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under the changing of the relevant parameters.
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I. INTRODUCTION

In the framework of the standard model for fundamental
interactions, the theory which is intended to account for
processes involving strongly interacting matter is quantum
chromodynamics (QCD). In high-energy phenomena, as for
instance in deep inelastic scattering processes, the property
of asymptotic freedom implies in a small effective coupling
constant; then perturbative methods can be consistently
employed. For several important situations, the theory can
be perturbatively handled in the high-energy regime and
important results have been obtained for a long time [1–3].
Distinctly, in the case of phenomena that would occur far
from the high-energy domain, as the expected confining-
deconfining phase transition, perturbative methods are of
little usefulness. Precise analytical studies are very difficult
to be done in the low-energy regime ofQCD, by reason of its
very complex field-theoretical structure and of the fact that
in this regime the effective coupling constant is large. In a
field-theoretical context, there are a large number of, in
some cases successful, attempts in the literature to bypass
limitations of perturbation theory imposed by the need of
smallness of the coupling constant. In particular, there are
methods to perform resummations of perturbative series
(even if they are divergent) using Borel transforms, under
certain analyticity assumptions (the validity of the Watson-
Nevanlinna-Sokal theorem; see for instance Ref. [4] and
other references therein). This amounts in some cases to
analytically continuing the weak-coupling series to a
strong-coupling domain, as for instance in Refs. [5–7].
However trials of application of these techniques to QCD
did not give results of practical applicability. Perhaps
because of these difficulties, one of the main methods
employed in the strong-coupling regime of QCD is lattice
calculation. Important results obtained with these tech-
niques are described in detail for instance in Refs. [8–12].
Another relevant approach, namely, holographic QCD, has
also been the subject of intensive studies over the last few
years [13–15].

Because of this situation, a large amount of effort has
been directed to construct simplified effective theories,
sharing with QCD some of its basic properties. These

have been largely employed as laboratories to get, analyti-
cally, insights on the behavior of hadronic matter. One of
the most frequently used of these models is the Nambu-
Jona-Lasinio (NJL) model [16]. It is very useful for the
investigation of dynamical symmetry breaking when the
system is under certain conditions, like finite temperature,
finite chemical potential, external magnetic field, and
others [17–19]. In particular, magnetic effects are an object
of recent interest, as for instance in Refs. [20–25]. These
authors investigate the response of a quark-gluon plasma
under the influence of an external magnetic field. They
claim that an electromagnetic current is generated along
the direction of the applied magnetic field, corresponding
to the chiral magnetic effect. Magnetic effects on the
quark-gluon plasma have been also investigated, for a
relatively long time, in an astrophysical framework. For
instance in Ref. [26] and other references therein, studies
about the effect of strong magnetic fields on the quark-
hadron phase transition at the core of neutron stars have
been performed. There is a vast bibliography on the subject
of the influence of electromagnetic fields on the formation
of the quark-gluon plasma, particularly, studies performed
using effective models for QCD. Some relevant examples
of these works are in Refs. [27–45].
From a phenomenological viewpoint in effective theo-

ries for QCD, other effects also deserve investigation. In
particular, an interesting aspect of the analysis of the phase
transitions of NJL models is to study the changes induced
by the finite size of the system on the phase diagrams,
under the influence of a magnetic background. These
effects of space compactification on four-fermion models,
have been and still are the subject of intense investigation
[46–58]. The general question is to estimate the relevance
of the fluctuations due to finite-size effects in the phase
diagram of the system, submitted to an external magnetic
field. In this article, we extend the techniques introduced in
Ref. [55] to investigate the finite-size effects on the dy-
namical symmetry breaking of the four-dimensional NJL
model at finite temperature, chemical potential, and in the
presence of an external magnetic background. We use zeta-
function and compactification methods [59] which allows
us in a direct way to determine analytically the size
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dependence of the effective potential and the gap equation.
The zeta-function regularization technique has been very
recently employed to calculate the magnetic susceptibility
of the quark condensate and the polarization from chiral
models [60]. Here, we study the influence of finite-size,
external magnetic field, temperature, and chemical poten-
tial effects on the phase transition in the four-dimensional
NJL model.

The organization of this paper is as follows. In Sec. II,
we briefly review the NJL model and the zeta-function
method to derive the effective potential in the mean-field
approximation. Section III is devoted to analyzing the size-
dependent effective potential and gap equation. Summary
and concluding remarks are given in Sec. IV.

II. THE MODEL

Let us consider the massless four-dimensional NJL
model in the presence of an external magnetic field, de-
scribed by the Lagrangian density

L ¼ �qði@�Q 6AÞqþG½ð �qqÞ2 þ ð �qi�5 ~�qÞ2�; (1)

where q and �q are quark spinors carrying Nf ¼ 2 flavors

and Nc ¼ 3 colors. The quantity ~� is a vector whose
components are the generators in the flavor space, repre-
sented by the Pauli matrices, Q stands for the electric
charge of the quark fields ðQu ¼ 2e=3; Qd ¼ �e=3Þ, and
A� is the four-potential associated with an external uni-
form magnetic field. We choose A� ¼ ð0;�x2H; 0; 0Þ,
with H being constant, which means that we assume that
the external magnetic field, H, is parallel to the z axis.
Notice that the Lagrangian density L is invariant under
global chiral transformations, i.e. q ! expði��5�

3=2Þq.
In order to study the phase structure of this model, it is

convenient to perform a bosonization. We introduce
auxiliary fields � and �, defined by 2G �qq � � and
�2G �qi�5�3 � � ¼ �3 (we assume �1 ¼ �2 ¼ 0). In
terms of the auxiliary fields, the Lagrangian density (1)
becomes

~L¼ �qði@�Q 6A��� i�5�3�Þq� 1

4G
ð�2þ�2Þ: (2)

Then, integration over the fermion fields q and �q generates
the effective action

�effð�;�Þ¼�
Z
d4x

1

4G
�2� i

2
Trlnði@�Q 6A���i�5�3�Þ;

(3)

where Tr means the operation of taking the trace over the
color, flavor, Dirac, and coordinate spaces.

We will study the pure chiral sector (� ¼ 0) and con-
sider the mean-field approximation, which amounts to
taking a uniform �. In this case, the effective potential is
obtained from Eq. (3) in the form

Uð�Þ ¼ �2

4G
þ i

2V
Tr lnði@�Q 6A� �Þ; (4)

where V is the four-dimensional volume. The fermion
field, minimally coupled to the external background
magnetic field, obeys the Dirac equation

ði@�Q 6A� �Þq ¼ 0: (5)

Applying again the Dirac operator, it follows that each
component of q satisfies the equation�

ði@þQAÞ2 �Q

2
���F�� � �2

�
q ¼ 0; (6)

where ��� ¼ i½��; ���=2 and F�� ¼ @�A� � @�A�.

Now, due to the presence of the external magnetic field,
with the gauge A� ¼ ð0;�x2H; 0; 0Þ, the natural basis to
expand the field operators is the set of the normalized
eigenfunctions of the Landau basis. This means that the
solutions of Eq. (6) should be written in the form [61,62]

qðxÞ ¼ eiðp0x0�p1x1�p3x3Þuðx2Þ; (7)

where uðx2Þ satisfies a harmonic oscillator equation,�
p2
2 þQ2H2

�
x2 � p1

QH

�
2
�
uðx2Þ

¼ ½p2
0 � p2

3 � �2 �QH�uðx2Þ: (8)

The solutions of Eq. (8) are

unðx2Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2nn!

p
�
QH

�

�
1=4

Hn

� ffiffiffiffiffiffiffiffi
QH

p �
x2 � p1

QH

��
; (9)

in the above equation Hn are the Hermite polynomials and
the corresponding energy spectrum provides the dispersion
relation

p2
0 ¼ p2

3 þ �2 þ ð2nþ 1� sÞQH; (10)

with n ¼ 0; 1; 2; . . . , corresponding to the Landau levels,
and s ¼ �1.
Notice that the introduction of the Landau basis implies

a change in momentum space integrations of the type

Z d4p

ð2�Þ4 fðpÞ !
jQjH
2�

X
s¼�1

X1
n¼0

Z d2p

ð2�Þ2 fðp0; p3; n; sÞ;

this change, together with the results from Eq. (5) up to
Eq. (10), allows us to rewrite Eq. (4) in the form

Uð�Þ ¼ �2

4G
þ i

2
tr
jQjH
2�

X
s¼�1

X1
n¼0

Z d2p

ð2�Þ2
� ln½p2

0 � p2
3 � �2 � ð2nþ 1� sÞQH�; (11)

where tr means the trace over the color and flavor spaces.
We wish to take into account simultaneously magnetic,

finite-temperature, finite-chemical potential, and finite-size
effects on the phase structure of the model. Magnetic
effects are accounted for by the introduction of the
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Landau basis. For finite-temperature, finite-chemical po-
tential, and finite-size effects, we consider a Euclidean
space, with imaginary time and the spatial coordinate
that remains after introduction of the Landau basis being
compactified. We denote the Euclidean coordinate vectors
by xE ¼ ðx0; x1; x2; x3Þ, with x0 2 ½0; �� and x3 2 ½0; L�,
where � is the inverse temperature, � ¼ T�1, and L is the
size of the compactified spatial dimension (the thickness of
the system). This corresponds to the generalizedMatsubara
prescription,

Z d2pE

ð2�Þ2fðp0;p3;n;sÞ! 1

�L

X1
l;m¼�1

fð!l;!m;n;sÞ; (12)

where it is understood that, in the right-hand side, we have
performed the replacements

p0 ! !l ¼ 2�

�

�
lþ 1

2

�
� i�; l ¼ 0;�1;�2; . . . ;

p3 ! !m ¼ 2�

L
ðmþ cÞ; m ¼ 0;�1;�2; . . . ;

in the above equations � is the chemical potential, c ¼ 0
and c ¼ 1

2 for periodic and antiperiodic spatial boundary

conditions, respectively. In this paper we will restrict our-
selves to antiperiodic boundary conditions for the spatial
coordinates. The case of periodic spatial boundary condi-
tions would follow along parallel lines. Unless explicitly
stated, in all cases studied, the spatial boundary conditions
are antiperiodic.

Using Eq. (12) in Eq. (11) we get, after some manipu-
lations, the effective potential carrying magnetic, finite-
temperature, and finite-size effects,

Uð�Þ ¼ �2

4G
� Nc

2

X
f

jQfjH
2��L

X
s¼�1

X1
n¼0

X1
l;m¼�1

ln½!2
l þ!2

m

þ �2 þ ð2nþ 1� sÞjQfjH�; (13)

where
P

f is the sum over the flavor indices.

The effective potential in Eq. (13) can be rewritten in
terms of the Epstein generalized zeta functions, Yð	Þ,
defined by

Yð	Þ¼X1
n¼0

X1
l;m¼�1

½!2
l þ!2

mþ�2þð2nþ1�sÞjQfjH��	;

(14)

that is,

Uð�Þ ¼ �2

4G
þX

f

X
s¼�1

NcjQfjH
4��L

Y0ð0Þ; (15)

where the notation Y0
�ð0Þ means the derivative of Y�ð	Þ

with respect to 	, taken at 	 ¼ 0.
In order to obtain the effective potential in a more

tractable form, we perform the analytical continuation of
the Epstein generalized zeta function Y�ð	Þ, to the whole
complex 	 plane. It reads, after use of recurrence formulas
and some manipulations [55,56,59],

Yð	Þ ¼ �L

2�

�ð	� 1Þ
�ð	Þ F1ð	� 1Þ þ �L

�

1

�ð	ÞF2ð	� 1Þ

þ �ffiffiffiffi
�

p 1

�ð	ÞF3

�
	� 1

2

�
: (16)

The functions F1ð�Þ, F2ð�Þ, and F3ð�Þ are, respectively,

F1ð�Þ ¼ ðjQfjHÞ��

�



�
�;

�2

jQfjH
�
� 1

2

�
�2

jQfjH
���

�
; (17)

F2ð�Þ¼2��
X1
n¼0

X1
m¼1

0
@ mLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2nþ1�sÞjQfjHþ�2
q

1
A�

ð�1Þm

�K�

�
mL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ1�sÞjQfjHþ�2

q �
; (18)

and

F3ð�Þ ¼ 21��
X1
n¼0

X1
m¼�1

X1
l¼1

0
@ l�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4�2

L2 ðmþ 1
2Þ2 þ ð2nþ 1� sÞjQfjH þ �2

q
1
A�

ð�1Þl

� coshð��lÞK�

0
@l�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2

L2

�
mþ 1

2

�
2 þ ð2nþ 1� sÞjQfjH þ �2

s 1
A; (19)

where 
ð	; aÞ is the Riemann zeta function and K	ðzÞ is the modified Bessel function of the third kind.
Notice from Eq. (15) that the derivative of Y�ð	Þwith respect to	, for	 ! 0, must be performed. This operation can be

shortened by analyzing the pole structure of Eq. (16) for 	 ! � (� � 1). Indeed, we see that

d

d	

�
�ð	� 1Þ
�ð	Þ F1ð	Þ

�
	!�

� F1ð�� 1Þ � F0
1ð�� 1Þ � �F1ð�� 1Þ; d

d	

�
1

�ð	ÞF2ð	� 1Þ
�
	!�

� F2ð�� 1Þ;
d

d	

�
1

�ð	ÞF3

�
	� 1

2

��
	!�

� F3

�
�� 1

2

�
:

NAMBU-JONA-LASINIO MODEL IN A MAGNETIC . . . PHYSICAL REVIEW D 84, 065036 (2011)

065036-3



Then, for � ! 0 we obtain the effective potential as

Uð�Þ ¼ �2

4G
þUvac �

X
f

NcðjQfjHÞ2
2�2

F4

�
�2

2jQfjH
�

þX
f

X
s¼�1

NcjQfjH
4�2

�
F2ð�1Þ þ �ð1=2Þ

L
F3

�
� 1

2

��
;

(20)

where Uvac is the vacuum contribution, and

F4ðzÞ ¼ @
ð	; zÞ
@	

��������	¼�1
� 1

2
ðz2 � zÞ lnzþ z2

4
: (21)

The contribution from the vacuum,Uvac, in Eq. (20) can be
written as [20,24]

1

Nc

Uvac ¼
Nf

8�2

�
�4 ln

�
�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p

�

�

��ð2�2 þ �2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p �
; (22)

where � is a cutoff parameter. As pointed out in Ref. [60],
neglecting contributions which depend on the magnetic
field but not on the quark condensate, Uvac is the unique
ultraviolet divergent contribution for the quantum effective
action.

Finally, now we are able to obtain explicitly the gap
equation,

@Uð�Þ
@�

���������¼M
¼ 0; (23)

where M ¼ MðT;�; L;HÞ is the ðT;�; L;HÞ-dependent
order parameter of the chiral symmetry breaking transition;
equivalentlyM plays the role of a dynamical fermion mass,
such that when it has a nonvanishing value, the system is in
the chiral broken phase. Insertion of Eq. (20) in (23),
generates one trivial solution,M ¼ 0, and other, nontrivial
ones, coming from the equation

1

G
�CvacðM;�Þ�X

f

NcðjQfjHÞ
�2

I

�
M2

jQfjH
�

�X
f

X
s¼�1

NcjQfjH
�2

�
F2ð0Þþ�ð1=2Þ

L
F3

�
1

2

��
¼0; (24)

where

IðzÞ ¼ ln�ðzÞ � 1

2
ln2�þ z� 1

2
ð2z� 1Þ lnz;

and

CvacðM;�Þ ¼ NcNf

�2

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þM2

p

�M2 ln

�
�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þM2

p

M

��
: (25)

It is worth mentioning that the sum over s in Eqs. (20) and
(24) can be explicitly performed, resulting in

X1
n¼0

X
s¼�1

fð2nþ 1� sÞ ! X1
n¼0

ð2� �n0Þfð2nÞ:

III. PHASE STRUCTURE

We now study the behavior of the effective potential and
the solutions of the gap equations given in Eqs. (20) and
(24) under the change of values of the relevant parameters
of the model, looking specially at finite-size effects on the
phase structure. In the figures, we use the notation already
introduced and some other; for clarity, we recall that M is
the effective quark mass, x ¼ 1=L, T ¼ 1=�, ! ¼ eH is
the cyclotron frequency,� is the chemical potential, andG
is the coupling constant. It is interesting to introduce the
critical coupling, Gc; in absence of magnetic field, and for
vanishing temperature and chemical potential, in free
space, it is given by Gc ¼ �2=NcNf ¼ �2=6 (see, for

example, Ref. [20]). The region G>Gc is the region
with nontrivial mass. In what follows all physical quanti-
ties are scaled by the ultraviolet cutoff parameter �, which
has to be determined by fitting to experimental data. Then
we have,

U=�4 ! U; M=� ! M; x=�! x; T=�! T;

!=�2 ! !; �=� ! �; 1=G�2 ! 1=G:

In Figs. 1–4, the effective potential and the solutions of
the gap equation are plotted for the broken phase, taking

2 1 0 1 2

0.00

0.02

0.04

0.06

M

U
ef

f

FIG. 1 (color online). Plot of effective potential, Eq. (20), for
x ¼ 0:01, � ¼ 0, G ¼ �2=2 and ! ¼ 0:1. Solid, dashed, and
dotted lines represent T ¼ 0:6, 0.7, and 0.8, respectively.
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the coupling constant G ¼ �2=2>Gc. Some relevant
aspects should be noticed:

(i) For fixed values of x, �, and !, the broken phase is
inhibited as the temperature increases, as expected.

(ii) On the other hand, for fixed values of T, �, and !,
the chiral-condensate region diminishes as the size

of the system decreases. This means that, as the size
of the system decreases, the maintenance of long-
range correlations is inhibited, favoring disorder.
This is a general feature of second-order phase
transitions, occurring also, for example, in super-
conducting films, wires, and grains [63].

(iii) Another point is that for fixed values of T,�, and x,
the broken phase is favored as the magnetic field is
increased. This effect, known as magnetic cataly-
sis, is also present in the system without boundaries
[20,21,23–25]. The physical meaning of this effect
is that the magnetic field drives the system to the
ordered phase.

(iv) In Fig. 4 it is shown that the dependence ofM on the
magnetic field exhibits a similar behavior to that of
Refs. [20,24] for the smallest value of x, large L:M
increases with !. However, the dependence of
M on ! is modified as the size of the system
diminishes: first, the mass decreases, reaches a
minimum value, and then starts to grow as the field
increases.

In Figs. 5–7 the effective potential and the solutions
of the gap equation are plotted with coupling constant
G ¼ �2=6, i.e. its critical value in the absence of bounda-
ries, at zero temperature, chemical potential, and magnetic
field. The main conclusions coming out of the figures are:
(i) At fixed values of T, �, and !, there is a transition

from the broken to the unbroken phase as the size of
the system decreases.

(ii) For fixed values of T, �, and x, there is a transition
from the unbroken to the broken phase as the mag-
netic field increases. As in the previous case, the
increasing of the magnetic field tends to drive the
system to the ordered phase.

2 1 0 1 2

0.00

0.02

0.04

0.06

0.08

M

U
ef

f

FIG. 2 (color online). Plot of effective potential, Eq. (20), for
T ¼ 0:01, � ¼ 0, G ¼ �2=2, and ! ¼ 0:1. Solid, dashed, and
dotted lines represent x ¼ 0:6, 0.7, and 0.8, respectively.

4 2 0 2 4
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0.05
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0.15

M

U
ef

f

FIG. 3 (color online). Plot of effective potential, Eq. (20), for
T ¼ 0:4, � ¼ 0, G ¼ �2=2, and x ¼ 0:01. Solid, dashed, and
dotted lines represent ! ¼ 0:1, 1.0, and 1.5, respectively.

0 0.5 1 1.5 2 2.5 3
ω

0

0.5

1

1.5

2

2.5

M

FIG. 4. Plot of effective quark mass M versus magnetic
field from Eq. (24) for T ¼ 0:1, � ¼ 0:5, and G ¼ �2=2.
Solid, dashed, and dotted lines represent x ¼ 0:1, 0.5, and 0.7,
respectively.
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(iii) We see from Fig. 7 that M assumes a vanishing
value at !, �, T � 0, an expected result for the
coupling constant at the critical value. Nevertheless,
M increases with magnetic field in all displayed
cases of size of the system. However, for a given
value of!, the corresponding values ofM are larger
for larger values of L (smaller values of x).

In Figs. 8 and 9 the effective potential and the gap
equation are plotted with coupling constant G ¼ �2=12,
smaller than the critical value Gc. We see from the figures
that at fixed values of T,�, and!, there is a transition from
the broken to the unbroken phase as the size of the system
decreases, as it was in the previous case. In addition, it is
shown that stronger values of the magnetic field are neces-
sary to reach nonvanishing values of M (there is a transi-
tion from unbroken to broken phase). However, the values
of M for a fixed value of ! are smaller as the size of the
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0.0000

0.0002

0.0004
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0.0008

0.0010

0.0012

M
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ef

f

FIG. 5 (color online). Plot of effective potential, Eq. (20), for
T ¼ 0:1, � ¼ 0:1, G ¼ �2=6, and ! ¼ 0:1. Solid, dashed, and
dotted lines represent x ¼ 0:1, 0.5 and 1.0, respectively.
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FIG. 6 (color online). Plot of effective potential, Eq. (20), for
T ¼ 0:1, � ¼ 0:0, G ¼ �2=6, and x ¼ 0:1. Solid, dashed, and
dotted lines represent ! ¼ 0:01, 0.2, and 0.4, respectively.
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ω
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FIG. 7. Plot of effective quark mass M versus magnetic field
from Eq. (24) for T ¼ 0:001, � ¼ 0, and G ¼ �2=6. Solid,
dashed, and dotted lines represent x ¼ 0:01, 0.1, and 0.2,
respectively.
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FIG. 8 (color online). Plot of effective potential, Eq. (20), for
T ¼ 0:01, � ¼ 0, G ¼ �2=12, and ! ¼ 1:0. Solid, dashed, and
dotted lines represent x ¼ 0:01, 0.5, and 1.0, respectively.
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system diminishes (the broken phase is inhibited, since
smaller values of M are reached).

In the plots of the effective potential shown above, we
see that the nature of phase transition is of second order.
For the model we treat, within the range of parameters we
choose (even considering very high values of the magnetic
field), no first-order transition is found for the system with
a finite size.

It is also relevant to consider the dependence of the
constituent quark mass on the size of the system. In
Fig. 10 we plot M versus x ¼ 1=L for two different values
of magnetic field. We find that, for small values of x (large
system), M increases with !, as expected from previous

results; this is another evidence of the magnetic catalysis.
Increasing x, that is making more relevant the presence of
boundaries,M diminishes as the size L decreases, with the
order parameter vanishing for a finite value of L. Such a
behavior clearly indicates the existence of a minimum size
of the system below which the chiral symmetry is never
broken.
Another relevant estimate is the dependence of critical

temperature of the chiral phase transition on the size L
of the system; this is plotted in Fig. 11 for two different
values of magnetic field. We find that the critical tem-
perature decreases as the size of the system diminishes, a
fact that also corroborates the statement that there exists
a minimum value of L for the chiral transition to be
maintained; no finite solution of the gap equation,
Eq. (24), can be found if one takes L smaller than
such a minimum value. Notice that, as indicated in
Figs. 10 and 11, these minimum values are smaller for
larger magnetic fields.
To estimate the size of the system below which the

broken phase does not exist one needs to choose the value
of the cutoff parameter �. For example, fixing � ¼ 0,
G ¼ �2=2, and ! ¼ 0:1, we see from Figs. 10 and 11
that the maximum value of x (measured in units of �) is
xmax � 1:37, corresponding to Lmin � 0:74��1. Choosing
� ¼ 0:56 GeV, as suggested in Ref. [19], we find
Lmin � 1:3 GeV�1 � 0:3 fm. Thus, we can infer that the
value of minimal size increases for !< 0:1 (see Figs. 10
and 11), approaching 1 or a few fermi.
Nevertheless, it is important to emphasize the intricate

phase structure of this system; it can be understood only
by taking into account the set of parameters ð�; T; L;!Þ,
since for different values of this set one observes distinct
behaviors for the phase diagram.
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FIG. 9. Plot of effective quark mass M versus magnetic
field from Eq. (24) for T ¼ 0:5, � ¼ 0:5, and G ¼ �2=12.
Solid, dashed, and dotted lines represent x ¼ 0:01, 0.5, and 1,
respectively.
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FIG. 10. Plot of effective quark mass M versus inverse of size
x ¼ 1=L from Eq. (24) for T ¼ 0:01, � ¼ 0, and G ¼ �2=2.
Solid and dashed lines represent ! ¼ 0:1 and 1.0, respectively.
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FIG. 11. Plot of critical temperature Tc versus inverse of size
x ¼ 1=L from Eq. (24) for � ¼ 0 and G ¼ �2=2. Solid and
dashed lines represent ! ¼ 0:1 and 0.4, respectively.
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IV. CONCLUSIONS

In this work we have investigated the finite-size effects
on the chiral transition in the framework of the Nambu-
Jona-Lasinio model, at finite temperature and density and
in the presence of an external magnetic field. The thermo-
dynamic potential and the gap equation have been obtained
in the mean-field approximation. The behavior of the
effective potential and solutions of the gap equation
have been investigated under the change of the relevant
parameters, with emphasis on the finite-size effects on the
phase structure of the model.

Some points should be emphasized. One of them is that
for given values of the chemical potential and magnetic
field, the appearance of the broken phase is inhibited as the
size of the system decreases, that is, decreasing the size of
the system makes difficult the maintenance of long-range
correlations and favors the disorder. Moreover, there exists
a minimal size of the system below which the transition
ceases to exist, in other words, the chiral-condensate phase
cannot be sustained below this minimal size. These aspects

are illustrated in Figs. 10 and 11, where are plotted, re-
spectively, the effective quark mass and the critical tem-
perature as functions of the inverse of the size of the
system, at zero chemical potential, for two values of the
applied magnetic field.
Another effect is that of enhancement of the broken

phase as the magnetic field increases, which also occurs
for the system with finite size, i.e., the effective mass M
increases with! at a fixed size of the system. However, we
stress that the dependence of M with the intensity of
the magnetic field is modified as the size of the system
diminishes. The corresponding values of the effective mass
are smaller for decreasing values of the size L (larger
values of x).
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