ1
arctan

q + 6+7ω
ω

κ1

)
,

where C1 is an integration constant.
Introducing D1 = ωκ1/(6 + 4ω) and E = (6 + 7ω)/ω, one has

a = C1 exp

(
− 1

D1
arctan

q + E

κ1

)
. (60)

Taking its inverse function and defining x = ln(a/C1), we obtain

q = −κ1 tan(D1x) − E, (61)

or, by using the definition of q,

ẍ + ẋ2[1 − κ1 tan(D1x) − E] = 0.

After doing y = ẋ and y ′ = dy/dx, we obtain

y ′ + y[1 − κ1 tan(D1x) − E] = 0,

whose solution is

y(x) = H = C2 e(E−1)x[cos(D1x)]−
κ1
D1 , (62)

where C2 is a second integration constant.
As dt = dx/y, we also have

t =
∫

[cos(D1x)]
κ1
D1

C2 e(E−1)x
dx. (63)

Equations (61)–(63) are solutions of Brans–Dicke equations (21) and (23). As before, let
us verify whether they also satisfy the remaining equation (22). Introducing ρ ′ = dρ/dx and
using ρ given by (23), equation (22) becomes

3λG0
dH

dx

[
2 + q − ω

6
(1 + q)2

]
+ 3λG0H

dq

dx

[
3 − ω(1 + q)

3

]

+ 3
{

3λG0H
[
1 + q − ω

6
(1 + q)2

]
− βλH

}
= 0. (64)

By using (62), one obtains

β

G0
= [E + 2 + κ1 tan(D1x)]

[
2 + q − ω

6
(1 + q)2

]
+

dq

dx

[
3 − ω(1 + q)

3

]
.

Now, with the help of (61), we arrive at

β

G0
= (2 − q)

[
2 + q − ω

6
(1 + q)2

]
+

q̇

3H
[3 − ω(1 + q)], (65)

since dq/dx = q̇/H .
On the other hand, from (24) one can obtain

q̇

3H
=

2 + q − ω
6 (1 + q)2 − (3 + 2ω)(1 + q) + β

G0

3 + 2ω
.
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Leading this expression into (65), we have

9 +
3ω

2
+

3ω2

2
− 3ω

β

G0
+

(
−6 − 11ω

2
+

7ω2

2
− ω

β

G0

)
q

+

(
−3 − ω

2
+

5ω2

2

)
q2 +

(
ω

2
+

ω2

2

)
q3 = 0. (66)

It is possible to verify that (42) and (66) are identical. In the latter, ω and β/G0 are
constants. Therefore, for a varying q, the coefficients of q, q2 and q3 must be simultaneously
zero, which is only possible if ω = −1 and β/G0 = −3. But, in this case, κ2

1 = −12, contrary
to our initial supposition that κ2

1 > 0.
Therefore, in the case q̇ �= 0, equation (60) satisfies the Brans–Dicke equations (21) and

(23), but not (22). The later is satisfied only if q̇ = 0, in which case equation (65) reduces to
(30), already studied.

The case κ2 = 0. In order to fulfil all the possible cases (and solutions) let us suppose that
κ2 = 0. From (24) we have

− 6

ω

∫
dz

z2
= 3

3 + 2ω

∫
da

a
,

where we have done, as before,

z = q +
6 + 7ω

ω
.

Its solution is
1

q + 6+7ω
ω

= ω

2(3 + 2ω)
ln

a

C1
,

where C1 is an integration constant.
Taking D2 = ω/[2(3 + 2ω)] and, as before, E = (6 + 7ω)/ω, one obtains

1

q + E
= D2 ln

a

C1
.

Introducing the new variable x = ln(a/C1), we then have

q = 1

D2x
− E. (67)

With the definition of q, this becomes

ẋ2 + D2(1 − E)xẋ2 + D2xẍ = 0,

or, by doing F = D2(1 − E),

ẋ2 + Fxẋ2 + D2xẍ = 0.

Taking now y = ẋ and y ′ = dy/dx, we obtain

y + Fxy + D2xy ′ = 0,

which solution is

y(x) = H = C2 exp

(
−Fx + ln x

D2

)
, (68)

where C2 is another integration constant.
As in the previous case, equations (67) and (68) are solutions of (21) and (23), but we

should also verify whether they satisfy (22). Introducing ρ ′ = dρ/dx and using ρ given by
(23), equation (22) reduces, as we have seen, to (64). Now, using equations (68) and (67)
leads to the same equation (65) of the previous case, which, as already seen, leads to (66).
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Therefore, solutions with varying q are only possible if ω = −1 and β/G0 = −3. With these
values, however, κ2 = 12, contrary to our initial supposition that κ2 = 0. We thus conclude,
also in this case, that (22) is not satisfied, that is, there is no solution with varying q.

3. Conclusions

In this work we have found some exact solutions of Brans–Dicke cosmology, by using two
different ansätze. We have shown that the first ansatz is a particular case of the second one,
when the deceleration parameter q is constant.

In the first ansatz, the ratio between the energy densities of matter and vacuum is constant,
characterizing a possible solution for the cosmic coincidence problem, that is, the approximated
coincidence presently observed between ρm and ρc. This possibility survives to a quantitative
analysis, since a relative matter density around 1/3, as indicated by observations, leads to an
age parameter Ht ≈ 1, corresponding to a universe age around 14 Gyr, also in accordance
with observational limits.

Nevertheless, this ansatz presents some problems as well. The most severe of them is the
presence of a constant deceleration factor (equals to zero if Ht = 1). In spite of the claim of
some authors (see, for example, [28, 29]) about the possibility of a uniform expansion along
the whole universe evolution, a decelerated phase is usually considered necessary for large
structure formation. For this reason, we should consider this ansatz valid only in the limit of
late times, restricting in this way the predictive power of the model.

With the second ansatz, besides the case of constant q, we have found three other universes,
with varying q, in which the dark energy density is negative and the Brans–Dicke parameter
is ω = −1. In one of them the deceleration parameter is always highly positive. In the
second one, it is always highly negative. Therefore, these two cases are interesting just from
a theoretical viewpoint.

In the third case, on the other hand, the deceleration parameter is initially positive,
becoming negative at later times, but always finite. In this case (as well as in one of the
previous cases) one has a future big-rip, with the scale factor, the matter density and the
Hubble parameter diverging in a finite time, but with the relative matter density remaining
finite. As one can see from equation (55), for an age parameter in the interval 0.8 < Ht < 1.3,
as defined by the observational limits, the deceleration parameter is −2.0 > q > −2.9.
Whence, with the help of (57), it is possible to see that we have, for the relative matter density,
1.1 > 	m/G0 > 0.7. As we know, different observations restrict the matter density parameter
to 0.2 < 	m < 0.4. Therefore, this solution satisfies such observations, provided G0 is in
the interval 0.3 < G0 < 0.4. Furthermore, for the whole evolution we have 	m/G0 < 7.5,
tending, for future times, to a constant value around 0.5 (see figure 3). This also characterizes
a possible explanation for the cosmic coincidence.

It is interesting to observe that, in the three cases with varying q, the cosmological time
varies linearly with q, which may, therefore, be used to define the time measurement. It is
interesting to note as well that the total energy density can be negative, since the dark energy
density is negative. In our last solution, for example, ρ is positive until q � −2.3, becoming
negative since then.

There is a particular result which may seem a limitation of our solutions, namely the
typical values found for the Brans–Dicke parameter ω. As we know, observations in the
realm of solar system impose very high inferior limits for it. Let us remember, however,
that we are considering the simplest version of scalar–tensor theories, which plays just an
effective role here. Corrections to general relativity, if exist, may be scale dependent, and,
therefore, observations in the solar system cannot, in principle, impose limits to corrections at
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the cosmological scale. Particularly, we should not expect any time dependence of the Brans–
Dicke scalar field (and so of G) in the solar system, where the metric is stationary. While no
spatial dependence should exist in large scale, because of the cosmological principle.

Anyway, a generalization of the solutions studied here seems to be necessary, either by
modifying our ansätze in the case of early times, or by considering more general scalar–tensor
theories, with ω depending on the scale. The study performed here, though limited in its
scope, shows the variability of solutions in these contexts.

We should also note that, for the solution of Brans–Dicke equations, it is enough to add,
for instance, the Eddington–Dirac relation. The inclusion of additional constraints, even when
empirically or theoretically justified, had the goal of limiting the set of solutions. Therefore,
a possible line of investigation would be to relax our ansätze, imposing to the Brans–Dicke
equations, for example, just the constraint given by the Eddington–Dirac relation, enlarging in
this way the class of possible solutions. Such a generalization may also include the radiation
phase, although we do not have any indication about the validity of the Eddington–Dirac
relation at early times.

To conclude, let us remind that, despite the analysis we have made about the observational
limits for the age and matter density parameters, a more detailed analysis of the whole set of
current observational data is still in order. In particular, a careful study of the distance–redshift
relation for Ia supernovae constitutes the subject of a forthcoming publication.
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