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ABSTRACT. This paper examines and applies methods for modelling longitudinal binary data
subject to both intermittent missingness and dropout. The paper is based around the analysis of
data from a study into the health impact of a sanitation programme carried out in Salvador,
Brazil. Our objective was to investigate risk factors associated with incidence and prevalence of diar-
rhoea in children aged up to 3 years old. In total, 926 children were followed up at home twice a week
from October 2000 to January 2002 and for each child daily occurrence of diarrhoea was recorded.
A challenging factor in analysing these data is the presence of between-subject heterogeneity not
explained by known risk factors, combined with significant loss of observed data through either
intermittent missingness (average of 78 days per child) or dropout (21% of children). We discuss
modelling strategies and show the advantages of taking an event history approach with an additive
discrete time regression model.

Key words: additive regression model, diarrhoea incidence and prevalence, discrete time
martingales, dropout, longitudinal binary data, missing data

1. Introduction

Recurrent events are frequently of interest in longitudinal studies. Examples include seizures
in epileptic patients (Albert, 1991) or successive tumours in cancer studies (Gail et al., 1980).
Approaches to the analysis of recurrent events include intensity-based counting process
methods (Andersen et al., 1993), the analysis of times to specific events (Wei et al., 1989),
times between events (Aalen & Husebye, 1991) and frailty modelling (Oakes, 1992; Yue &
Chan, 1997). Miloslavsky et al. (2004) provide a recent overview of the methods used for
recurrent event analyses.

In this work, we study additive dynamic regression models for discrete time recurrent event
data in which the conditional mean based on the history is modelled as a function of pos-
sibly time-varying covariates. The paper is based on the analysis of data from an epidemio-
logical study of the relationship between sanitation facilities and the occurrence of
diarrhoea in children under 3 years old. We consider both days with diarrhoea and repeated
episodes of diarrhoea as recurrent events and show how the armoury of additive regression
modelling techniques developed for time continuous event history data (Aalen, 1989, 1993)
may be applied to our longitudinal binary data to provide valuable inferences without
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computationally intensive procedures. Plots of the time-varying regression coefficients pro-
vide a useful graphical summary of the time dynamics of the covariate effects, and this makes
the approach particularly important when individual experience of dynamic or changing con-
ditions affects the occurrence of the recurrent events. For comparative purposes, we also con-
sider a recently proposed but computationally intensive method for longitudinal binary data
given by Albert (2000).

Details of the data to be considered are provided in the next section. In section 3 we
describe a general modelling framework for discrete time recurrent event data subject to
missingness, while the approach of Albert (2000) is briefly considered in section 4. Our
additive regression model with dynamic covariates is introduced in section 5. Useful methods
for statistical inference for the additive model are also reviewed and discussed in this section,
while our analysis of the diarrhoea data using additive regression methods is given in
section 6. The paper closes with discussion of open problems in section 7.

2. Blue Bay diarrhoea data

Poverty in many countries is associated with high risk of disease, in part related to poor
sanitation and inadequate health education. Focusing on this topic, the Bahia state govern-
ment (Brazil) has implemented an extensive sanitation programme since 1997 in the metro-
politan area of Salvador. As part of the programme, the Institute of Public Health of the
Federal University of Bahia developed several studies, together called Blue Bay, to evaluate
the impact of the sanitation measures on the health of the population. In this paper, we will
focus on the morbidity of diarrhoea in children up to 3 years of age.

Daily data are available from a household survey carried out through home visits over
455 days from October 2000 to January 2002. Study design and population have been de-
scribed by Strina et al. (2005). One child aged under 3 years at entry was monitored from
each household. In this work, we will concentrate on the 926 surveyed children who had at
least 90 days of follow up, and we will investigate the incidence and prevalence of diarrhoea
amongst these children through the period. Prevalence is the probability that a child has diar-
rhoea on a given day whereas incidence is the probability that a child starts a new episode
of diarrhoea. An episode is a sequence of days with diarrhoea until there have been at least
three consecutive clear days (diarrhoea free).

Figure 1 shows crude daily prevalence and incidence through the study period, computed
as the proportions of children having diarrhoea, respectively, starting a new episode of
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Fig. 1. Daily prevalence and incidence of diarrhoea after start of study.
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Table 1. Fixed covariate summary

Description Summary (%)

Male 47
Starting age (months)

≤12 28
12–24 36
>24 36

Three or more people/bedroom 19
Poor street quality 57
Contaminated water storage 24
Contaminated water source 22
Standing water 32
Open sewerage 16
Rain-affected accommodation 29
Mother <25 yr 46
Low socio-economic status 61
Other children ≤5 yr 45

diarrhoea, on a given day. To begin with prevalence is around 5%, falling to about 1% 15
months later. Incidence by definition is lower, and is approximately 2% at the start of the
study, 0.5% by the end. The fall in both plots may reflect improving health over the study
period or may be an artefact due to the ageing of the cohort. Thus one of the challenges
for the analysis is the need to disentangle calendar time and age effects, after allowance for
other risk factors. Various social, demographic and economic characteristics were collected
at the beginning of the study, many of which could influence outcome. Table 1 summarizes
these covariates. In the analysis to come all these covariates except age are treated as binary,
with the category shown in the table coded as 1. For age, three categories were considered,
with the middle age group used as a reference. Daily data are also available on whether or
not the child had vomit or fever.

A complication for the analysis is that all the children are not observed for the full study
period. Figure 2 illustrates, by showing when children were and were not observed. The
figure includes only every 10th child, as resolution becomes problematic with more dense
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Fig. 2. Observation pattern for diarrhoea data. Horizontal lines indicate where data for each child are
available, for every 10th child only.
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data, but the pattern shown is entirely characteristic of the complete data. There are three
types of missingness. First, some 16% of children were entered late into the study. Recruit-
ment at the original start date of October 2000 was more problematic than anticipated and so
a second recruitment phase took place from January to March 2001. This explains the mainly
blank area in the top left of the plot. Secondly, about 21% of children dropped out of the
study before the final completion date. Sometimes, this was for explained administrative rea-
sons but some 15% were for unknown and potentially informative causes. The final cause
of missing data was through intermittent missingness, whereby observation was interrupted
for a period but later resumed. This was often because the data collector was not available,
which is why there are many white vertical rectangles in Fig. 2. Data collectors were usually
assigned blocks of children with contiguous identification numbers and if the data collector
was not working through holiday or illness then data for the whole block was omitted. Often
a small number of children have intermittent missing data but on four occasions there are
almost no data at all, as seen by the vertical white bands running almost the full length of
Fig. 2. Three are explained by vacation periods and the fourth happened during a strike by
police.

Initial inspection of the data suggested that episodes of diarrhoea tend to be relatively
short, but some children are more susceptible than others. This is confirmed by the lorelo-
gram (Heagerty & Zeger, 1998) in Fig. 3, which gives the mean log odds ratios for 2×2 tables
formed by the presence or absence of diarrhoea on days separated by given lags. Values big-
ger than zero imply positive association. There are two main features to this plot. At lag 1
the log odds ratio is very high, indicating not surprisingly that days with diarrhoea tend to
follow each other. The lorelogram then decays very quickly for about 10 days, showing the
episode effect. After that the mean is very stable at a level considerably above 0, which would
be the value under independence. This long-term association occurs as a result of hetero-
geneity between children, essentially a frailty effect: some children have frequent episodes,
some none or hardly any.
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Fig. 3. Lorelogram for diarrhoea data: see text for explanation.
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3. A modelling framework

We will consider the diarrhoea records for each child as longitudinal binary data, measured
daily but subject to missingness, as discussed in the previous section. Using models in dis-
crete time t, we will assume that t ∈ T ={0, 1, . . ., T} for a given terminal time T . In our
application, we will use days as the time unit and calendar time as the time scale, but we
note that other time units and scales (such as years and age) may be more appropriate in
other applications. In the following, we will consider two different types of models for the
data: a transition model due to Albert (2000) and an additive model similar to the one pro-
posed by Aalen (1980, 1989) for time-continuous event history data, and we will focus mainly
on the latter. The two models will be described in sections 4 and 5. First, in this section, we
introduce some notation and modelling assumptions common to both of them.

We start out by considering the hypothetical situation with no missing observations, which
is the situation for which our basic model and parameters of interest are defined. For this
situation our observations for the ith subject; i =1, . . ., n; form a binary process Ỹ i1, . . ., Ỹ iT ,
where Ỹ it =1 if the individual experiences an event of interest at time t, Ỹ it =0 otherwise.
For completeness we let Ỹ i0 =0 so as to have Ỹ it defined for all t ∈T . In our application the
event of interest will be the onset of an episode of diarrhoea (when incidence is studied) or
that the child suffers from diarrhoea (when prevalence is studied).

In addition, for each individual we at each time t have a p-dimensional vector of co-
variates xit = (xi1t, . . ., xipt)T. These may be fixed or vary with time. For the transition model
of section 4, all time-dependent covariates are assumed to be external, while also dynamic
time-dependent covariates are allowed for the additive model of section 5. A time-dependent
covariate is external if its complete path xijt; t ∈T ; is given at the outset of the study or if its
path is given by a stochastic process whose development over time is not influenced by the Ỹ it

(Kalbfleisch & Prentice, 2002, section 6.3). In both cases we may, for the purpose of statistical
modelling, assume that the complete covariate paths are given at t =0. In contrast, a dynamic
time-dependent covariate may depend in an arbitrary way on ‘the past’, i.e. xijt may be a func-
tion of Ỹ is, for s =0, 1, . . ., t − 1, as well as of the fixed and external time-varying covariates
(Aalen et al., 2004). Specific examples of dynamic covariates are given in section 6.1.

We denote by Hi0 the �-algebra generated by the fixed and external time-varying covariates
for the ith subject, and let Hit =Hi0 ∨�{Ỹ i1, Ỹ i2, . . ., Ỹ it}. Note that Hit may be interpreted
as the information on the ith subject that would have been available by time t had there
been no missing observations, assuming the complete path of external time-varying covari-
ates to be known at the outset of the study. Then, conditional on Hi0, the joint distribution
of Ỹ i1, . . ., Ỹ iT may be given by the conditional probabilities

�it =P(Ỹ it =1 |Hi, t−1). (1)

A main aim for our analysis of the longitudinal binary data is to study how these con-
ditional probabilities vary over time and how they depend on covariates. Note that this
differs from the common approach in longitudinal data analysis, where focus is on estimating
the marginal probabilities �it =P(Ỹ it =1 |Hi0); e.g. Hogan et al. (2004).

The study of the �it is complicated by missing observations. In order to handle the
missingness, we introduce the categorical ‘missingness process’ Zi1, . . ., ZiT , where Zit in-
dicates whether the outcome Ỹ it for subject i is observed, lost due to intermittent missing-
ness or lost due to dropout:

Zit =
⎧⎨
⎩

0, observed
1, intermittent missing
2, dropout.

© Board of the Foundation of the Scandinavian Journal of Statistics 2006.
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In order to have Zit defined for all t∈T , we let Zi0 =0. We assume that Zit is observed at time
t, so that one knows ‘today’ whether a missing observation is intermittent or due to drop out.
This assumption is fulfilled when intermittent missingness is caused by a data collector not
being available or when drop-out is caused by a family moving out of the study area (pro-
vided the information is recorded in the data), but it may be more problematic otherwise.

The introduction of the missingness process will (usually) bring in some extra random vari-
ation. Therefore, we now have to work with the larger filtration (Git) given by the �-algebras

Git =Gi0 ∨�{Zi1, Ỹ i1, Zi2, Ỹ i2, . . ., Zit, Ỹ it}.

Here, Gi0 is generated both by the fixed and external time-varying covariates for subject i (i.e.
Hi0) and by those aspects of the missingness process for the subject that are external to its
event process (as when an investigator misses a home visit for reasons that have nothing to
do with the health condition of a child). This may have the consequence that the conditional
distribution of Ỹ it may change. It is, however, a basic assumption for our analysis that this
is not the case, so that the missingness process satisfies

P(Ỹ it =1 |Gi, t−1)=P(Ỹ it =1 |Hi, t−1) (2)

for all t ∈T . Condition (2) is similar to one of the two conditions needed for independent
censoring in event history analysis (Andersen et al., 1993, sections III.2.2 and III.4). For the
other condition, see section 5.1 below.

Under (2), conditional on fixed and external time-varying covariates as well as external as-
pects of the missingness process (i.e. on Gi0), the joint distribution of Ỹ i1, . . ., Ỹ iT , Zi1, . . ., ZiT

may be given by the �it and the conditional missingness probabilities

P(Zit =m |Gi, t−1, Ỹ it =y); m=0, 1, 2; y =0, 1. (3)

Individuals may share values of fixed and external time-varying covariates and external
aspects of the missingness processes. Thus it is not reasonable to assume independence of the
n individuals. We will, however, assume that the vectors (Ỹ i1, . . ., Ỹ iT , Zi1, . . ., ZiT ); i =1, . . ., n;
are independent, conditional on all the Gi0. Then the (conditional) model for all the n indi-
viduals may be specified by the �it and the conditional missingness probabilities (3). The con-
ditional independence assumption disregards all dependence between individuals that are not
captured by observables, and this makes the assumption debatable for a contagious disease
like diarrhoea; cf. the discussion in section 7.

4. A transition model

We now consider more closely the transition model proposed by Albert (2000). As discussed
in the previous section, we for this model have to assume that all time-dependent covariates
are external. Then, conditional on fixed and external time-varying covariates as well as exter-
nal aspects of the missingness process (i.e. on Gi0), Albert assumed Markov models for the
event and missingness processes. For the event processes he assumed the logistic model

logit(�it)=�Txit +�Ỹ i, t−1.

Note that �it depends on ‘the past’ Gi, t−1 only via the covariates and Ỹ i, t−1, making the model
for the longitudinal binary data Markovian. Higher-order Markov-dependence models could
be assumed, at the cost of a dramatic increase in the computational burden.

© Board of the Foundation of the Scandinavian Journal of Statistics 2006.
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To model the missingness probabilities (3), Albert assumed dependence on ‘the past’ only
through the value of Zi, t−1 and adopted the multinomial logit model:

P(Zit =m |Zi, t−1 = l, Ỹ it =y)= exp(�T
lmxit +�lmy)∑2

k =0 exp(�T
lkxit +�lky)

; l, m=0, 1, 2; y =0, 1.

Note that the dependence between the event process Ỹ it and the missingness process Zit arises
through the inclusion of the value of Ỹ it in the missingness model.

Albert proposed an expectation maximization (EM) algorithm for estimation and gave a
recursive estimation procedure for calculation of the conditional probability distribution of
missing Ỹ it, given the observed data. In our case, with occasional reasonably long sequences
of intermittently missing data, we found the recursive procedure to be unreliable thanks to
accumulating numerical inaccuracies. Instead we found a Monte Carlo EM procedure to
work well, tested by simulations, using Gibbs sampling to fill in missing values and aver-
aging over iterations to estimate the required expectations. As Gibbs is used, we only need
to generate any missing Ỹ it given its immediate neighbours, which are generated sequentially
if also missing. Standard errors (SE) were estimated by bootstrap with 100 resamples.

Table 2 shows the estimates and SE for the events model and for the three types of tran-
sition between Z values. We took events to be days with diarrhoea and so the results relate
to prevalence. For the events model, young children are more prone to diarrhoea than older,
as expected, and the risk of diarrhoea is higher in houses which are affected by rain or near
open sewers. Children of younger mothers, with less experience, tend to have more diarrhoea
and there is also increased risk in more crowded accommodation. To investigate calendar time
effect, we partitioned the study period into three intervals, namely 0–150 days, 151–300 days,
and over 300 days, with the first group as reference and dummy variables for the others. There
was strong evidence of decrease in frequency as time proceeded, as anticipated. Finally for
this analysis, we found the previous binary response to be highly predictive, again as expected.

Turning briefly to the missing data models, a variety of covariates appeared to be impor-
tant in affecting transitions. These are not discussed in detail but we note from the last row
of the table that the parameter which characterizes the dependence between the outcome Ỹ

Table 2. Estimates and standard errors (SE) for transition model

Missing data model

Covariates Events model m=1 and l =0 m=2 and l =0 m=0 and l =1

Male 0.08 (0.05) 0.04 (0.03) 0.02 (0.19) 0.02 (0.03)
Age

≤12 months 0.24 (0.07) −0.15 (0.05) 0.79 (0.36) −0.02 (0.05)
> 24 months −0.56 (0.13) 0.03 (0.03) 0.02 (0.26) −0.01 (0.03)

≥3 people/bedroom 0.26 (0.08) −0.02 (0.04) 0.09 (0.25) −0.01 (0.04)
Poor street quality −0.08 (0.05) 0.04 (0.03) 0.002 (0.19) 0.03 (0.03)
Contaminated water storage −0.05 (0.06) 0.17 (0.03) 0.08 (0.20) 0.05 (0.03)
Contaminated water source 0.11 (0.06) −0.02 (0.03) −0.04 (0.23) 0.02 (0.03)
Standing water 0.01 (0.07) 0.01 (0.04) −0.41 (0.30) −0.002 (0.04)
Open sewerage 0.37 (0.10) 0.10 (0.05) 0.36 (0.26) −0.02 (0.04)
Rain-affected accommodation 0.14 (0.06) −0.05 (0.04) −0.12 (0.20) 0.07 (0.03)
Mother < 25 yr 0.17 (0.06) −0.04 (0.03) 0.30 (0.18) 0.002 (0.03)
Low socio-economic status −0.002 (0.05) −0.27 (0.04) −0.48 (0.17) −0.01 (0.03)
Other children ≤ 5 yr −0.02 (0.04) −0.07 (0.03) −0.17 (0.16) 0.04 (0.03)
Period

150–300 d −0.14 (0.04) 0.02 (0.03) 0.88 (0.24) 0.18 (0.03)
> 300 d −0.60 (0.08) −0.28 (0.04) 1.37 (0.49) −0.13 (0.03)

Diarrhoea previous day (�) 4.92 (0.39)
Diarrhoea current day (�) −0.18 (0.59) −0.04 (3.40) 0.02 (0.63)

© Board of the Foundation of the Scandinavian Journal of Statistics 2006.
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and the missing data mechanism was not found to be significant for any transition, suggest-
ing that intermittent missingness and dropout are both non-informative. Further details of
this analysis are omitted.

5. An additive model

We now turn to the additive model for longitudinal binary data. As discussed in section 3,
we for this model allow the time-dependent covariates for an individual to be dynamic, i.e.
to depend on the past of its event process. The additive model is given by

�it =�0t +�1txi1t + · · ·+�iptxipt. (4)

Note that in (4) the regression parameters �jt are allowed to depend on time, giving the
model a non-parametric flavour. In fact, our additive model is a discrete time version of
Aalen’s (1980, 1989) non-parametric additive hazards model for continuous time event his-
tory data. As we will see below, most of the methods of statistical inference for Aalen’s model
apply with only minor modifications to our situation with time discrete longitudinal binary
data.

5.1. Modelling the observable data

In section 3, we introduced the filtrations (Hit) and (Git) corresponding, respectively, to the
situation with no missing observations and the situation where both the event process and the
missingness process for subject i are observed. None of these filtrations describe the informa-
tion actually available to the researcher. We will use martingale methods to study statistical
methods for the additive model (4). Then we need to consider the filtration (Fit) correspond-
ing to the data actually available to the researcher on the ith subject; i =1, . . ., n.

To this end we introduce the ‘at-risk’ process Rit = I{Zit =0} taking the value 1 if indivi-
dual i is observed at time t and the value 0 otherwise, and the process Yit =RitỸ it, registering
the observed events for the individual. The Rit process corresponds to a filtering process for
event history models, while Yit corresponds to (the increments of) a filtered counting process
(Andersen et al., 1993, section III.4). For the time-continuous case, it is common to assume
the filtering process to be predictable. In a similar manner it is useful to formulate the discrete
time problem in such a way that Rit becomes a predictable process relative to the observed
filtration (Fit). This is achieved by letting

Fit =Gi0 ∨�{Zi1, Yi1, Zi2, Yi2, . . ., Zit, Yit, Zi, t +1}, (5)

so that Fit contains information of the missingness process ‘one day ahead’. Note that in (5)
there is an implicit assumption that all fixed and external time-varying covariates are observ-
able, so that the information in Gi0 is available to the researcher.

Unlike the case for the transition model of section 4, we assume for the additive model that
Ỹ it and Zit are conditionally independent given Gi, t−1; essentially this amounts to assuming
sequential missingness at random (e.g. Hogan et al., 2004). Note that this assumption is tri-
vially fulfilled when missingness is external to the event process, as seems to be the case for
intermittent missingness for the diarrhoea data (Fig. 2). Also the dropout in the diarrhoea
data seem to be missing sequentially at random by the transitional analysis (Table 2).

We further assume that the dynamic time-dependent covariates in (4) depend only on the
parts of the information in Gi, t−1 that are contained also in Fi, t−1; an assumption that is
needed if the covariates are to be used for statistical modelling. Then it follows by (1) and
(2) that

© Board of the Foundation of the Scandinavian Journal of Statistics 2006.
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�it =P(Yit =1 |Fi, t−1)=E{E(RitỸ it |Gi, t−1, Zit) |Fi, t−1}
=RitE{P(Ỹ it =1 |Gi, t−1, Zit) |Fi, t−1}=RitE{�it |Fi, t−1}
=�itRit. (6)

Note that the conditional probabilities (6) for the actually observed binary data Yit coincide
with the conditional probabilities (1) for the fully observed binary data Ỹ it whenever the
former are observable. This corresponds to independent censoring for time-continuous
event history models (Andersen et al., 1993, sections III.2.2 and III.4), and shows that the
sequential missingness at random assumption corresponds to the predictability of the
missingness process, which is the second assumption needed for independent censoring for
time-continuous event history models.

For ease of exposition we have assumed that the filtrations (Fit) corresponding to the data
actually available to the researcher take the form (5). Sometimes one may want to work with
larger filtrations, that are also generated by other processes observed in parallel with the
longitudinal binary data. For example, in the diarrhoea study, vomit and fever were also
recorded for each child at the home visits. As long as prediction is not a concern, such an
extension of the filtrations causes no problems for the statistical methods for the additive
model, and we will also use the notation (Fit) when the filtrations are enlarged.

Another comment is also in order concerning the filtrations (Fit); i =1, . . ., n. These gener-
ate a common filtration (Ft) for all the individuals, and formally it would have been more cor-
rect to define conditional probabilities and expectations with respect to this common
filtration. However, due to the conditional independence assumption (given the �-algebra
generated by the Gi0) we have chosen not explicitly to do so.

5.2. Inference for the additive model

We now turn to estimation in the additive model (4). To this end we use the Doob decom-
position for discrete time martingales to decompose Yit into the sum of a systematic part
�it =E(Yit |Fi, t−1)=�itRit and a random error εit =Yit −�it. Here the εit are martingale differ-
ences, i.e. the process Mit =

∑t
s =0 εis is a martingale. Therefore, by (4), we may write

Yit =�0tRit +�1txi1tRit + · · ·+�ptxiptRit + εit, (7)

which, for each t, has the form of a linear regression model with uncorrelated errors. We
may therefore estimate the �jt by regressing the observations Yit on the covariates xijtRit using
ordinary or weighted least squares. Although the estimates at each time point will be subject
to fairly large sampling errors, one may obtain stable and informative estimates of the cumu-
lative regression coefficients Bjt =

∑t
s =0 �js by accumulating the estimates of the �js over time.

To describe in more detail how the estimation is carried out, it is convenient to introduce
vector and matrix notation. For each t ∈ T we let Yt = (Y1t, . . ., Ynt)T be the vector
of observations, �t = (�0t, �1t, . . ., �pt)

T the vector of regression coefficients, Xt the ‘design
matrix’ with rows xT

it Rit = (1, xi1t, . . ., xipt)Rit, and Wt =diag{wit} a diagonal matrix of pre-
dictable weights. Then, provided Xt has full rank, the weighted least squares estimate for �t

becomes �̂t = (XT
t WtXt)−1XT

t WtYt. Let Jt be an indicator process taking the value 1 if Xt has
full rank, and the value 0 otherwise. By accumulating the least squares estimates for all times
when estimation is meaningful, we obtain the estimate

B̂t =
t∑

s =0

Js�̂s =
t∑

s =0

Js
(
XT

s WsXs
)−1

XT
s WsYs (8)

for the vector of cumulative regression functions Bt = (B0t, B1t, . . ., Bpt)T.
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To study the properties of this estimator, we introduce B∗
t =∑t

s =0 Js�s, which is close to
Bt when there is only a small probability that Xs does not have full rank for all s ≤ t, and
let εt = (ε1t, . . ., εnt)T be the vector of random errors in (7). Then Ys =Xs�s +εs, and inserting
this in (8) we obtain

B̂t −B∗
t =

t∑
s =0

Js(XT
s WsXs)−1XT

s Wsεs.

Thus B̂t − B∗
t is a martingale transformation (the discrete time analogue of a stochastic

integral), and hence a mean zero (vector-valued) martingale. In particular, EB̂t =EB∗
t for all

t ∈T , so (8) is almost an unbiased estimator. By a slight modification of the argument re-
viewed in Andersen et al. (1993, section VII.4.1) for Aalen’s additive model for time-
continuous event history data, one may show that the covariance matrix of B̂t may be
estimated by

ĉov(B̂t)=
t∑

s =0

Js(XT
s WsXs)−1XT

s Ws�̂sWsXs(XT
s WsXs)−1, (9)

where �̂s =diag{�̂is(1 − �̂is)} is the n × n diagonal matrix with ith diagonal element equal to
�̂is(1− �̂is) with

�̂is =xT
it Rit�̂t ={�̂0s + �̂1sxi1s + · · ·+ �̂psxips}Ris (10)

a model-based estimate of �it; cf. (4) and (6). Moreover, by the martingale central limit
theorem, (8) is approximately multivariate normally distributed in large samples. Also a test
for the hypothesis that a covariate has no effect, can be derived in a similar manner as for
Aalen’s additive model for time-continuous event history data, and we omit the details.

The estimator (9) of the covariance matrix of B̂t is valid when our model for �it =
E(Yit |Fi, t−1) adequately describes its dependence on ‘the past’ Fi, t−1. In particular this
requires that the dynamic covariates used in (4) capture (most of) this dependence. Alter-
natively, we may resort to a marginal model, just assuming

E(Yit |Rit, xit)=xT
it Rit�t =�0tRit +�1txi1tRit + · · ·+�ptxiptRit.

Then, if the individuals are independent, we may copy the argument of Scheike (2002) to get
the estimator

c̃ov(B̂t)=
n∑

i =1

Q⊗2
it (11)

for the covariance matrix of (8). Here, for a vector a, a⊗2 =aaT and

Qit =
t∑

s =0

Js(XT
s WsXs)−1xiswis(Yis − �̂is).

5.3. Martingale residual processes

One important tool to assess the fit of an additive model, is inspection of the martingale resid-
ual processes. These were introduced by Aalen (1993) in the context of his additive model for
time-continuous event history data, and their use for recurrent event data was illustrated by
Aalen et al. (2004). We will here briefly consider the martingale residual processes for longi-
tudinal binary data in discrete time.

To this end we, for each individual i, introduce the process Nit =
∑t

s =0 Yis counting the
number of observed events for the individual up to and including time t, and the process
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�it =
∑t

s =0 �is. Then Mit =Nit − �it is a martingale. The idea is now to replace �it by its
estimate �̂it =

∑t
s =0 �̂is under the model [cf. (10)] to obtain the martingale residual process

M̂it =Nit − �̂it. (12)

In a similar manner as in Aalen (1993), we may show that M̂t = (M̂1t, . . ., M̂nt)T is a mean
zero vector-valued martingale when the model is correctly specified, and that its covariance
matrix may be estimated by

ĉov(M̂t)=
t∑

s =0

Js(I −Hs)�̂s(I −Hs)T. (13)

Here Hs =Xs(XT
s WsXs)−1XT

s Ws is the ‘hat matrix’, and �̂s is given just above (10).
We may now derive standardized martingale residual processes by dividing each process

(12) by the square root of the corresponding diagonal element of (13). If the model is cor-
rectly specified, the standardized martingale residual processes should have mean 0 and vari-
ance 1. Following Fosen et al. (2006) we will check the fit of a model in sections 6.3 and
6.4 by plotting the empirical standard deviation of the standardized residual processes as a
function of time. If a model fits reasonably well, the empirical standard deviation should be
about 1, while larger values indicate a poor fitting model.

6. Analysis of the Blue Bay data

We now present our analysis of the Blue Bay diarrhoea data using the methods for additive
regression described in the previous section. We start out with a discussion of the fixed and
dynamic covariates used in the analysis, and then give the results for the analysis of drop-
outs, incidence and prevalence. For the dropout analysis we used an unweighted analysis. For
incidence and prevalence we weighted by the inverse probability of not dropping out at the
next time point. These weights were obtained from the dropout analysis.

6.1. Fixed and dynamic covariates

Table 1 summarizes the fixed covariates used in the analyses. In all except one case we used a
binary coding, with the category coded as 1 shown in the table. The exception is age, where
we used either the exact value or the three-group categorization given in the table, with 12–
24 months as reference category. In both cases we incremented age as time proceeded, so the
interpretation is as the age effect on any given day, not age at the beginning of the study.
In the following we report only the analyses with categorized age: those with exact age are
broadly similar.

We defined dynamic covariates as the historical subject-specific rate of episodes, days with
diarrhoea, days with fever and days with vomit. More precisely, in each of these four cases
we defined a dynamic covariate xijt for individual i as

xijt =
∑t−1

s =0 wsRisỸ is∑t−1
s =0 wsRis

=
∑t−1

s =0 wsYis∑t−1
s =0 wsRis

,

where Ỹ is is the relevant event process, Ris is the associated at-risk indicator, and the ws are
weights. For these we took

ws =
{

1 t − s ≤ 	
e−
(t−s−	) t − s > 	
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which gives equal weight to all events in the most recent 	 days but discounts earlier
history. After considerable experimentation we chose 	=30 and 
=0.01 for the incidence
and prevalence analyses, but had no discounting for the dropout analysis.

A dynamic covariate may be on the causal pathway between a fixed covariate and the event
process. The inclusion of a dynamic covariate in an analysis may therefore distort the esti-
mation of the effects of the fixed covariates. To avoid such a distortion, at each time t we
regressed each dynamic covariate on the other covariates and used the residuals from these
fits as covariates when fitting the additive regression model (Fosen et al., 2006). By this pro-
cedure, the estimated effects of the fixed covariates are the same in a model with dynamic
covariates as in the model where only fixed covariates are included.

For the prevalence analysis we also included binary dynamic covariates which describe
whether a child had diarrhoea at each of the four previous days, i.e. lags 1–4. Again we
used residuals after regressing these on the fixed covariates, and in this case we also
regressed each lag on the more recent values. Thus we included lag 1 in the regression model
for lag 2 before defining residuals. Lags 1 and 2 were included in the model for lag 3 and so
on. This helped with collinearity problems and means that the interpretation is conditional:
the coefficient for lag 2 for instance measures the extra effect of knowing the diarrhoea status
at day t −2 after allowing for known status at day t −1. If the diarrhoea process within an
episode is Markov, there should therefore be no additional effect of knowing diarrhoea at
lags > 1.

6.2. Dropout analysis

For dropout analysis we fitted an additive model with all fixed and dynamic covariates
included. Table 3 shows test statistics (that are standard normally distributed under the null)
for assessing whether the fixed covariates are associated with dropout. It seems that older
children are more likely to dropout, and perhaps people living near open sewers. People liv-
ing in rain-affected accommodation and those in the lowest socio-economic category (this
is defined by household income) were less likely to drop out, which is presumed to reflect
willingness of the poorest people to take up a free health check. None of the dynamic co-
variates had any apparent effect on dropout.

Table 3. Test statistics for covariate effects in additive regression models

Dynamic model

Covariates Dropout Incidence Prevalence

Male 0.12 2.78 7.50
Age

≤12 months 1.48 2.80 15.35
> 24 months 2.56 −13.72 −33.02

≥3 people/bedroom 1.16 3.71 16.11
Poor street quality 0.12 −7.36
Contaminated water storage 1.00 −4.58
Contaminated water source −0.08 1.90 7.39
Standing water −1.63 2.25
Open sewerage 2.05 5.58 18.72
Rain-affected accommodation −2.05 3.70 10.13
Mother < 25 yr 1.37 3.38 14.45
Low socio-economic status −3.59
Other children ≤5 yr −1.34
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6.3. Incidence analysis

For the analysis of incidence we used backward elimination for model selection. Table 3
gives the test statistics for the selected fixed covariates. Essentially, people living in poor con-
ditions (high density, contaminated water, open sewerage, rain-affected accommodation) have
greater incidence of diarrhoea, as expected. Less experienced mothers seem to be associated
with high incidence, diarrhoea episodes seem to decline with age, and there is evidence of
more diarrhoea incidence amongst males than females.

Figure 4 shows a selection of cumulative regression coefficients. All covariates were
included in the analysis but for space reasons we omit plots for some fixed covariates. These
omitted plots are consistent with the interpretation of the test statistics in Table 3, with no
evidence of time-dependent effects. The provided plot shows the cumulative baseline

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

1.5

1.0

0.5

0.0

1.0

0.8

0.6

0.4

0.2

0.0

B
as

el
in

e

Baseline     Test = 19.25 Age ≤ 12 months     Test = 2.80

0.0

−0.5

−1.0

−1.5

−2.0

−2.5

Age > 24 months     Test = −13.72
Episode rate     Test = 6.51

Diarrhoea rate     Test = 3.02

0.08

0.06

0.04

0.02

0.00

0.15

0.10

0.05

0.00

Time

Fever rate     Test = 2.41

4003002001000

Time
4003002001000

Time
4003002001000

Time
4003002001000

Time
4003002001000

Time
4003002001000

Fig. 4. Selected cumulative regression coefficients for incidence of diarrhoea, with ±2 robust standard
errors.
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Fig. 5. Empirical standard deviations of standardized martingale residual processes.

coefficient, the two plots for categorized age, and the plots for the three dynamic covari-
ates found to have significant effects. The plots include ±2 robust SE [cf. (11)], but not the
model-based SE [cf. (9)], which were very close to the robust values. The baseline effect is
fairly linear, which shows there is little evidence for the incidence rate reducing through the
period of the study. The age effect is strong, with much reduced diarrhoea incidence once the
child gets past about 2 years of age.

The first dynamic covariate counts the average number of previous episodes per day at risk.
This is highly significant, providing evidence of a frailty effect: some children are more suscep-
tible than others even after allowing for known risk factors. The second dynamic
covariate measures the proportion of previous days on which the child had diarrhoea, and
so takes into account length of episodes. Again there is a positive association, although not
as strong as the episode rate. Finally, a history of fever is also predictive of future episodes.
We found no evidence of interaction between dynamic covariates.

The left plot in Fig. 5 shows empirical standard deviations of the standardized martingale
residual processes for incidence analyses with and without inclusion of dynamic covariates.
These values should be close to 1 for a correctly specified model. Without dynamic covariates
the standard deviations increase substantially as time proceeds. With dynamic covariates the
pattern is stable at just over 1, suggesting the model is reasonable.

6.4. Prevalence analysis

Table 3 summarizes some of the results following our prevalence analysis, again with back-
ward elimination for model selection. With more events and larger risk sets, the SE are smaller
and more covariates are evidently statistically significant. With two exceptions, the directions
of effect are positive as expected, with more diarrhoea being associated with poorer con-
ditions. The exceptions are poor street quality and contaminated water storage, which have
counter-intuitive negative association with prevalence. We suspect this is an artefact arising
from near collinearity between some of the covariates.

Figure 6 gives the baseline cumulative coefficient, and those for the five dynamic covariates
found to be important. The figure again has robust SE, which were once more close to the
model-based ones. The dynamic covariates are the proportion of previous days with diarrhoea
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Fig. 6. Selected cumulative regression coefficients for prevalence of diarrhoea, with ±2 robust standard
errors.

and the lag variables, which give the occurrence of diarrhoea d days earlier for d =1, 2, 3 and
4. Note that the lag effect reduces in both magnitude and significance as d increases. Table 4
shows the estimated effects of these covariates on the probability of diarrhoea. Knowing that
the child had diarrhoea the previous day increases the probability of diarrhoea by some 50%,
which is close to the empirical transition probability. This is the strongest effect but note that
there are still residual increases if the child was additionally known to have diarrhoea 2, 3
and 4 days earlier. The episode process is evidently not first-order Markov model.

The right-hand plot in Fig. 5 gives for the prevalence model the empirical standard devia-
tions of the standardized martingale residual processes, with and without inclusion of
dynamic covariates. The effect of including dynamic covariates is dramatic.
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Table 4. Observed and estimated probability of diarrhoea

Diarrhoea previous days Prevalence

4 3 2 1 Observed (%) Model (%)

2 2
� 58 51

� � 64 60
� � � 66 63

� � � � 72 66

The first row is unconditional, the next four assume knowledge of diarrhoea on the d immediately
preceding days, for d =1, 2, 3, 4.

7. Discussion

The additive modelling strategy provides a firmly based and computationally extremely effi-
cient approach to the analysis of complex longitudinal binary data such as obtained by the
Blue Bay survey. A potential disadvantage is that estimates of the conditional probabilities
�it are not constrained to be between 0 and 1. The possibility of negative estimates is some-
times used as an argument against using Aalen’s additive model for event time data and obvi-
ously potential breaches of the upper bound of one can attract similar criticisms. For a vari-
ety of reasons we consider the advantages of the approach we have described to far out-
weigh these shortfalls. First, we are interested mainly in the cumulative regression functions
Bjt =

∑t
s =0 �jt, which are estimated consistently under the approach. Secondly, the power-

ful martingale machinery facilitated by the additive model underpins the inference, including
testing and SE estimation. Thirdly, if there is interest in individual-specific prediction then it
makes sense in any case to apply some local smoothing to the �it to reduce noise, and this
should bring estimates within the bounds.

Fourthly, and importantly, the estimation is quick. Each analysis of the Blue Bay data
took only about 2 min, which meant that different models could be fitted and compared in
real time, we could experiment with inclusion or exclusion of covariates, we could try many
different weighting schemes for the dynamic covariates, and so on. Many computationally
intensive methods in now standard use take hours, days or sometimes even weeks to run
and genuine comparison of alternative models is not feasible. For example, we needed sev-
eral days computing time to obtain the 100 bootstrap fits for the first-order Markov transi-
tion model described in section 4, using a fast programming language (Fortran). The analysis
was useful, especially as it gave credence to the assumption of non-informative dropout, but
nonetheless the prospect of fitting several competing models or perhaps extending beyond
first-order Markov, is daunting.

There are a number of aspects to the Blue Bay data which we will consider in future work.
As mentioned, 16% of children entered late. This may bring a selection effect, not so far
considered in our analyses. An inverse probability weighting procedure based on entry time
might be used for this investigation. Using inverse probability weighting for incidence and
prevalence made rather little difference to the conclusions from the analysis, as results using
unweighted least squares for estimation are similar to those using weighted least squares sum-
marized in section 6. We suspect this may also be true for delayed entry but intend to check
in further analyses. Perhaps more ambitiously, we would also like to consider the possibility
of non-independence between children as it is reasonable to assume at least some of the diar-
rhoea to be caused by infections. The spatial locations of the children’s homes are known and
could be mapped, bringing the possibility of space–time modelling which we will be interested
in pursuing.
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